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Purpose: Intelligent public transportation systems have been largely focused on improving 

the planning, and monitoring the transportation flows during recent years. Advancements 

in public transportation systems increase service levels and encourage more usage of 

public transportation. The forecast of buses' arrival time to stations and having a dynamic 

system to anticipate the real-time possible events for users, significantly increase 

passenger satisfaction. This paper has studied the literature considering dynamic public 

transportation systems and also matters of environmental emissions. 

Methodology: The paper has developed a method to predict bus arrivals at stations by 

considering the buses’ operation parameters and variables with stochastic characteristics 

by applying Markov Chains. The paper also applied the assignment problem technique and 

multi-objective planning to enable a framework for public transportation resource 

assignment considering the perspectives mentioned earlier.   

Findings:  The real data of Hamburg public transportation has been used to verify the 

capabilities of the platform. The findings show that the model validity of the platform and 

enabled effective strategic planning for public resource assignment. 

Originality: This paper has studied the related literature and discussed the considerable 

gap for proposing a dynamic public transportation system that brings satisfaction from the 

side of the users and also mutually minimizing environmental emissions.  

 

 

First received: 01. Apr 2021 Revised: 29. Aug 2021  Accepted: 31. Aug 2021 



Sustainable Public Transportation using Markov Chains 

1 Introduction 

Public network transportation systems are an indispensable part of each city's 

composition that the daily lives of many people depend on its structure. Efficient public 

transport enriches a society for having a dynamic community that could largely impact 

its inhabitant’s quality of life. Many people commute with Public transportation systems 

and the satisfaction of these people is one of the factors that has been considered always 

in the planning. However, in addition to the service level of passengers, recently due to 

the large amount of pollution that produced in this sector, environmental issues have 

been regarded for implementing a suitable urban transportation planning. 

For achieving less CO2 emissions and having a clean environment in the world, all 

countries in the world must have an integrated program and coordinate fully with each 

other to implement this program effectively. Germany as one of the pioneer countries in 

the protection of the environment, discussing and regarding these issues from various 

aspects, and also, they are working with other countries to fulfill programs for protecting 

the environment. There is a climate protection plan act 2050 (Klimaschutzplan 2050) that 

was made by German politicians in 2016 to reduce emissions and greenhouse gases 

according to a plan by 2050. This plan is also integrated with the Paris Climate Agreement 

that is agreed on at the international level. According to studies, the transportation 

sector is one of the main sectors that is not yet reduced its CO2 emissions significantly 

since the number of cars is getting more on roads, air travel and road freight are 

increasing.  

According to the European Commission studies, 40% of CO2 emissions come directly 

from urban mobility while up to 70 % of other pollutants also have originality from 

transportation. This triggers a common challenge to most major cities in Europe, where 

to intensify movement and increase service level, the congestion, pollution, and 

environmental criteria should be controlled. Thus, for finding the right responses to this 

challenge, it is recommended to apply Sustainability Assessment (SA) as a critical tool to 

analyze the environmental aspects by common SA's criteria (Ribeiro et al., 2020). The 

importance of sustainability in public transport has got more attention since 

international laws and domestic regulations are impacting transportation for 
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sustainability concerns. The focus of sustainability is to establish principles on reliably 

sufficing the requirements of public transportation according to the three pillars: 

economic, environmental, and social (also known informally as profits, planet, and 

people). So, SA as an appraisal method can be applied to support long-term and short-

term decisions for transportation planning fulfilling the three aforementioned pillars.  

In terms of environmental criteria, SA encourages governments to consider main 

prospects that influence the wellbeing of the environment, such as reducing greenhouse 

gases and emissions, preserve the ecosystem, and hinder the progress of global 

warming. In public transportation, the consumption of fuels that produce various air 

pollutants is the primary concern that effects environmental criteria (Tang et al., 2020). 

These pollutants mostly incorporate Carbon dioxide, Nitrogen oxides, Methane, and 

particulates. So, an efficient transport planning system with sustainable considerations 

must seek to diminish harmful gases. Simultaneously, from the social and economic 

perspectives, sustainable transportation must consider the preferences of its citizens 

with the proper transportation service level.  

Public transport can be analyzed from two perspectives; in the view of users, the cost of 

transportation, service level and reliability are among the most favored factors (Mishalan 

et al., 2006). While from the other perspective, the target is to represent public transport 

as a viable alternative to self-driving, which both satisfies the logistics requirements of 

passengers and also will be more successful to fulfill the urban environmental traffic 

regulations. So, it is a significant challenge that needs a proper solution to fulfill the both 

citizens' service level and also SA considerations mutually.  

The research roadmap is structured as follows. In section 2, the paper has conducted a 

literature review for studies of Markov Chains in public transportation. In section 3, the 

problem is formulated. Section 4 discusses the problem based on a case study that 

considers the Hamburg city center and then reviews the results. 
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2 Literature Review 

The public transportation resource assignment is well-known in literature, see (Guihaire 

& Hao, 2008) for a comprehensive list of references. (Lin & Bertini, 2002) studied existing 

algorithm for predicting the bus arrival time to stations at free flow traffic without of 

congestion consideration. They formulate a Markov Chain to analyze the behavior of a 

bus in possible scenarios of delays.  

(Xiao et al., 2018) obtained the errors state transition probability matrix by employing a 

Markov Chain model to analyze the error fluctuation of the neural network prediction 

results. Their results were shown in the rail transit line 6, 7, 13 in Beijing as input data of 

the model and the volume of passengers are output of the model that verified with rail 

transit data of line 1 and 2. They also studied its case in Beijing by formulating the 

spillover effect with Markov Chains. They applied Hidden Markov Chains to identify 

submarkets as hidden states. Then they obtained the transition probability Matrix and 

analyze a ranges of spillover type through regression analysis. (Huang et al., 2017) 

studied the service efficiency in public transportation of China and analyzed the process 

of delay of buses at bays where they divided delay into two kind of delays as entering 

delay and exiting delay. Then by forming the queuing model for delay they propose 

Markov Chains to obtain the steady-state of the equilibrium through calculation of 

entering delay at bays that are helpful to assess the dwell time distribution and evaluate 

efficiency of bus bays. (Li, 2014) also combined Markov Chains model with Grey Markov 

Chain and compare them together, where he also predicted the volume of passengers 

travel in the bus route. 

