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Abstract

In a recent paper Melman [12] derived upper bounds for the smallest eigen-
value of a real symmetric Toeplitz matrix in terms of the smallest roots of
rational and polynomial approximations of the secular equation f(A) =0, the
best of which being constructed by the (1,2)-Padé approximation of f. In this
paper we prove that this bound is the smallest eigenvalue of the projection
of the given eigenvalue problem onto a Krylov space of 77! of dimension 3.
This interpretation of the bound suggests enhanced bounds of increasing ac-
curacy. They can be substantially improved further by exploiting symmetry
properties of the principal eigenvector of T),.
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1 Introduction

The problem of finding the smallest eigenvalue of a real symmetric, positive definite
Toeplitz matrix (RSPDT) is of considerable interest in signal processing. Given the
covariance sequence of the observed data, Pisarenko [14] suggested a method which
determines the sinusoidal frequencies from the eigenvector of the covariance matrix
associated with its minimum eigenvalue.

The computation of the minimum eigenvalue Ay of an RSPDT T, was considered
in, e.g. [2], [7], [8], [9], [10], [11], [13], [16]. Cybenko and Van Loan [2] presented
an algorithm which is a combination of bisection and Newton’s method for the
secular equation. By replacing Newton’s method with a root finding method based
on rational Hermitian interpolation of the secular equation, Mackens and the present
author in [10] improved this approach substantially. In [11] it was shown that the
algorithm from [10] is equivalent to a projection method where in every step the



eigenvalue problem is projected onto a two-dimensional space. This interpretation
suggested a further enhancement to the method of Cybenko and Van Loan. Finally,
by exploiting symmetry properties of the principal eigenvector, the methods in [10]
and [11] were accelerated in [16].

If the bisection scheme in a method of the last paragraph is started with a poor
upper bound for A{, a large number of bisection steps may be necessary to get a
suitable initial value for the subsequent root finding method. Usually the dominant
share of the cost occurs in the bisection phase, and a good upper bound for A; is
of predominant importance. Cybenko and Van Loan [2] presented an upper bound
for Ay which can be obtained from the data determined in Durbin’s algorithm for
the Yule-Walker system. Dembo [3] derived tighter bounds by using (linear and
quadratic) Taylor expansions of the secular equation. In a recent paper Melman
[12] improved these bounds in two ways, first by considering rational approxima-
tions of the secular equation and, secondly, by exploiting symmetry properties of
the principal eigenvector in a similar way as in [16]. Apparently, because of the
somewhat complicated nature of their analysis, he restricted his investigations to
rational approximations of at most third order.

In this paper we prove that Melman’s bounds obtained by first and third order
rational approximations can be interpreted as the smallest eigenvalues of projected
problems of dimension 2 and 3, respectively, where the matrix T}, is projected onto a
Krylov space of 7. This interpretation again proves the fact that the smallest roots
of the approximating rational functions are upper bounds of the smallest eigenvalue,
avoiding the somewhat complicated analysis of the rational functions. Moreover, it
suggests a method to obtain improved bounds in a systematic way by increasing the
dimension of the Krylov space.

The paper is organized as follows. In Section 2 we briefly sketch the approaches
of Dembo and Melman and prove that Melman’s bounds can be obtained from a
projected eigenproblem. In Section 3 we consider secular equations characterizing the
smallest odd and even eigenvalue of T, and take advantage of symmetry properties
of the principal eigenvector to improve the eigenvalue bounds. Finally, in Section 4
we present numerical results.

2 Rational approximation and projection

Let

Tn — (t|i—j|)i,j:1,...,n € R(n,n)
be a real and symmetric Toeplitz matrix. We denote by T} € IRV its j-th principal
submatrix, and by ¢ the vector t = (¢1,...,¢,_1)T. If )\(1]) < )\(2]) <...< )\y) are the
eigenvalues of T} then the interlacing property )\gk_)l < )\gk__ll) < )\gk), 2<j3<k<n,
holds.



We briefly sketch the approaches of Dembo and Melman. To this end we additionally
assume that 7}, is positive definite. If A is not in the spectrum of T),_; then block
Gauss elimination of the variables x5, ..., z, of the system

to— A T _ g
t o Ta—M |7

that characterizes the eigenvalues of T, yields
(to — A= tT(Tn_l — A[)_lt)l'l =0.

