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Abstract: The dynamic analysis of structures leads to very large generalized
eigenvalue problems. Their number of unknowns can be reduced to a man-
ageable size by condensation methods which can be parallelized by combining
it with substructuring. In this note we implement global masters into the
parallel condensation process.

Keywords: eigenvalue problem, condensation, global masters,

1 Condensation with general masters

In the analysis of the dynamic response of structures using finite element
methods very often prohibitively many degrees of freedom are needed to
model the behaviour of the system sufficiently accurate. Static condensation
is frequently employed to economize the computation of a selected group
of eigenvalues and eigenvectors. These methods choose from the degrees of
freedom a small number of master variables. Neglecting inertia terms the
remaining variables (termed slaves) are eliminated leaving a much smaller
problem for the master variables only.

It has frequently been noted in the literature that the quality of the
eigenvalue and eigenvector approximations produced by static condensation
is satisfactory only for a very small part of the lower end of the spectrum.
To improve the approximation properties of condensation Mackens and the
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third author [3] introduced general masters which allow to implement a priori
information of the eigenmodes (such as eigenmodes of similar structures con-
sidered in reanalysis or prolongations of eigenvector approximations obtained
on a coarser grid) into the condensation process.

We consider the general eigenvalue problem

Ky =AMz (1)

where K € R™™ and M € R™™ are symmetric and positive definite matri-
ces which are usually the stiffness and mass matrix of a finite element model
of a structure, respectively. The dimension n is supposed to be very large.

To reduce the number of degrees of freedom we choose linear independent
vectors 21, ..., 2z, € IR", and we define 7 := (21,...,2,) € IR™™ Then the
projected eigenvalue problem

Koz, := PTK Pz, = A\AP" M Pzx,, =: AMyz,, (2)

with
P=K'Z(Z"K~'2)"'Z"Z

is called the condensed eigenvalue problem with general masters zq,..., zn,.
It is easily seen that this is exactly the reduced problem introduced by Irons
and Guyan if we choose z1, ..., z, as unit vectors. This special case is called
nodal condensation.

Since (Z"K~'Z)~'Z"Z is a nonsingular matrix the condensed problem
(2) is equivalent to the projection of problem (1) to the space spanned by
the columns of K 'Z. Hence, condensation is nothing else but one step
of simultaneous inverse iteration with initial guess X = M~'Z e RM™.
Therefore, we can expect good approximation properties of condensation if
we include general masters z; = Mx; where x; are approximate eigenvectors

of problem (1) corresponding to the desired eigenvalues.

2 Parallel condensation

For nodal condensation the following strategy yields a coarse grained parallel
algorithm developed in [4]. Suppose that the structure under consideration
has been decomposed into r substructures and let the masters be chosen as
interface degrees of freedom. Assume that the substructures connect to each
other through the master variables only. If the slave variables are numbered



appropriately, then the stiffness matrix is given by

Kmm Kmsl Kms? v Kmsr
Ko Kea 0 - 0

K — Kst 0 Kss2 . 0 , (3)
K 0 0 o K,

and the mass matrix M has the same block form. In this case it is easily
seen that the reduced matrices Ky and My in (2) are given by

KO = Kmm - Z Kmmj = Kmm - ZKmsts_s;Ksmj

and .
7=1

where

Mmmj = Kmst_l'Msmj + Mmst_l'Ksmj - Kmst_l'Msst_l‘Ksmj-

587 587 587 557

It is obvious that they can be computed completely in parallel, and that
the only communication consists of one fan in process. This approach can
be generalized to general masters if each of them is contained in a single
substructure (cf. [2]).

In Section 1 we pointed out that good approximation properties of con-
densation can be expected if general masters z; = Mz, are in use where z;
are approximate eigenvectors of problem (1). In general these will have global
support, and the block structure of K is destroyed. For this case we proposed
a coarse grained parallelization concept the communication of which consists
of two fan in processes and one broadcast to obtain the reduced matrices.
Details are explained in [1].

3 Numerical experiments

We implemented the parallel algorithm in FORTRAN 90 using LAPACK 3
and BLAS routines for the linear algebra and MPI 1.05 for message passing.
We tested the program on a heterogeneous workstation cluster consisting
of one HP C3000, one HP J2240, and five HP 9000, 712/100 connected by
fast-ethernet and on an HP N-Class parallel computer with 8 and 16 HP-
PA 8500/440MHz processors organized as one and two clusters, respectively.
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The user can only assign each process to one of the clusters whereas the local
scheduling is organized by the operating system. Moreover the computer is
run in a multi-user environment. Hence we are not able to report on the load
balancing of the processors.

Our test example was a finite element model of a container ship with
35262 degrees of freedom. We subdivided it into 10 substructures each of
them consisting of between 1134 and 4792 unknowns, and obtained a reduced
problem of dimension 2097. Besides the plain model of the ship which is
called the dry model we took into account hydrodynamic masses. This model
is usually called the wet model. The spectra of these two models differ quite
a bit (cf. the first row of the following table which contains the relative
distances). However, adding 12 dry eigenmodes corresponding to the smallest
eigenvalues as general masters to the interface masters when computing the
wet eigenmodes improves the eigenvalue approximations considerably (row 2
contains the relative errors of nodal condensation with interface degrees of
freedom as masters only and row 3 the relative errors of condensation using
12 dry modes as general masters additionally).

# | rel.dist. | nod. cond. | gen. mast.
1 3.1e-1 4.9e-5 4.9e-7
2 1.5e-1 6.0e-5 7.5e-7
3 2.7e-1 2.4e-5 7.9e-7
4 7.5e-1 1.2e-4 1.7e-7
51| 1.0e+0 3.9e-4 3.0e-8
6 8.9e-1 4.5e-4 1.4e-7
7 6.0e-1 6.4e-3 5.6e-7
8 6.7e-1 1.9e-2 1.0e-5
9 3.4e-1 2.1e-2 1.9e-5

10 4.4e-1 8.9e-2 1.7e-4

11 4.7e-1 1.0e-1 4.2e-3

12 7.5e-1 1.1e-1 1.2e-2
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