
Computability Theory

– Monograph –

Karl-Heinz Zimmermann

Computability Theory

– Monograph –

Hamburg University of Technology

Prof. Dr. Karl-Heinz Zimmermann
Hamburg University of Technology
21071 Hamburg
Germany

This monograph is listed in the GBV database and the TUHH library.

All rights reserved
c©third edition, 2013, by Karl-Heinz Zimmermann, author
c©first two editions, 2011 and 2012, by Karl-Heinz Zimmermann, author

urn:nbn:de:gbv:830-tubdok-12189

For Gela and Eileen

VI

Preface to the 3rd Edition

Why do we need a formalization of the notion of algorithm or effective computation? In order to show
that a specific problem is algorithmically solvable, it is sufficient to provide an algorithm that solves it
in a sufficiently precise manner. However, in order to prove that a problem is in principle not solvable
by an algorithm, a rigorous formalism is necessary that allows mathematical proofs. The need for such
a formalism became apparent in the studies of David Hilbert (1900) on the foundations of mathematics
and Kurt Gödel (1931) on the incompleteness of elementary arithmetic.

The first investigations in the field were conducted by the logicians Alonzo Church, Stephen Kleene,
Emil Post, and Alan Turing in the early 1930s. They have provided the foundation of computability
theory as a branch of theoretical computer science. The fundamental results established Turing com-
putability as the correct formalization of the informal idea of effective calculation. The results have led
to Church’s thesis stating that ”everything computable is computable by a Turing machine”. The the-
ory of computability has grown rapidly from its beginning. Its questions and methods are penetrating
many other mathematical disciplines. Today, computability theory provides an important theoretical
background for logicians, pure mathematicians, and computer scientists. Many mathematical problems
are known to be undecidable such as the word problem for groups, the halting problem, and Hilbert’s
tenth problem.

This book is a development of class notes for a two-hour lecture including a one-hour lab held for
second-year Bachelor students of Computer Science at the Hamburg University of Technology during
the last two years. The course aims to present the basic results of computability theory, including
mathematical models of computability, primitive recursive and partial recursive functions, Ackermann’s
function, Gödel numbering, universal functions, smn theorem, Kleene’s normal form, undecidable sets,
theorems of Rice, and word problems. The manuscript has partly grown out of notes taken by the
author during his studies at the University of Erlangen-Nuremberg. I would like to thank again my
teachers Martin Becker† and Volker Strehl for giving inspiring lectures in this field.

In the second edition, 2012, minor changes were made. In particular, the section on Gödel numbering
has been rewritten and a glossary of terms has been added. In the third edition, 2013, the eight chapters
on computability theory were complemented by a short introduction to computational complexity
theory. The added chapter provides a brief presentation of the central open question in complexity
theory which is one of the millenium price problems in mathematics asking roughly whether each

VIII Preface to the 3rd Edition

problem whose solution can be verified in polynomial time can also be solved in polynomial time. The
chapter includes the well-known result of Stephen Cook and Leonid Lewin that the satisfiabilty problem
is NP-complete and also its proof from scratch.

Finally, I would like to express my thanks to Ralf Möller for valuable comments. I am also grateful
to Mahwish Saleemi for conducting the labs and Wolfgang Brandt for valuable technical support.
Moreover, I would like to thank my students for their attention, their stimulating questions, and their
dedicated work.

Hamburg, July 2013 Karl-Heinz Zimmermann

Mathematical Notation IX

Mathematical Notation

General notation

N0 monoid of natural numbers
N semigroup of natural number without 0
Z ring of integers
Q field of rational number
R field of real number
C set of complex numbers
2A power set of A
Σ∗ set of words over Σ
Σ+ set of non-empty words over Σ
F class of partial functions
P class of primitive recursive functions
R class of partial recursive functions
T class of recursive functions
FURM class of URM computable functions
TURM class of total URM computable functions
FLOOP class of LOOP computable functions
PLOOP class of LOOP programs
FLOOP−n class of LOOP-n computable functions
PLOOP−n class of LOOP-n programs
FGOTO class of GOTO computable functions
PGOTO class of GOTO programs
PSGOTO class of SGOTO programs
TTuring class of Turing computable functions

Chapter 1

Ω state set of URM
E(Ω) set of state transitions
domf domain of a function
ranf range of a function
−̇ conditional decrement
sgn sign function
csg cosign function
f∗n iteration of f w.r.t. nth register
Aσ increment
Sσ conditional decrement
(P)σ iteration of a program
P ;Q composition of programs

X Mathematical Notation

|P | state transition function of a program
‖P‖k,m function of a program
αk load function
βm result function
R(i; j1, . . . , jk) reload program
C(i; j1, . . . , jk) copy program

Chapter 2

ν successor function

c
(n)
0 n-ary zero function

π
(n)
k n-ary projection function

pr(g, h) primitive recursion
g(h1, . . . , hn) composition
Σf bounded sum
Πf bounded product
µf bounded minimalization
J2 Cantor pairing function
K2, L2 inverse component functions of J2
χS characteristic function of a set S
pi ith prime
(x)i ith exponent in prime-power representation of x
Zσ zero-setting of register σ
C(σ, τ) copy program
[P]σ iteration of a program

Chapter 3

µf unbounded minimalization
(l, xi ← xi + 1,m) GOTO increment
(l, xi ← xi −̇ 1,m) GOTO conditional decrement
(l, if xi = 0, k,m) GOTO conditional jump
V (P) set of GOTO variables
L(P) set of GOTO labels
⊢ one-step computation
G encoding of URM state
Gi URM state of ith register
M(k) GOTO-2 multiplication
D(k) GOTO-2 division
T (k) GOTO-2 divisibility test

Chapter 4

Bn small Ackermann function
A Ackermann function

Mathematical Notation XI

γ(P) runtime of LOOP program
λ(P) complexity of LOOP program
f ≤ g function bound

XII Mathematical Notation

Chapter 5

ǫ empty word
J encoding of N∗

0

K,L inverse component functions of J
lg length function
I(sl) encoding of SGOTO statement
Γ (P) Gödel number of SGOTO program
Pe SGOTO program with Gödel number e

φ
(n)
e n-ary computable function with index e
sm,n smn function

ψ
(n)
univ n-ary universal function

EA unbounded existential quantification
UA unbounded universal quantification
µA unbounded minimalization
Sn Kleene set
Tn Kleene predicate

Chapter 6

M Turing machine
b blank symbol
Σ tape alphabet
ΣI input alphabet
Q state set
T state transition function
q0 initial state
qF final state
L left move
R right move
∆ no move
⊢ one-step computation

Chapter 7

K prototype of undecidable set
H halting problem
A class of monadic partial recursive functions
f↑ nowhere defined function
prog(A) set of indices of A
r.e. recursive enumerable
f ⊆ g ordering relation
p(X1, . . . , Xn) diophantine polynomial
V (p) natural variety

Mathematical Notation XIII

Chapter 8

Σ alphabet
R rule set of TS
→ rule
→R one-step rewriting rule
→∗
R reflexive transitive closure

R(s) symmetric rule set of STS
→∗
R(s) reflexive transitive symmetric hull

[s] equivalence class
Π rule set of PCS
i solution of PCS
α(i) left string of solution
β(i) right string of solution

Chapter 9

T time constructible function
|x| length of string x
f = O(g) Landau notation (big-Oh)
f = o(g) Landau notation (little-Oh)
f = Θ(g) Landau notation
P complexity class
DTIME complexity class
NP complexity class
EXP complexity class
NTIME complexity class
≤p reducibility
¬ Boolean negation
∧ Boolean and
∨ Boolean or

Contents

1 Unlimited Register Machine . 1
1.1 States and State Transformations . 1
1.2 Syntax of URM Programs . 3
1.3 Semantics of URM Programs . 4
1.4 URM Computable Functions . 5

2 Primitive Recursive Functions . 9
2.1 Peano Structures . 9
2.2 Primitive Recursive Functions . 11
2.3 Closure Properties . 15
2.4 Primitive Recursive Sets . 22
2.5 LOOP Programs . 23

3 Partial Recursive Functions . 29
3.1 Partial Recursive Functions . 29
3.2 GOTO Programs . 31
3.3 GOTO Computable Functions . 34
3.4 GOTO-2 Programs . 35
3.5 Church’s Thesis . 38

4 A Recursive Function . 39
4.1 Small Ackermann Functions . 39
4.2 Runtime of LOOP Programs . 42
4.3 Ackermann’s Function . 45

5 Acceptable Programming Systems . 49
5.1 Gödel Numbering of GOTO Programs . 49
5.2 Parametrization . 53
5.3 Universal Functions . 54
5.4 Kleene’s Normal Form . 57

XVI Contents

6 Turing Machine . 59
6.1 The Machinery . 59
6.2 Post-Turing Machine . 61
6.3 Turing Computable Functions . 63
6.4 Gödel Numbering of Post-Turing Programs . 66

7 Undecidability . 69
7.1 Undecidable Sets . 69
7.2 Semidecidable Sets . 73
7.3 Recursively Enumerable Sets . 76
7.4 Theorem of Rice-Shapiro . 78
7.5 Diophantine Sets . 80

8 Word Problems . 85
8.1 Semi-Thue Systems . 85
8.2 Thue Systems . 88
8.3 Semigroups . 89
8.4 Post’s Correspondence Problem . 90

9 Computational Complexity Theory . 97
9.1 Efficient Computations . 97
9.2 Efficiently Verifiable Computations . 100
9.3 Reducibility and NP-Completeness . 102
9.4 Some NP-Complete Languages . 107

Index . 109

1

Unlimited Register Machine

The unlimited register machine (URM) introduced by Sheperdson and Sturgis (1963) is an abstract
computing machine that allows to make precise the notion of computability. It consists of an infinite
(unlimited) sequence of registers each capable of storing a natural number which can be arbitrarily large.
The registers can be manipulated by using simple instructions. This chapter introduces the syntax and
semantics of URMs and the class of URM computable functions.

1.1 States and State Transformations

An unlimited register machine (URM) contains an infinite number of registers named

R0, R1, R2, R3, (1.1)

The state set of an URM is given as

Ω = {ω : N0 → N0 | ω is 0 almost everywhere}. (1.2)

The elements of Ω are denoted as sequences

ω = (ω0, ω1, ω2, ω3, . . .), (1.3)

where for each n ∈ N0, the component ωn = ω(n) denotes the content of the register Rn.

Proposition 1.1. The set Ω is countable.

Proof. Let (p0, p1, p2, . . .) denote the sequence of prime numbers. Due to the unique factorization of
each natural number into a product of prime powers, the mapping

Ω → N : ω 7→
∏

i

pωi

i

is a bijection. ⊓⊔

2 1 Unlimited Register Machine

Let E(Ω) denote the set of all partial functions from Ω to Ω. Here partial means that for each
f ∈ E(Ω) and ω ∈ Ω there does not necessarily exist a value f(ω). Each partial function f ∈ E(Ω) has
a domain given as

dom(f) = {ω ∈ Ω | f(ω) is defined} (1.4)

and a range defined by

ran(f) = {ω′ ∈ Ω | ∃ω ∈ Ω : f(ω) = ω′}. (1.5)

Two partial functions f, g ∈ E(Ω) are equal, written f = g, if they have the same domain, i.e.,
dom(f) = dom(g), and for all arguments in the (common) domain, they coincide, i.e., for all ω ∈ dom(f),
f(ω) = g(ω). A partial function f ∈ E(Ω) is called total if dom(f) = Ω. So a total function is a function
in the usual sense.

Example 1.2. The increment function ak ∈ E(Ω) with respect to the kth register is given by the
assignment ak : ω 7→ ω′, where

ω′
n =

{
ωn if n 6= k,
ωk + 1 otherwise.

(1.6)

The decrement function sk ∈ E(Ω) w.r.t. the kth register is defined as sk : ω 7→ ω′, where

ω′
n =

{
ωn if n 6= k,
ωk −̇ 1 otherwise.

(1.7)

The dyadic operator −̇ on N0 denotes the asymmetric difference given as

x −̇ y =

{
x− y if x ≥ y,
0 otherwise.

(1.8)

Both functions ak and sk are total. ♦

The graph of a partial function f ∈ E(Ω) is given by the relation

Rf = {(ω, f(ω)) | ω ∈ dom(f)}. (1.9)

It is clear that two partial functions f, g ∈ E(Ω) are equal if and only if the corresponding graphs Rf
and Rg are equal as sets.

The composition of two partial functions f, g ∈ E(Ω) is a partial function, denoted by g ◦ f , defined
as

(g ◦ f)(ω) = g(f(ω), (1.10)

where ω belongs to the domain of g ◦ f given by

dom(g ◦ f) = {ω ∈ Ω | ω ∈ dom(f) ∧ f(ω) ∈ dom(g)}. (1.11)

If f and g are total functions in E(Ω), the composition g ◦ f is also a total function.

1.2 Syntax of URM Programs 3

Proposition 1.3. The set E(Ω) together with the dyadic operation of composition is a semigroup.

Proof. It is clear that the composition of partial functions is an associative operation. ⊓⊔

In this way, the set E(Ω) is called the semigroup of transformations of Ω.
The powers of a partial function f ∈ E(Ω) are inductively defined as follows:

f0 = idΩ , and fn+1 = f ◦ fn, n ∈ N0. (1.12)

In particular, f1 = f ◦ idΩ = f .
Consider for each f ∈ E(Ω) and ω ∈ Ω the following sequence of natural numbers:

ω = f0(ω), f1(ω), f2(ω), (1.13)

This sequence is finite if ω 6∈ dom(f j) for some j ∈ N0. For this, put

λ(f, ω) =

{
min{j ∈ N0 | ω 6∈ dom(f j)} if {. . .} 6= ∅,
∞ otherwise.

(1.14)

The iteration of f ∈ E(Ω) with respect to the nth register is the partial function f∗n ∈ E(Ω)
defined as

f∗n(ω) = fk(ω), (1.15)

if there is an integer k ≥ 0 with k < λ(f, ω) such that the content of the nth register is zero in fk(ω),
but non-zero in f j(ω) for each 0 ≤ j < k. If no such integer k exists, the value of f∗n(ω) is taken to be
undefined, written ↑. The computation of f∗n can be carried out by the while loop 1.1.

Algorithm 1.1 Computation of iteration f∗n.

Require: ω ∈ Ω

while ωn > 0 do

w ← f(ω)
end while

1.2 Syntax of URM Programs

The set of all (decimal) numbers over the alphabet of digits Σ10 = {0, 1, . . . , 9} is defined as

Z = (Σ10 \ {0})Σ+
10 ∪Σ10. (1.16)

That is, a number is either the digit 0 or a non-empty word of digits that does not begin with 0.
The URM programs are words over the alphabet

ΣURM = {A,S, (,), ; } ∪ Z. (1.17)

Define the set of URM programs PURM inductively as follows:

4 1 Unlimited Register Machine

1. Aσ ∈ PURM for each σ ∈ Z,
2. Sσ ∈ PURM for each σ ∈ Z,
3. if P ∈ PURM and σ ∈ Z, then (P)σ ∈ PURM,
4. if P,Q ∈ PURM, then P ;Q ∈ PURM.

The programs Aσ and Sσ are atomic, the program (P)σ is the iteration of the program P with respect
to the register Rσ, and the program P ;Q is the composition of the programs P and Q. For each program
P ∈ PURM and each integer n ≥ 0, define the n-fold composition of P as

Pn = P ;P ; . . . ;P (n times). (1.18)

The atomic programs and the iterations are called blocks. The set of blocks in PURM is denoted by B.

Lemma 1.4. For each program P ∈ PURM, there are uniquely determined blocks P1, . . . , Pk ∈ B such
that

P = P1;P2; . . . ;Pk.

The separation symbol ”;” can be removed although it eventually increases readability. In this way, we
obtain the following result.

Proposition 1.5. The set PURM together with the operation of concatenation is a subsemigroup of
Σ+

URM which is freely generated by the set of blocks B.