We assume that )\(ln) < A(ln_l). Then z; # 0, and )\(ln) is the smallest positive root of
the secular equation

T = —to+ A+t (T = M)t =0 (1)
which may be rewritten in modal coordinates as

n—1 (tTUj)Q
fA)=—to+A+> =0 (2)
]‘:1 )\] - )\

(n=1)

where v/ denotes the eigenvector of T),_; corresponding to A

From

_ Tl , _ (1 _Tp—1 to 17 1
F(0) = —to + 47T 74t = —(1, tTn_l)(t _ ))(—T‘llt <0

n—

and fU)(X) > 0 for every j € IN and every A € [0, A(ln_l)] it follows that the Taylor
polynomial p; of degree j such that f*)(0) = pgk)(()), kE=0,1,...,7, satisfies

F(A) > p;(A) for every A < )\(ln_l) and  p;(A) < pjp1(A) for every A > 0.
Hence, the smallest positive root p; of p; is an upper bound of )\(ln) and g4 < pj.
For j =1 and j = 2 these upper bounds were presented by Dembo [3], for j = 3 it
is contained in Melman [12].

Improved bounds were obtained by Melman [12] by approximating the secular equa-
tion by rational functions. The idea of a rational approximation of the secular equa-
tion is not new. Dongarra and Sorensen [4] used it in a parallel divide and conquer
method for symmetric eigenvalue problems, while in [10] it was used in an algorithm
for computing the smallest eigenvalue of a Toeplitz matrix.

Melman considered rational approximations
ri(A) = —to+ A+ p;(A)
of f where

a b a c

A) = A) = e A) =
pl() h— )\’ pQ() a—l_c_)\v p3() b_)\—l_d_)\v




and the parameters a, b, ¢, d are determined such that

d* _
pP(0) = STy = AT = RO k=00 ()
Thus p1, p2 and ps, respectively, are the (0, 1)-, (1, 1)- and (1,2)-Padé approximations
of &(A\) :=tT(T,_y — M )™t (cf. Braess [1])

For the rational approximations r; it holds that (cf. Melman [12], Theorem 4.1)
r(A) < ra(A) <ra(A) < F(A) for A < ATTY,

and with the arguments from Melman one can infer that for j = 2 and 57 = 3 the
inequality rj_1(A) < r;(A) even holds for every A less than the smallest pole of r;.
Hence, if i; denotes the smallest positive root of r;(A) = 0 then

MY < gy < pg < .
The rational approximations r;1(A) and r3(A) to f(A) are of the form of a secular
equation of an eigenvalue problem of dimensions 2 and 3, respectively. Hence, there is
some evidence that the roots of r; and r3 are eigenvalues of projected eigenproblems.

In the following we prove that this conjecture actually holds true. Notice that our
approach does not presume that the matrix 7T, is positive definite.

Lemma 2.1 Let T, be a real symmetric Toeplitz matrix such that 0 is not in
the spectrum of T, and T, . Let ¢* := (1,0,...,0)T € IR", and denote by
Vi := span{et, T e, ... T} the Krylov space of T! corresponding to the ini-

{g’(ﬂgﬁ)’””(Tgﬁ)} (4)

is a basis of V;, and the projected eigenproblem of T,,x = Ax onto V; can be written

tial vector e'. Then

as
~ L to ST . 1 OT A
By.—(S B)y—)\(o C)y—.Cy (5)
where
I 124 M2 v Het1 H1
B = oL : , U= S , 8= :
e ooo H20—1 T I ¢ 314 fe
and 4
Hj = tTTn_—]ﬂL- (6)

Proof For ¢ = 0 the Lemma is trivial. Since
-1.1 « Oéto + tTU =1
Tne_(v) <:>{ozt—|—Tn_1v:0

for £ =1 a basis of V; is given in (4).



Assume that (4) defines a basis of V; for some ¢ € IN, then T~*e! may be represented
as

6 {—1 ]
Tn—fel — ( T—l ; ) , 2= ZFY]Tn_—Jlt
7=0

n—1
Hence
e =1 ( T‘ﬁl . ) = /T e + T ( T_Ol B ) =: BT, et + ( i ) ,
n—1 n—1
where

to 17 6\ 0 PN §to+tTw =10
t T,y w )\ T7h= St+T,_yw=T71=%

The second equation is equivalent to

n—

-1
w=T72 =0T 2= T2 7 = ST € span{T ¢, ..., T ),
=0

and (4) defines a basis of V4 for ¢ + 1.