(Wiȩcek et al., 2019) based on Markov Chain proposed an approach for prediction that 

were presented based on real-life data in order to optimize energy and cost in the public 

transport system. They considered the flow of passengers are stochastic to use Markov 

processes for determining occupancy level of buses and estimating the transition 

probability Matrix. The Matrix specified according to the historical data set for each bus 

stop in the heterogeneous Markov Chains. (Rajbhandari et al., 2003) applied Markov 

Chains in order to determine the propagation of bus delay and propose a model for using 

these delays of buses in the estimation of bus arrival times. He obtained the transition 
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probability matrix based on Homogeneous and Heterogeneous propagation of delay 

between time-points for one-way trip bus transport system in New Jersey from Newark 

Penn’s station to Woodbridge center Mall that is last about 1 hour 40 minutes travel time. 

(Saadi et al., 2016) studied a survey data of Belgian Household daily travel to estimate 

transport related variable for forecasting travel behavior by Markov Chain. (Şahin, 2017) 

reviewed the sequence of train departure and arrival times in stochastic process by using 

Markov Chains, where all the delays at stations were considered as possible states and 

the fluctuations among them were predict possible scenarios to predict steady state 

delay probabilities. 

(Huang et al., 2017) focused on optimizing the bus standard driving stile based on route 

conditions and efficient fuel consumption, where predicted driving cycles of specific bus 

routes. They proposed an estimation model between 27 inter-stations, which four of 

them were represented the driving cycles features among all stations based on the 

multiple linear regression model. Iterative Markov Chains was applied for the bus lines 

assignment. (Delaram & Valilai, 2016) the mutual service level satisfaction of passengers, 

and environmental emissions in public transportation are considered as a motivational 

gap for this research. (Sodachi et al., 2020) optimized transportation planning in 

Hamburg city center regarding efficient of service level and minimizing emissions. They 

propose the routes that buses can travel while all stations are visited and passengers' 

satisfaction are adapted. This paper contributed to the (Sodachi et al., 2020) and studied 

its result from the other point of view to propose new solution to the model and also by 

employing the Markov Chains properties, analyze and forecast the delay at the assumed 

stations of the proposed model accordingly. 

From the related literature, it is clear that the goal of the most of papers was to predict 

possible time delay at stations through obtaining the transitions probabilities of the 

Markov Chains model in various perspectives. They pursued this through the side of the 

passengers and they main goal was to predict possible delays in order to enhancing 

customer satisfaction. In this paper as well, we seek to maintain high service level, but 

also from the model we considering SA criteria as well. Thus, the Markov Chains is applied 

on the model that both optimizing service level from the side of passengers and 

environmental emissions from the side of SA. 
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3 Problem Formulation 

In this section, the main goal is to implement a dynamic transportation model on 

(Sodachi et al., 2020) model by considering Markov Process properties. By this, we can 

mutually observe sustainability assessment issues in transportation from one side and 

also the passengers' satisfaction from the other side through predicting delays. 

According to literature, sustainability in transportation is an important trend that most 

developed countries are planning and seeking to adapt fully its criteria. So, it is not 

possible only to optimize the model from the side of the passengers. For this reason, 

achieving the sustainable transportation model is very crucial and the paper target here 

is to propose a dynamic transportation system that is mutually suitable for customer 

satisfaction, and friendly working peace to the environment. Due to this, the paper aims 

to study the results of the previous paper by (Sodachi et al., 2020). According to upcoming 

subsections, the paper first analyzes the sustainability assessment criteria in public 

transportation and review the results of references. Then for having a dynamic model in 

transportation, the Markov Process is applied to determine bus delay’s propagation that 

is a basis for employing bus delay in the prediction of bus arrival time. 

3.1 Sustainable Public Transportation with Service Level 

Efficiency 

Sustainability assessment in public transportation depends on various criteria. The study 

of sustainability is not limited only to environmental metrics such as CO2 emissions. 

However, according to the literature, the impact of CO2 emissions is much more 

significant. For observing the most effective criteria in public transportation, the 

minimization of CO2 emissions and waiting time of passengers at stations were studied 

(Sodachi et al., 2020).  

They minimized both the emissions of buses and the waiting time of passengers at 

stations by a Multi-Objective Optimization Problem (MOOP). The objective function of 

fuel consumption of buses is obtained based on three factors: the vehicle type, the 

distance traveled, and the load carrier as follows (Molina et al., 2014).  
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min(𝐹) = 𝑚𝑖𝑛∑∑∑∑𝑒𝑓𝐶𝑂2𝑟. 𝑑𝑖𝑗 . 𝑥𝑖𝑗𝑡
𝐾 (𝑓𝑒𝐾 + 𝑓𝑒𝑢𝐾. 𝐿𝑖𝑗

𝐾 )

𝑡𝑘𝑗𝑖

 (1) 

Where the parameter of (1) are as following 

𝑒𝑓𝐶𝑂2𝑟: The amount of 𝐶𝑂2 emitted per unit of fuel consumed as an emission factor 

𝑓𝑒𝐾: The amount of fuel consumed while the vehicle is empty 

𝑓𝑒𝑢𝐾: The amount of fuel consumed based on the additional load in the vehicle 

𝐿𝑖𝑗
𝐾 : The load carried by the vehicle between the considered stations 

 

