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Abstract. The Automated Multi-Level Substructuring (AMLS) has been developed to
reduce the computational demands of frequency response analysis. AMLS automatically
divides a large finite element model into many substructures on a number of levels based
on the sparsity structure of the system matrices. Assuming that the interior degrees of
freedom depend quasistatically on the interface degrees of freedom, and modeling the de-
viation from quasistatic dependence in terms of a small number of selected substructure
eigenmodes the size of the finite element model is reduced substantially. In this paper
we consider conservative gyroscopic eigenvalue problems. The original AMLS method ne-
glects the gyroscopic effects. We generalize the AMLS approach taking advantage of the
fact that for gyroscopic problems there exists a basis of eigenvectors which can be used when
modeling the deviation from quasistatic behaviour. In both cases the resulting quadratic
eigenproblem is still very large. We suggest to solve it by the nonlinear Arnoldi method
taking advantage of the minmax characterization of its eigenvalues.
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1 INTRODUCTION

Acoustic simulation is increasingly becoming an important part of the automotive
design process. The most costly part of the effort of optimizing noise and vibration
performance is the computation of frequency response for very large finite element models
because a very large number of modes may be needed for obtaining satisfactory accuracy
over the frequency range of interest. Over the last few years, a new method for frequency
response analysis of complex structures has been developed by Bennighof and co-authors
[2], [3], [4] known as Automatic Multi–Level Substructuring (AMLS). Here the large finite
element model is divided adaptively into very many substructures on several levels, and
the frequency response is represented in terms of substructure eigenvectors, which are
less expensive to compute than global ones because they are obtained from much smaller
eigenvalue problems which have lower modal density.

In this paper we consider the conservative gyroscopic eigenvalue problem

Kx + iλGx − λ2Mx = 0 (1)

where K is the stiffness matrix modified by the presence of centrifugal forces, M is the
mass matrix, and G is the gyroscopic matrix. K and M are assumed to be symmetric
and positive definite, and G is skew–symmetric.

This problem arises for instance from simulation of sound radiation of rolling tires
which is the major source of traffic noise at speed above 40 km/h for passenger cars,
while for trucks this limit is approximately 60 km/h (cf. [12], [13]). Simulating the struc-
tural dynamics of the rolling tire by an Arbitrary Lagrangian Eulerian (ALE) approach
developed by Nackenhorst [12] one ends up with problem (1), where a large number of
eigenfrequencies in the range from 500 Hz to 2000 Hz have to be computed since this is an
interval of particular perception of the human ear. For rotating wheels the ALE method
may be interpreted as introducing an observer who is riding on the axis of the wheel, not
rotating with the structure.

Mathematically, AMLS for problem (1) is nothing else but a projection method where
the large problem under consideration is projected to a space spanned by a small number
of eigenvectors of clamped substructures on several levels where only the local stiffness
and mass matrices are taken into account, whereas the gyroscopic part is neglected.

Restricting the gyroscopic problem (1) to the interior degrees of freedom of a substruc-
ture one obviously obtains a problem of the same structure. It is well known that the
quadratic problem (1) of dimension n has 2n real eigenvalues which are symmetric with
respect to the origin, and that both sets, the eigenvectors corresponding to the positive
and to the negative eigenvalues of (1) form a basis of C

n [8]. This suggests to consider
for gyroscopic problems an AMLS method where the original problem is projected to a
small number of local eigenmodes corresponding to the smallest positive eigenvalues of the
restrictions of the gyroscopic problem to the substructures on the various levels. Consid-
ering the same substructuring this approach should have better approximation properties
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than the original AMLS method. On the other hand, neglecting the gyroscopic part
the eigenvalue and eigenvectors of all local problems are real, and the projection can be
done in real arithmetic. Only the solution of the projected gyroscopic problem requires
complex arithmetic, whereas all eigenvectors of the restricted gyroscopic problems are
complex, and using them in a generalized AMLS method the whole algorithm requires
complex arithmetic.