Using the basis of V; in (4) it is easily seen that eq. (5) is the matrix representation
of the projection of the eigenvalue problem T,z = Az onto the Krylov space V;. O

Lemma 2.2 Let B, (| s, BN and CN'Nbe defined as in Lemma 2.1. Then the eigenvalues
of the projected problem By = AC'y which are not in the spectrum of the subpencil
Bw = ACw are the roots of the secular equation

ge(AN) = —to+ A+ ST(B — )\C)_ls. (7)
For F := (T t,..., T ) the secular equation can be rewritten as
g(N) = ~to + A+ TE(FT(T,_, — X F) ' FTe (8)

Proof: The secular equation in (7) is obtained in the same way as the secular
equation f(A) = 0 of T, = Ax at the beginning of this section by block Gauss
elimination. The representation (8) is obtained from B = FIT, F, C = FTF and
s = FTt. a

Lemma 2.3 Let B, (), s be defined in Lemma 2.1, and let
o(A) = ST(B —AC) s,
Then the k-th derivative of o, is given by

e () = KT (F(FT(T,y = NDF) T FT)+1, k> 0. ()



Proof: Let
GA) == (FT (T = X E)
Then
d

aG(A) = G(NFTFG(N),

yields

oy (N) = tTFG' (N FT

= "F(FTT,_ = XD FTF(FN (T, — X F)Y T Pt

= N(F(FY(T,_y = X)) P,

i.e.eq. (9) for k= 1.

Assume that eq. (9) holds for some & € IN. Then it follows from eq. (10)

() = k! tT%{(F(FT(Tn_I — A F)T ETY

= (k+ D" (F(FN(T,_, — )J)F)‘lFT)’“%(F(FT(Tn_l —ADF) FT

= (k+ DU (F(FN(T,y — )J)F)‘IFT)’“F%G()\)FTt
= (k+ DU (F(FN (T = XDEY T EDY PG FT RGO FTL

— (k4 DU (F(ET (T — ADF) T,

which completes the proof.
Lemma 2.4 Let F:= (T, t,... ., T75t). Then it holds that

(F(FTT,_ FY " FDY =T 78 fork=0,1,...,¢,

and

EFTT,_ FY T E DY =TT 7R for k= 0,1,...,21.

Proof For k = 0 the statement (11) is trivial. Let
H:=F(F'T, ,F)"'FT,_,.
Then for every z € span F, x := Fy, y € R’
He = F(F'T,_\F)Y'\F'T,_Fy = Fy =,
and T/}t € span F yields
F(FTT,  F)y'FTt = HT 't = T ¢,

i.e. eq. (11) for k = 1.

(10)



If eq. (11) holds for some k < { then it follows from Tn__(]f—l_l)t € span I

(F(FTT,_F)"'FT)*1y (F(FTT,_ F)"'FT)(F (FTTn VYRR
= (FFTT,_ F)Y " FOYT
(F(FTT,_ ;Y FT,

- lTn k-l—l)
= T MYy = Uy

which proves eq. (11).

Eq. (12) follows immediately from eq. (11) for & = 0,1,...,0. For { < k <20 it is
obtained from

tNF(FTT,_ ) PO = (F(FTT,_ ) FOY )T (F(FTT,_ F)~ FTY=)
= (0T = TR O

n—1 n—1

We are now ready to prove our main result.

Theorem 2.5: Let T, be a real symmetric Toeplitz matrix such that T, and T,_;
are nonsingular. Let the matrices B and C' be defined in Lemma 2.1, and let

G(N) = —to + A+ T (B=XC)'s = —lo+ A+ 0u(N)

be the secular equation of the projected eigenproblem (5) considered in Lemma 2.1.
Then o¢(N) is the ({ — 1,()-Padé approximation of the rational function

dN) =t Ty — A)7!