The mathematical model for minimizing the waiting time of passengers at stations is 

proposed according to the following equation 

 
min(𝑊𝑗) = min∑(ℎ𝑗 −

𝑛

𝑗=1

𝜆𝑗(𝜆𝑗 − 1)

2. ℎ𝑗
)  

 
= min∑(∑𝑦𝑗𝑡

𝑘

𝐾

−∑𝑦𝑗(𝑡−1)
𝑘

𝐾

𝑛

𝑗=1

−
𝜆𝑗(𝜆𝑗 − 1)

2(∑ 𝑦𝑗𝑡
𝑘

𝐾 −∑ 𝑦𝑗(𝑡−1)
𝑘

𝐾 )
) (2) 

 

while (2) constraints are  

∑𝑥0𝑗𝑡
𝑘 = 1       ∀𝑡, 𝑘

𝑛

𝑗=1

 (3) 

∑ 𝑥𝑖𝑗𝑡
𝑘 − ∑ 𝑥𝑗𝑖𝑡

𝑘

𝑛

𝑗=1,𝑗≠𝑖

= 0       ∀𝑖, 𝑡, 𝑘

𝑛

𝑗=1,𝑗≠𝑖

 (4) 

∑∑𝑥𝑖𝑗𝑡
𝑘 = 1       ∀𝑗, 𝑡

𝑛

𝑖=1

𝑚

𝑘=1

 (5) 

∑ ∑𝑥𝑖𝑗𝑡
𝑘 (𝑦𝑖𝑡

𝑘 − 𝑦𝑗𝑡
𝑘 ) = 0

𝑚

𝑘=1

𝑛

𝑖=1,𝑖≠𝑗

 (6) 
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{
 
 
 

 
 
 

𝑦𝑗𝑡
𝑘 ≥ 𝑥0𝑗𝑡

𝑘 . 𝑡0𝑗                                                ∀𝑘, 𝑡

𝑦𝑗𝑡
𝑘 =∑𝑥𝑦𝑖𝑗𝑡

𝑘 + 𝑥𝑖𝑗𝑡
𝑘 ∗ 𝑠𝑖

𝑘 + 𝑥𝑖𝑗𝑡
𝑘 ∗ 𝑡𝑖𝑗          ∀𝑗, 𝑡, 𝑘     

𝑛

𝑖=1

𝑥𝑦𝑖𝑗𝑡
𝑘 ≤ 𝑀.𝑥𝑖𝑗𝑡

𝑘                                                    ∀𝑖, 𝑗, 𝑡, 𝑘

𝑀(1 − 𝑥𝑖𝑗𝑡
𝑘 ) + 𝑥𝑦𝑖𝑗𝑡

𝑘 ≥ 𝑦𝑖𝑡
𝑘                                ∀𝑖, 𝑗, 𝑡, 𝑘

𝑥𝑦𝑖𝑗𝑡
𝑘 ≤ 𝑦𝑖𝑡

𝑘                                                              ∀𝑖, 𝑗, 𝑡, 𝑘

 (7) 

{
𝑦𝑖𝑡
𝑘 + 𝑠𝑗

𝑘 + 𝑡𝑖𝑗 ≤ 𝑦𝑗𝑡
𝑘 + 𝑇𝑘(1 − 𝑥𝑖𝑗𝑡

𝑘 )

𝑡0𝑗 ≤ 𝑦𝑗𝑡
𝑘 + 𝑇𝑘(1 − 𝑥0𝑗𝑡

𝑘 )
 (8) 

∑∑𝑥𝑖𝑗𝑡
𝑘 (𝑡𝑖𝑗 + 𝑠𝑗

𝑘) ≤ 𝑇𝑘     ∀𝑡, 𝑘

𝑛

𝑗=1

𝑛

𝑖=1

 (9) 

{

𝑥𝑦𝑖𝑗𝑡
𝑘 ≥ 0           ∀𝑖, 𝑗, 𝑡, 𝑘

𝑦𝑖𝑗𝑡
𝑘 ≥ 0             ∀𝑖, 𝑗, 𝑡, 𝑘

𝑥𝑖𝑗𝑡
𝑘 = (0,1)      ∀𝑖, 𝑗, 𝑡, 𝑘

 (10) 

 

The parameters were defined according to the Vehicle Routing Problem as following 

𝐺(𝑉, 𝐴): {
𝑉 = (𝑣0, 𝑣1, … , 𝑣𝑛),  𝑣0: 𝑑𝑒𝑝𝑜𝑡,  𝑉

′ = 𝑉\{𝑣0}: 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝐴 = {(𝑣𝑖 , 𝑣𝑗)|𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗}
 

𝐾 = (𝑘1, 𝑘2, … , 𝑘𝑚): Vehicles which are assigned individually to each route, 

𝑑𝑖𝑗 : Distance between station 𝑖 and𝑗, 

𝑡𝑖𝑗 : Travel time between different stations, 

𝑇𝑘: Maximum allowing travel time for vehicle 𝑘, 

𝑆𝑖
𝑘: Service time at station 𝑖. 

And also, Decision Variables are: 

𝑥𝑖𝑗𝑡
𝑘 : {

1, 𝐼𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑡𝑟𝑎𝑣𝑒𝑙 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 𝑡𝑜 𝑗 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

𝑦𝑗𝑡
𝑘 : Arrival time of vehicle 𝑘 at station 𝑗 in period 𝑡, 

𝑥𝑦𝑖𝑗𝑡
𝑘 : Dummy variable for linearization, 
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By 𝑦𝑗𝑡
𝑘  definition, the headway at station 𝑗 could be obtained as 

ℎ𝑗 =∑𝑦𝑗𝑡
𝑘

𝐾

−∑𝑦𝑗(𝑡−1)
𝑘

𝐾

 (11) 

3.2 Transportation Delays with Markov Process 

In this section, the dynamic transportation system is considered in order to obtain the 

propagation of bus delays. For this reason, a Markov process has been applied to predict 

bus arrival times. Traffic condition situations can be categorized into homogeneous and 

heterogeneous, which could be predicted with transition probabilities. For the 

construction of transition probabilities of a Markov Chain, it is required all possible states 

are defined in transportation based on delays between time points. Hence, the states for 

the delay in bus transportation could be categorized at each time-points regards to three 

states as the arrival of bus exactly according to the determined scheduled, early arrival, 

and late arrival. These states are debriefed with “e” for early arrival, “l” for late arrival, 

and “o” for on-time arrival. 