Our paper is organized as follows: Section 2 summarizes briefly the AMLS approach for
linear eigenproblems, and in Section 3 we discuss the application of AMLS in two ways,
using modal information of the linear problem Kx−λ2Mx = 0 only, and of the restriction
of the gyroscopic problem to substructures. Section 4 reviews three numerical methods for
gyroscopic problem, namely linearization for very small problems, safeguarded iteration
for slightly larger problem, and Arnoldi’s method for large and sparse problems. Section
5 reports on our numerical experiments. It turns out that the approach taking advantage
of restricted gyroscopic problems indeed has better approximation properties, but overall
this improvement does not pay since this case requires complex arithmetic even in the
reduction phase, whereas in the linear approach the reduction of the model is done in real
arithmetic, and only solving the reduced model requires complex arithmetic. The paper
closes with conclusions.

2 AMLS FOR LINEAR EIGENPROBLEMS

In this section we summarize the Automated Multi-Level Substructuring (AMLS) method
for the linear eigenvalue problem

Kx = λMx (2)

which was developed by Bennighof and co-workers over the last few years [2], [4], [3], [11],
who applied it to solving frequency response problems involving large and complex models.
Here, K is the stiffness and M mass matrix of a finite element model of a structure. The
method is not restricted to this type of problems but it applies to the more general problem
(2) where K ∈ R

n×n and M ∈ R
n×n are large and sparse symmetric and positive definite

matrices. Because of its pictographic nomenclature, however, we will use the frequency
response problem to explain the AMLS method.

Similarly as in the component mode synthesis (CMS) the structure is partitioned into
a small number of substructures based on the sparsity pattern of the system matrices, but
more generally than in CMS these substructures in turn are substructured on a number
of levels yielding a tree topology for the substructures. Figure 1 shows an example were
each substructure has (at most) two children.

Substructures on the lowest level consist of a small number of degrees of freedom,
which are partitioned into two sets: interface degrees of freedom which are shared with an
adjacent substructure, and interior or local degrees of freedom which are only connected
to degrees of freedom in their own substructure. Correspondingly, the substructure dis-
placement vector u is partitioned into ui and uℓ. Substructure response is represented in
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Fig. 1: Substructure tree

a Craig–Bampton form [6] as

(

ui

uℓ

)

=

(

I O
Ψℓ Φℓ

)(

ui

η

)

=: Tℓ

(

ui

η

)

(3)

where Φℓ satisfies the eigenvalue problem KℓℓΦℓ = MℓℓΦℓΛℓ, and the matrices K and M
are partitioned in the same way as the displacement vector. Λℓ is a diagonal matrix of
eigenvalues, η is the vector of modal coordinates of the substructure, and Ψℓ = −K−1

ℓℓ Kℓi

describes the quasistatic dependence of the local coordinates on the interface degrees of
freedom.

Assuming that the eigenvectors are normalized with respect to the local mass matrix
Mℓℓ this transformation to a quasistatic–modal representation yields the substructure
stiffness matrix

K̃ = T T
ℓ

(

Kii Kiℓ

Kℓi Kℓℓ

)

Tℓ =

(

K̃ii O
O Λℓ

)

(4)

where K̃ii = Kii −KiℓK
−1
ℓℓ Kℓi is the Schur complement of Kℓℓ, and the substructure mass

matrix is transformed to

M̃ =

(

M̃ii M̃iℓ

M̃ℓi I

)

(5)

where I denotes the identity matrix,

M̃ii = Mii − KiℓK
−1
ℓℓ Mℓi − MiℓK

−1
ℓℓ Kℓi + KiℓK

−1
ℓℓ MℓℓK

−1
ℓℓ Kℓi (6)

and
M̃iℓ = MiℓΦℓ − KiℓΦℓΛ

−1
ℓ = M̃T

ℓi . (7)
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Fig. 2: Substructuring / sparsity pattern of stiffness matrix

