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ABSTRACT

A study of the isothermal evolution of a nanoporous gold (npg) microstructure after dealloying has been
performed. In order to adequately characterize its complex three-dimensional bicontinuous ligament-
ring structure, an analysis of the scaled principle curvatures k1 and «; based on representative vol-
umes of meshed 3D reconstructions was applied. Five npg samples, as obtained from an electrolytical
dealloying process, with different mean ligament diameters ranging from ca. 25 nm (as-dealloyed) to ca.
420 nm (from annealing at 300° C) were analyzed. The results indicate that ligament surface flattening
effects lead to small but distinct morphological changes during the investigated early and mid-stages of
coarsening, visible in the scaled «1- and x,- marginal distributions. Thus, strictly speaking, self-similar
evolution of npg cannot be confirmed, but dependent on the specific application, the evolution might
be seen as “sufficiently” self-similar. Moreover, it is shown that the inverse mean principle curvatures
from the marginal distributions can be used to identify the mean sizes of the two salient structural
features, namely the ligaments and the rings. Both inverse mean principle curvatures scale linearly with
the mean ligament diameter. Thus, for the material used in this study, one parameter is sufficient to
characterize its microstructure. Finally, it is shown that rings resembling the ones from the real samples
can be generated computationally by applying modified torus parameterizations. Surprisingly, a calcu-
lation of the curvature distribution of only one “average” ring is sufficient to approximate the scaled
kappa distributions accumulated from the ring distributions of the real samples.
© 2016 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

mathworld.wolfram.com/Self-Similarity.html). Translated into a
mathematical language and illustrated e.g. by growth and coars-

Apart from purely academic interest, microstructure evolution
has provided attraction for materials science research ever since it
was recognized that technologically interesting properties can be
tailored via growth or coarsening of salient microstructural features
such as grains in polycrystals. Mathematically, the link between
some specific property and the structural sizes is often given as a
scaling law. One prominent example is the Hall-Petch law that re-
lates the yield stress of a coarse-grained material to the inverse
square root of the mean grain size, see e.g. Ref. [1]. Implicitly,
the validity of such a scaling law is founded by the self-similarity
of an underlying phenomenon, grain growth in the given
example. Loosely speaking, self-similarity implies “an object looks
roughly the same on any scale” (from Wolfram Mathworld, http://
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ening processes like normal grain growth or Ostwald ripening it
means that the size distributions resulting from an isothermal
evolution process are time-invariant upon scaling by the respective
mean structural sizes [2,3].

While the examples given above describe systems which are
typically characterized by one size measure, e.g. the mean grain size
or mean particle size, there are microstructures exhibiting a much
stronger three-dimensional morphological and topological
complexity. The structural sizes of such systems might not be
characterized sufficiently by only one metric. Nanoporous gold
(npg), a material that gained considerable interest in the past
decade, is one example of such a material. Its microstructure is
usually described as a 3D bicontinuous, interconnected pore-
ligament network with a typical initial mean ligament diameter
of about 5-50 nm, depending on the dealloying conditions [4].
However, it appears to be more appropriate to call it a ligament-
ring structure, since essentially two distinct morphologies can be
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discriminated (Fig. 1): the ligaments themselves and the irregular
shaped, torus-like rings formed by the interconnected ligaments.
Thus, the ligament and the ring diameters might be seen as the two
fundamental metrics of npg. It should be noted that both of these
structural features can have a distinctly different impact on the
mechanical properties of npg. It is still unclear, if there is a corre-
lation between these two mean sizes that might or might not be
maintained during coarsening.

Structural coarsening of npg can be easily achieved via thermal
annealing after dealloying, thereby increasing the ligament sizes as
well as the ring sizes. This requires a reduction of the number of
rings per unit volume over time while keeping the solid volume
fraction constant. This means that in order to make self-similar
coarsening of both ligaments and rings possible, rings must be
opened. So-called pinch-off events have been proposed [5], which
are necessary for a self-similar evolution of the topology of such a
bicontinuous network structure [6]. Dead-end ligaments resulting
from these events can be found in the microstructure throughout
the coarsening process (see Fig. 1c and d). This is of great impor-
tance for mechanical applications, since dead-end ligament parts
do not contribute to the load bearing parts of the npg network [7].