By knowing the possible states, then the transition probabilities between these states 

are calculated as follows: 

𝑃𝑖𝑗
𝑟 =

𝑛𝑖
∑ 𝑛𝑖𝑗
𝑚
𝑗=1

, 𝑚 ∈ {1,2,3}, 𝑟 ∈ {𝑟1, 𝑟2,… , 𝑟𝑟, … , 𝑟𝑅} (12) 

Where,  

𝑚: Total number of delay states that are classified into three mentioned states, 

𝑛𝑖𝑗: number of events that states jump from 𝑖 to 𝑗, 

𝑟: number of time-points 

So, the matrix of transition probabilities is obtained as follows: 

𝑃𝑖𝑗 = [

𝑝11 𝑝12 𝑝13
𝑝21 𝑝22 𝑝23
𝑝31 𝑝32 𝑝33

] = [
𝑒𝑒 𝑒𝑙 𝑒𝑜
𝑙𝑒 𝑙𝑙 𝑙𝑜
𝑜𝑒 𝑜𝑙 𝑜𝑜

] (13) 

As shown in (4) each 𝑝𝑖𝑗  determines the probability of being in a state delay 𝑗 at 

downstream time-point, while the upstream time-point has a delay state of 𝑖. For 
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example, 𝑝11 represents the probability where the delay state is “early” at the 

downstream time-point, while the delay state at the origin time-point is also “early”. So, 

for obtaining the transition probabilities, it is required to combinate the upstream time-

point delay state and downstream time point delay state as shown in the next section. 

3.3 Prediction of Transition Probabilities 

In transportation, transition probabilities for Markov Chains are calculated to determine 

the possibility of fluctuation based on all available states with the combinations of time 

points. In transportation planning, these transition probabilities are computed based on 

homogeneous and heterogeneous propagation of time delay between time-points, 

where these transition probabilities of delay states are predicted at time-points 

regarding time-point originality.  

Assume downstream time-point 𝑟𝑅 and 𝑟1 based on homogeneous delay propagation are 

determined as follows: 

𝑃𝑟1−𝑟𝑅 = 𝑃𝑟1−𝑟2 × 𝑃𝑟2−𝑟3 × …× 𝑃𝑟𝑅−1−𝑟𝑅  (14) 

Because of the homogeneous delay propagation, all these probabilities are equal as 

follows: 

𝑃𝑟1−𝑟2 = 𝑃𝑟2−𝑟3 = 𝑃𝑟3−𝑟2 = ⋯ = 𝑃𝑟𝑅−1−𝑟𝑅  (15) 

𝑃𝑟1−𝑟𝑅 = (𝑃𝑟1−𝑟2)
𝑅 = [

𝑒𝑒 𝑒𝑙 𝑒𝑜
𝑙𝑒 𝑙𝑙 𝑙𝑜
𝑜𝑒 𝑜𝑙 𝑜𝑜

]

𝑟1−𝑟2

𝑅

 (16) 

Similarly transition probabilities between downstream time-points 𝑟𝑅−1and 𝑟1, and also 

finally 𝑟𝑅−2and 𝑟1 based on homogeneous delay propagation are determined as follows: 

𝑃𝑟1−𝑟𝑅−1 = (𝑃𝑟1−𝑟2)
𝑅−1 = [

𝑒𝑒 𝑒𝑙 𝑒𝑜
𝑙𝑒 𝑙𝑙 𝑙𝑜
𝑜𝑒 𝑜𝑙 𝑜𝑜

]

𝑟1−𝑟2

𝑅−1

 (17) 

𝑃𝑟1−𝑟2 = [
𝑒𝑒 𝑒𝑙 𝑒𝑜
𝑙𝑒 𝑙𝑙 𝑙𝑜
𝑜𝑒 𝑜𝑙 𝑜𝑜

]

𝑟1−𝑟2

 (18) 
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On the other hand, if the propagation of time delays is considered heterogeneous, then 

the predicted time delay at downstream time point 𝑟𝑅 and 𝑟1 are as following: 

𝑃𝑟1−𝑟𝑅 = 𝑃𝑟1−𝑟2 ∗ 𝑃𝑟2−𝑟3 ∗ …∗ 𝑃𝑟𝑟−1−𝑟𝑟 ∗ 𝑃𝑟𝑟−1−𝑟𝑟 ∗ 𝑃𝑟𝑟−𝑟𝑟+1 ∗ …∗ 𝑃𝑟𝑅−1−𝑟𝑅  (19) 

𝑃𝑟1−𝑟2 ≠ 𝑃𝑟2−𝑟3 ≠ 𝑃𝑟3−𝑟2 ≠ ⋯ ≠ 𝑃𝑟𝑅−1−𝑟𝑅  (20) 

𝑃𝑟1−𝑟𝑅 = [
𝑒𝑒 𝑒𝑙 𝑒𝑜
𝑙𝑒 𝑙𝑙 𝑙𝑜
𝑜𝑒 𝑜𝑙 𝑜𝑜

]

𝑟1−𝑟2

× [
𝑒𝑒 𝑒𝑙 𝑒𝑜
𝑙𝑒 𝑙𝑙 𝑙𝑜
𝑜𝑒 𝑜𝑙 𝑜𝑜

]

𝑟2−𝑟3

× …× [
𝑒𝑒 𝑒𝑙 𝑒𝑜
𝑙𝑒 𝑙𝑙 𝑙𝑜
𝑜𝑒 𝑜𝑙 𝑜𝑜

]

𝑟𝑅−1−𝑟𝑅

 (21) 

Therefore, by using above equations, the 𝑃𝑖𝑗
𝑟 for all downstream time-points were 

determined concerning time-point 𝑟1. 