Conversely, if 7,()\) denotes the ({ — 1,{)-Padé approximation of ¢(A) and /,L(lé) <

/,L(QZ) < ... are the roots of the rational function A — —ty + A + () ordered by

magnitude, then
n £+1 l
A < D <0 (13)

for every { <n and j € {1,..., 0+ 1}.

Proof: Using modal coordinates of the pencil Bw = ACw the rational function
oi(A) may be rewritten as

Uf()‘) = Z ﬁ_ A

7= 1

where k; denotes the eigenvalues of this pencil. Hence o, is a rational function
where the degree of the numerator and denominator is not greater than £ — 1 and
{, respectively.

From Lemma 2.3 and Lemma 2.4 it follows that
oM(0) = kT (F(FTT,_ F) " FOY Yy = k1T 50 = o) (0)

for every k =0,1,...,20 — 1. Hence oy is the (¢ — 1,/)-Padé approximation of ¢.



From the uniqueness of the Padé approximation it follows that 7, = o,. Hence
/,L(lé) < /,L(QZ) < ... are the eigenvalues of the projection of problem T,z = Az onto V},
and (13) follows from the minimax principle. O

Some remarks are in order:

1. The rational functions p; and p3 constructed by Melman [12] coincide with oy and
o3, respectively. Hence, Theorem 2.5 contains the bounds of Melman. Moreover it
provides a method to compute these bounds which is much more transparent than
the approach of Melman.

2. Obviously the considerations above apply to every shifted problem T, — kI such
that « is not in the spectra of T, and T,_;. Notice that the analysis of Melman [12]
is only valid if  is a lower bound of A(T,,).

3. In the same way lower bounds of the maximum eigenvalue of T, can be determined.
These generalize the corresponding results by Melman [12] where we do not need an
upper bound of the largest eigenvalue of T;,.

3 Exploiting symmetry of the principal eigenvec-
tor

If 7, € R™" is a real and symmetric Toeplitz matrix and [, denotes the n-
dimensional flipmatrix with ones in its secondary diagonal and zeros elsewhere,

then £2 = [ and T, = E,T,E,. Hence T,z = Az if and only if
T,(E,2) = E,T,E*x = \E,x,

and x is an eigenvector of T, if and only if £,z is. If A is a simple eigenvalue of
T, then from |[z||2 = ||Fnx|]2 we obtain @ = E,x or + = —F,x. We say that an
eigenvector = is symmetric and the corresponding eigenvalue A is even if + = F, z,
and z is called skew-symmetric and A is odd if ¢ = —F,x.

One disadvantage of the projection scheme in Section 2 is that it does not reflect the
symmetry properties of the principal eigenvector. In this section we present a variant
which takes advantage of the symmetry of the eigenvector and which essentially is
of equal cost to the method considered in Section 2.

To take into account the symmetry properties of the eigenvector we eliminate the

variables x,,...,x,_1 from the system
to — )\ tNT tn—l
t Tao— X E, o |2=0 (14)

tn—l tNTEn—Q to — A

where = (t1,...,t,_2)%.



Then every eigenvalue A of T;, which is not in the spectrum of 7,_5 is an eigenvalue
of the two-dimensional nonlinear eigenvalue problem

to — A= {T(Tn_z — )\[)_1{ tn—l — tNT(Tn_Q — A])_lEn_QtN 1
7T -17 T -17 = 0.
tn—l —1 En_Q(Tn_Q — )\[) t to N (Tn_g — )\[) t Ty
(15)
Moreover, if A is an even eigenvalue of T, then (1,1)? is the corresponding eigen-
vector of problem (15), and if A is an odd eigenvalue of T, then (1,—1)T is the
corresponding eigenvector of system (15).

(n)

Hence, if the smallest eigenvalue A" is even, then it is the smallest root of the
rational function

f_|_()\) = —to — tn—l + A + {T(Tn_z — )\[)_1({—|— En_QtN), (16)
and if )\(ln) is an odd eigenvalue of T, then it is the smallest root of

Fo(N) = oAty A F T (T — M) 7N — Ea_al). (17)

Analogously to the proofs given in Section 2, we obtain the following results for the
odd and even secular equations.

Theorem 3.1 Let T}, be a real symmetric Toeplitz matrix such that 0 is not in the
spectrum of T,, and of T,_,. Let ty :=1t + E,_,t, and let

-1 —t
Vig := span{ei,Tn ex,..., 1 ei}

be the Krylov space of T corresponding to the initial vector ey := (1,...,&1)T.
Then

0 0
€4, Tn_—l2t:|: Yt Tn_—ZZt:I:
0 0

is a basis of Vit.