Experimentally, Chen-Wiegart et al. concluded that npg does
not coarsen in a self-similar manner [8], based on their results of
the isothermal temporal evolution of the inverse specific surface
area, and of the evolution of the surface principle curvatures k1 and
K2, represented as so-called 2D scaled interface shape distributions
(ISD). ISD‘s have already been used to characterize systems with
complex microstructures, see e.g. Refs. [9,10], because direct access
to 3D size distributions of the structural constituents was not
possible. The scaled ISD's shown in Chen-Wiegart's work are clearly
not time-invariant, and the explanation they give relates to a
seemingly increasing anisotropy of the npg microstructure. How-
ever, it appears that the X-ray nanotomography approach taken to
reconstruct the 3D structure negates volumes which can be
considered as representative during the later annealing stages. We
have already demonstrated the importance of using representative
volumes in analyzing the npg microstructure [7]. It was shown that
the side length of the representative cube volumes scaled with the
mean ligament diameters by a factor of about 14—16 for the elec-
trolytically dealloyed bulk npg samples used. On the other hand, it

is unclear to what extent the various sample preparation steps, i.e.
preparation of the AgAu alloy and dealloying, influence the resul-
tant, as-dealloyed structure. The self-similar regime might be
attained only in later coarsening stages, where Chen-Wiegart et al.
are critically limited in the volumes analyzed. It has to be
mentioned that Chen-Wiegart applied a free corrosion process to
produce the npg samples which might yield different as-dealloyed
structures than the ones from an electrolytical dissolution process.

Computationally, it was shown that bicontinuous structures,
qualitatively resembling npg structures, can be generated by
employing phase field spinodal decomposition [9]. Investigation of
the structural evolution showed that self-similarity well describes
late-stage coarsening via conserved dynamics of samples with a
solid volume fraction of 36% [6].

We propose analyzing representative volumes and extending
the surface curvature analysis by making use of not just only the 2D
ISD representations but of the marginal k- and «»-distributions as
well. This approach is based on the assumption that the two basic
npg microstructure constituents, rings and ligaments, are each
representable by one of the two principle curvatures x; and x»
respectively. This is identically the case for a regular torus surface,
see Fig. 2, recognizing that for a regular torus k3 (due to our choice)
exclusively reflects the inverse ligament radius, because k<« al-
ways, due to Max(k1)=1/(R+r)<1/r. Since the torus is a closed ring,
the mean of the second principle curvature value (k1) is negative,
and reflects the ring size in some way. If we consider the real npg
microstructure to be built up by interconnected tori, each on
average contributing by only half of its volume, the splitting of the
two principle curvatures is even clearer, because kq is mostly
negative, reflecting the ring characteristics. Consequently, if the
single principle curvatures are believed to reflect different struc-
tural features, then the 2D distributions can be split into the mar-
ginal k1- and «kj-distributions, such that the ring and ligament
characteristics are independently given. Though it is questionable
in how far these two distributions reflect the “true” 3D ligament
and ring diameter distributions, information about the mean liga-
ment and ring sizes might be extracted from the inverse mean
principle curvatures (k1)~! and (x2)~'. Of course, the influence of
the irregularities of the real rings, e.g. aspect ratios of the two main
ring axes, have to be taken into account, which can be done by

Fig. 1. Snapshots from a 3D FIB tomography reconstruction of a npg sample with mean ligament diameter of about 420 nm. The images reflect the typical structural features visible
in all samples: (a) single ligaments that are connected to (b) irregular tori, which are sometimes opened exhibiting dead-end parts (c) and (d).
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Fig. 2. Exemplification of the principle curvatures k; and «; of an isolated regular torus with radii r and R. A regular torus is built by saddle-shape (red, k;<0, k,>0) and convex (blue,
k1>0, k2>0) surface patches, with separating infinitesimal cylindrical patches (two black lines, k1=0, k2>0) in between. The dashed lines show the two principle directions at the
points (Max(k1),k2) and (Min(k),k2). While k,=1/r is constant and positive, ; lies in the interval [Min(k;)=—1/(R—r), Max(k1)=1/(R+r)]. An analysis of the two marginal «-dis-
tributions yield histograms like shown. Note that «; is always smaller than «; since Max(k)=1/(R+r)<k,=1/r. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

analytically examining principal curvature distributions. Moreover,
interconnecting elements and dead-end ligaments in particular, e.g.
Fig. 1(c), are likely to add convex surface contributions to the cur-
vature distributions. This would lead to a shift toward more positive
k1-values. This is discussed further below.