Example 1.6. The URM program P = (A3;A4;S1)1; ((A1;S3)3;S2; (A0;A3;S4)4; (A4;S0)0)2 con-
sists of the blocks P1 = (A3;A4;S1)1; and P2 = ((A1;S3)3;S2; (A0;A3;S4)4; (A4;S0)0)2. ♦

1.3 Semantics of URM Programs

The URM programs can be interpreted by the semigroup of transformations E(Ω). The semantics of
URM programs is a mapping | · | : PURM → E(Ω) defined inductively as follows:

1. |Aσ| = aσ for each σ ∈ Z,
2. |Sσ| = sσ for each σ ∈ Z,
3. if P ∈ PURM and σ ∈ Z, then |(P)σ| = |P |∗σ,
4. if P,Q ∈ PURM, then |P ;Q| = |Q| ◦ |P |.
The semantics of blocks is defined by the first three items, and the last item indicates that the mapping
| · | is a morphism of semigroups.

Proposition 1.7. For each mapping ψ : B → E(Ω), there is a unique semigroup homomorphism
φ : PURM → E(Ω) making the following diagram commutative:

PURM
φ

// E(Ω)

B
id

OO

ψ

::uuuuuuuuuu

1.4 URM Computable Functions 5

Proof. Given a mapping ψ : B → E(Ω). Since each URM program P is a composition of blocks, there
are elements B0, . . . , Bn of B such that P = B0; . . . ;Bn. Define φ(P) = ψ(B0); . . . ;ψ(Bn). This gives a
semigroup homomorphism φ : PURM → E(Ω) with the required property.

On the other hand, if φ′ : PURM → E(Ω) is a semigroup homomorphism with the property ψ(B) =
φ′(B) for each block B. Then φ = φ′, since all URM programs are sequences of blocks. ⊓⊔

This algebraic statement asserts that the semantics on blocks can be uniquely extended to the full set
of URM programs.

1.4 URM Computable Functions

A partial function f ∈ E(Ω) is URM computable if there is an URM program P such that |P | = f .
Note that the class PURM is countable, while the set E(Ω) is not. It follows that there are partial
functions in E(Ω) that are not URM computable. In the following, let FURM denote the class of all
partial functions that are URM computable, and let TURM depict the class of all total functions which
are URM computable. Clearly, we have TURM ⊂ FURM.

Functions like addition or multiplication of two natural numbers are URM computable. In general,
the calculation of an URM-computable function f : Nk0 → Nm0 requires to load the registers with initial
values and to read out the result. For this, define the total functions

αk : Nk0 → Ω : (x1, . . . , xk) 7→ (0, x1, . . . , xk, 0, 0, . . .) (1.19)

and

βm : Ω → Nm0 : (ω0, ω1, ω2, . . . ,) 7→ (ω1, ω2, . . . , ωm). (1.20)

Given an URM program P and integers k,m ∈ N0, define the partial function ‖P‖k,m : Nk0 → Nm0 by
the composition

‖P‖k,m = βm ◦ |P | ◦ αk. (1.21)

Here the k-ary function ‖P‖k,m is computed by loading the registers with an argument x ∈ Nk0 ,
calculating the program P on the initial state αk(x) and reading out the result using βm.

A (partial) function f : Nk0 → Nm0 is called URM computable if there is an URM program P such
that

f = ‖P‖k,m. (1.22)

Examples 1.8.

• The addition of natural numbers is URM computable. To see this, consider the URM program

P+ = (A1;S2)2. (1.23)

This program transforms the initial state (ωn) into the state (ω0, ω1 + ω2, 0, ω3, ω4, . . .) and thus
realizes the function

‖P+‖2,1(x, y) = x+ y, x, y ∈ N0. (1.24)

6 1 Unlimited Register Machine

• The multiplication of natural number is URM computable. For this, take the URM program

P· = (A3;A4;S1)1; ((A1;S3)3;S2; (A0;A3;S4)4; (A4;S0)0)2. (1.25)

The first block (A3;A4;S1)1 transforms the initial state (0, x, y, 0, 0, . . .) into (0, 0, y, x, x, 0, 0, . . .).
Then the subprogram (A1;S3)3;S2; (A0;A3;S4)4; (A3;S0)0 is carried out y times adding the con-
tent of R3 to that of R1 and copying the content of R4 to R3. This iteration provides the state
(0, xy, 0, x, x, 0, 0, . . .). It follows that

‖P·‖2,1(x, y) = xy, x, y ∈ N0. (1.26)

• The asymmetric difference is URM computable. For this, pick the URM program

P −̇ = (S1;S2)2. (1.27)

This program transforms the initial state (ωn) into the state (ω0, ω1 −̇ω2, 0, ω3, . . .) and thus yields
the URM computable function

‖P −̇ ‖2,1(x, y) = x −̇ y, x, y ∈ N0. (1.28)

• Consider the sign function sgn : N0 → N0 given by sgn(x) = 1 if x > 0 and sgn(x) = 0 if x = 0.
This function is URM computable since it is calculated by the URM program

Psgn = (A2;S1)1; (A1; (S2)2)2. (1.29)

♦

Note that URM programs are invariant of translation in the sense that if an URM program
P manipulates the registers Ri1 , . . . , Rik , there is an URM program that manipulates the regis-
ters Ri1+n, . . . , Rik+n. This program will be denoted by (P)[+n]. For instance, if P = (A1;S2)2,
(P)[+5] = (A6;S7)7.

Let f : Nk0 → N0 be an URM computable function. An URM program P with ‖P‖k,1 = f is normal
if for all (x1, . . . , xk) ∈ Nk0 ,

(P ◦ αk)(x1, . . . , xk) =
{
(0, f(x1, . . . , xk), 0, 0, . . .) if (x1, . . . , xk) ∈ dom(f),
↑ otherwise.

(1.30)

A normal URM-program computes a function in such a way that whenever the computation ends the
register R1 contains the result while all other registers are set to zero.

Proposition 1.9. For each URM-computable function f : Nk0 → N0 there is a normal URM-program
P such that ‖P‖k,1 = f .

Proof. Let Q be an URM-program such that ‖Q‖k,1 = f . Suppose σ is the largest number of a register
that contains a non-zero value in the final state of computation. Then the corresponding normal URM-
program is given by

P = Q; (S0)0; (S2)2; . . . ; (Sσ)σ. (1.31)

Here the block (Si)i sets the value of the ith register to zero. ⊓⊔

1.4 URM Computable Functions 7

Finally, we introduce two programs that are useful for the transport or distribution of the contents of
registers. The first function reloads the content of register Ri into k ≥ 0 registers Rj1 , . . . , Rjk deleting
the content of Ri. This is achieved by the URM program

R(i; j1, j2, . . . , jk) = (Aj1;Aj2; . . . ;Ajk;Si)i. (1.32)

Indeed, the program transforms the initial state (ωn) into the state (ω′
n) where

ω′
n =

ωn + ωi if n ∈ {j1, j2, . . . , jk},
0 if n = i,
ωn otherwise.

(1.33)

The second function copies the content of register Ri, i > 0, into k ≥ 0 registers Rj1 , . . . , Rjk where
the content of register Ri is retained. Here the register R0 is used for distributing the value of Ri. This
is achieved by the URM program

C(i; j1, j2, . . . , jk) = R(i; 0, j1, j2, . . . , jk);R(0; i). (1.34)

In fact, the program transforms the initial state (ωn) into the state (ω′
n) where

ω′
n =

ωn + ωi if n ∈ {j1, j2, . . . , jk},
ωn + ω0 if n = i,
0 if n = 0,
ωn otherwise.

(1.35)

8 1 Unlimited Register Machine

2

Primitive Recursive Functions

The primitive recursion functions form an important building block on the way to a full formalization
of computability. They are formally defined using composition and primitive recursion as central oper-
ations. Most of the functions studied in arithmetics are primitive recursive such as the basic operations
of addition and multiplication. Indeed, it is difficult to devise a function that is total but not primitive
recursive. From the programming point of view, the primitive recursive functions can be implemented
using do-loops only.

2.1 Peano Structures

We will use Peano structures to define the concept of primitive recursion, which is central for the class
of primitive recursive functions.

A semi-Peano structure is a tripleA = (A,α, a) consisting of a non-empty set A, a monadic operation
α : A → A, and an element a ∈ A. Let A = (A,α, a) and B = (B, β, b) be semi-Peano structures. A
mapping φ : A → B is called a morphism, written φ : A → B, if φ commutes with the monadic
operations, i.e., β ◦ φ = φ ◦ α, and correspondingly assigns the distinguished elements, i.e., φ(a) = b.

A Peano structure is a semi-Peano structure A = (A,α, a) with the following properties:

• α is injective,
• a 6∈ ran(α), and
• A fulfills the induction axiom, i.e., if T ⊆ A such that a ∈ T and α(x) ∈ T whenever x ∈ T , then

T = A.

Let ν : N0 → N0 : n 7→ n + 1 be the successor function. The Peano structure given by the triple
(N0, ν, 0) corresponds to the axioms postulated by the Italian mathematician Guiseppe Peano (1958-
1932).

Lemma 2.1. If A = (A,α, a) is a Peano structure, then A = {αn(a) | n ∈ N0}.

Proof. Let T = {αn(a) | n ∈ N0}. Then a = α0(a) ∈ T , and for each αn(a) ∈ T , α(αn(a)) = αn+1(a) ∈
T . Hence by the induction axiom, T = A. ⊓⊔

10 2 Primitive Recursive Functions

Lemma 2.2. If A = (A,α, a) is a Peano structure, then for all m,n ∈ N0, m 6= n, we have αm(a) 6=
αn(a).

Proof. Define T as the set of all elements αm(a) such that αn(a) 6= αm(a) for all n ∈ N0 with n > m.
First, suppose that αn(a) = α0(a) = a for some n > 0. Then a ∈ ran(α) contradicting the definition.

It follows that a ∈ T .
Second, let x ∈ T ; that is, x = αm(a) for some m ≥ 0. Suppose that α(x) = αm+1(x) 6∈ T . Then

there is a number n > m such that αm+1(a) = αn+1(a). But α is injective and so αm(a) = αn(a)
contradicting the hypothesis. It follows that α(x) ∈ T .

Thus the induction axiom implies that T = A as required. ⊓⊔

These assertions lead to the Fundamental Lemma for Peano structures.

Proposition 2.3. If A = (A,α, a) is a Peano structure and B = (B, β, b) is a semi-Peano structure,
then there is a unique morphism φ : A → B.

Proof. To prove existence, define φ(αn(a)) = βn(b) for all n ∈ N0. The above assertions imply that φ
is a mapping. Moreover, φ(a) = φ(α0(a)) = β0(b) = b. Finally, let x ∈ A. Then x = αm(a) for some
m ∈ N0 and so (φ ◦ α)(x) = φ(αm+1(a)) = βm+1(b) = β(βm(b)) = β(φ(αm(a))) = (β ◦ φ)(x). Hence φ
is a morphism.

To show uniqueness, suppose there is another morphism ψ : A → B. Define T = {x ∈ A | φ(x) =
ψ(x)}. First, φ(a) = b = ψ(a) and so a ∈ T . Second, let x ∈ T . Then φ(α(x)) = (φ◦α)(x) = (β◦φ)(x) =
(β ◦ ψ)(x) = (ψ ◦ α)(x) = ψ(α(x)) and so α(x) ∈ T . Hence by the induction axiom, T = A and so
φ = ψ. ⊓⊔

The Fundamental Lemma immediately leads to a result of Richard Dedekind (1931-1916).

Corollary 2.4. Each Peano structure is isomorphic to (N0, ν, 0).

Proof. We have already seen that (N0, ν, 0) is a Peano structure. Suppose there are Peano structures
A = (A,α, a) and B = (B, β, b). It is sufficient to show that there are morphisms φ : A → B and
ψ : B → A such that ψ ◦ φ = idA and φ ◦ ψ = idB . For this, note that the composition of morphisms is
also a morphism. Thus ψ ◦ φ : A → A is a morphism. On the other hand, the identity map idA : A →
A : x 7→ x is a morphism. Hence, by the Fundamental Lemma, ψ ◦ φ = idA. Similarly, it follows that
φ ◦ ψ = idB . ⊓⊔

The Fundamental Lemma can be applied to the basic Peano structure (N0, ν, 0) in order to recur-
sively define new functions.

Proposition 2.5. If (A,α, a) is a semi-Peano structure, there is a unique total function g : N0 → A
such that

1. g(0) = a,
2. g(y + 1) = α(g(y)) for all y ∈ N0.

Proof. By the Fundamental Lemma, there is a unique morphism g : N0 → A such that g(0) = a and
g(y + 1) = g ◦ ν(y) = α ◦ g(y) = α(g(y)) for each y ∈ N0. ⊓⊔

Example 2.6. There is a unique total function f+ : N2
0 → N0 such that

2.2 Primitive Recursive Functions 11

1. f+(x, 0) = x for all x ∈ N0,
2. f+(x, y + 1) = f+(x, y) + 1 for all x, y ∈ N0.

To see this, consider the semi-Peano structure (N0, ν, x) for a fixed number x ∈ N0. By the Fundamental
Lemma, there is a unique total function fx : N0 → N0 such that

1. fx(0) = x,
2. fx(y + 1) = fx ◦ ν(y) = ν ◦ fx(y) = fx(y) + 1 for all y ∈ N0.

The function f+ is obtained by putting f+(x, y) = fx(y) for all x, y ∈ N0. By induction, it follows that
f+(x, y) = x+ y for all x, y ∈ N0. Thus the addition of two numbers can be recursively defined. ♦

Proposition 2.7. If g : Nk0 → N0 and h : Nk+2
0 → N0 are total functions, there is a unique total

function f : Nk+1
0 → N0 such that

f(x, 0) = g(x), x ∈ Nk0 , (2.1)

and

f(x, y + 1) = h(x, y, f(x, y)), x ∈ Nk0 , y ∈ N0. (2.2)

Proof. For each x ∈ Nk0 , consider the semi-Peano structure (N2
0, αx, ax), where ax = (0, g(x)) and

αx : N2
0 → N2

0 : (y, z) 7→ (y + 1, h(x, y, z)). By Proposition 2.5, there is a unique total function
fx : N0 → N2

0 such that

1. fx(0) = (0, g(x)),
2. fx(y + 1) = (fx ◦ ν)(y) = (αx ◦ fx)(y) = αx(y, fx(y)) = (y + 1, h(x, y, fx(y))) for all y ∈ N0.

The projection mapping π
(2)
2 : N2

0 → N0 : (y, z) 7→ z leads to the desired function f(x, y) = π
(2)
2 ◦fx(y),

x ∈ Nk0 and y ∈ N0. ⊓⊔

The function f given in (2.1) and (2.2) is said to be defined by primitive recursion of the functions g
and h. The above example shows that the addition of two numbers is defined by primitive recursion.

2.2 Primitive Recursive Functions

The class of primitive recursive functions is inductively defined. For this, the basic functions are the
following:

1. The 0-ary constant function c
(0)
0 :→ N0 : 7→ 0.

2. The monadic constant function c
(1)
0 : N0 → N0 : x 7→ 0.

3. The successor function ν : N0 → N0 : x 7→ x+ 1.

4. The projection functions π
(n)
k : Nn0 → N0 : (x1, . . . , xn) 7→ xk, where n ≥ 1 and 1 ≤ k ≤ n.

Using these functions, more complex primitive recursive functions can be introduced.

1. If g is a k-ary total function and h1, . . . , hk are n-ary total functions, the composition of g along
(h1, . . . , hk) is an n-ary function f = g(h1, . . . , hk) defined as

f(x) = g(h1(x), . . . , hk(x)), x ∈ Nn0 . (2.3)

12 2 Primitive Recursive Functions

2. If g is an n-ary total function and h is an n + 2-ary total function, the primitive recursion of g
along h is an n+ 1-ary function f given as

f(x, 0) = g(x), x ∈ Nn0 , (2.4)

and

f(x, y + 1) = h(x, y, f(x, y)), x ∈ Nn0 , y ∈ N0. (2.5)

This function is denoted by f = pr(g, h).
The class of primitive recursive functions is given by the basic functions and those obtained from

the basic functions by applying composition and primitive recursion a finite number of times. These
functions were first studied by Richard Dedekind.

Proposition 2.8. Each primitive recursive function is total.