Once substructures on the lowest level have been transformed they are assembled to
substructures on the next level. Again interface and local degrees of freedom are identified,
and the substructure models are transformed similarly as on the lowest level. Assembly
to higher-level substructures, and the transformation to quasistatic-modal representation
continues, until a model for the entire structure has been assembled, which is equivalent
to the original problem and which obtains the following block form:

(

K̃II O
O Ω

)

ũ = λ

(

M̃II M̃IL

M̃LI M̃LL

)

u. (8)

Here K̃II is the Schur complement of all interior degrees of freedom of the coarsest sub-
structuring in K, Ω is a diagonal matrix containing all eigenvalues obtained from the
transformations on the various levels, and M̃II , M̃IL, and M̃LL are compiled in the course
of the algorithm from the contributions (6) and (7) of the substructures.

Figure 2 on the left shows a substructuring of a plain domain where the subdomains
on the lowest level are labeled a – h. The only interface on the coarsest level is 1, the
interfaces on the second level are 2 and 3, and on the third level are 4 – 7. The picture
on the right shows the sparsity pattern of the stiffness matrix after reordering according
to the partition. Only the diagonal blocks corresponding to the substructures and the
interfaces, and the shaded off-diagonal blocks contain nonzero elements (actually only
those rows and columns of the off-diagonal blocks which correspond to interface degrees
of freedom of the corresponding substructure hold nonzero elements).

It is well known that the high frequency modes of the substructures do not influence the
low frequency modes of the entire structure. Hence, similarly as in the component mode
synthesis method we can reduce the dimension of the eigenvalue problem (8) considerably
if we delete rows and columns in (8) corresponding to high frequencies of the substructures,
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Fig. 3: Sparsity pattern of mass matrix after AMLS projection

and we do this not only for the lowest level, but for the subsequent substructures (i.e.
interfaces) as well. Obviously, this is equivalent to replacing the basis transformation
(3) of a substructure by the projection to the space spanned by the columns of (3)
where only those columns are considered in Φℓ which correspond to low frequencies of
the substructure, namely those frequencies which are less than a given threshold γ.

The cost of performing the projection above consists of the cost of obtaining the ma-
trices Ψℓ and Φℓ and transforming the substructure stiffness and mass matrices K and
M . Notice that for every substructure only a partial eigenproblem has to be solved, and
only a small number of eigenpairs are needed. Moreover, the eigenproblems are usually
very small because most of the local degrees of freedom of a substructure are local degrees
of the substructures of the next lower level which form the current substructure. Hence,
the part of the substructure stiffness matrix corresponding to these degrees of freedom is
already diagonal, and we only have to consider those local degrees of freedom which did
not have this property on the next lower level, i.e. those interface degrees of freedom of
the next lower level which are not interface degrees of freedom on the current level.

Finally, we diagonalize the diagonal blocks corresponding to the interface on the coars-
est level again neglecting eigenpairs which are larger than the threshold γ. Thus, we end
up with a projected eigenproblem, where the stiffness matrix has become diagonal, and
the mass matrix is replaced by a matrix the diagonal of which is the identity, and the only
off-diagonal blocks containing non-zero elements are the ones describing the coupling of
the substructures and its interfaces. Figure 3 shows the sparsity pattern of the projected
mass matrix (on the left for the example in Figure 2, and on the right for the reduction
of the dimension of a FE model of a container ship from 35262 to 2786). Notice, that the
dimension of the projected problem is much smaller than the one of the original problem
since a great deal of the eigenpairs of the substructures are neglected.
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It is obvious that the AMLS method has a lot of parallelization potential. In [9] we
proposed a parallelization concept.