2. Experimental and analyses

Experimentally, our study relies on 3D reconstructions of
representative volumes from focused ion beam (FIB) tomography of
five epoxy-infiltrated samples used in Ref. [7] with mean ligament
diameters (D)jg of ca. 26 nm (as-dealloyed), 44 nm, 208 nm,
369 nm, and 418 nm (from annealing at temperature T = 300° C for
2, 30, 240 and 420 min respectively). The (D), values were ach-
ieved from 3D ligament diameter distributions, generated by
applying a method introduced by Hildebrand et al. [11] and
implemented in a Fiji plug-in [12]. Briefly, this method calculates,
for each voxel in the object of interest (i.e the Au ligament
network), the diameter of the largest sphere that fits into the
structure of interest and contains the specific voxel. From this
analysis, histograms were constructed that could be fitted by Gauss
distributions (not shown here). The mean ligament diameters given
in this text were calculated as the averages taken from six different
regions for each of the five samples.

Since FIB tomography is destructive by nature, it was necessary
to use several samples in order to follow the coarsening behavior of
the npg microstructure. The samples were made from an Ags Auys
alloy, resulting in solid volume fractions of 29.6% (as-dealloyed),
30.4%, 30.9%, 35.5%, and 33.4% (2, 30, 240, and 420 min annealed),
as analyzed from the reconstructed volumes. More details
regarding sample fabrication can be found in Ref. [13].

The 3D reconstructions were achieved from an automatized
sequential milling and imaging procedure performed with a
Nanolab 200 dualbeam SEM and focused ion beam (FIB) micro-
scope (FEI Corp.), making use of its “Auto Slice and View” software.
Details of such a tomographic approach can be found elsewhere,
e.g. Ref. [14]. Instead of milling the open-porous npg structures,
which can lead to redeposition within the pores, we benefitted
from infiltrating the pore structure with an epoxy polymer, which
facilitates clean cross-sectioning of npg. Due to the comparably low
secondary electron yield of the epoxy phase, this special two-phase
composite material allowed for adjusting the SEM imaging pa-
rameters in a way that simplified the segmentation process.

Adjusting the brightness and contrast values of the in-the-lens
secondary electron detector allowed for sampling raw images
almost being binary. Typical electron beam parameters employed
were 2 KV high voltage and 0.21—-0.54 nA beam currents, and ion
beam parameters used for slicing were 30 kV and 0.1-0.3 nA. Fig. 3
shows a typical image taken during slicing of the as-dealloyed
sample. The block of material to be sliced with a Pt layer on top

background- Pt layer

- %

Fig. 3. Typical SEM secondary electron micrograph from sectioning the as-dealloyed
sample. The block of material to be sliced can be easily recognized. The Pt layer on
top facilitated clean FIB cross-sectioning. Adjustment of the brightness and contrast
values before starting the automated slicing and imaging process enabled getting raw
images that were easy to binarize in the final segmentation process. As can be seen, the
ligament sections that appear bright are clearly differentiated from the epoxy phase
appearing dark. Pixel size in this image is 3.6- 3.6 nm?
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can be easily recognized, as well as part of the trench besides. The
gold phase is represented as bright and the epoxy phase as dark.
With this approach, the subsequent binarization could be easily
performed in Fiji. Finally, registration of the image stack was per-
formed by a subpixel registration algorithm, using a Fiji plugin
called “stackreg registration”, which is based on grayscale intensity
of the image stack. The 3D visualization can be performed both by
the Fiji and Amira 4.1 software. Free-floating ligament sections
appearing at the edges of the reconstructions were removed. The
volume fractions of these were typically less than 2% of the total
solid volume fractions.