The projection of the eigenproblem T,,x = Az onto Vi1 can be written as

~ L tOitn—l Si . 1 OT A
Byiy = ( sy B V= A 0 ¢ VT Cry (18)
where
E LR S
Be=| + .. ,Cea=| & 0 ,se = (19)
E vE, vk vk
and
vE = 051170 = (T4 E,al) T, (20)



The eigenvalues of the projected problem (18) which are not in the spectrum of the
subpencil Byw = AC'Lw are the roots of the secular equation

ge(N) = —to Floy F A+ sL(By —AC1) sy = —to £ty + A+ 0 (A) = 0. (21)
Here, ooy (A) is the (¢ — 1,0)-Padé approximation of the rational function
d(N) := 1Ty — M) 7Hi £ B, o).
(0)

Conversely, if 7y3.(A) denotes the ({ — 1,()-Padé approximation of ¢4(A) and py4 is
the smallest root of the rational function

A — to £t —)\—|—Tg:|:()\) :0,

then
n . 441 41 . ya V4
MY < min(pd, @) < min(l], 6l?).

As in the prvious section, for £ = 1 and ¢ = 2 Theorem 3.1 contains the bounds
which were already presented by Melman [12] using rational approximations of the
even and odd secular equations (16) and (17).

4 Numerical results

To establish the projected eigenvalue problem (7) one has to compute expressions
of the form 4
i =TT g =1,...,20

For £ = 1 the quantities p; and py are obtained from the solution z! of the Yule-
Walker system T),_12' = —t which can be solved efficiently by Durbin’s algorithm
(cf. [6], p. 195) requiring 2n* flops. Once 2! is known p; = tT2! and py = ||2Y|2.

To increase the dimension of the projected problem by one we have to solve the
linear system
T, 7t =2t (22)

Y

and we have to compute two scalar products pgpy; = (271)T 2% and pgpyo = ||2°F1||2.

System (22) can be solved efficiently in one of the following two ways. Durbin’s
algorithm for the Yule-Walker system supplies a decomposition L1,_; LT = D where
L is a lower triangular matrix (with ones in its diagonal) and D is a diagonal matrix.
Hence, for every / the solution of eq. (22) requires 2n? flops. This method for (22)
is called Levinson-Durbin algorithm.

For large dimensions n eq. (22) can be solved using the Gohberg-Semencul formula

for the inverse T, ', (cf. [5])

1
-1 T T
I = T 2)(GG — HHT) (23)

10



where

1 0 0 0 0 0 0 0
Y1 1 0 0 Yn—2 0 0 0
G = Y2 1 1 0 and H := Yn-3 Yn—2 0 0
Yn—2 Yn-3 Yn—a ... 1 (7 Y2 Y3 0

are Toeplitz matrices and y denotes the solution of the Yule-Walker system T,,_sy =
t(l:n—2).

The advantages associated with eq. (23) are at hand. Firstly, the representation of
the inverse of T},_; requires only n storage elements. Secondly, the matrices G, G,
H and HT are Toeplitz matrices, and hence the solution 7T},_;2* can be calculated
in only O(n logn) flops using fast Fourier transform. Experiments show that when
n > 512 this approach is actually more efficient than the Levinson-Durbin algorithm.

In the method of Section 3 we also have to solve a Yule-Walker system T},_,z' = 1 by

Durbin’s algorithm, and increasing the dimension of the projected problem by one we

41 = 2% using the Levinson-Durbin algorithm

£+1

have to solve one general system T}, 5z
or the Gohberg-Semencul formula. Moreover, two vector additions z‘T! + F,_,=z
and 4 scalar products have to be determined, and 2 eigenvalue problems of very small
dimensions have to be solved. To summarize, again 2n* + O(n) flops are required to
increase the dimension of the projected problem by one.