Proof. The basic functions are total. Let f = g(h1, . . . , hk) be the composition of g along (h1, . . . , hk).
By induction, it can be assumed that the functions g, h1, . . . , hk are total. Then the function f is also
total.

Let f = pr(g, h) be the primitive recursion of g along h. By induction, suppose that the functions
g and h are total. Then the function f is total, too. ⊓⊔

Examples 2.9. The dyadic functions of addition and multiplication are primitive recursive.

1. The function f+ : N2
0 → N0 : (x, y) 7→ x+ y obeys the following scheme of primitive recursion:

a) f+(x, 0) = x = idN0
(x) = x for all x ∈ N0,

b) f+(x, y + 1) = f+(x, y) + 1 = (ν ◦ π(3)
3)(x, y, f+(x, y)) for all x, y ∈ N0.

2. Define the function f. : N
2
0 → N0 : (x, y) 7→ xy inductively as follows:

a) f.(x, 0) = 0 for all x ∈ N0,
b) f.(x, y + 1) = f.(x, y) + x = f+(x, f.(x, y)) for all x, y ∈ N0.
This leads to the following scheme of primitive recursion:

a) f.(x, 0) = c
(1)
0 (x) for all x ∈ N0,

b) f.(x, y + 1) = f+(π
(3)
1 , π

(3)
3)(x, y, f.(x, y)) for all x, y ∈ N0. ♦

Theorem 2.10. Each primitive recursive function is URM computable.

Proof. First, claim that the basic functions are URM computable.

1. 0-ary constant function: The URM program

P
(0)
0 = A0;S0

gives ‖P (0)
0 ‖0,1 = c

(0)
0 .

2. Unary constant function: The URM program

P
(1)
0 = (S1)1

provides ‖P (1)
0 ‖1,1 = c

(1)
0 .

2.2 Primitive Recursive Functions 13

3. Successor function: The URM program
P+1 = A1

yields ‖P+1‖1,1 = ν.

4. Projection function π
(n)
k with n ≥ 1 and 1 ≤ k ≤ n: The URM program

Pp(n,k) = R(k; 0); (S1)1;R(0; 1)

shows that ‖Pn,k‖n,1 = π
(n)
k .

Second, consider the composition f = g(h1, . . . , hk). By induction, assume that there are normal
URM programs Pg and Ph1

, . . . , Phk
such that ‖Pg‖k,1 = g and ‖Phi

‖n,1 = hi, 1 ≤ i ≤ k. A normal
URM program for the composite function f can be obtained as follows: For each 1 ≤ i ≤ k,
• copy the values x1, . . . , xn into the registers Rn+k+2, . . . , R2n+k+1,
• compute the value hi(x1, . . . , xn) by using the registers Rn+k+2, . . . , R2n+k+j , where j ≥ 1,
• store the result hi(x1, . . . , xn) in Rn+i.

Formally, this computation is carried out as follows:

Qi = C(1;n+ k + 2); . . . ;C(n, 2n+ k + 1); (Phi
)[+n+ k + 1];R(n+ k + 2;n+ i) (2.6)

Afterwards, the values in Rn+i are copied into Ri, 1 ≤ i ≤ k, and the function g(h1(x), . . . , hk(x)) is
computed. Formally, the overall computation is achieved by the URM program

Pf = Q1; . . . ;Qk; (S1)1; . . . ; (Sn)n;R(n+ 1; 1); . . . ;R(n+ k; k);Pg (2.7)

giving ‖Pf‖n,1 = f .
Third, consider the primitive recursion f = pr(g, h). By induction, assume that there are nor-

mal URM programs Pg and Ph such that ‖Pg‖n,1 = g and ‖Ph‖n+2,1 = h. As usual, the registers
R1, . . . , Rn+1 contain the input values for the computation of f(x, y).

Note that the computation of the function value f(x, y) is accomplished in y + 1 steps:

• f(x, 0) = g(x), and
• for each 1 ≤ i ≤ y, f(x, i) = h(x, i− 1, f(x, i− 1)).

For this, the register Rn+2 is used as a counter and the URM programs (Pg)[+n+3] and (Ph)[+n+3]
make only use of the registers Rn+3+j , where j ≥ 0. Formally, the overall computation is given as
follows:

Pf = R(n+ 1;n+ 2);

C(1;n+ 4); . . . ;C(n, 2n+ 3);

(Pg)[+n+ 3]; (2.8)

(R(n+ 4; 2n+ 5);C(1;n+ 4); . . . ;C(n+ 1; 2n+ 4); (Ph)[+n+ 3];An+ 1;Sn+ 2)n+ 2;

(S1)1; . . . ; (Sn+ 1)n+ 1;

R(n+ 4; 1).

First, the input value y is stored in Rn+2 to serve as a counter, and the input values x1, . . . , xn are
copied into Rn+4, . . . , R2n+3, respectively. Then f(x, 0) = g(x) is calculated. Afterwards, the following

14 2 Primitive Recursive Functions

iteration is performed while the value of Rn+2 is non-zero: Copy x1, . . . , xn into Rn+4, . . . , R2n+3,
respectively, copy the value of Rn+1 into R2n+4, which gives the ith iteration, and copy the result of the
previous computation into R2n+5. Then invoke the program Ph to obtain f(x, i) = h(x, i−1, f(x, i−1)).
At the end, the input arguments are set to zero and the result of the last iteration is copied into the
first register. This provides the desired result: ‖Pf‖n+1,1 = f . ⊓⊔

The URM programs for composition and primitive recursion also make sense if the URM subpro-
grams used in the respective induction step are not primitive recursive. These ideas will be formalized
in the remaining part of the section.

Let g : Nk0 → N0 and hi : N
n
0 → N0, 1 ≤ i ≤ k, be partial functions. The composition of g along

(h1, . . . , hk) is a partial function f , denoted by f = g(h1, . . . , hk), such that

dom(f) = {x ∈ Nn0 | x ∈
k⋂

i=1

dom(hi) ∧ (h1(x), . . . , hk(x)) ∈ dom(g)} (2.9)

and

f(x) = g(h1(x), . . . , hk(x)), x ∈ dom(f). (2.10)

The proof of the previous Theorem provides the following result.

Proposition 2.11. The class of URM computable functions is closed under composition; that is, if
g : Nk0 → N0 and hi : Nn0 → N0, 1 ≤ i ≤ k, are URM computable, f = g(h1, . . . , hk) is URM
computable.

The situation is analogous for the primitive recursion.

Proposition 2.12. Let g : Nn0 → N0 and h : Nn+2
0 → N0 be partial functions. There is a unique

function f : Nn+1
0 → N0 such that

1. (x, 0) ∈ dom(f) if and only if x ∈ dom(g) for all x ∈ Nn0 ,
2. (x, y + 1) ∈ dom(f) if and only if (x, y) ∈ dom(f) and (x, y, f(x, y)) ∈ dom(h) for all x ∈ Nn0 ,
y ∈ N0,

3. f(x, 0) = g(x) for all x ∈ Nn0 , and
4. f(x, y + 1) = h(x, y, f(x, y)) for all x ∈ Nn0 , y ∈ N0.

The proof makes use of the Fundamental Lemma. The partial function f defined by g and h in this
Proposition is denoted by f = pr(g, h) and said to be defined by primitive recursion of g and h.

Proposition 2.13. The class of URM computable functions is closed under primitive recursion; that
is, if g : Nn0 → N0 and h : Nn+2

0 → N0 are URM computable, f = pr(g, h) is URM computable.

Primitively Closed Function Classes

Let F be a class of functions, i.e.,

F ⊆
⋃

k≥0

N
(Nk

0)
0 .

2.3 Closure Properties 15

The class F is called primitively closed if it contains the basic functions c
(0)
0 , c

(1)
0 , ν, π

(n)
k , 1 ≤ k ≤ n,

n ≥ 1, and is closed under composition and primitive recursion.
Let P denote the class of all primitive recursive functions, TURM the class of all URM computable

total functions, and T the class of all total functions.

Proposition 2.14. The classes P, TURM, and T are primitively closed.

In particular, the class P of primitive recursive functions is the smallest class of functions which is
primitively closed. Indeed, we have

P =
⋂

{F | F ⊆
⋃

k≥0

N
(Nk

0)
0 ,F primitively closed}. (2.11)

The concept of primitive closure carries over to partial functions, since composition and primitive
recursion have been defined for partial functions as well. Let FURM denote the class of URM computable
functions and F the class of all functions.

Proposition 2.15. The classes FURM and F are primitively closed.

The lattice of the introduced classes (under inclusion) is the following:

F

T

yyyyyyyyy
FURM

JJJJJJJJJJ

TURM

uuuuuuuuu

EEEEEEEE

P
All inclusions are strict. Indeed, the strict inclusions TURM ⊂ FURM and T ⊂ F are obvious, while

the strict inclusions TURM ⊂ T and FURM ⊂ F follow by counting arguments. However, the strict
inclusion P ⊂ TURM is not clear at all. An example of a total URM computable function that is not
primitive recursive will be given in Chapter 4.

2.3 Closure Properties

This section provides a small repository of algorithmic properties and constructions for later use.

Transformation of Variables and Parametrization

Given a function f : Nn0 → N0 and a mapping φ : [n] → [m]. The function fφ obtained from f by
transformation of variables with respect to φ is defined as

fφ : Nm0 → N0 : (x1, . . . , xm) 7→ f(xφ(1), . . . , xφ(n)). (2.12)

16 2 Primitive Recursive Functions

Proposition 2.16. If the function f is primitive recursive, the function fφ is also primitive recursive.

Proof. Transformation of variables can be described by the composition

fφ = f(π
(m)
φ(1), . . . , π

(m)
φ(n)). (2.13)

⊓⊔

Examples 2.17. Three important special cases for dyadic functions:

• permutation of variables: fφ : (x, y) 7→ f(y, x),
• adjunct of variables: fφ : (x, y) 7→ f(x),
• identification of variables: fφ : x 7→ f(x, x).

♦

Let c
(k)
i denote the k-ary constant function with value i ∈ N0, i.e.,

c
(k)
i : Nk0 → N0 : (x1, . . . , xk) 7→ i. (2.14)

Proposition 2.18. The constant function c
(k)
i is primitive recursive.

Proof. If k = 0, c
(0)
i = νi ◦ c(0)0 . Otherwise, c

(k)
i = νi ◦ c(1)0 ◦ π

(k)
1 . ⊓⊔

Let f : Nn0 → N0 be a function. Take a positive integer m with m < n and a = (a1, . . . , am) ∈ Nm0 .
The function fa obtained from f by parametrization with respect to a is defined as

fa : Nn−m0 → N0 : (x1, . . . , xn−m) 7→ f(x1, . . . , xn−m, a1, . . . , am). (2.15)

Proposition 2.19. If the function f is primitive recursive, the function fa is also primitive recursive.

Proof. Parametrization can be described by the composition

fa = f(π
(n−m)
1 , . . . , π

(n−m)
n−m , c(n−m)

a1 , . . . , c(n−m)
am). (2.16)

⊓⊔

Definition by Cases

Let hi : N
k
0 → N0, 1 ≤ i ≤ r, be total functions with the property that for each x ∈ Nk0 there is a unique

index i ∈ [r] such that hi(x) = 0. That is, the sets Hi = {x ∈ Nk0 | hi(x) = 0} form a partition of the
whole set Nk0 . Moreover, let gi : N

k
0 → N0, 1 ≤ i ≤ r, be arbitrary total functions. Define the function

f : Nk0 → N0 : x 7→

g1(x) if x ∈ H1,
...

...
gr(x) if x ∈ Hr.

(2.17)

The function f is clearly total and said to be defined by cases.

2.3 Closure Properties 17

Proposition 2.20. If the above functions gi and hi, 1 ≤ i ≤ r, are primitive recursive, the function f
is also primitive recursive.

Proof. In case of r = 2, the function f is given in prefix notation as follows:

f = g1 · (csg ◦ h1) + g2 · (csg ◦ h2). (2.18)

The general case follows by induction on r. ⊓⊔

Example 2.21. Let csg denote the cosign function, i.e., csg(x) = 0 if x > 0 and csg(x) = 1 if x = 0.
The mappings h1 : x 7→ x mod 2 and h2 : x 7→ csg(x mod 2) define a partition of the set N0 into the set
of even natural numbers and the set of odd natural numbers. These mappings can be used to define a
function defined by cases as follows:

f(x) =

{
x/2 if x is even,
(x+ 1)/2 if x is odd.

(2.19)

♦

Bounded Sum and Product

Let f : Nk+1
0 → N0 be a total function. The bounded sum of f is the function

Σf : Nk+1
0 → N0 : (x1, . . . , xk, y) 7→

y
∑

i=0

f(x1, . . . , xk, i) (2.20)

and the bounded product of f is the function

Πf : Nk+1
0 → N0 : (x1, . . . , xk, y) 7→

y
∏

i=0

f(x1, . . . , xk, i). (2.21)

Proposition 2.22. If the function f is primitive recursive, the functions Σf and Πf are also primitive
recursive.

Proof. The function Σf is given as

Σf(x, 0) = f(x, 0) and Σf(x, y + 1) = Σf(x, y) + f(x, y + 1). (2.22)

This corresponds to the primitive recursive scheme Σf = pr(g, h), where g(x) = f(x, 0) and h(x, y, z) =
+(f(x, ν(y)), z). The function Πf can be similarly defined. ⊓⊔

Example 2.23. Take the function f : N0 → N0 defined by f(x) = 1 if x = 0 and f(x) = x if x > 0.
This function is primitive recursive and thus the bounded product, given as Πf(x) = x! for all x ∈ N0,
is primitive recursive. ♦

18 2 Primitive Recursive Functions

Bounded Minimalization

Let f : Nk+1
0 → N0 be a total function. The bounded minimalization of f is the function

µf : Nk+1
0 → N0 : (x, y) 7→ µ(i ≤ y)[f(x, i) = 0], (2.23)

where for each (x, y) ∈ Nk+1
0 ,

µ(i ≤ y)[f(x, i) = 0] =

{
j if j = min{i | i ≤ y ∧ f(x, i) = 0} exists,
y + 1 otherwise.

(2.24)

That is, the value µf(x, y) provides the smallest index j with 0 ≤ j ≤ y such that f(x, j) = 0. If there
is no such index, the value is y + 1.

Proposition 2.24. If the function f is primitive recursive, the function µf is also primitive recursive.

Proof. By definition,

µf(x, 0) = sgn(f(x, 0)) (2.25)

and

µf(x, y + 1) =

{
µf(x, y) if µf(x, y) ≤ y or f(x, y + 1) = 0,
y + 2 otherwise.

(2.26)

Define the k + 2-ary functions

g1 : (x, y, z) 7→ z,
g2 : (x, y, z) 7→ y + 2,
h1 : (x, y, z) 7→ (z −̇ y) · sgn(f(x, y + 1)),
h2 : (x, y, z) 7→ csg(h1(x, y, z)).

(2.27)

These functions are primitive recursive. Moreover, the functions h1 and h2 provide a partition of N0.
Thus the following function defined by cases is also primitive recursive:

g(x, y, z) =

{
g1(x, y, z) if h1(x, y, z) = 0,
g2(x, y, z) if h2(x, y, z) = 0.

(2.28)

We have h1(x, y, µf(x, y)) = 0 if and only if (µf(x, y)) −̇ y) · sgn(f(x, y + 1)) = 0, which is equivalent
to µf(x, y)) ≤ y or f(x, y + 1) = 0. In this case, g1(x, y, µf(x, y)) = µf(x, y + 1). The other case
can be similarly evaluated. It follows that the bounded minimalization µf corresponds to the primitive
recursive scheme µf = pr(s, g), where s : Nk0 → N0 is defined as s(x) = sgn(f(x, 0)) and g is given as
above. ⊓⊔

Example 2.25. Consider the integral division function

÷ : N2
0 → N0 : (x, y) 7→

{
⌊x/y⌋ if y > 0,
x if y = 0,

(2.29)

2.3 Closure Properties 19

where the expression ⌊x/y⌋ means that ⌊x/y⌋ = z if y · z ≥ x and z is minimal with this property. Thus
the value z can be provided by bounded minimalization. To this end, define the function f : N3

0 → N0 :
(x, y, z) 7→ csg(y · z −̇x); that is,

f(x, y, z) =

{
0 if y · z > x,
1 otherwise.