Naturally, the as-dealloyed sample ((D)jg=26 nm) and the
sample from the first annealing step ((D);ig=44 nm) are by far the
most critical ones to be reconstructed. While lateral (x-y) resolution
is not such a major issue, slicing distance is. With decreasing
structural sizes, the ratio of the mean structural sizes to the mean
slice distance decreases upon approaching the limits of the method,
thereby increasing errors. For our reconstructions, we used a mean
slice distance as an input, determined as the ratio of the final total
sliced distance to the number of slices, typically 500. In this way,
the ratio of mean ligament diameter to voxel dimension increased
from around 8 for the samples with the smallest (D)j;g to around 20
for the samples with the larger structural sizes, with voxel sizes in
the range of 4-4-3 nm> to 18-18-23 nm>. Mangipudi et al. [15]
presented a detailed analysis on the question of processing errors
introduced to reconstructions of as-dealloyed npg through the use
of constant slice thicknesses. The ISDs they present show that there
are small but distinct differences between assuming a constant
slice thickness rather than using the actual slice thicknesses (see
Fig. 7 therein).

The curvature analysis was accomplished on triangulated
meshes of the reconstructed representative volumes. The meshes
were generated by the Amira 4.1 software, having the option to
specify the number of nodes, and thus triangles, employed. Care has
been taken to make sure that the npg reconstructions were
adequately meshed, i.e. the number of nodes used must have been
large enough to smoothly reproduce the very high curvature re-
gions inherent in npg. A typical example of the dependency of
scaled « marginal distributions on the number of mesh nodes is
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Fig. 4. In order to identify a sufficient number of triangles and thus nodes in the
meshes used, visual and quantitative inspection were performed. The plot shows the
typical evolution of the marginal distributions with increasing number of nodes, in this
example, a scaled k; marginal distribution of one sample. Clearly, a certain number is
needed to make the distribution constant; here the 200,000 nodes distribution is
practically identical to the 100,000 nodes distribution.

given in Fig. 4. As expected, if the node number is too low, the high
curvature regions are not reflected; at a certain number of nodes,
the distribution reaches a constant state (100,000 in the example
here), indicating the reliability of the used mesh.

In order to calculate the principle curvature values we applied
the so-called parallel surface method, introduced elsewhere [16,17].
Very briefly, this method calculates the mean and the Gauss cur-
vatures, H and K, respectively, of one-ring neighborhoods around
each mesh node from which the (k1,k3)-pairs can be computed. The
node coordinates together with the node number triplets that
define the mesh triangles were used as inputs for the curvature
calculations. The results were scaled by the mean ligament di-
ameters (D)j; given above, and subsequently used to construct
histograms, either as 2D scaled (k1,k2)-histograms or as marginal
histograms. The histograms were normalized in order to end up
with probability density plots. The marginal histograms could be
nicely fitted by Pearson IV fit functions. The analysis was carried out
on six regions each sample, and the averaged fits for each sample
were calculated. Since the differences between the different re-
gions were rather small, the contour plots shown here are taken
from only one region of either sample.

Finally, we applied results from differential geometry to para-
metric equations of torus surfaces to compute (k1,2 )-distributions
analytically. This approach enabled gaining insight into possible
consequences of the irregular tori shapes on the (k,k2)-distribu-
tions compared to regular tori. A regular torus can be generated by
applying the following parameterization:

X =x(¢,9) = (R+rcos ¢)sin 9,
Yy =Y(¢,9) = (R+ rcos ¢)cos ¥, (1)
Z=2(p,9) =rsin ¢,

with ¢,9 running from 0 to 27, and r and R as defined in Fig. 2. This
parameterization can be easily extended to produce irregular sha-
ped tori, by introducing two ring radii Ry, with ratios Ry/Ry#1 or
modulations of the ligament diameter.

The curvature properties of such surfaces can then be computed
by applying the fundamental forms of differential geometry which
serve to define the metric and curvature properties of a surface.
This can be found in textbooks, e.g. Ref. [18].

3. Results and discussion

Typically, the 2D histograms of the scaled principle curvatures
were quite sharply peaked, and the scaled k; and k; were found in
intervals of roughly [-10,4] and [-1,10], respectively, with the in-
tervals of the peak core regions being around [—-2,2] and [0,4]. Due
to our choice of k; being the maximum curvature value, no values in
the region kp<k1 appear.