4 Case Study 

Efficient public transportation in Hamburg is a very important topic from various aspects. 

Hamburg is known as a free and Hanseatic city that is the second-largest city in Germany 

after Berlin and also the 7th largest city in the European Union with a population of over 

1.84 million (Wikipedia). Hamburg has a strategic position among German cities and 

because of its key role in the German economy, it is required to have optimized public 

transportation since, in large cities as Hamburg, public transportation has an enormous 

effect on the everyday life of its inhabitants, and it is a significant role for the dynamic 

face of the city. Accessibility to transportation or easy access, level of service, 

comfortability, effectiveness, the value of cost, and other aspects are major factors that 

encourage people to use public transportation in their everyday travels. But from the 

other side, the change in the structures of the cities and the human manipulation cause 

a gigantic effect on the environment. Sustainability criteria in general and protection of 

the environment are issues that are indispensable in future public transportation 

planning. So, optimization of public transportation without consideration of 

sustainability is not enough and complete. Certainly, sustainability in general and 

environmental protection, in particular, is one of the main issues that is a trend for 

policymaking in most governments.  
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According to Hamburg municipality divisions, Hamburg is divided into five rings that 

most of the city covered with rings A and B around the city center. Other rings are 

covering other parts up to 60 km far from the city. The most strategic and populous part 

of Hamburg is covered with rings A and B based on Figure 1.  

 

Figure 1: Divisions of Hamburg and its suburbs into Rings, (adapted from 

www.nimmbus.de) 

  

http://www.nimmbus.de/
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Based on Figure 2, this paper focused on city center that is part of the city in Ring A since 

it is crowded with a high demand of a large number of passengers that they use everyday 

travels around the city. In this region, there are some fixed stations as nodes as shown in 

Figure 3. All possible direct travel between these stations is also determined in this figure. 

Table 1 also indicates the available stations by their names and determined numbers. 

 

Figure 28: City center of Hamburg that is focused area in this paper obtained 

from Google© (Date 03/2021) 
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Figure 3: Bus stations in Hamburg city center and related connecting graph 

obtained from Google© (Date 03/2021) 

Table 1: Bus stations in the Hamburg city center 
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Sodachi et al. (2020) found the optimum routes which incorporate all stations effectively 

for minimizing the waiting time of the passengers at these stations and simultaneously 

minimizing effectively the produced environmental emissions such as CO2 by buses that 

are traveling around this region. In Figure 4 the optimum assigned routes of buses based 

on the two objective functions are determined.  
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Figure 4: Graph of optimum assigned routes for three buses obtained from 

Sodachi et al. (2020) 

They find three lines of travel for the transportation of buses in the city center. According 

to Figure 4, by assigning buses to these lines, the service level of passengers would be 

enhanced. According to the calculations, the waiting time of passengers decreased 20% 

and also environmental emissions was decreased largely accordingly.  So, this model is 

worked properly both for the protection of the environment and also satisfying 

passengers. However, this model was not considered the propagation of bus delays in 

the downstream time points. The model just found the optimum routes for traveling in 

order to protect the environment and enhance service level in general. But time-delays 

in traveling specifically in some part-time of the day could differ situation for traveling. 

So, the proposed model could be remodeled based on dynamic conditions.  

Arrival time at stops is developed by using a stochastic approach to predict bus travel 

time and propagation of bus delays in the determined lines in Figure 4. In each line, buses 

are traveling in processes that include travel time data correspond to periods. Generally, 
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a bus starts its travel in a specific time-points and then finishes the travel in another 

specific time-points. The interval between successive time points is standard traveling 

time. Standard traveling time obtains from the difference between the bus door open 

time at the following stop and this door close time at the preceding stop. Table 2 

demonstrate the standard time-points between stations and also the length of travel 

between these three lines continuously. In this Table, the depot is considered a place 

around the central rail station that from where buses are started their travels and then 

after the service in each line they will back again to this assumed location as the depot. 

Table 2: The standard time-points between stations of each line (Blue, Black, 

and Red lines) 

stations numbers (Blue 

line) 

starting time-

point 

ending time-

point 
Length 

Depot - 1 0 0.5 110 

1-2 0.5 1.5 220 

2-3 1.5 2.3 180 

3-13 2.3 8.5 1600 

13-14 8.5 10 400 

14-15 10 11 300 

15-29 11 12 260 
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stations numbers (Blue 

line) 

starting time-

point 

ending time-

point 
Length 

29-30 12 13 450 

30-19 13 15 600 

19-20 15 16 350 

20-32 16 17 300 

32-31 17 17.5 150 

31-12 17.5 22 1300 

12-1 22 24.5 500 

stations numbers (Black 

Line) 

starting time-

point 

ending time-

point 
Length 

Depot - 1 0 0.5 110 

1-2 0.5 1.5 220 

2-3 1.5 2.3 180 

3-4 2.3 5 1000 
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stations numbers (Blue 

line) 

starting time-

point 

ending time-

point 
Length 

4-5 5 6 220 

5-27 6 7 230 

27-23 7 11 1100 

23-29 11 14 850 

29-18 14 16 700 

18-7 16 19 1100 

7-6 19 21 550 

6-5 21 22 450 

5-24 22 24 700 

24-26 24 25 180 

26-28 25 26 450 

28-3 26 27 450 

3-21 27 28.5 400 
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stations numbers (Blue 