(n) (n)

If the gap between the smallest eigenvalue A}’ and the second eigenvalue A;" is large,
1 . .
the sequence of vectors . ) converges very fast to the principal eigenvector of

T, and the matrix C' becomes nearly singular. In three of 600 examples that we
considered the matrix C' even became (numerically) indefinite. However, in all of
these examples the relative error of the eigenvalue approximation of the previous
step was already 1078, In a forthcoming paper we will discuss a stable version of the
projection methods in Sections 2 and 3.

Example To test the bounds we considered the following class of Toeplitz matrices
T=m Z nkT27r€k (24)
k=1

where m is chosen such that the diagonal of T" is normalized to t, = 1,

Ty = (T35) = (cos(0(i — 7)),

and 7 and 0y are uniformly distributed random numbers in the interval [0, 1] (cf.

Cybenko and Van Loan [2]).

Table 1 contains the average of the relative errors of the bounds of Section 2 in
100 test problems for each of the dimensions n = 32, 64, 128, 256, 512 and 1024.
Table 2 shows the corresponding results for the bounds of Section 3. In both tables

11



TABLE 1. Average of relative errors; bounds of Section 2

dim

(=1

=2

=3

(=4

32
64
128
256
512
1024

1.05 £ 40
1.64 E+0
276 £ 40
5.03 £ 40
751 E+0
1.65 £ +1

429 £ -2
6.41 £ —2
7.60 -2
925 F -2
1.10 £ -1
1.05 F —1

838 F —3
1.38 B —2
1.88 K —2
1.78 B — 2
24T FE =2
243 E -2

1.82 -3
420 -3
5.09 £ —3
6.20 £ —3
6.80 £ —3
6.60 £ —3

TABLE 2. Average of relative errors; bounds of Section 3

Dimension

(=1

=2

=3

(=4

32
64
128
256
512
1024

518 B —1
939 F -1
1.79 £ 40
32T E+0
511 £ 40
1.11 F+1

833 F -3
230 F -2
240 E -2
425 F -2
543 E -2
545 FE —2

854 £ —4
1.25 F -3
1.61 £ —3
458 £ —3
419 F -3
481 £ -3

320 E -5
3.65 £ —4
6.41 £ -5
715 F—4
877 E -4
742 F —4

12




TABLE 3. Average of common logarithm of relative errors; bounds of Section 2

dim| (=1 (=2 (=3 (=1

32 [ —0.10 (0.32) [ —1.93 (0.98) | —3.76 (2.50) | —6.31 (3.80)
64 | 0.14 (0.26) | —1.65 (0.89) | —3.15 (2.09) | —5.26 (3.43)
128 | 0.40 (0.19) | —1.63 (1.03) | —3.14 (2.62) | —5.15 (3.65)
256 | 0.64 (0.22) | —1.41 (0.84) | —2.64 (1.81) | —4.42 (3.19)
512 | 0.81 (0.27) | —1.35 (0.77) | —2.23 (1.09) | —3.74 (2.28)
1024 | 1.14 (0.24) | —1.37 (0.76) | —2.37 (1.40) | —3.93 (2.71)

TABLE 4. Average of common logarithm of relative errors; bounds of Section 3

dim| (=1 (=2 (=3 (=1

32| —0.45 (0.37) | —3.38 (1.76) | —6.83 (3.65) | —10.28 (4.02)
64 | —1.29 (0.31) | —2.72 (1.46) | —5.88 (2.93) | —9.27 (3.85)
128 | 0.17 (0.23) | —2.79 (1.80) | —5.84 (3.37) | —9.27 (3.93)
256 | 0.44 (0.24) | —2.32 (1.40) | —5.17 (2.96) | —8.42 (4.11)
512 | 0.65 (0.27) | —2.15 (1.35) | —4.88 (2.93) | —8.10 (4.26)
1024 | 0.97 (0.23) | —2.15 (1.41) | —5.03 (3.05) | —8.12 (4.47)

the first two columns contain the relative errors of the bounds given by Melman.
The experiments clearly show that exploiting symmetry of the principal eigenvector
leads to significant improvements of the bounds.

The mean values of the relative errors do not reflect the quality of the bounds.
Large bounds are taken into account with a much larger weight than small ones. To
demonstrate the average number of correct leading digits of the bounds in Table 3
and Table 4 we present the mean values of the common logarithms of the relative
errors. In parenthesis we added the standard deviations.

Acknowledgement Thanks are due to Wolfgang Mackens for stimulating discus-
sions.
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