In order to simplify the comparibility, at first the evolution of the
peak core regions are represented as 2D probability density contour
plots, shown in Fig. 5. The dashed lines indicate the points with
k1=k3. The area fractions of saddle-shaped («x1<0,x2>0) and convex
surface patches can be easily calculated and are given in Table 1,
together with the very small amount of concave patches (k1,k2<0)
that is not visible in the contour plots. In spite of the variations
visible, the contour plots look quite similar with an apparently
stationary peak position across all sizes. This in sharp contrast to
the results presented in Refs. [8], in which the authors demonstrate
and conclude that the structural evolution is not time-invariant,
based on the scaled ISDs. Very different to both the experimental
and simulation results presented in Refs. [8] and [6] from samples
with solid volume fractions of 28% [8] and 36%, 40%, and 50% [6],
the npg we analyzed (ca. 32% average solid volume fraction), dis-
played large fractions of convex surface patches (x1,k2>0). As a
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Fig. 5. 2D probability density contour plots of the scaled (k1,x) distribution core regions of the five samples. The (D);;;=208nm sample appears to be an outlier. Otherwise, some
evolution from the very early to the later stages can be seen, finally resulting in distributions almost symmetrical around «;=0.

Table 1

The area fractions of saddle-shape, convex and concave surface patches of the five
investigated samples with mean ligament sizes (D). It can be seen that there is a
slight decrease in the saddle-shaped area fraction with an associated increase in the
amount of concave surface patches. Overall, the changes are rather small and, in
particular, the samples arrive at almost equal amounts of saddle-shape and convex
surface patches. Some concave areas were detected too, but are negligible.

(D)iig 26 nm 44 nm 208 nm 369 nm 418 nm
Aiglddle 0.610 0.613 0.536 0.550 0.550
ALex 0.387 0.385 0.457 0.447 0.447
Acgpeave 0.003 0.003 0.007 0.003 0.003

consequence, our ISDs are somewhat symmetrical around k=0,
particularly in the later coarsening stages. The simulation results
presented in Ref. [6] indicate an evolution with increasing solid
volume fractions towards a symmetrical distribution centered on
the scaled k1= —«ky-line. Our results and the experimental results
from Ref. [8] would be in line with that if not the solid volid fraction
claimed in Ref. [8] would be less than ours.

If there is no fundamental difference between npg microstruc-
tures resulting from “uncontrolled” free corrosion as a dealloying
procedure and “controlled” electro-chemical dealloying, the reason
for this discrepancy might be found in the possibly insufficient
volumes investigated there. Since we found for our systems the
minimum reconstructed cube box lengths to be about 14—16+(D);ig,
a reconstructed volume size of (6.5um)> appears to be too small for
the larger ligament sizes achieved in Ref. [8] (see Fig. 2 therein).
Since the volumes investigated in Ref. [8] should have been large
enough for the initial annealing steps, it seems that dealloying, and
in general the whole sample processing, may lead to different
structures (comparing Fig. 2(a) in Ref. [8] and our results). Then,

self-similarity might be reached only at later stages of coarsening.

Fig. 6 shows the scaled marginal ;- and k»-distributions over
the full data range. This kind of representation highlights the fact
that the distributions are tailed which cannot be shown as clearly in
the contour plots. Apart from the (D);g~=208nm outlier, both dis-
tributions exhibit clear trends, with the scaled «;, getting sharper
and the scaled kq-distributions becoming broader with increasing
(D)jig. Though the differences are small, self-similarity cannot be
stated in a strict way. Keeping in mind that the FIB tomography and
subsequent analyses were carried out at the nanoscale, a clear
conclusion regarding the validity of describing the structure evo-
lution as self-similar is difficult to make. In particular, the two
samples with the smallest mean ligament sizes push the limits of
FIB tomography in several aspects (see section 2). However, once
the mean ligament sizes increase, the negative impacts of non-
constant slice thicknesses and ligament-size-to-voxel-size ratio
decrease.