3 GYROSCOPIC QUADRATIC EIGENPROBLEMS

Small vibrations of a conservative rotating system are governed by the system of linear
differential equations

Mq̈ + Gq̇ + Kq = 0, (9)

where M is the mass matrix, K the stiffness matrix modified by the presence of centrifugal
forces, and G = −GT is the skew–symmetric gyroscopic matrix. Using the ansatz q = xeiλt

one obtains the quadratic eigenvalue problem

Kx + iλGx − λ2Mx = 0. (10)

The approach of Bennighof for quadratic eigenproblems (10) containing a linear term
λGx is to neglect this term when defining the basis transformation corresponding to the
substructures, i.e. to define the Craig–Bampton form as in (4) where Φℓ satisfies the
eigenvalue problem KℓℓΦℓ = MℓℓΦℓΛ

2
ℓ , and Ψℓ is the Schur complement of Kℓℓ. Then this

basis transformation (4) yields the same substructure mass matrix (5) – (7) as before, the
only difference in the substructure stiffness matrix is that we have to replace Λℓ by Λ2

ℓ ,
and the gyroscopic substructure matrix is transformed to

T T
ℓ GTℓ =

(

G̃ii G̃iℓ

G̃ℓi ΦT
ℓ GℓℓΦℓ

)

(11)

where
G̃ii = Gii − KiℓK

−1
ℓℓ Gℓi − GiℓK

−1
ℓℓ Kℓi + KiℓK

−1
ℓℓ GℓℓK

−1
ℓℓ Kℓi (12)

and
G̃iℓ = GiℓΦℓ − KiℓK

−1
ℓℓ GℓℓΦℓ = −G̃T

ℓi. (13)

Neglecting eigenmodes corresponding to eigenvalues exceeding a given threshold, and
assembling the substructures at the consecutive levels, one gets the reduced model

K̂û + iλĜû − λ2M̂û = 0, (14)

where the stiffness and mass matrix have the same structure as in the linear case, and
the gyroscopic matrix Ĝ is a skew-symmetric block matrix containing diagonal blocks
corresponding to the (reduced) substructures and interfaces, and only off–diagonal blocks
describing the coupling of a substructure and its interface contain non–zero elements.
Notice, that all projectors are real, and therefore the reduction can be performed in real
arithmetic.

A disadvantage of Bennighof’s approach may be the fact that the eigenvectors of the
clamped substructures not taking into account the gyroscopic part are not appropriate to
model the deviation from quasi–static behaviour of the substructures.
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Problem (10) obviously is equivalent to the linear eigenvalue problem

Ay :=

(

iG K
K O

)(

λx
x

)

= λ

(

M O
O K

)(

λx
x

)

=: λBy. (15)

The matrices A and B are sparse, and in principle the AMLS method applies to problem
(15). However, since linearization doubles the dimension of the problem we suggest a di-
rect AMLS method for the quadratic problem (10) taking advantage of spectral properties
of gyroscopic quadratic eigenproblems.

Assuming that the matrices K ∈ R
n×n and M ∈ R

n×n are symmetric and positive
definite, and that G is skew-symmetric, it is obvious that the matrix A on the left of (15)
is Hermitean, and B is symmetric and positive definite. Hence, problem (10) has 2n real
eigenvalues, and if (λ, x) is an eigenpair of problem (10) then it is easily seen that (−λ, x̄)
is an eigenpair, as well. Hence there are n positive eigenvalues 0 < λ1 ≤ λ2 ≤ . . . λn, and
n negative eigenvalues λ−n ≤ · · · ≤ λ−1 < 0, and the spectrum is symmetric with respect
to the origin.

Duffin [8] proved that eigenvectors corresponding to different positive (or negative)
eigenvalues are linearly independent, and therefore there exists a basis of C

n consisting
of eigenvectors of (10) corresponding to its positive (or negative) eigenvalues. Taking ad-
vantage of this basis the AMLS method can be generalized to the quadratic eigenproblem
(10) in a straightforward manner.