(2.30)

Applying bounded minimalization to f yields the primitive recursive function

µf(x, y, z) =

{
smallest j ≤ z with y · j > x if j exists,
z + 1 otherwise.

(2.31)

Identification of variables provides the primitive recursive function

(µf)′ : (x, y) 7→ µf(x, y, x), (2.32)

which is given as

(µf)′(x, y) =

{
smallest j ≤ x with y · j > x if y ≥ 1,
x+ 1 if y = 0.

(2.33)

It follows that ÷(x, y) = (µf)′(x, y) −̇ 1. Finally, the remainder of x modulo y is given by rem(x, y) =
y −̇x · ÷(x, y) and thus is also primitive recursive. ♦

Pairing Functions

A pairing function uniquely encodes pairs of natural numbers by single natural numbers. A primitive
recursive bijection from N2

0 onto N0 is called a pairing function. In set theory, any pairing function
can be used to prove that the rational numbers have the same cardinality as the natural numbers. For
instance, the Cantor function J2 : N2

0 → N0 is defined as

J2(m,n) =

(
m+ n+ 1

2

)

+m. (2.34)

This function will provide a proof that the cartesian product N2
0 is denumerable. To this end, write

down the elements of N2
0 in a table as follows:

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) . . .
(1, 0) (1, 1) (1, 2) (1, 3) . . .
(2, 0) (2, 1) (2, 2) . . .
(3, 0) (3, 1) . . .
(4, 0) . . .
. . .

(2.35)

Its kth anti-diagonal is given by the sequence

(0, k), (1, k − 1), . . . , (k, 0). (2.36)

20 2 Primitive Recursive Functions

Now generate a list of all elements of N2
0 by writing down the anti-diagonals in a consecutive manner

starting from the 0-th anti-diagonal:

(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), (2, 1), (3, 0), (0, 4), (2.37)

Note the kth anti-diagonal consists of k + 1 entries. Thus the pair (m,n) lies at position m in the
m+ nth anti-diagonal and hence occurs in the list at position

[1 + 2 + . . .+ (m+ n)] +m =

(
m+ n+ 1

2

)

+m. (2.38)

That is, J2(m,n) provides the position of the pair (m,n) in the above list. This shows that the function
J2 is bijective.

Proposition 2.26. The Cantor function J2 is primitive recursive.

Proof. By using the integral division function ÷, one obtains

J2(m,n) = ÷((m,n) · (m+ n+ 1), 2) +m. (2.39)

Thus J2 is primitive recursive. ⊓⊔
The Cantor function J2 can be inverted by taking coordinate functions K2, L2 : N0 → N0 such that

J−1
2 (n) = (K2(n), L2(n)), n ∈ N0. (2.40)

In order to define them, take n ∈ N0. Find a number s ≥ 0 such that

1

2
s(s+ 1) ≤ n < 1

2
(s+ 1)(s+ 2) (2.41)

and put

m = n− 1

2
s(s+ 1). (2.42)

Then

m = n− 1

2
s(s+ 1) ≤ [

1

2
(s+ 1)(s+ 2)− 1]− [

1

2
s(s+ 1)] = s. (2.43)

Finally, set

K2(n) = m and L2(n) = s−m. (2.44)

Proposition 2.27. The coordinate functions K2 and L2 are primitive recursive and the pair (K2, L2)
is the inverse of J2.

Proof. Let n ∈ N0. The corresponding number s in (2.41) can be determined by bounded minimalization
as follows:

µ(i ≤ n)[n −̇ 1

2
s(s+ 1) = 0] =

{
j if j = min{i | i ≤ y ∧ n −̇ 1

2s(s+ 1) = 0} exists,
n+ 1 otherwise.

(2.45)

The value j always exists and s = j −̇ 1. Then K2(n) = n−÷(s(s+1), 2) and L2(n) = s−K2(n). Thus
both, K2 and L2 are primitive recursive. Finally, by (2.42) and (2.44), J2(K2(n), L2(n)) = J2(m, s −
m) = 1

2s(s+ 1) +m = n and so (2.40) follows. ⊓⊔
This assertion implies that the Cantor function J2 is a pairing function.

2.3 Closure Properties 21

Iteration

The powers of a function f : N0 → N0 are inductively defined as

f0 = idN0
and fn+1 = f ◦ fn, n ≥ 0. (2.46)

The iteration of a function f : N0 → N0 is given by the function

g : N2
0 → N0 : (x, y) 7→ fy(x). (2.47)

Example 2.28. Consider the function f : N0 → N0 : x 7→ 2x. The iteration of f is the function
g : N2

0 → N0 given by g(x, y) = 2y · x. ♦
Proposition 2.29. If f is a monadic primitive recursive function, the iteration of f is also primitive
recursive.

Proof. The iteration g of f follows the primitive recursive scheme

g(x, 0) = x (2.48)

and

g(x, y + 1) = f(g(x, y)) = f ◦ π(3)
3 (x, y, g(x, y)), x, y ∈ N0. (2.49)

⊓⊔
Iteration can also be defined for multivariate functions. For this, let f : Nk0 → Nk0 be a function

defined by coordinate functions fi : N
k
0 → N0, 1 ≤ i ≤ k, as follows:

f(x) = (f1(x), . . . , fk(x)), x ∈ Nk0 . (2.50)

Write f = (f1, . . . , fk) and define the powers of f inductively as follows:

f0(x) = x and fn+1(x) = (f1(f
n(x)), . . . , fk(f

n(x))), x ∈ Nk0 . (2.51)

These definitions immediately give rise to the following result.

Proposition 2.30. If the functions f = (f1, . . . , fk) are primitive recursive, the powers of f are also
primitive recursive.

The iteration of f = (f1, . . . , fk) is defined by the functions

gi : N
k+1
0 → N0 : (x, y) 7→ (π

(k)
i ◦ fy)(x), 1 ≤ i ≤ k. (2.52)

Proposition 2.31. If the functions f = (f1, . . . , fk) are primitive recursive, the iteration of f is also
primitive recursive.

Proof. The iteration of f = (f1, . . . , fk) follows the primitive recursive scheme

gi(x, 0) = xi (2.53)

and

gi(x, y + 1) = fi(f
y(x)) = fi ◦ π(k+2)

k+2 (x, y, gi(x, y)), x ∈ Nk0 , y ∈ N0, 1 ≤ i ≤ k. (2.54)

⊓⊔

22 2 Primitive Recursive Functions

2.4 Primitive Recursive Sets

The studies can be extended to relations given as subsets of Nk0 by taking their characteristic function.
Let S be a subset of Nk0 . The characteristic function of S is the function χS : Nk0 → N0 defined by

χS(x) =

{
1 if x ∈ S,
0 otherwise.

(2.55)

A subset S of Nk0 is called primitive if its characteristic function χS is primitive recursive.

Examples 2.32. Here are some primitive basic relations:

1. The equality relation R= = {(x, y) ∈ N2
0 | x = y} is primitive, since the corresponding characteristic

function χR=
(x, y) = csg(|x− y|) is primitive recursive.

2. The inequality relation R 6= = {(x, y) ∈ N2
0 | x 6= y} is primitive, since its characteristic function

χR 6=
(x, y) = 1− csg(|x− y|) is primitive recursive.

3. The smaller relation R< = {(x, y) ∈ N2
0 | x < y} is primitive, since the associated characteristic

function χR<
(x, y) = sgn(y −̇x) is primitive recursive.

♦

Proposition 2.33. If S and T are primitive subsets of Nk0 , S∪T , S∩T , and Nk0 \S are also primitive.

Proof. Clearly, χS∪T (x) = sgn(χS(x) + χT (x)), χS∩T (x) = χS(x) · χT (x), and χNk
0\S

(x) = csg ◦ χS(x).
⊓⊔

Let S be a subset of Nk+1
0 . The bounded existential quantification of S is a subset of Nk+1

0 given as

∃S = {(x, y) | (x, i) ∈ S for some 0 ≤ i ≤ y}. (2.56)

The bounded universal quantification of S is a subset of Nk+1
0 defined by

∀S = {(x, y) | (x, i) ∈ S for all 0 ≤ i ≤ y}. (2.57)

Proposition 2.34. If S is a primitive subset of Nk+1
0 , the sets ∃S and ∀S are also primitive.

Proof. Clearly, χ∃S(x, y) = sgn((ΣχS)(x, y)) and χ∀S(x, y) = (ΠχS)(x, y). ⊓⊔

Consider the sequence of increasing primes (p0, p1, p2, p3, p4, . . .) = (2, 3, 5, 7, 11, . . .). By the fun-
damental theorem of arithmetic, each natural number x ≥ 1 can be uniquely written as a product of
prime powers, i.e.,

x =

r−1∏

i=0

peii , e0, . . . , er−1 ∈ N0. (2.58)

Write (x)i = ei for each i ∈ N0, and put (0)i = 0 for all i ∈ N0. For instance, 24 = 23 · 3 and so
(24)0 = 3, (24)1 = 1, and (24)i = 0 for all i ≥ 2.

2.5 LOOP Programs 23

Proposition 2.35.

1. The divisibility relation D = {(x, y) ∈ N2
0 | x divides y} is primitive.

2. The set of primes is primitive.
3. The function p : N0 → N0 : i 7→ pi is primitive recursive.
4. The function p̃ : N2

0 → N0 : (x, i) 7→ (x)i is primitive recursive.

Proof. First, x divides y, written x | y, if and only if x · i = y for some 0 ≤ i ≤ y. Thus the characteristic
function of D can be written as

χD(x, y) = sgn[χ=(x · 1, y) + χ=(x · 2, y) + . . .+ χ=(x · y, y)]. (2.59)

Hence the relation D is primitive.
Second, a number x is prime if and only if x ≥ 2 and i divides x implies i = 1 or i = x for all

i ≤ x. Thus the characteristic function of the set P of primes is given as follows: χP (0) = χP (1) = 0,
χP (2) = 1, and

χP (x) = csg[χD(2, x) + χD(3, x) + . . .+ χD(x− 1, x)], x ≥ 3. (2.60)

Third, define the functions

g(z, x) = |χR<
(z, x) · χP (x)− 1| =

{
0 if z < x and x prime,
1 otherwise,

(2.61)

and

h(z) = µg(z, z! + 1) = µ(y ≤ z! + 1)[g(z, y) = 0]. (2.62)

Both functions g and h are primitive recursive. By a theorem of Euclid, the i + 1th prime is bounded
by the ith prime in a way that pi+1 ≤ pi!+1 for all i ≥ 0. Thus the value h(pi) provides the next prime
pi+1. That is, the sequence of prime numbers is given by the primitive recursive scheme

p0 = 2 and pi+1 = h(pi), i ≥ 0. (2.63)

Fourth, we have

(x)i = µ(y ≤ x)[py+1
i 6 | x] = µ(y ≤ x)[χD(py+1

i , x) = 0]. (2.64)

⊓⊔

2.5 LOOP Programs

This section provides a mechanistic description of the class of primitive recursive functions. For this, a
class of URM computable functions is introduced in which the use of loop variables is restricted. More
specifically, the only loops or iterations allowed will be of the form (M ;Sσ)σ, where the variable σ does
not appear in the program M . In this way, the program M cannot manipulate the register Rσ and thus
it can be guaranteed that the program M will be carried out n times, where n is the content of the

24 2 Primitive Recursive Functions

register Rσ at the start of the computation. Hence, loops of this type allow an explicit control over the
loop variables.

Two abbreviations will be used in the following: If P is an URM program and σ ∈ Z, write [P]σ
for the program (P ;Sσ)σ, and denote by Zσ the URM program (Sσ)σ.

The class PLOOP of LOOP programs is inductively defined as follows:

1. Define the class of LOOP-0 programs PLOOP(0):
a) For each σ ∈ Z, Aσ ∈ PLOOP(0) and Zσ ∈ PLOOP(0).
b) For each σ, τ ∈ Z with σ 6= τ and σ 6= 0 6= τ , C̄(σ, τ) = Zτ ;Z0;C(σ; τ) ∈ PLOOP(0).
c) If P,Q ∈ PLOOP(0), then P ;Q ∈ PLOOP(0).

2. Suppose the class of LOOP-n programs PLOOP(n) has already been defined. Define the class of
LOOP-n+ 1 programs PLOOP(n+1):
a) Each P ∈ PLOOP(n) belongs to PLOOP(n+1).
b) If P,Q ∈ PLOOP(n+1), then P ;Q ∈ PLOOP(n+1).
c) if P ∈ PLOOP(n) and σ ∈ Z does not appear in P , then [P]σ ∈ PLOOP(n+1).

Note that for each ω ∈ Ω, w̄ = C̄(σ, τ)(ω) is given by

ω̄n =

0 if n = 0,
ωσ if n = σ or n = τ ,
ωn otherwise.

(2.65)

That is, the content of register Rσ is copied into register Rτ and the register R0 is set to zero.
Note that the LOOP-n programs form as sets a proper hierarchy:

PLOOP(0) ⊂ PLOOP(1) ⊂ PLOOP(2) ⊂ (2.66)

The class of LOOP programs is defined as as the union of LOOP-n programs for all n ∈ N0:

PLOOP =
⋃

n≥0

PLOOP(n). (2.67)

In particular, PLOOP(n) is called the class of LOOP programs of depth n, n ∈ N0.

Proposition 2.36. For each LOOP program P , the function ‖P‖ is total.

Proof. For each LOOP-0 program P , it is clear that the function ‖P‖ is total. Let P be a LOOP-n
program and let σ ∈ Z such that σ does not appear in P . By induction hypothesis, the function
‖P‖ is total. Moreover, ‖[P]σ‖ = ‖P k‖, where k is the content of register Rσ at the beginning of the
computation. Thus the function ‖[P]σ‖ is also total. The remaining cases are clear. ⊓⊔

A function f : Nk0 → N0 is called LOOP-n computable if there is a LOOP-n program P such that
‖P‖k,1 = f . Let FLOOP(n) denote the class of all LOOP-n computable functions and define the class of
all LOOP computable functions FLOOP as the union of LOOP-n computable functions for all n ≥ 0:

FLOOP =
⋃

n≥0

FLOOP(n). (2.68)

Note that if P is a LOOP-n program, n ≥ 1, and P ′ is the normal program corresponding to P , then
P ′ is also a LOOP-n program.

2.5 LOOP Programs 25

Example 2.37. The program Sσ does not belong to the basic LOOP programs. But it can be described
by a LOOP-1 program. Indeed, put

P −̇ 1
= C̄(1; 3); [C̄(2; 1);A2]3. (2.69)

Then we have for input x = 0,
0 1 2 3 4 . . . registers
0 0 0 0 0 . . . init
0 0 0 0 0 . . . C̄(1; 3)
0 0 0 0 0 . . . end

and for input x ≥ 1,
0 1 2 3 4 . . . registers
0 x 0 0 0 . . . init
0 x 0 x 0 . . . C̄(1; 3)
0 0 0 x 0 . . . C̄(2; 1)
0 0 1 x 0 . . . A2
0 0 1 x− 1 0 . . . S3
. . .
0 1 2 x− 2 0 . . .
. . .
0 x− 1 x 0 0 . . . end

It follows that ‖P −̇ 1
‖1,1 = ‖S1‖1,1. ♦

The LOOP-n computable functions form a hierarchy but at this stage it is not clear whether it is proper
or not:

TLOOP(0) ⊆ TLOOP(1) ⊆ TLOOP(2) ⊆ (2.70)

Theorem 2.38. The class of LOOP computable functions equals the class of primitive recursive func-
tions.

Proof. First, claim that each primitive recursive function is LOOP computable. Indeed, the basic prim-
itive recursive functions are LOOP computable:

1. 0-ary constant function : ‖Z0‖0,1 = c
(0)
0 ,

2. monadic constant function : ‖Z1‖1,1 = c
(1)
0 ,

3. successor function: ‖A1‖1,1 = ν,

4. projection function : ‖Z0‖k,1 = π
(k)
1 and ‖C̄(σ; 1)‖k,1 = π

(k)
σ , σ 6= 1.