line) 

starting time-

point 

ending time-

point 
Length 

21-1 28.5 30 450 

1 - Depot 30 30.5 110 

stations numbers (Red 

line) 

starting time-

point 

ending time-

point 
Length 

Depot - 3 0 1.5 510 

3-21 1.5 3 400 

21-22 3 4 350 

22-15 4 5.5 450 

15-16 5.5 7 500 

16-25 7 9.5 850 

25-8 9.5 11 450 

8-9 11 12 300 

9-10 12 12.7 150 
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stations numbers (Red 

line) 

starting time-

point 

ending time-

point 
Length 

10-20 12.7 13.25 100 

20-11 13.25 15 710 

11-10 15 17 800 

10-9 17 17.7 150 

9-8 17.7 18.7 300 

8-25 18.7 20 450 

25-17 20 23 650 

17-16 23 23.5 100 

16-15 23.5 25 500 

15-22 25 27 500 

22-21 27 28 350 

21-3 28 29.5 400 

3 – Depot 29.5 31 510 
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For estimation of bus delay propagation in each station with the formulation of the 

Markov process, it is required to obtain transition probabilities of delay states between 

time points. As in the previous section mentioned, the number of observed delays is 

classified as early arrival or “E”, late arrival or “L”, and on-time arrival or “O”. By using the 

(19) and (20) relationships, the transition probabilities in each line are determined as 

shown in Table 3, Table 4, and Table 5, respectively. These transition probabilities are 

obtained based on the Maximum Likelihood Estimation between time points. 

Table 3: The standard time-points between stations of line 2 (Black line) 

 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

E 0.5 0.5 0 0 0.5 Depot – 1 

L 0 0.9003 0.0997    

O 0.007 0.112 0.881    

E 0.795 0.004 0.201 0.5 1.5 1-2 

L 0.033 0.713 0.254    

O 0.02 0.11 0.87    

E 0.732 0.004 0.264 1.5 2.3 2-3 

L 0.008 0.782 0.21    

O 0.025 0.11 0.865    

E 0.48 0.23 0.29 2.3 8.5 3-13 

L 0 0.921 0.079    
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 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

O 0.048 0.42 0.532    

E 0.89 0.053 0.057 8.5 10 13-14 

L 0.03 0.66 0.31    

O 0.06 0.21 0.73    

E 0.55 0.03 0.42 10 11 14-15 

L 0.036 0.584 0.38    

O 0 0.189 0.811    

E 0.41 0.12 0.47 11 12 15-29 

L 0 0.89 0.11    

O 0.04 0.35 0.61    

E 0.84 0.04 0.12 12 13 29-30 

L 0.0231 0.6339 0.343    

O 0 0.22 0.78    

E 0.529 0.006 0.465 13 15 30-19 

L 0 0.728 0.272    

O 0.11 0.3 0.59    



Sustainable Public Transportation using Markov Chains 

 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

E 0.71 0.002 0.288 15 16 19-20 

L 0.011 0.559 0.43    

O 0.026 0.28 0.694    

E 0.81 0 0.19 16 17 20-32 

L 0.008 0.502 0.49    

O 0.013 0.267 0.72    

E 0.82 0.0303 0.1497 17 17.5 32-31 

L 0.02 0.66 0.32    

O 0.05 0.22 0.73    

E 0.322 0.54 0.138 17.5 22 31-12 

L 0 0.89 0.11    

O 0 0.743 0.257    

E 0.586 0.12 0.294 22 24.5 12-1 

L 0.07 0.59 0.34    

O 0.13 0.26 0.61    

E 0.48 0.52 0 24.5 25 1 – Depot 
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 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

L 0.05 0.81 0.14    

O 0.002 0.15 0.848    

According to Table 3, transition probabilities between stations of Line 1 show that when 

a bus starts its route on time, then it would with great possibility arrive on time on next 

downstream stations 1, 2, and 3, respectively. However, results show that this on-time 

arrival contradicts travel between stations 3 and 13. It means here the bus may encounter 

some traffic or route problems that the late arrival has more possibility. This situation 

repeats between stations 31 and 12. However, among other stations, there are not any 

critical issues and when a bus starts its travel according to the time plan then it would 

arrive at the next station with satisfaction planning.  

Table 4: The standard time-points between stations of line 3 (Red line color) 

 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

E 0.5 0.5 0 0 0.5 Depot – 1 

L 0 0.9003 0.0997    

O 0.007 0.112 0.881    

E 0.795 0.004 0.201 0.5 1.5 1-2 

L 0.033 0.713 0.254    

O 0.02 0.11 0.87    
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 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

E 0.732 0.004 0.264 1.5 2.3 2-3 

L 0.008 0.782 0.21    

O 0.025 0.11 0.865    

E 0.48 0.23 0.29 2.3 8.5 3-13 

L 0 0.921 0.079    

O 0.048 0.42 0.532    

E 0.89 0.053 0.057 8.5 10 13-14 

L 0.03 0.66 0.31    

O 0.06 0.21 0.73    

E 0.55 0.03 0.42 10 11 14-15 

L 0.036 0.584 0.38    

O 0 0.189 0.811    

E 0.41 0.12 0.47 11 12 15-29 

L 0 0.89 0.11    

O 0.04 0.35 0.61    

E 0.84 0.04 0.12 12 13 29-30 
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 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

L 0.0231 0.6339 0.343    

O 0 0.22 0.78    

E 0.529 0.006 0.465 13 15 30-19 

L 0 0.728 0.272    

O 0.11 0.3 0.59    

E 0.71 0.002 0.288 15 16 19-20 

L 0.011 0.559 0.43    

O 0.026 0.28 0.694    

E 0.81 0 0.19 16 17 20-32 

L 0.008 0.502 0.49    

O 0.013 0.267 0.72    

E 0.82 0.0303 0.1497 17 17.5 32-31 

L 0.02 0.66 0.32    

O 0.05 0.22 0.73    

E 0.322 0.54 0.138 17.5 22 31-12 

L 0 0.89 0.11    
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 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