Assume that the underlying problem has been partitioned into substructures on a
number of levels based on the sparsity pattern of the system matrices K, M and G, and
assume that for a given substructure on the lowest level the unknowns are partitioned into
interface and local degrees of freedom. We represent the substructure response similarly
as in the Craig–Bampton form as

(

ui

uℓ

)

=

(

I O
Ψℓ Φℓ

)(

ui

η

)

=: Tℓ

(

ui

η

)

(16)

where Ψℓ = −K−1
ℓℓ Kℓi denotes the static response of the substructure to interface dis-

placements, and Φℓ ∈ C
i×i satisfies the quadratic gyroscopic eigenproblem

KℓℓΦℓ + iGℓℓΦℓΛℓ − MℓℓΦℓΛ
2
ℓ = 0. (17)

Problem (17) can be linearized similarly to (15) and solved by a standard solver for linear
Hermitean eigenvalue problems if the dimension of (17) is not too large, or by safeguarded
iteration, which will be considered in Section 4.

With this change of the basis the substructure matrices obtain the following form

TH
ℓ

(

Kii Kiℓ

Kℓi Kℓℓ

)

Tℓ =

(

Kii − KiℓK
−1
ℓℓ Kℓi O

O ΦH
ℓ KℓℓΦℓ

)

, (18)
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and for N ∈ {G,M}

TH
ℓ NTℓ =

(

Ñii Ñiℓ

Ñℓi ΦH
ℓ NℓℓΦℓ

)

(19)

where
Ñii = Nii − KiℓK

−1
ℓℓ Nℓi − NiℓK

−1
ℓℓ Kℓi + KiℓK

−1
ℓℓ NℓℓK

−1
ℓℓ Kℓi (20)

and
Ñiℓ = NiℓΦℓ − KiℓK

−1
ℓℓ NℓℓΦℓ, Ñℓi = ΦH

ℓ Nℓi − ΦH
ℓ NℓℓK

−1
ℓℓ Kℓi. (21)

Assembling substructures on the next higher level, and identifying interface and local
degrees of freedom, the eigenproblem corresponding to the local unknowns again is a
gyroscopic problem, and we can continue the accumulation to higher level substructures
until a model of the entire structure has been assembled.

Again, we neglect eigenvectors of all substructures which correspond to eigenvalues
exceeding a specified threshold, and we finally reduce the size of the quadratic problem
corresponding to the interface degrees of freedom on the coarsest level. Thus we obtain a
reduced model (14) of much smaller dimension where K̂ is a block diagonal matrix with
Hermitean and positive definite blocks, M̂ is a Hermitean, positive definite block matrix
which has the same diagonal block structure as K̂, and where only off diagonal blocks
describing the coupling of a substructure and its interface contain non-zero elements, and
Ĝ is a skew-Hermitean matrix having the same block structure as M̂ .

4 ARNOLDI METHOD FOR NONLINEAR EIGENVALUE PROBLEMS

In this section we consider numerical methods for computing some of the smallest
positive eigenvalues of the quadratic eigenvalue problem

T (λ)x := (λ2M − λiG − K)x = 0 (22)

where K,M ∈ C
n×n are Hermitean and positive definite and G ∈ C

n×n is skew-Hermitean.
Problems of this type appear in two places in the AMLS method for gyroscopic problems:
first for every substructure when reducing the model we have to determine all eigenpairs
such that the eigenvalue does not exceed a threshold, and secondly the reduced model itself
has this form. Depending on the number of local degrees of freedom of the substructure
under consideration in the first case the dimension of problem (22) may be small or not.
In the second case we assume the matrices K, M , and G to be large and sparse, although
the order of the model is already reduced by AMLS. Hence, methods for both, small and
large dimensions are needed.

If the dimension of problem (22) is very small, then it is proximate to consider the
linearization

(

iG K
K O

)(

λx
x

)

= λ

(

M O
O K

)(

λx
x

)

(23)
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of problem (22) and to apply any dense solver. However, since the dimension is doubled
this method becomes time consuming for not too large dimensions.