Moreover, the class of LOOP computable functions is closed under composition and primitive recursion.
This can be shown as in the proof of Theorem 2.10, where subtraction is replaced by the program in 2.37.
But the class of primitive recursive functions is the smallest class of functions that is primitively closed.
Hence, all primitive recursive functions are LOOP computable. This proves the claim.

Second, claim that each LOOP computable function is primitive recursive. Indeed, for each LOOP
program P , let n(P) denote the largest address (or register number) used in P . For integers m ≥ n(P)
and 0 ≤ j ≤ m, consider the functions

26 2 Primitive Recursive Functions

k
(m+1)
j (P) : Nm+1

0 → N0 : (x0, x1, . . . , xm) 7→ (πj ◦ |P |)(x0, x1, . . . , xm, , 0, 0, . . .), (2.71)

where for each j ∈ N0,

πj : Ω → N0 : (ω0, ω1, ω2, . . .) 7→ ωj . (2.72)

The assertion to be shown is a special case of the following assertion: For all LOOP programs P , for

all integers m ≥ n(P) and 0 ≤ j ≤ m, the function k
(m+1)
j (P) is primitive recursive. The proof makes

use of the inductive definition of LOOP programs.
First, let P = Aσ, m ≥ σ and 0 ≤ j ≤ m. Then

k
(m+1)
j (P) : x 7→

{

(ν ◦ π(m+1)
j)(x) if j = σ,

π
(m+1)
j (x) otherwise.

(2.73)

Clearly, this function is primitive recursive.
Second, let P = Zσ, m ≥ σ and 0 ≤ j ≤ m. We have

k
(m+1)
j (P) : x 7→

{

(c
(1)
0 ◦ π

(m+1)
j)(x) if j = σ,

π
(m+1)
j (x) otherwise.

(2.74)

This function is also primitive recursive.
Third, let P = C̄(σ, τ), where σ 6= τ and σ 6= 0 6= τ , m ≥ n(P) = max{σ, τ} and 0 ≤ j ≤ m. Then

k
(m+1)
j (P) : x 7→

(c
(1)
0 ◦ π

(m+1)
j)(x) if j = 0,

π
(m+1)
σ (x) if j = τ ,

π
(m+1)
j (x) otherwise.

(2.75)

This function is clearly primitive recursive.
Fourth, let P = Q;R ∈ PLOOP. By induction, assume that the assertion holds for Q and R. Let

m ≥ n(Q;R) = max{n(Q), n(R)} and 0 ≤ j ≤ m. Then

k
(m+1)
j (P)(x) = (πj ◦ P)(x, 0, 0, . . .)

= (πj ◦ |R| ◦ |Q|)(x, 0, 0, . . .)
= k

(m+1)
j (R)(k

(m+1)
0 (Q)(x), . . . , k(m+1)

m (Q)(x)), (2.76)

= k
(m+1)
j (R)(k

(m+1)
0 (Q), . . . , k(m+1)

m (Q))(x).

Thus k
(m+1)
j (P) is a composition of primitive recursive functions and hence also primitive recursive.

Finally, let P = [Q]σ ∈ PLOOP, where Q is a LOOP program in which the address σ is not involved.
By induction, assume that the assertion holds for Q. Let m ≥ n([Q]σ) = max{n(Q), σ} and 0 ≤ j ≤ m.

First the program Q;Sσ yields

k
(m+1)
j (Q;Sσ) : x 7→

{

k
(m+1)
j (Q)(x) if j 6= σ,

(f −̇ 1
◦ π(m+1)

j)(x) otherwise.
(2.77)

2.5 LOOP Programs 27

Let k(m+1)(Q;Sσ) : Nm+1
0 → Nm+1

0 denote the product of the m + 1 functions k
(m+1)
j (Q;Sσ) for

0 ≤ j ≤ m. That is,

k(m+1)(Q;Sσ)(x) = (k
(m+1)
0 (Q;Sσ)(x), . . . , k(m+1)

m (Q;Sσ)(x)). (2.78)

Let g : Nm+2
0 → Nm+1

0 denote the iteration of k(m+1)(Q;Sσ); that is,

g(x, 0) = x and g(x, y + 1) = k(m+1)(Q;Sσ)(g(x, y)). (2.79)

For each index j, 0 ≤ j ≤ m, the composition π
(m+1)
j ◦ g is also primitive recursive giving

(π
(m+1)
j ◦ g)(x, y) = k

(m+1)
j ((Q;Sσ)y)(x). (2.80)

But the register Rσ is never used by the program Q and thus

|P |(ω) = |(Q;Sσ)σ|(ω) = |(Q;Sσ)ωσ |(ω), ω ∈ Ω. (2.81)

It follows that the function k
(m+1)
j (P) can be obtained from the primitive recursive function π

(m+1)
j ◦ g

by transformation of variables, i.e.,

k
(m+1)
j (P)(x) = (π

(m+1)
j ◦ g)(x, π(m+1)

σ (x)), x ∈ Nm+1
0 . (2.82)

Thus k
(m+1)
j (P) is also primitive recursive. ⊓⊔

28 2 Primitive Recursive Functions

3

Partial Recursive Functions

The partial recursive functions form a class of partial functions that are computable in an intuitive
sense. In fact, the partial recursive functions are precisely the functions that can be computed by Turing
machines or unlimited register machines. By Church’s thesis, the partial recursive functions provide a
formalization of the notion of computability. The partial recursive functions are closely related to the
primitive recursive functions and their inductive definition builds upon them.

3.1 Partial Recursive Functions

The class of partial recursive functions is the basic object of study in computability theory. This class
was first investigated by Stephen Cole Kleene (1909-1994) in the 1930s and provides a formalization of
the intuitive notion of computability. To this end, a formal analogue of the while loop is required. For
this, each partial function f : Nk+1 → N0 is associated with a partial function

µf : Nk0 → N0 : x 7→
{
y if f(x, y) = 0 and f(x, i) 6= 0 for 0 ≤ i < y,
↑ otherwise. (3.1)

The function µf is said to be defined by (unbounded) minimalization of f . The domain of the function
µf is given by all elements x ∈ Nk0 with the property that f(x, y) = 0 and (x, i) ∈ dom(f) for all
0 ≤ i ≤ y. It is clear that in the context of programming, unbounded minimalization corresponds to a
while loop (Algorithm 3.1).

Algorithm 3.1 Minimalization of f .

Require: x ∈ Nn
0

y ← −1
repeat

y ← y + 1
z ← f(x, y)

until z = 0
return y

30 3 Partial Recursive Functions

Examples 3.1.

• The minimalization function µf may be partial even if f is total: The function f(x, y) = (x+ y) −̇ 3
is total, while its minimalization µf is partial with dom(µf) = {0, 1, 2, 3} and µf(0) = µf(1) =
µf(2) = µf(3) = 0.

• The minimalization function µf may be total even if f is partial: Take the partial function f(x, y) =
x − y if y ≤ x and f(x, y) =↑ if y > x. The corresponding minimalization µf(x) = x is total with
dom(µf) = N0. ♦

The class R of partial recursive functions over N0 is inductively defined:

• R contains all the base functions.
• If partial functions g : Nk0 → N0 and hi : N

n
0 → N0, 1 ≤ i ≤ k, belong to R, the composite function

f = g(h1, . . . , hk) : N
n
0 → N0 is in R.

• If partial functions g : Nn0 → N0 and h : Nn+2
0 → N0 lie in R, the primitive recursion f = pr(g, h) :

Nn+1
0 → N0 is contained in R.

• If a partial function f : Nn+1
0 → N0 is in R, the partial function µf : Nn0 → N0 obtained by

minimalization belongs to R.
Thus the class R consists of all partial recursive functions obtained from the base functions by finitely
many applications of composition, primitive recursion, and minimalization. In particular, each total
partial recursive function is called a recursive function, and the subclass of all total partial recursive
functions is denoted by T . It is clear that the class P of primitive recursive functions is a subclass of
the class T of recursive functions.

Theorem 3.2. Each partial recursive function is URM computable.

Proof. It is sufficient to show that for each URM computable function f : Nk+1
0 → N0 the corresponding

minimalization µf is URM computable. For this, let Pf be an URM program for the function f . This
program can be modified to provide an URM program P ′

f with the following property:

|P ′
f |(0,x, y, 0, 0, . . .) =

{
(0,x, y, f(x, y), 0, 0, . . .) if (x, y) ∈ dom(f),
↑ otherwise.

(3.2)

Consider the URM program

Pµf = P ′
f ; (Ak + 1; (Sk + 2)k + 2;P ′

f)k + 2; (S1)1; . . . ; (Sk)k;Rk+1,1. (3.3)

The first block P ′
f provides the computation in (3.2) for y = 0. The second block (Ak + 1; (Sk + 2)k +

2;P ′
f)k+2; iteratively calculates (3.2) for increasing values of y. This iteration stops when the function

value becomes 0; in this case, the subsequent blocks reset the registers R1, . . . , Rk to 0 and store the
argument y in the first register. Otherwise, the program runs forever. It follows that the program Pµf
computes the minimalization of f , i.e., ‖Pµf‖k,1 = µf. ⊓⊔

Note that Pµf is generally not a LOOP program even if P ′
f is a LOOP program.

3.2 GOTO Programs 31

3.2 GOTO Programs

GOTO programs offer another way to formalize the notion of computability. They are closely related
to programs in BASIC or FORTRAN.

First, define the syntax of GOTO programs. For this, let V = {xn | n ∈ N} be a set of variables.
The instructions of a GOTO program are the following:

• incrementation:

(l, xσ ← xσ + 1,m), l,m ∈ N0, xσ ∈ V, (3.4)

• decrementation:

(l, xσ ← xσ − 1,m), l,m ∈ N0, xσ ∈ V, (3.5)

• conditionals:

(l, if xσ = 0, k,m), k, l,m ∈ N0, xσ ∈ V. (3.6)

The first component of an instruction, denoted by l, is called a label, the third component of an
instruction (l, xσ+,m) or (l, xσ−,m), denoted by m, is termed next label, and the last two components
of an instruction (l, if xσ = 0, k,m), denoted by k and m, are called bifurcation labels.

A GOTO program is given by a finite sequence of GOTO instructions

P = s0; s1; . . . ; sq, (3.7)

such that there is a unique instruction si which has the label λ(si) = 0, 0 ≤ i ≤ q, and different
instructions have distinct labels, i.e., for 0 ≤ i < j ≤ q, λ(si) 6= λ(sj).

In the following, let PGOTO denote the class of all GOTO programs. Moreover, for each GOTO
program P , let V (P) depict the set of variables occurring in P and L(P) = {λ(si) | 0 ≤ i ≤ q} describe
the set of labels in P .

A GOTO program P = s0; s1; . . . ; sq is called standard if the ith instruction si carries the label
λ(si) = i, 0 ≤ i ≤ q.

Example 3.3. A standard GOTO program P+ for the addition of two natural numbers is the following:

0 if x2 = 0 3 1
1 x1 ← x1 + 1 2
2 x2 ← x2 − 1 0

The set of occurring variables is V (P+) = {x1, x2} and the set of labels is L(P+) = {0, 1, 2}. ♦

Second, define the semantics of GOTO program. For this, the idea is to run a GOTO program on
an URM. To this end, the variable xσ in V is assigned the register Rσ of the URM for all σ ≥ 0. In
particular, the register R0 serves as an instruction counter containing the label of the next instruction
to be carried out. At the beginning, the instruction counter is set to 0 such that the execution starts
with the instruction having label 0. The instruction (l, xσ ← xσ + 1,m) increments the content of the
register Rσ, the instruction (l, xσ ← xσ−1,m) decrements the content of the register Rσ provided that

32 3 Partial Recursive Functions

it contains a number greater than zero, and the conditional statement (l, if xσ = 0, k,m) provides a
jump to the statement with label k if the content of register Rσ is 0; otherwise, a jump is performed to
the statement with labelm. The execution of a GOTO program terminates if the label of the instruction
counter does not correspond to an instruction.

More specifically, let P be a GOTO program and k be a number. Define the partial function

‖P‖k,1 = β1 ◦RP ◦ αk, (3.8)

where αk and β1 are total functions given by

αk : Nk0 → Nn+1
0 : (x1, x2, . . . , xk) 7→ (0, x1, x2, . . . , xk, 0, 0, . . . , 0) (3.9)

and

β1 : Nn+1
0 → N0 : (x0, x1, . . . , xn) 7→ x1. (3.10)

The function αk loads the registers with the arguments and the function β1 reads out the result. Note
that the number n needs to be chosen large enough to provide sufficient workspace for the computation;
that is,

n ≥ max{k,max{σ | xσ ∈ V (P)}}. (3.11)

Finally, the function RP : Nn+1
0 → Nn+1

0 providing the semantics of the program P will be formally
described. For this, let P = s0; s1; . . . ; sq be a GOTO program. Each element z = (z0, z1, . . . , zn) in
Nn+1

0 is called a configuration. We say that the configuration z′ = (z′0, z
′
1, . . . , z

′
n) is reached in one step

from the configuration z = (z0, z1, . . . , zn), written z ⊢P z′, if z0 is a label in P , say z0 = λ(si) for
some 0 ≤ i ≤ q, and
• if si = (z0, xσ ← xσ + 1,m),

z′ = (m, z1, . . . , zσ−1, zσ + 1, zσ+1, . . . , zn), (3.12)

• if si = (z0, xσ ← xσ − 1,m),

z′ = (m, z1, . . . , zσ−1, zσ −̇ 1, zσ+1, . . . , zn), (3.13)

• if si = (z0, if xσ = 0, k,m),

z′ =

{
(k, z1, . . . , zn) if zσ = 0,
(m, z1, . . . , zn) otherwise.

(3.14)

The configuration z′ is called the successor configuration of z. Moreover, if z0 is not a label in P , there
is no successor configuration of z and the successor configuration is undefined. The process to move
from one configuration to the next one can be described by the one-step function EP : Nn+1

0 → Nn+1
0

defined as

EP : z 7→
{
z′ if z ⊢P z′,
z otherwise.

(3.15)

The function EP is given by cases and has the following property.

3.2 GOTO Programs 33

Proposition 3.4. For each GOTO program P and each number n ≥ {σ | xσ ∈ V (P)}, the one-step

function EP : Nn+1
0 → Nn+1

0 is primitive recursive in the sense that for each 0 ≤ j ≤ n, π(n+1)
j ◦EP is

primitive recursive.

The execution of the GOTO program P can be represented by a sequence z0, z1, z2, . . . of config-
urations such that zi ⊢P zi+1 for all i ≥ 0. During this process, a configuration zt may eventually be
reached whose label z0 does not belong to L(P). In this case, the program P terminates. However, such
an event may eventually not happen. In this way, the runtime function of P is the partial function
ZP : Nn+1

0 → N0 given by

ZP : z 7→
{

min{t ∈ N0 | (π(n+1)
0 ◦ EtP)(z) 6∈ L(P)} if {. . .} 6= ∅,

↑ otherwise.
(3.16)

The runtime function may not be primitive recursive as it corresponds to an unbounded search process.

Proposition 3.5. For each GOTO program P , the runtime function ZP is partial recursive.

Proof. By Proposition 3.4, the one-step function EP is primitive recursive. It follows that the iteration
of EP is also primitive recursive:

E′
P : Nn+2

0 → Nn+1
0 : (z, t) 7→ EtP (z). (3.17)

But the set L(P) is finite and so the characteristic function χL(P) is primitive recursive. Therefore, the
subsequent function is also primitive recursive:

E′′
P : Nn+2

0 → Nn0 : (z, t) 7→ (χL(P) ◦ π(n+1)
0 ◦ E′

P)(z, t). (3.18)

This function has the following property:

E′′
P (z, t) =

{
1 if EtP (z) = (z′0, z

′
1, . . . , z

′
n) and z

′
0 ∈ L(P),

0 otherwise.
(3.19)

But by definition, ZP = µE′′
P and so the result follows. ⊓⊔

The residual step function of the GOTO program P is given by the partial function RP : Nn+1
0 → Nn+1

0

that maps an initial configuration to the final configuration of the computation, if any:

RP (z) =

{
E′
P (z, ZP (z)) if z ∈ dom(ZP),
↑ otherwise.