O 0 0.743 0.257    

E 0.586 0.12 0.294 22 24.5 12-1 

L 0.07 0.59 0.34    

O 0.13 0.26 0.61    

E 0.48 0.52 0 24.5 25 1 – Depot 

L 0.05 0.81 0.14    

O 0.002 0.15 0.848    

Results of transition probabilities between stations in Table 4 shows that when a bus 

starts its route on time, then it would with great possibility arrive on time to next 

downstream stations 1, 2, 3, 4, 5, and also with about 0.6 probability arrive on time from 

station 5 to station 27. However, results show that this on-time arrival contradicts 

between stations 27 and 23 that just with 0.22 probability it arrives on time while it was 

departed on time. Similarly, it means here the bus may encounter some traffic or route 

problems that the late arrival has more possibility. This situation repeats between 

stations 18 and 7 and stations 3 and 21. Table 4 also shows late arrival somehow between 

stations 5 and 24 and stations 26 and 28 has a considerable possibility that could not be 

ignored. However, among other stations, there are not any critical issues and when a bus 

starts its travel according to the time plan then it would arrive at the next station with an 

expected suitable time scheduling.  
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Table 5:Transition probabilities between time-points of line 1 (Blue line) 

 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

E 0.562 0.104 0.334 0 1.5 Depot – 3 

L 0.005 0.63 0.365    

O 0.025 0.44 0.535    

E 0.74 0.03 0.23 1.5 3 3—21 

L 0.04 0.44 0.52    

O 0.08 0.28 0.64    

E 0.75 0.016 0.234 3 4 21—22 

L 0.13 0.43 0.44    

O 0.016 0.34 0.644    

E 0.474 0.12 0.406 4 5.5 22—15 

L 0 0.872 0.128    

O 0 0.38 0.62    

E 0.495 0.15 0.355 5.5 7 15—16 

L 0 0.834 0.166    

O 0.04 0.24 0.72    
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 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

E 0.354 0.245 0.401 7 9.5 16—25 

L 0 0.932 0.068    

O 0 0.634 0.366    

E 0.685 0.13 0.185 9.5 11 25—8 

L 0.018 0.422 0.56    

O 0.08 0.3 0.675    

E 0.46 0.07 0.47 11 12 8—9 

L 0.04 0.63 0.33    

O 0.013 0.27 0.717    

E 0.53 0.03 0.44 12 12.7 9—10 

L 0.008 0.632 0.36    

O 0.007 0.3 0.693    

E 0.43 0.021 0.549 12.7 13.25 10—20 

L 0.075 0.68 0.245    

O 0.072 0.2 0.728    

E 0.289 0.26 0.451 13.25 15 20—11 
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 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

L 0 0.81 0.19    

O 0 0.53 0.47    

E 0.485 0.1 0.415 15 17 11—10 

L 0.003 0.71 0.287    

O 0.01 0.27 0.72    

E 0.51 0.05 0.44 17 17.7 10—9 

L 0.01 0.76 0.23    

O 0.088 0.211 0.701    

E 0.449 0.12 0.431 17.7 18.7 9—8 

L 0.008 0.71 0.282    

O 0.029 0.301 0.67    

E 0.73 0.073 0.197 18.7 20 8—25 

L 0.1 0.49 0.41    

O 0.025 0.245 0.73    

E 0.32 0.28 0.4 20 23 25—17 

L 0 0.86 0.14    
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 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

O 0 0.66 0.34    

E 0.56 0.03 0.41 23 23.5 17—16 

L 0.028 0.77 0.202    

O 0.01 0.3 0.69    

E 0.43 0.089 0.481 23.5 25 16—15 

L 0 0.92 0.08    

O 0.03 0.29 0.68    

E 0.44 0.08 0.48 25 27 15—22 

L 0.005 0.839 0.156    

O 0.03 0.35 0.62    

E 0.772 0.018 0.21 27 28 22—21 

L 0.13 0.41 0.46    

O 0.041 0.319 0.64    

E 0.781 0.02 0.199 28 29.5 21—3 

L 0.038 0.47 0.492    

O 0.026 0.374 0.6    
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 E L O 
Upstream 

Time-Point 

Downstream 

Time-Point 
Station 

E 0.493 0.127 0.38 29.5 31 3-Depot 

L 0.02 0.66 0.32    

O 0.007 0.49 0.503    

Finally, for the third line, the results of Table 5 show that when a bus starts its route 

planning according to the time plan, due to the route and also the possible traffic around 

the central rail stations the bus may arrive with substantial delay to the next station, 

station number 3. But the bus can continue its travel without any significant delay from 

station 3 to other stations till station 16, where between station 16 and station 25 there 

is much more possible considerable delay.  In addition, between stations 25 and 17, and 

between stations 20 and 11 are possible delays that are encountering delays that are 

greater than on-time arrival. 