A method which only solves linear eigenproblems of the dimension of problem (22)
and therefore is capable for larger (but not too large) dimensions is safeguarded iteration
which takes advantage of a variational characterization of the eigenvalues of problem
(22). Duffin [7], [8] proved that similarly to Hermitean linear eigenproblems the positive
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn of the gyroscopic eigenproblem (22) satisfy a minmax
characterization

λj = min
dim V =j

max
x∈V,x 6=0

p(x), (24)

where

p(x) =
1

2xHMx

(

ixHGx +
√

−(xHGx)2 + 4xHKx · xHMx
)

(25)

denotes the (positive) Rayleigh functional of problem (22), and V denotes a subspace
of C

n. Notice that p(x) is the positive solution of the quadratic equation xHT (λ)x = 0
generalizing the Rayleigh quotient for the linear case T (λ) = λM − K.

The minimum is attained by the invariant subspace of T (λj) corresponding to the j
largest eigenvalues of the linear problem T (λj)y = µy, µ = 0 is the j largest eigenvalue of
T (λj), and the maximum is attained by any eigenvector of T (λj) corresponding to µ = 0.

These properties suggest the following method called safeguarded iteration for com-
puting the j smallest eigenvalue λj of (22) and a corresponding eigenvector:

Algorithm 1 Safeguarded iteration for computing the j–smallest eigenvalue

1: Start with an approximation σ1 to the j-th eigenvalue of (22)
2: for ℓ = 1, 2, . . . until convergence do

3: determine an eigenvector xℓ corresponding to the j-largest eigenvalue of T (σℓ)
4: solve xH

ℓ T (σℓ+1)xℓ = 0 for σℓ+1 = p(xℓ)
5: end for

Safeguarded iteration has the following convergence properties [18].
THEOREM 1

(i) For j = 1 the safeguarded iteration converges globally to λ1.

(ii) If λj is a simple eigenvalue of (22) then the safeguarded iteration converges locally
and quadratically to λj.

(iii) Let T ′(λ) = 2λM − iG be positive definite for λ in a neighbourhood of λj. If xℓ in
step 3: of Algorithm 1 is chosen to be an eigenvector corresponding to the j largest
eigenvalue of the generalized eigenproblem T (σℓ)x = µT ′(σℓ)x then the convergence
is even cubic.
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If problem (22) is large and sparse we consider iterative projection methods where ap-
proximations of the wanted eigenvalues and corresponding eigenvectors are obtained from
projections to subspaces which are expanded in the course of the algorithm. For linear
eigenproblems methods of this type like the Lanczos, Arnoldi or Jacobi–Davidson method
have turned out to be very efficient [1]. Generalizations to the nonlinear eigenproblem
(22) are contained in [5], [15], [16], [17].

We briefly summarize the Arnoldi approach for computing some of the smallest positive
eigenvalues of problem (22). We assume that we already constructed a subspace V of C

n,
and obtained approximations to the smallest eigenvalues λ1 ≤ · · · ≤ λℓ−1 of problem (22)
from the projected problem

V HT (λ)V y = λ2V HMV − λiV HGV y − V HKV y = 0 (26)

where V denotes an orthonormal basis of V .
To obtain approximations to further eigenvalues it is reasonable to expand the approxi-

mating space V by a direction which has high approximation potential for the next wanted
eigenvector. As in the linear case inverse iteration is known to converge quadratically for
simple eigenvalues, and therefore, v = T (λ)−1T ′(λ)x is a good candidate for expanding
V , where λ and x is the current approximation to the wanted eigenvalue and eigenvector,
respectively. However, solving a large linear system in each iteration step is prohibitive
since it is much too expensive, and replacing v by a simplified version v = T (σ)−1T ′(λ)x
with a fixed shift σ is known to lead to wrong convergence.