(3.20)

Proposition 3.6. For each GOTO program P , the function RP is partial recursive.

Proof. For each configuration z ∈ Nn+1
0 , RP (z) = E′

P (z, (µE
′′
P)(z)). Thus RP is a composition of

partial recursive functions and hence itself partial recursive. ⊓⊔

34 3 Partial Recursive Functions

3.3 GOTO Computable Functions

A partial function f : Nk0 → N0 is called GOTO computable if there is a GOTO program P that
computes f in the sense that

f = ‖P‖k,1. (3.21)

Let FGOTO denote the class of all (partial) GOTO computable functions and let TGOTO depict the
class of all total GOTO computable functions.

Theorem 3.7. Each GOTO computable function is partial recursive, and each total GOTO computable
function is recursive.

Proof. If f is GOTO computable, there is a GOTO program such that f = ‖P‖k,1 = β1 ◦ RP ◦ αk.
But the functions β1 and αk are primitive recursive and the function RP is partial recursive. Thus the
composition is partial recursive. In particular, if f is total, then RP is also total and so f is recursive.
⊓⊔

Example 3.8. The GOTO program P+ for the addition of two natural numbers in Example 3.3 gives
rise to the following configurations if x2 > 0:

(0, x1, x2) 0 if x2 = 0 3 1
(1, x1, x2) 1 x1 ← x1 + 1 2
(2, x1 + 1, x2) 2 x2 ← x2 − 1 0
(0, x1 + 1, x2 − 1) 3 if x2 = 0 3 1
. . .

Clearly, this program provides the addition function ‖P+‖2,1(x1, x2) = x1 + x2. ♦

Finally, it will be shown that URM programs can be translated into GOTO programs.

Theorem 3.9. Each URM computable function is GOTO computable.

Proof. Claim that each URM program P can be compiled into a GOTO program φ(P) such that both
compute the same function, i.e., ‖P‖k,1 = ‖φ(P)‖k,1 for all k ∈ N. Indeed, let P be an URM program.
We may assume that it does not make use of the register R0. Write P as a string P = τ0τ1 . . . τq, where
each substring τi is of the form ”Aσ”, ”Sσ”, ”(” or ”)σ” with σ ∈ Z \ {0}. Note that each opening
parenthesis ”(” corresponds to a unique closing parenthesis ”)σ”.

Replace each string τi by a GOTO instruction si as follows:

• If τi = ”Aσ”, put
si = (i, xσ ← xσ + 1, i+ 1),

• if τi = ”Sσ”, set
si = (i, xσ ← xσ − 1, i+ 1),

• if τi = ”(” and τj = ”)σ” is the corresponding closing parenthesis, define

si = (i, if xσ = 0, j + 1, i+ 1),

3.4 GOTO-2 Programs 35

• if τi = ”)σ” and τj = ”(” is the associated opening parenthesis, put

si = (i, if xσ = 0, i+ 1, j + 1).

In this way, a GOTO program φ(P) = s0; s1; . . . ; sq is established that has the required property
‖P‖k,1 = ‖φ(P)‖k,1, as claimed. ⊓⊔

Example 3.10. The URM program P = (A1;S2)2 provides the addition of two natural numbers. Its
translation into a GOTO program first requires to identify the substrings:

τ0 = ”(”, τ1 = ”A1”, τ2 = ”S2”, τ3 = ”)2”.

These substrings give rise to the following GOTO program:

0 if x2 = 0 4 1
1 x1 ← x1 + 1 2
2 x2 ← x2 − 1 3
3 if x2 = 0 4 1

♦

3.4 GOTO-2 Programs

GOTO-2 programs are GOTO programs with two variables x1 and x2. Claim that each URM program
can be simulated by an appropriate GOTO-2 program. For this, the set of states Ω of an URM is
encoded by using the sequence of primes (p0, p1, p2, . . .). To this end, define the function G : Ω → N0

that assigns to each state ω = (ω0, ω1, ω2, . . .) ∈ Ω the natural number

G(ω) = pω0
0 pω1

1 pω2
2 (3.22)

Clearly, this function is primitive recursive. The inverse functions Gi : N0 → N0, i ∈ N0, are given by

Gi(x) = (x)i, (3.23)

where (x)i is the exponent of pi in the prime factorization of x if x > 0. Define Gi(0) = 0 for all i ∈ N0.
The functions Gi are primitive recursive by Proposition 2.35.

Claim that for each URM program P , there is a GOTO-2 program P with the same semantics; that
is, for all states ω, ω′ ∈ Ω,

|P |(ω) = ω′ ⇐⇒ |P |(0, G(ω)) = (0, G(ω′)). (3.24)

To see this, first consider the GOTO-2 programsM(k), D(k), and T (k), k ∈ N, which have the following
properties:

|M(k)|(0, x) = (0, k · x), (3.25)

|D(k)|(0, k · x) = (0, x), (3.26)

|T (k)|(0, x) =
{
(1, x) if k divides x,
(0, x) otherwise.

(3.27)

36 3 Partial Recursive Functions

For instance, the GOTO-2 program M(k) can be implemented by two consecutive loops: Initially,
put x1 = 0 and x2 = x. In the first loop, x2 is decremented, while in each decremention step, x1 is
incremented k times. After this loop, x1 = k · x and x2 = 0. In the second loop, x2 is incremented and
x1 is decremented such that upon termination, x1 = 0 and x2 = k · x. This can be implemented by the
following GOTO-2 program in standard form:

0 if x2 = 0 k + 2 1
1 x2 ← x2 − 1 2
2 x1 ← x1 + 1 3

· · ·
k + 1 x1 ← x1 + 1 0
k + 2 if x1 = 0 k + 5 k + 3
k + 3 x2 ← x2 + 1 k + 4
k + 4 x1 ← x1 − 1 k + 2

The other two kinds of programs can be analogously realized as GOTO-2 programs in standard form.
The assignment P 7→ P will be established by making use of the inductive definition of URM

programs. For this, flow diagrams will be employed to simplify the notation. First, the program Ai can
be realized by the flow chart

��

M(pi)

��

Second, the program Si is given by the flow diagram

��

T (pi)

��
if x1 = 0

no //

yes

��

x1 ← x1 − 1

��

��

D(pi)oo

Third, the program P1;P2 can be decipted by the flow chart

3.4 GOTO-2 Programs 37

��

P 1

��

P 2

��

Finally, the program (P)i can be represented by the flow diagram

��

T (pi)

��

Poo

if x1 = 0
no //

yes

��

x1 ← x1 − 1

OO

All these GOTO-2 programs can be realized as standard GOTO programs.

Example 3.11. The URM program P+ = (A1;S2)2 gets compiled into the following (standard)
GOTO-2 program in pseudo code:

0 : T (p2)
1 : if x1 = 0 goto 9
2 : x1 ← x1 − 1
3 : M(p1)
4 : T (p2)
5 : if x1 = 0 goto 8
6 : x1 ← x1 − 1
7 : D(p2)
8 : goto 0
9 :

♦
By using the inductive definition of URM programs, the assignment P 7→ P is well-defined. The

computation of a function f : Nk0 → Nm0 by a GOTO-2 program requires to load the registers with the
initial values and to identify the result. For this, define the primitive recursive functions

α̂k : Nk0 → N2
0 : (x1, . . . , xk) 7→ (0, G(0, x1, . . . , xk, 0, . . .)) (3.28)

38 3 Partial Recursive Functions

and

β̂m : N2
0 → Nm0 : (a, b) 7→ (G1(b), . . . , Gm(b)). (3.29)

Proposition 3.12. Each URM program P is (semantically) equivalent to the associated GOTO-2 pro-
gram P in the sense that for all k,m ∈ N0:

‖P‖k,m = β̂m ◦RP ◦ α̂k. (3.30)

3.5 Church’s Thesis

Our attempts made so far to formalize the notion of computability are equivalent in the following sense.

Theorem 3.13. The class of partial recursive functions equals the class of URM computable functions
and the class of GOTO computable functions. In particular, the class of recursive functions is equal to
the class of total URM computable functions and to the class of total GOTO computable functions.

Proof. By Theorem 3.9, each URM computable function is GOTO computable and by Theorem 3.7,
each GOTO computable function is partial recursive. On the other hand, by Theorem 3.2, each partial
recursive function is URM computable. A similar statement holds for total functions. ⊓⊔

This result has led scientists to believe that the concept of computability is accurately characterized
by the class of partial recursive functions. The Church thesis proposed by Alonso Church (1903-1995)
in the 1930s states that the class of computable partial functions (in the intuitive sense) coincides with
the class of partial recursive functions, equivalently, with the class of URM computable functions and
the class of GOTO computable functions. Church’s thesis characterizes the nature of computation and
cannot be formally proved. Nevertheless, it has reached universal acceptance. Church’s thesis is often
practically used in the sense that if a (partial) function is intuitively computable, it is assumed to
be partial recursive. In this way, the thesis may lead to more intuitive and less rigorous proofs (see
Theorem 5.10).

4

A Recursive Function

The primitive recursive functions are total and computable. The Ackermann function, named after
the German mathematician Wilhelm Ackermann (1986-1962), was the earliest-discovered example of a
total computable function that is not primitive recursive.

4.1 Small Ackermann Functions

The small Ackermann functions form an interesting class of primitive recursive functions. They can
be used to define the ”big” Ackermann function and provide upper bounds on the runtime of LOOP
programs. The latter property allows to show that the hierarchy of LOOP-computable functions is
strict.

Define a sequence (Bn) of monadic total functions inductively as follows:

B0 : x 7→

1 if x = 0,
2 if x = 1,
x+ 2 otherwise,

(4.1)

and

Bn+1 : x 7→ Bxn(1), x, n ∈ N0, (4.2)

where Bxn denotes the x-fold power of the function Bn. For each n ≥ 0, the function Bn is called the
n-th small Ackermann function.

Proposition 4.1. The small Ackermann functions have the following properties for all x, n, p ∈ N0:

B1(x) =

{
1 if x = 0,
2x otherwise,

(4.3)

B2(x) = 2x, (4.4)

B3(x) =

{
1 if x = 0,
2B3(x−1) otherwise,

(4.5)

x < Bn(x), (4.6)

40 4 A Recursive Function

Bn(x) < Bn(x+ 1), (4.7)

Bp0(x) ≤ Bp1(x), (4.8)

Bn(x) ≤ Bn+1(x), (4.9)

Bpn(x) < Bpn(x+ 1), (4.10)

Bpn(x) < Bp+1
n (x), (4.11)

Bpn(x) ≤ Bpn+1(x), (4.12)

2p+1x ≤ Bp+1
1 (x), (4.13)

2Bpn(x) ≤ Bp+1
n (x), n ≥ 1. (4.14)

Proposition 4.2. The small Ackermann functions Bn, n ∈ N0, are primitive recursive.

Proof. The function B0 is defined by cases:

B0(x) =

(ν ◦ c(1)0)(x) if x = 0,

(ν ◦ ν ◦ c(1)0)(x) if |x −̇ 1| = 0,

(ν ◦ ν ◦ π(1)
1)(x) otherwise.

(4.15)

By Eq. (4.3), the function B1 follows the primitive recursive scheme

B1(0) = 1, (4.16)

B1(x+ 1) = B1(x) · sgn(x) + 2, x ∈ N0. (4.17)

Finally, if n ≥ 2, Bn is given by the primitive recursive scheme

Bn(0) = 1, (4.18)

Bn(x+ 1) = Bn−1(Bn(x)), x ∈ N0. (4.19)

By induction, the small Ackermann functions are primitive recursive. ⊓⊔

The n+ 1th small Ackermann function grows faster than any power of the nth Ackermann function in
the following sense.

Proposition 4.3. For all number n and p, there is a number x0 such that for all numbers x ≥ x0,

Bpn(x) < Bn+1(x). (4.20)

Proof. Let n = 0. For each x ≥ 2, Bp0(x) = x+2p. On the other hand, for each x ≥ 1, B1(x) = 2x. Put
x0 = 2p+ 1. Then for each x ≥ x0,

Bp0(x) = x+ 2p ≤ 2x = B1(x).

Let n > 0. First, let p = 0. Then for each x ≥ 0,

B0
n(x) = x < Bn(x) ≤ Bn+1(x)

by (4.6) and (4.9). Second, let p > 0 and assume that Bpn(x) < Bn+1(x) holds for all x ≥ x′0. Put
x0 = x′0 + 5. Then

4.1 Small Ackermann Functions 41

Bp+1
n (x) < Bp+1

n (2 · (x −̇ 2)), x ≥ 5, by (4.10),

= Bp+1
n (B1(x −̇ 2))

≤ Bp+1
n (Bn(x −̇ 2)), by (4.12),

= Bp+2
n (x −̇ 2)

= B2
n(B

p
n(x −̇ 2))

< B2
n(Bn+1(x −̇ 2)), by induction, x ≥ x′0 + 2,

= B2
n(B

x −̇ 2
n (1))

= Bxn(1)

= Bn+1(x), x ≥ 2.

⊓⊔

Proposition 4.4. For each n ≥ 1, the n-th small Ackermann function Bn is LOOP-n computable.

Proof. First, define the LOOP-1 program

P1 = C̄(1; 2); C̄(1; 3);Z1;A1; [Z1]3; [A1;A1]2. (4.21)

For each input x, the program evaluates as follows:

0 1 2 3 4 . . . registers
0 x 0 0 0 . . . init
0 x x 0 0 . . .
0 x x x 0 . . .
0 0 x x 0 . . .
0 1 x x 0 . . .
0 1 0 0 0 . . . x = 0 end
0 2x 0 0 0 . . . x 6= 0 end

By (4.3), the program satisfies ‖P1‖1,1 = B1.
Suppose there is a normal LOOP-n program Pn that computes Bn; that is, ‖Pn‖1,1 = Bn, for n ≥ 1.

Put m = n(Pn) + 1 and consider the LOOP-n+ 1 program

Pn+1 = [Am]1;A1; [Pn]m. (4.22)

Note that the register Rm is unused in the program Pn. The program Pn+1 computes Bxn(1) as follows:

0 1 2 3 4 . . . m . . . registers
0 x 0 0 0 . . . 0 . . . init
0 0 0 0 0 . . . x . . .
0 1 0 0 0 . . . x . . .
0 Bxn(1) 0 0 0 . . . 0 . . . end

But Bn+1(x) = Bxn(1) and so ‖Pn+1‖1,1 = Bn+1. ⊓⊔

42 4 A Recursive Function

4.2 Runtime of LOOP Programs

The LOOP programs will be extended in a way that they do not only perform their task but simul-
taneously compute their runtime. This will finally allow us to show that Ackermann’s function is not
primitive recursive.

For this, assume that the LOOP programs do not make use the register R0. This is not an essential
restriction since the register R0 can always be replaced by an unused register via a transformation of
variables. The register R0 will then be employed to calculate the runtime of a LOOP program. To this
end, the objective is to assign to each LOOP program P another LOOP program γ(P) that performs
the computation of P and simultaneously calculates the runtime of P . The runtime of a program
is essentially determined by the number of elementary operations (incrementation, zero setting, and
copying):

γ(Aσ) = Aσ;A0, σ 6= 0, (4.23)

γ(Zσ) = Zσ;A0, σ 6= 0, (4.24)

γ(C̄(σ; τ)) = C̄(σ; τ);A0, σ 6= τ, σ 6= 0 6= τ, (4.25)

γ(P ;Q) = γ(P); γ(Q), (4.26)

γ([P]σ) = [γ(P)]σ, σ 6= 0. (4.27)

This definition immediately leads to the following

Proposition 4.5. Let n ≥ 0.

• If P is a LOOP-n program, γ(P) is also LOOP-n program.
• Let P be a LOOP-n program and let |γ(P)| ◦αk(x) = (ωn), where x ∈ Nk0 . Then ω1 = ‖P‖k,1(x) is

the result of the computation of P and ω0 is the number of elementary operations made during the
computation of P .