For prediction of transition probabilities for each line of transportation for all mentioned 

time-points in transportation routes, Markov Chains based on both homogeneous and 

heterogeneous propagation of time delay between time-points is applied. First assuming 

homogeneous time delay propagation between time-points of Table 2 stations. Based on 

(20) the transition probabilities are as following: 

𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟𝐷𝑒𝑝𝑜𝑡
𝑇2 =  𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟1 × 𝑃𝑟1−𝑟2 ×…× 𝑃𝑟12−𝑟1 × 𝑃𝑟1−𝑟𝐷𝑒𝑝𝑜𝑡   

Due to the homogeneous assumption all transition probabilities between two successive 

time-point are equal as follows: 

𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟1 = 𝑃𝑟1−𝑟2 = 𝑃𝑟2−𝑟3 = 𝑃𝑟3−𝑟13 = ⋯ = 𝑃𝑟12−𝑟1 = 𝑃𝑟1−𝑟𝐷𝑒𝑝𝑜𝑡  

Therefore, the transition probability for this line is as following: 
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𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟𝐷𝑒𝑝𝑜𝑡
𝑇2 = (𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟1)

15 = [
0.5 0 0,5
0 0.9003 0.0997

0.007 0.112 0.881
]

𝑟𝐷𝑒𝑝𝑜𝑡−𝑟1

15

= [
0.006482 0.529496 0.464022
0.006221 0.539603 0.454176
0.006907 0.510373 0.48272

] 

 

On the other side, if considering the propagation of delay between time-points is 

heterogenous, then the predicted delay for the line is computed as following: 

𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟1 ≠ 𝑃𝑟1−𝑟2 ≠ 𝑃𝑟2−𝑟3 ≠ 𝑃𝑟3−𝑟13 ≠ ⋯ ≠ 𝑃𝑟12−𝑟1 ≠ 𝑃𝑟1−𝑟𝐷𝑒𝑝𝑜𝑡 

𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟𝐷𝑒𝑝𝑜𝑡
𝑇2 = [

0.5 0 0,5
0 0.9003 0.0997

0.007 0.112 0.881
]

𝑟1−𝑟2

× [
0.795 0.004 0.201
0.033 0.713 0.254
0.02 0.11 0.87

]

𝑟2−𝑟3

×…

× [
0.48 0.52 0
0.05 0.81 0.14
0.002 0.15 0.848

]

𝑟1−𝑟𝐷𝑒𝑝𝑜𝑡

= [
0.073457 0.523654 0.402889
0.073121 0.523804 0.403075
0.073195 0.52377 0.403035

] 

Similarly, for the two other lines as in Table 3 and Table 4, the computation of transition 

probabilities for the homogeneous assumption of propagation of delay between time-

points are the same as (18) according to the following matrices. 

𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟𝐷𝑒𝑝𝑜𝑡
𝑇3 = (𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟1)

19 = [
0.5 0 0,5
0 0.9003 0.0997

0.007 0.112 0.881
]

𝑟𝐷𝑒𝑝𝑜𝑡−𝑟1

19

= [
0.006516 0.527113 0.466372
0.006421 0.531071 0.462508
0.00669 0.519632 0,473678

] 

𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟𝐷𝑒𝑝𝑜𝑡
𝑇4 = (𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟3)

22 = [
0.562 0.104 0,334
0,005 0.63 0.365
0,025 0.44 0.535

]

𝑟𝐷𝑒𝑝𝑜𝑡−𝑟3

22

= [
0.03109 0.530312 0.438598
0.031088 0.530314 0.438598
0.031088 0.530314 0.438598

] 

And accordingly, while the propagation of time delay between time-points is 
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heterogeneous, then based on (7) the transition probabilities for the line are as follows, 

respectively: 

𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟𝐷𝑒𝑝𝑜𝑡
𝑇3 = [

0.5 0 0,5
0 0.9003 0.0997

0.007 0.112 0.881
]

𝑟𝐷𝑒𝑝𝑜𝑡−𝑟1

× [
0.795 0.004 0.201
0.033 0.713 0.254
0.02 0.11 0.87

]

𝑟1−𝑟2

× …

× [
0.48 0.52 0
0.05 0.81 0.14
0.002 0.15 0.848

]

𝑟1−𝑟𝐷𝑒𝑝𝑜𝑡

= [
0,083427 0,551018 0,365554
083427 0,551018 0,365554
083427 0,551018 0,365554

] 

 

𝑃𝑟𝐷𝑒𝑝𝑜𝑡−𝑟𝐷𝑒𝑝𝑜𝑡
𝑇4 = [

0.562 0.104 0,334
0,005 0.63 0.365
0.025 0.44 0.535

]

𝑟𝐷𝑒𝑝𝑜𝑡−𝑟3

× [
0.74 0.03 0.23
0.04 0.44 0.52
0.08 0.28 0.64

]

𝑟3−𝑟21

×…× [
0.493 0.127 0,38
0.02 0.66 0.32
0.007 0.49 0.503

]

𝑟3−𝑟𝐷𝑒𝑝𝑜𝑡

= [
0,070961 0,515553 0,426346
0,070845 0,514709 0,425648
0,070851 0,514755 0,425686

] 

 

5 Conclusions 

The efficient public transportation system in large cities is significantly contributed to the 

inhabitants' quality of life. Having a public transportation system that works properly 

based on dynamic planning, and also have a cost-effective program encourages more 

and more people to use them for their daily traveling. By having a dynamic public 

transportation system, not only does the service level of passengers increase, but also 

most criteria of sustainability assessment as environment, society, and economic 

perspectives would be observed. From the previous paper, (Sodachi et al., 2020), it is 

concluded that proper management of public transportation creates paradoxical 

challenges for fulfilling the mutual service level satisfaction for the passengers and also 
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the environmental perspective considerations. According to the Vehicle Routing Problem 

technique and also proposing a multi-objective optimization planning model, the best 

possible routes are obtained that simultaneously regarding service level of users and 

reduced emissions. This paper has also studied the obtained results and discussed them 

for predicting possible delays among stations. As the delay in a station propagates itself 

to other downstream stations, it could bring greater delays to other stations that cause 

the bus transport system encounter more disorders. So, by considering the Markov 

Chains, the paper defined three possible states for the arrival of buses in stations. Then 

the transition probabilities for every two successive stations are achieved through the 

Maximum Likelihood Estimation. Therefore, with Markov Chains, all possible delays in 

the available stations of each line of the bus transport system in Hamburg city center can 

be predicted and a dynamic bus transport system scheduling program can be proposed 

to satisfy users accordingly. 
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