The following variant of inverse iteration in Algorithm 2 called residual inverse iteration
and introduced by Neumaier [14] does not have these unpleasant properties.

Algorithm 2 Residual inverse iteration

1: Start with an approximation x1 to an eigenvector of (22)
2: for ℓ = 1, 2, . . . until convergence do

3: evaluate the Rayleigh functional µℓ+1 = p(xℓ)
4: compute the residual rℓ = T (µℓ+1)xℓ

5: solve T (σ)dℓ = rℓ

6: set xℓ+1 = xℓ − dℓ, xℓ+1 = xℓ+1/‖xℓ+1‖
7: end for

Theorem 2 proved in [14] describes the convergence of this method.
THEOREM 2 Let T (λ) be twice continuously differentiable. Assume that λ̂ is a simple
eigenvalue of problem (22), and let x̂ be a corresponding eigenvector normalized by ‖x̂‖ =
1. Then the residual inverse iteration converges for all σ sufficiently close to λ̂, and it
holds

‖xℓ+1 − x̂‖

‖xℓ − x̂‖
= O(|σ − λ̂|), and |λℓ+1 − λ̂| = O(‖xℓ − x̂‖2).

11
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Expanding the search space by residual inverse iteration (or an approximation v =
MT (µℓ+1)xℓ, M ≈ T (σ)−1 if a factorization of T (σ) is too expensive to obtain) one
gets the projection method in Algorithm 3 which reduces to the shift-and-invert Arnoldi
method in the linear case.

Algorithm 3 Nonlinear Arnoldi method

1: Start with an initial shift σ and initial orthonormal basis V
2: determine preconditioner M ≈ T (σ)−1

3: while m ≤ number of wanted eigenvalues do

4: compute m-th eigenvalue µ of projected problem V T T (λ)V y = 0
5: determine Ritz vector u = V y and residual r = T (µ)u
6: if ‖r‖/‖u‖ < ε then

7: accept eigenpair λm = µ, xm = u
8: choose new shift σ and update preconditioner M if indicated
9: restart if necessary

10: m=m+1
11: end if

12: v = Mr; v = v − V V T v; v = v/‖v‖; V = [V, v];
13: reorthogonalize if necessary
14: end while

We comment on some of the steps of the Arnoldi method in the following.

1: Since the safeguarded iteration converges globally, the algorithm can be started
with any random vector. However, with v an approximation to an eigenvector
corresponding to the maximal eigenvector of T (µ) and µ an approximation to the
smallest eigenvalue of T (·) one gets much faster convergence. On the other hand
starting with a random vector the methods collects information on the higher eigen-
vectors while iterating for the first one, which speeds up the convergence of the
method for higher eigenvalues. In our numerical experiments we did not observe
essential differences in the overall convergence behaviour.

4: The projected problem can be solved by linearization or safeguarded iteration.

8: Corresponding to Theorem 2 the residual inverse iteration with fixed pole σ con-
verges linearly, and the contraction rate satisfies O(|σ − λm|). We therefore update
the preconditioner if the convergence has become too slow measured by the quotient
of the last two residuals before convergence. The new pole is chosen close to the
eigenvalue wanted next.

9: As the subspaces expand in the course of the algorithm the increasing storage or
the computational cost for solving the projected eigenvalue problems may make it

12
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Fig. 4: Substructuring of FE model of rotating wheel

necessary to restart the algorithm and purge some of the basis vectors. Since a
restart destroys information on the eigenvectors and particularly on the one the
method is just aiming at we restart only if an eigenvector has converged.

By the proof of the minmax characterization the minimum is attained by the invari-
ant subspace Ṽ of T (λk) corresponding to the k largest eigenvalues of T (λk). We
therefore restart with Ṽ = V Z where Z denotes a basis of the invariant subspace
of V HT (µ)V corresponding to the m largest eigenvalues of V HT (µ)T , or to retain
more valuable information the invariant subspace corresponding to the m̃ largest
eigenvalues where m̃ is slightly bigger than m.