The runtime program of a LOOP program P is the LOOP program P ′ given by

P ′ = γ(P); C̄(0; 1). (4.28)

The corresponding function ‖P ′‖k,1 with k ≥ n(P) is called the runtime function of P .

Proposition 4.6. If P is a LOOP-n program, P ′ is a LOOP-n program with the property

‖P ′‖k,1 = γ(P), k ≥ n(P). (4.29)

Example 4.7. The program S1 is given by the LOOP-1 program

P = C̄(1; 3); [C̄(2; 1);A2]3. (4.30)

The corresponding runtime program is

P ′ = C̄(1; 3);A0; [C̄(2; 1);A0;A2;A0]3; C̄(0; 1). (4.31)

♦

4.2 Runtime of LOOP Programs 43

Next, consider a function λ : PLOOP → N0 that assigns to each LOOP program a measure of
complexity. Here elementary operations have unit complexity, while loops contribute with a higher
complexity:

λ(Aσ) = 1, σ ∈ N0, (4.32)

λ(Zσ) = 1, σ ∈ N0, (4.33)

λ(C̄(σ; τ)) = 1, σ 6= τ, σ, τ ∈ N0, (4.34)

λ(P ;Q) = λ(P) + λ(Q), P,Q ∈ PLOOP, (4.35)

λ([P]σ) = λ(P) + 2, P ∈ PLOOP, σ ∈ N0. (4.36)

Note that for each LOOP program P , the complexity measure λ(P) is the number of LOOP-0 subpro-
grams of P plus twice the number of iterations of P .

Example 4.8. The LOOP program P = C̄(1; 3); [C̄(2; 1);A2]3 has the complexity

λ(P) = λ(C̄(1; 3)) + λ([C̄(2; 1);A2]3)

= 1 + λ(C̄(2; 1);A2) + 2

= 3 + λ(C̄(2; 1)) + λ(A2)

= 5.

♦
A k-ary total function f : Nk0 → N0 is said to be bounded by a monadic total function g : N0 → N0

if for each x ∈ Nk0 ,

f(x) ≤ g(max(x)), (4.37)

where max(x) = max{x1, . . . , xk} if x = (x1, . . . , xk) ∈ Nk0 .

Proposition 4.9. For each LOOP-n program P and each input x ∈ Nk0 with k ≥ n(P),

max(‖P‖k,k(x)) ≤ Bλ(P)
n (max(x)). (4.38)

Proof. First, let P be a LOOP-0 program; that is, P = P1;P2; . . . ;Pm, where each block Pi is an
elementary operation, 1 ≤ i ≤ m. Then

max(‖P‖k,k(x)) ≤ m+max(x) = λ(P) + max(x) ≤ Bλ(P)
0 (max(x)). (4.39)

Suppose the assertion holds for LOOP-n programs. Let P be a LOOP program of the form P = Q;R,
where Q and R are LOOP-n+ 1 programs. Then for k ≥ max{n(Q), n(R)},

max(‖Q;R‖k,k(x)) = max(‖R‖k,k(‖Q‖k,k(x)))
≤ B

λ(R)
n+1 (max(‖Q‖k,k(x))), by induction,

≤ B
λ(R)
n+1 (B

λ(Q)
n+1 (max(x))), by induction, (4.40)

= B
λ(R)+λ(Q)
n+1 (max(x))

= B
λ(P)
n+1 (max(x)).

44 4 A Recursive Function

Finally, let P be a LOOP program of the form P = [Q]σ, where Q is a LOOP-n program. Then for
k ≥ max{n(Q), σ},

max(‖[Q]σ‖k,k(x)) = max(‖Q;Sσ‖xσ

k,k(x))

≤ max(‖Q‖xσ

k,k(x)) (4.41)

≤ Bxσ·λ(Q)
n (max(x)), by induction,

≤ B
λ(Q)+2
n+1 (max(x)), see (4.42)

= B
λ(P)
n+1 (max(x)).

The last inequality follows from the assertion

Bx·an (y) ≤ Ba+2
n+1(y), x ≤ y, (4.42)

which can be proved by using the properties of the small Ackermann functions in Proposition 4.1 as
follows:

Bx·an (y) ≤ By·an (y)

≤ By·an (Bn+1(y))

= By·an (Byn(1))

= By(a+1)
n (1)

= Bn+1(y(a+ 1))

≤ Bn+1(y · 2a+1)

= Bn+1(B
a+1
1 (y))

≤ Bn+1(B
a+1
n+1(y))

= Ba+2
n+1(y)).

⊓⊔

Corollary 4.10. The runtime function of a LOOP-n program is bounded by the n-th small Ackermann
function.

Proof. Let P be a LOOP-n program. By Proposition 4.6, the runtime program γ(P) is also LOOP-n.
Thus by Proposition 4.9, there is an integer m such that for all inputs x ∈ Nk0 with k ≥ n(P),

max(‖γ(P)‖k,k(x)) ≤ Bmn (max(x)). (4.43)

But by definition, the runtime program P ′ of P satisfies ‖P ′‖k,1(x) ≤ max(‖γ(P)‖k,k(x)) for all x ∈ N0

and so the result follows. ⊓⊔

For sake of completeness, the converse assertion also holds which is attributed to Meyer and Ritchie
(1967).

Theorem 4.11. (Meyer-Ritchie) Let n ≥ 2. A LOOP computable function f is LOOP-n computable
if and only if there is a LOOP-n program P such that ‖P‖ = f and the associated runtime program P ′

is bounded by a LOOP-n computable function.

4.3 Ackermann’s Function 45

Finally, the runtime functions provide a way to prove that the LOOP hierarchy is proper.

Proposition 4.12. For each n ∈ N0, the class of LOOP-n functions is a proper subclass of the class
of LOOP-n+ 1 functions.

Proof. By Proposition 4.4, the n-th small Ackermann function Bn is LOOP-n computable. Assume
that Bn+1 is LOOP-n computable. Then by Proposition 4.9, there is an integer m ≥ 0 such that
Bn+1(x) ≤ Bmn (x) for all x ∈ N0. This contradicts Proposition 4.3, which shows that Bn+1 grows faster
than any power of Bn. ⊓⊔

4.3 Ackermann’s Function

As already remarked earlier, there are total computable functions that are not primitive recursive. The
most prominent example is Ackermann’s function A : N2

0 → N0 defined by the equations

A(0, y) = y + 1, (4.44)

A(x+ 1, 0) = A(x, 1), (4.45)

A(x+ 1, y + 1) = A(x,A(x+ 1, y)). (4.46)

Proposition 4.13. Ackermann’s function is a total function on N2
0.

Proof. The term A(0, y) is certainly defined for all y. Suppose that A(x, y) is defined for all y. Then
A(x+1, 0) = A(x, 1) is defined. Assume that A(x+1, y) is defined. Then by induction, A(x+1, y+1) =
A(x,A(x+1, y)) is defined. It follows that A(x+1, y) is defined for all y. In turn, it follows that A(x, y)
is defined for all x and y. ⊓⊔

Proposition 4.14. The monadic functions Ax : N0 → N0 : y 7→ A(x, y), x ∈ N0, have the form

• A0(y) = y + 1 = ν(y + 3)− 3,
• A1(y) = y + 2 = f+(2, y + 3)− 3,
• A2(y) = 2y + 3 = f·(2, y + 3)− 3,
• A3(y) = 2y+3 − 3 = fexp(2, y + 3)− 3,

• A4(y) = 22
...2 − 3 = fitexp(2, y + 3) − 3, where there are y + 3 instances of the symbol 2 on the

right-hand side.

Proof.

• By definition, A0(y) = A(0, y) = y + 1.
• First, A1(0) = A(0, 1) = 2. Suppose A1(y) = y + 2. Then A1(y + 1) = A(1, y + 1) = A(0, A(1, y)) =

A(1, y) + 1 = (y + 1) + 2.
• Plainly, A2(0) = A(1, 1) = 3. Suppose A2(y) = 2y+3. Then A2(y+1) = A(2, y+1) = A(1, A(2, y)) =

A(2, y) + 2 = (2y + 3) + 2 = 2(y + 1) + 3.
• Clearly, A3(0) = A(2, 1) = 5. Suppose A3(y) = 2y+3 − 3. Then A3(y + 1) = A(3, y + 1) =

A(2, A(3, y)) = 2 · (2y+3 − 3) + 3 = 2(y+1)+3 − 3.

46 4 A Recursive Function

• First, A4(0) = A(3, 1) = 22
2 − 3. Suppose that

A4(y) = 22
...2 − 3,

where there are y + 3 instances of the symbol 2 on the right-hand side. Then

A4(y + 1) = A(3, A(4, y)) = 2A(4,y)+3 − 3 = 22
...2 − 3,

where there are (y + 1) + 3 instances of the symbol 2 on the far right of these equations.

⊓⊔

The small Ackermann functions can be combined into a dyadic function A : N2
0 → N0 given by

A(x, y) = Bx(y), x, y ∈ N0. (4.47)

This function is a variant of the original Ackermann function.

Proposition 4.15. The function A in (4.47) is given by the equations

A(0, y) = B0(y), (4.48)

A(x+ 1, 0) = 1, (4.49)

A(x+ 1, y + 1) = A(x,A(x+ 1, y)). (4.50)

Proof. We have A(0, y) = B0(y), A(x+1, 0) = Bx+1(0) = B0
x(1) = 1, and A(x+1, y+1) = Bx+1(y+1) =

By+1
x (1) = Bx(B

y
x(1)) = Bx(Bx+1(y)) = Bx(A(x+ 1, y) = A(x,A(x+ 1, y)). ⊓⊔

The Ackermann function grows very quickly. This can be seen by expanding a simple expression using
the defining rule in (4.47).

Example 4.16.

A(2, 3) = A(1, A(2, 2))

= A(1, A(1, A(2, 1)))

= A(1, A(1, A(1, A(2, 0))))

= A(1, A(1, A(1, 1)))

= A(1, A(1, A(0, A(1, 0))))

= A(1, A(1, A(0, 1)))

= A(1, A(1, 2))

= A(1, A(0, A(1, 1)))

= A(1, A(0, A(0, A(1, 0))))

= A(1, A(0, A(0, 1)))

= A(1, A(0, 2))

= A(1, 4)

= A(0, A(1, 3))

4.3 Ackermann’s Function 47

= A(0, A(0, A(1, 2)))

= A(0, A(0, A(0, A(1, 1))))

= A(0, A(0, A(0, A(0, A(1, 0)))))

= A(0, A(0, A(0, A(0, 1))))

= A(0, A(0, A(0, 2)))

= A(0, A(0, 4))

= A(0, 6)

= 8.

♦

Proposition 4.17. Ackermann’s function is not primitive recursive.

Proof. Assume that the function A is primitive recursive. Then A is LOOP-n computable for some
n ≥ 0. Thus by Proposition 4.9, there is an integer p ≥ 0 such that for all x, y ∈ N0,

A(x, y) ≤ Bpn(max{x, y}). (4.51)

But by Proposition 4.3, there is a number y0 ≥ 0 such that for all numbers y ≥ y0,

Bpn(y) < Bn+1(y). (4.52)

It can be assumed that y0 ≥ n+ 1. Taking x = n+ 1 and y ≥ y0 leads to a contradiction:

A(n+ 1, y) ≤ Bpn(max{n+ 1, y}) = Bpn(y) < Bn+1(y) = A(n+ 1, y). (4.53)

⊓⊔

The lattice of function classes (under inclusion) considered in this chapter is the following:

T

P = FLOOP

. . .

FLOOP(1)

FLOOP(0)

All inclusions are strict.

48 4 A Recursive Function

5

Acceptable Programming Systems

Acceptable programming systems form the basis for the development of the theory of computation. This
chapter provides several basic theoretical results of computability, such as the existence of universal
functions, the parametrization theorem known as smn theorem, and Kleene’s normal form theorem.
These results make use of the Gödel numbering of partial recursive functions.

5.1 Gödel Numbering of GOTO Programs

In mathematical logic, Gödel numbering refers to a function that assigns to each well-formed formula of
some formal language a unique natural number called its Gödel number. This concept was introduced
by the logician Kurt Gödel (1906-1978) for the proof of incompleteness of elementary arithmetic (1931).
Here Gödel numbering is used to provide an encoding of GOTO programs.

For this, let N∗
0 denote the union of all cartesian products Nk0 , k ≥ 0. In particular, N0

0 = {ǫ},
where ǫ is the empty string. The Cantor pairing function J2 : N2

0 → N0 is used to define an encoding
J : N∗

0 → N0 as follows:

J(ǫ) = 0, (5.1)

J(x) = J2(0, x) + 1, x ∈ N0, (5.2)

J(x, y) = J2(J(x), y) + 1, x ∈ N∗
0, y ∈ N0. (5.3)

Note that the second equation is a special case of the third one, since for each y ∈ N0,

J(ǫ, y) = J2(J(ǫ), y) + 1 = J2(0, y) + 1 = J(y). (5.4)

Example 5.1. We have

J(1, 3) = J2(J(1), 3) + 1 = J2(J2(0, 1) + 1, 3) + 1 = J2(2, 3) + 1 = 17 + 1 = 18.

♦

Proposition 5.2. The encoding function J is a primitive recursive bijection.

50 5 Acceptable Programming Systems

Proof. First, claim that J is primitive recursive. Indeed, the function J is primitive recursive for strings
of length ≤ 1, since J2 is primitive recursive. Assume that J is primitive recursive for strings of length
≤ k, where k ≥ 1. For strings of length k+1, the function J can be written as a composition of primitive
recursive functions:

J = ν ◦ J2(J(π(k+1)
1 , . . . , π

(k+1)
k), π

(k+1)
k+1). (5.5)

By induction hypothesis, J is primitive recursive for strings of length ≤ k+1 and thus the claim follows.
Second, let A be the set of all numbers n ∈ N0 such that there is a unique string x ∈ N∗

0 with
J(x) = n. Claim that A = N0. Indeed, 0 lies in A since J(ǫ) = 0 and J(x) > 0 for all x 6= ǫ Let n > 0
and assume that the assertion holds for all numbers m < n. Define

u = K2(n− 1) and v = L2(n− 1). (5.6)

Then J2(u, v) = J2(K2(n − 1), L2(n − 1)) = n − 1. By construction, K2(z) ≤ z and L2(z) ≤ z for all
z ∈ N0. Thus u = K2(n − 1) < n and hence u ∈ A. By induction, there is exactly one string x ∈ Nk0
such that J(x) = u. Then J(x, v) = J2(J(x), v)) + 1 = J2(u, v) + 1 = n.

Assume that J(x, v) = n = J(y, w) for some x,y ∈ N∗
0 and v, w ∈ N0. Then by definition,

J2(J(x), v) = J2(J(y), w). But the Cantor pairing function is bijective and thus J(x) = J(y) and
v = w. Since J(x) < n it follows by induction that x = y. Thus n ∈ A and so by the induction axiom,
A = N0. It follows that J is bijective. ⊓⊔

The encoding function J gives rise to two functions K,L : N0 → N0 defined as

K(n) = K2(n −̇ 1) and L(n) = L2(n −̇ 1), n ∈ N0. (5.7)

Note that the following marginal conditions hold:

K(1) = K(0) = L(0) = L(1) = 0. (5.8)

Proposition 5.3. The functions K and L are primitive recursive, and for each number n ≥ 1, there
are unique x ∈ N∗

0 and y ∈ N0 with J(x, y) = n such that

J(x) = K(n) and y = L(n). (5.9)

Proof. By Proposition 2.27, the functions K2 and L2 are primitive recursive and so K and L are
primitive recursive, too.

Let n ≥ 1. By Proposition 5.2, there are unique x ∈ N∗
0 and y ∈ N0 such that J(x, y) = n. Thus

J2(J(x), y) = n−1. But J2(K2(n−1), L2(n−1)) = n−1 and the Cantor pairing function J2 is bijective.
Thus K2(n− 1) = J(x) and L2(n− 1) = y, and so K(n) = J(x) and L(n) = y. ⊓⊔
The length of a string can be determined by its encoding.

Proposition 5.4. If x is a string in N∗
0 of length k, then k is the smallest number such that

Kk(J(x)) = 0.