One might wonder if the pronounced tails in the curvature
distributions are artifacts from the analysis, such as the surface
mesh quality or the reconstructions directly. However, this effect
seems to evolve naturally from the irregularities of the npg ring
structure, namely the aspect ratios of the principal ring axes in
combination with ligament diameter modulations along the rings.
It is fairly easy to generate rings computationally that resemble the
ones found from the reconstructions of the real samples. By
modifying the torus parameterization given in eqn. (1), it is possible
to introduce the irregularities necessary to end up with ligament
diameter modulations and ring diameter ratios = 1. By trial and
error, one can even manage to generate a single average ring which
reflects the curvature analysis of the real structures, depending on
the range of the parameter ¢ in eqn. (1). Three cases are presented:
o<[n)2,3/27], p=[7]5,9/57], and ¢ €[0,27], the structures of which
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are shown in Fig. 7 from left to right. The corresponding analytically
calculated scaled marginal distributions are shown in Fig. 8, for
comparison together with the curves of the (D)ji;=369nm-sample,
since the artificial ring we generated yielded a mean ligament
diameter of about 330 nm.

Fig. 8 suggests that the distribution tails associated with the real
samples may naturally evolve from the ring shape modulations,
even if only a complete, isolated ring is considered. This should be
compared to the typical k-distributions of regular tori, shown as
histograms in Fig. 2. The variation of the range of parameter ¢
essentially affects only the «kq-distribution, as expected, not
considering here details of the spatial arrangement of the inter-
connected rings in real samples. On average, each ring should
contribute by half of its volume. One can see that upon approaching
half of the ¢ range, i.e. approximately half of the ring volume, one
approaches the result from the (D)j;; =369 nm-sample. It is only the
largest positive values that are not reproduced by this simple
approach, which we assign to interconnecting elements or dead-
end ligaments in the real structures. Microstructural features like
the one shown in Fig. 1 would mostly add convex surface patches to
the structure (k1,k2>0), which could shift the analytical xi-distri-
bution to more positive values, the extent of the shift being
dependent on the amount and sizes of the features. This might
better approximate the distributions of the real structures, yet was
not considered further herein.

However, a surprising result might be that one single ring can
almost perfectly reproduce the accumulated distributions from
distributions of up to several hundred rings. This might point out
that the ring size distribution in the real samples could be rather
narrow. Of course, it should be noted that different 2D distributions
can have identical marginals, at least in simple cases. Fig. 9 shows
the 2D contour plot of the artificial average ring, which differs from

the plots shown in Fig. 5 particularly in its peak height, apart from
the missing positive kq-values. Again, it appears that the same
argumentation given above should hold: adding interconnecting
and dead-end microstructural elements might shift the ISD to-
wards the real ones. Future analytical work might be aimed to
reproduce the real ISD analytically, employing different ring size
distributions and irregularities as well as different relative amounts
of non load-bearing structural features. This has been out of scope
in the work presented here.

The question remains, if and to what extent the two marginal
distributions reflect the evolution of the rings and the ligaments.
The same trend towards narrower distributions with increasing
mean ligament size is visible both in the scaled ligament diameter
distributions presented in Ref. [7] and the scaled «,-distributions
shown here, which might be explained physically by surface flat-
tening effects during annealing, which should not be mixed up with
surface faceting, which we never detected at the low annealing
temperature of 300° C within the annealing times of 2, 30, 240, and
420 min employed. Instead, we mean removal of (scaled) high
curvature regions by surface diffusional mass transport. According
to our working hypothesis outlined in the introduction, the scaled
ka-distributions might be seen to mirror the ligament diameter
characteristics. In order to test this hypothesis, we plotted (k)
against (D)jiz shown in Fig 10. The linear fit yields (k2) " 1=0.46-
(D)iig= (R)iig, Which supports our hypothesis.

As for the ring sizes and their possible relation to the scaled k1,
we made use of the results for the scaled connectivity densities
Cy- (D),3ig given in Ref. [7]. Since the connectivity density Cy reflects
the number of rings per unit sample volume, it follows for the
average volume per ring:

Vdiing1 = Psotid/Cv -

Fig. 7. Computationally generated ring, the marginal distributions of which can be very close to the results from the real structures from up to several hundred rings, depending on
the range of the angle ¢ in the parameterization applied (see eqn. (1)), which controls the volume of the generated closed ring. An analysis were carried out for three cases, as

shown here from left to right: ¢ €[7/2,3/27], o =[7/5,9/57], and ¢ €[0,27], see text.