If T ′(λ) is positive definite then Ṽ in the last paragraph can be replaced by the
subspace spanned by the eigenvectors of T (λk)u = µT ′(λk)u corresponding to the k
largest eigenvalues. In this case we therefore restart with V Z where Z is spanned
by eigenvectors of V HT (µ)V z = µV HT ′(µ)V z corresponding to the m or m̃ largest
eigenvalues of the generalized eigenproblem.

5 NUMERICAL EXPERIMENTS

To test the approximation properties of both variants of the AMLS method for gyro-
scopic problems we determined all eigenpairs (ω, x) of a coarse finite element model of a
rotating wheel of dimension 1728 such that ω ≤ 12500, i.e. eigenpairs corresponding to
eigenfrequencies up to 2000 Hz.

Using the graph partitioner CHACO [10] we determined a substructuring containing
four levels. Figure 4 shows the topology of the substructuring and the number of degrees
of freedom of the substructures on the left. We included all eigenvalues of substructures
less than 20000 in the AMLS model, and obtained a reduced model of dimension 318
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Fig. 5: Relative errors for AMLS with local linear and gyroscopic models

and 321 when taking into account eigenvalues of the local linear and quadratic eigenvalue
problem, respectively. On the right, Figure 4 shows the number of eigenvalues for each
substructure which were included into the model in the quadratic case. For the linear
case these number are very similar differing by 1 or 2 in 6 substructures.

AMLS returned 106 and 107 eigenvalues in the interval [0, 12500], and the maximum
relative error is 0.045 and 0.029 for the reduction with linear and quadratic local eigenvalue
problems, respectively. The relative errors for all eigenvalue approximations are displayed
in Figure 5 on the left.

The numerical experiments were run under MATLAB 6.5 on a Pentium 4 processor
with 3.0 GHz and 1 GB RAM. For substructuring and determining the reduced model the
method required 9.9 seconds when using linear eigenproblems of the substructures and
12.6 seconds with gyroscopic problems, and in both cases 8.1 seconds were needed to solve
the resulting gyroscopic eigenvalue problem. Solving the original gyroscopic problem by
the nonlinear Arnoldi method with safeguarded iteration to solve the projected problems
72.5 second were needed to determine the smallest 107 eigenvalues and corresponding
eigenvectors.

For the same model we computed eigenpair approximations in the interval 0 ≤ ω ≤
16500 with a threshold γ = 26000 for the substructure eigenvalue problems. AMLS deter-
mined 188 and 190 eigenvalues with a maximum relative error 0.026 and 0.019 for local
linear and gyroscopic models, respectively. The relative errors of all eigenvalue approxima-
tions are contained in Figure 5 on the right. The CPU time in this case was 10.0 seconds
and 21.4 seconds for obtaining the reduced model with linear and gyroscopic substructure
eigenvalue problems, respectively, and 35.3 seconds in both cases for solving the reduced
gyroscopic problem. The nonlinear Arnoldi method for the original problem needed 202.1
seconds to obtain the eigenpairs corresponding to the smallest 190 eigenvalues.
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6 CONCLUSIONS

We have presented two versions of the Automated Multi-Level Substructuring (AMLS)
method for solving large and sparse conservative gyroscopic problems, where on the one
hand linear eigenmodes of the substructures are in use to model the deviation from qua-
sistatic dependence of the substructures on their boundary degrees of freedom, and on the
other hand correct eigenmodes of the gyroscopic behaviour of the substructures. The im-
proved approximation properties yield smaller relative errors in the latter case, while the
necessary complex arithmetic in the reduction phase increases the total CPU time. For
the relatively small problem considered here, and solved under MATLAB the improve-
ment of the approximation properties does not pay. Further experiments with larger and
more realistic models are necessary.
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