30 M. Ziehmer et al. / Acta Materialia 120 (2016) 24—31
1.09— 369nm real 0'6'_
.. 0.8~ - - analytical - ¢: [0,2] n > 0'5'_
3 - - - analytical - ¢: [/5,1.8] b 20,
c . l o Y-
38 0.6 4~ — - analytical - ¢: [r/2,1.57] A ° ]
z | A £03-
] a7
© 0.4 [ 1
g | 0.2
a a ]
0.2 014
0.0 ey 1 0.0 —
-8 -6 -4 - 4 -2 8 10

<D>
k<D lig

Fig. 8. The marginal «-distributions of the ring structures shown in Fig. 7 in comparison to the results of the (D);ig=369nm-sample. The tails of the distributions are a natural result
of the irregularities, i.e. the deviations from the regular torus shape. Reducing the range of the parameter ¢ (see eqn. (1)), makes the «;-distribution approaching the one from the

real sample. As expected, the k,-distribution is mostly unaffected.
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Fig. 10. Plots of the inverse mean « against (D);;;. Both inverse « exhibit a linear de-
pendency with respect to (D). The result from the linear fit of 1/(k2);ig vs. (D)jig Shows
a very good agreement to the working hypothesis that the «, reflect the ligament
structure.

Using psolig=0.3 and Cy - (D)ﬁg =0.10 — 0.11 [7], the average ring
volume can be estimated to be:
(V)ring1=2.7 — 3.0-(D)j. (2)

Assuming each ring contributes on average only by half of its
volume, since the rings are interconnected, the mean ring volume

might also be estimated from half the mean volume of a torus with
mean ligament and ring radii (R)jig and (R)ing as:

Vringz= (7 Roig)”~Rying. 3)

Equating eqns. (2) and (3) yields a linear dependency of the
mean ring diameter (D);ng with respect to the mean ligament
diameter (D)jjg:

(DYying=2.2 — 2.4-(D)jjq. (4)

This indicates that a single parameter is sufficient to fully
characterize the structural sizes of the npg samples used in this
investigation.

Since also a linear dependency of |(x1)|~! with respect to (D)iig
was found (see Fig 10), the mean ring diameters can be expressed
roughly through the inverse mean «q:

(Dring =0.8-| (k1 )|

Note that the (k1)<O0 for all samples.

Clearly, this result assumes that the rings are built up by the
whole solid material available, thus ignoring existing dead-end
ligaments and the interconnecting parts that can strongly alter
the torus volume calculations (but not the connectivity density).
Consequently, the analysis given above should take into account an
effective solid volume fraction peg=C- psolig, With C being a positive
constant smaller than 1. We recently showed that an effective load-
bearing solid volume fraction can be defined, which is significantly
lower than the total volume fraction [7].

(5)

4. Summary

In summary, we have shown that through the use of FIB-based
tomography applied to representative volumes, the salient struc-
tural parameters can be identified in terms of the mean principle
curvatures. An analysis based on an ideal torus provided insight
into the influences of ellipticity and ligament diameter variability of
the fundamental ring-like structure of the npg network. We have
emphasized the importance of addressing the comparability of
results from various structural investigations of npg; the influence
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of sample preparation, especially the dealloying approach, the
validity of considering the analyzed material volume as represen-
tative, and the potential artifacts of any experiment and subsequent
analysis made, can all influence the conclusions made. The issue of
representative volumes has been invoked as the likely reason our
conclusions regarding self similar coarsening are in strong
disagreement by those made by others. We conclude that the in-
verse mean principle curvatures relate directly to physical di-
mensions associated with the ligament network structure, namely
the mean ligament diameter and the diameter of an effective ring
structure supporting load. Since both measures directly scale with
the mean ligament diameter, one parameter is sufficient to fully
characterize the microstructure of the npg system investigated.
Furthermore, despite certain discrepancies, the result support a
view of npg coarsening which, depending on the purpose, might be
considered sufficiently self similar.
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