Proof. In view of the empty string, K0(J(ǫ)) = J(ǫ) = 0. Let x = x1 . . . xk be a non-empty string.
Then J(x) = n ≥ 1. By Proposition 5.3, J(x1 . . . xk−1) = K(n). By induction, J(x1 . . . xi) = Kk−i(n)
for each 0 ≤ i ≤ k. In particular, for each 0 ≤ i < k, Kk−i(n) is non-zero, since x1 . . . xi is not the
empty string. Moreover, Kk(n) = J(ǫ) = 0. The result follows. ⊓⊔

5.1 Gödel Numbering of GOTO Programs 51

Note that the converse of the above assertion is also valid. As an example, take a number x ∈ N0, a string
of length one. Then by (5.4), J(ǫ, x) = J(x) = J2(0, x) + 1 = n ≥ 1 and so by (5.9), K(n) = J(ǫ) = 0
and L(n) = x.

In view of Proposition 5.4, define the mapping f : N∗
0 × N0 → N0 as

f : (x, k) 7→ Kk(J(x)). (5.10)

Minimalization of this function yield the length function lg : N∗
0 → N0 given by

lg(x) = µf(x) =

{
k if k smallest with f(x, k) = 0 and f(x, i) > 0 for 0 ≤ i ≤ k,
↑ otherwise. (5.11)

Proposition 5.5. The length function lg is primitive recursive.

Proof. The length function is partial recursive, since it is obtained by minimalization of a primitive
recursive function. But each string x has finite length and so the repeated application of K to J(x)
yields 0 after a finite number of steps. Hence, the length function is total. Moreover, the length of a
string x = x1 . . . xn is not larger than its decimal value which is less than 10n and so the minimalization
is actually bounded. Hence, the length function is primitive recursive. ⊓⊔
Proposition 5.6. Let n ≥ 1. The inverse value J−1(n) is given by

(Kk−1(n), L ◦Kk−2(n), . . . , L ◦K(n), L(n)), (5.12)

where k is the smallest number such that Kk(n) = 0.

Proof. Let x ∈ N0. Then J(x) = n ≥ 1 and as shown above, K(n) = 0 and L(n) = x. Hence,
J−1(n) = L(n) = x.

Let x ∈ Nk0 , k ≥ 1, and y ∈ N0. Then J(x, y) = n ≥ 1. By Proposition 5.3, K(n) = J(x) and
L(n) = y. Since K(n) < n, induction shows that x = J−1(K(n)) is given by

(Kk(n), L ◦Kk−1(n), . . . , L ◦K(n)).

Hence, (x, y) has the form

(Kk(n), L ◦Kk−1(n), . . . , L ◦K(n), L(n))

as required. ⊓⊔
The primitive recursive bijection J allows to encode the standard GOTO programs, SGOTO pro-

grams for short. These are GOTO programs P = s0; s1; . . . ; sq that have a canonical labelling in the
sense that λ(sl) = l, 0 ≤ l ≤ q. It is clear that for each GOTO program there is a (semantically) equiv-
alent SGOTO program. SGOTO programs are used in the following since they will permit a slightly
simpler Gödel numbering than arbitrary GOTO programs. In the following, let PSGOTO denote the
class of SGOTO programs.

Take an SGOTO program P = s0; s1; . . . ; sq. For each 0 ≤ l ≤ q, put

I(sl) =

3 · J(i− 1, k) if sl = (l, xi ← xi + 1, k),
3 · J(i− 1, k) + 1 if sl = (l, xi ← xi − 1, k),
3 · J(i− 1, k,m) + 2 if sl = (l, if xi = 0, k,m).

(5.13)

52 5 Acceptable Programming Systems

The number I(sl) is called the Gödel number of the instruction sl, 0 ≤ l ≤ q. The function I is primitive
recursive, since it is defined by cases and the functions involved are primitive recursive.

Note that the function I allows to identify the lth instruction of an SGOTO program given its
Gödel number e. Indeed, the residue of e modulo 3 provides the type of instruction and the quotient of
e modulo 3 gives the encoding of the parameters of the instruction. More concretely, write

e = 3n+ t, (5.14)

where n = ÷(e, 3) and t = mod(e, 3). Then the instruction can be decoded by using Proposition 5.6 as
follows:

sl =

(l, xK(n)+1 ← xK(n)+1 + 1, L(n)) if t = 0,
(l, xK(n)+1 ← xK(n)+1 − 1, L(n)) if t = 1,
(l, if xK2(n)+1 = 0, L(K(n)), L(n)) if t = 2.

(5.15)

The Gödel number of an SGOTO program P = s0; s1; . . . ; sq is defined as

Γ (P) = J(I(s0), I(s1), . . . , I(sq)). (5.16)

Proposition 5.7. The function Γ : PSGOTO → N0 is bijective and primitive recursive.

Proof. The mapping Γ is bijective since J is bijective and the instructions encoded by I are uniquely
determined as shown above. Moreover, the function Γ is a composition of primitive recursive functions
and thus is primitive recursive. ⊓⊔

The SGOTO program P with Gödel number e is denoted by Pe. This Gödel numbering provides a
list of all SGOTO programs

P0, P1, P2, (5.17)

Conversely, each number e can be assigned the SGOTO program P such that Γ (P) = e. For this, the
length of the string encoded by e is first determined by the minimalization given in Proposition 5.4.
Suppose the string has length n + 1, where n ≥ 0. Then the task is to find x ∈ Nn0 and y ∈ N0 such
that J(x, y) = n. But by (5.9), K(n) = J(x) and L(n) = y and so the preimage of n under J can be
repeatedly determined. Finally, when the string is given, the preimage (instruction) of each number is
established as described in (5.15).

For each number e and each number n ≥ 0, denote the n-ary partial recursive function computing
the SGOTO program with Gödel number e by

φ(n)e = ‖Pe‖n,1. (5.18)

If f is an n-ary partial recursive function, each number e ∈ N0 with the property f = φ
(n)
e is called

an index of f . The index of a partial recursive function f provides the Gödel number of an SGOTO
program computing it. The list of all SGOTO program in (5.17) yiels a list of all n-ary partial recursive
functions:

φ
(n)
0 , φ

(n)
1 , φ

(n)
2 , (5.19)

Note that the list contains repetitions, since each n-ary partial recursive function has infinitely many
indices.

5.2 Parametrization 53

5.2 Parametrization

The parametrization theorem, also called smn theorem, is a cornerstone of computability theory. It was
first proved by Kleene (1943) and refers to computable functions in which some arguments are considered
as parameters. The smn theorem does not only tell that the resulting function is computable but also
shows how to compute an index for it. A special case is considered first. The basic form applies to
dyadic computable functions.

Proposition 5.8. For each dyadic partial recursive function f , there is a monadic primitive recursive
function g such that

f(x, ·) = φ
(1)
g(x), x ∈ N0. (5.20)

Proof. Let Pe = s0; s1; . . . ; sq be an SGOTO program computing the function f . For each number
x ∈ N0, consider the following SGOTO program Qx:

0 if x1 = 0 3 1
1 x2 ← x2 + 1 2
2 x1 ← x1 − 1 0
3 x1 ← x1 + 1 4
4 x1 ← x1 + 1 5

...
2 + x x1 ← x1 + 1 3 + x

s′0
s′1
...
s′q

where P ′
e = s0; s1; . . . ; sq is the SGOTO program that is derived from P by replacing each label j with

j+3+x, 0 ≤ j ≤ q. The milestones of the computation of Qx are given by the following configurations:

0 y 0 0 0 . . . init
0 0 y 0 0 . . . step 3
0 x y 0 0 . . . step 3 + x
0 f(x, y) end

It follows that ‖Qx‖1,1(y) = f(x, y) for all x, y ∈ N0.
Take the function g : N0 → N0 defined by g(x) = Γ (Qx), i.e., g(x) is the Gödel number of the

program Qx. This function is primitive recursive by Proposition 5.7. But by definition, φ
(1)
g(x) = ‖Qx‖1,1

and thus the result follows. ⊓⊔
This assertion is a special case of the socalled smn theorem. The unimaginative name originates from
Kleene’s notation sm,n for the primitive recursive function playing the key role.

Theorem 5.9. (smn Theorem) For each pair of numbers m,n ≥ 1, there is an m+ 1-ary primitive
recursive function sm,n such that

φ(m+n)
e (x, ·) = φ

(n)
sm,n(e,x)

, x ∈ Nm0 , e ∈ N0. (5.21)

54 5 Acceptable Programming Systems

Proof. The idea is quite similar to that in the proof of the previous proposition. Take an SGOTO

program Pe = s0; s1; . . . ; sq calculating φ
(m+n)
e . For each input x ∈ Nm0 , extend the program Pe to an

SGOTO program Qe,x providing the following intermediate configurations:

0 y 0 0 0 . . . init
0 0 y 0 0 . . . reload y

0 x y 0 0 . . . generate parameter x

0 φ
(m+n)
e (x,y) end

It follows that ‖Qe,x‖n,1(y) = φ
(m+n)
e (x,y) for all x ∈ Nm0 and y ∈ Nn0 .

Consider the function sm,n : Nm+1
0 → N0 defined by sm,n(e,x) = Γ (Qe,x); that is, sm,n(e,x) is

the Gödel number of the program Qe,x. This function is primitive recursive by Proposition 5.7. But by

definition, φ
(n)
sm,n(e,x)

= ‖Qe,x‖n,1 and thus the result follows. ⊓⊔

5.3 Universal Functions

Another basic result of computability theory is the existence of a computable function called universal
function that is capable of computing any other computable function. Let n ≥ 1 be a number. A

universal function for n-ary partial recursive functions is an n+1-ary function ψ
(n)
univ : Nn+1

0 → N0 such
that

ψ
(n)
univ(e, ·) = φ(n)e , e ∈ N0. (5.22)

Theorem 5.10. For each arity n ≥ 1, the universal function ψ
(n)
univ exists and is partial recursive.

Proof. The existence will be proved in several steps. First, define the one-step function E : N2
0 → N2

0

that describes the process to move from one configuration of the URM to the next one during the
computation of an SGOTO program. For this, consider the following diagram:

e, ξ
E

//

G−1

��

e, ξ′

Pe, ω sl
// Pe, ω′

G

OO

The one-step function E takes a pair (e, ξ) and recovers from the second component ξ the corresponding
configuration of the URM given by ω = G−1(ξ). Then the next instruction given by the SGOTO
program P = Pe with Gödel number e is executed providing a new configuration ω′ of the URM which
is then encoded as ξ′ = G(ω′). In this way, the function E is defined as

E(e, ξ) = (e, ξ′). (5.23)

This function can be described in a higher programming language as illustrated by algorithm 5.1. More
specifically, the algorithm first represents the given number ξ as a product of prime powers

ξ = pl0p
ω1
1 pω2

2 pω3
3 · · · = 2l3ω15ω27ω3 · · · (5.24)

5.3 Universal Functions 55

Algorithm 5.1 One-step function.

Require: (e, ξ)
Ensure: (e, ξ′)

if ξ = 0 then

ξ′ ← 0
else

l← G0(ξ) {label, ξ = 2l . . .}
q ← lg(e) −̇ 1
if l > q then

ξ′ ← ξ

else

(σ0, σ1, . . . , σq)← J−1(e)
ξ0 ← ξ ÷ 2l {ξ = 2lξ0}
n← σl ÷ 3 {σl = 3n+ t, 0 ≤ t ≤ 2 }
if t = 0 then

i← K(n) + 1 {sl = (l, xi ← xi + 1, k)}
k ← L(n)
ξ′ ← ξ0 · 2

k · pi
end if

if t = 1 then

i← K(n) + 1 {sl = (l, xi ← xi − 1, k)}
k ← L(n)
if Gi(ξ) = 0 then

ξ′ ← ξ0 · 2
k

else

ξ′ ← (ξ0 · 2
k) ÷ pi

end if

if t = 2 then

i← K2(n) + 1 {sl = (l, if xi = 0, k,m)}
k ← L(K(n))
m← L(n)
if Gi(ξ) = 0 then

ξ′ ← ξ0 · 2
k

else

ξ′ ← ξ0 · 2
m

end if

end if

end if

end if

end if

return (e, ξ′)

56 5 Acceptable Programming Systems

and extracts the associated configuration of the URM given by the state

ω = (0, ω1, ω2, ω3, . . .) (5.25)

and the label l = G0(ξ) of the instruction to be executed. Second, it provides the preimage of the
program’s Gödel number e using the length function and Proposition 5.6:

J−1(e) = (σ0, σ1, . . . , σq). (5.26)

Third, the algorithm decodes the number σl into the associated instruction sl using (5.14) and (5.15),
executes it and then provides the encoding of the next configuration:

• If sl = (l, xi ← xi + 1, k), the next state of the URM is

ω′ = (0, ω1, . . . , ωi−1, ωi + 1, , ωi+1, . . .) (5.27)

and the next label is k. So the next configuration is encoded as

ξ′ = ξ · 2k−l · pi. (5.28)

• If sl = (l, xi ← xi − 1, k), the next state of the URM is

ω′ = (0, ω1, . . . , ωi−1, ωi −̇ 1, , ωi+1, . . .) (5.29)

and the next label is k. Thus the next configuration is given as

ξ′ =

{
ξ · 2k−l if ωi = 0,
ξ · 2k−l · p−1

i otherwise.
(5.30)

• If sl = (l, if xi = 0, k,m), the state of the URM remains unchanged and the next label is either k
or l depending on whether the value xi is zero or not. The next configuration is

ξ′ =

{
ξ · 2k−l if ωi = 0,
ξ · 2m−l otherwise.

(5.31)

The algorithm shows that the function E is primitive recursive.
Second, the execution of the SGOTO program Pe can be described by the iterated one-step function

E′ : N3
0 → N0 defined as

E′(e, ξ, t) = (π
(2)
2 ◦ Et)(e, ξ). (5.32)

This function is primitive recursive, since it is given by applying a projection to an iteration of a
primitive recursive function.

Third, the computation of the SGOTO program Pe terminates if it reaches a non-existing label.
That is, if lg(e) denotes the length of the SGOTO program Pe, termination is reached if and only if

G0(ξ) > lg(e) −̇ 1. (5.33)

The runtime function Z : N2
0 → N0 assigns to the program Pe and the state ω = G−1(ξ) the number

of steps required to reach termination,

5.4 Kleene’s Normal Form 57

Z(e, ξ) = µt(csg(G0(E
′(e, ξ, t)) −̇ (lg(e) −̇ 1))), (5.34)

where the minimalization µ = µt is subject to the variable t counting the number of steps. This function
is only partial recursive since the minimalization is unbounded, i.e., the program Pe may not terminate.

Fourth, the residual step function is defined by the partial function R : N2
0 → N0 which assigns to

each SGOTO program Pe and each initial state ω = G−1(ξ) the result of computation given by the
content of the first register:

R(e, ξ) = G1(E
′(e, ξ, Z(e, ξ))). (5.35)

This function is partial recursive, since the function Z is partial recursive.
Summing up, the desired partial recursive function is given as

ψ
(n)
univ(e,x) = φ(n)e (x) = ‖Pe‖n,1(x) = R(e,G(0, x1, . . . , xn, 0, 0, . . .)), (5.36)

where e is a Gödel number and x = (x1, . . . , xn) ∈ Nn0 an input. ⊓⊔

The existence of universal functions implies the existence of universal URM programs, and vice versa.
An acceptable programming system is considered to be an enumeration of n-ary partial recursive

functions ψ0, ψ1, ψ2, . . . for which both the smn theorem and the theorem for universal function hold. For
instance, the enumeration of URM (or GOTO) computable functions forms an acceptable programming
system.

5.4 Kleene’s Normal Form

Kleene (1943) introduced the T predicate that tells whether an SGOTO program will halt when run
with a particular input and if so, a corresponding function provides the result of computation. Similar
to the smn theorem, the original notation used by Kleene has become standard terminology.

First note that the definition of the universal function allows to define the Kleene set Sn ⊆ Nn+3
0 ,

n ≥ 1, given as

(e,x, z, t) ∈ Sn :⇐⇒ csg[G0(E
′(e, ξx, t)) −̇ (lg(e) −̇ 1)] = 0 ∧ G1(E

′(e, ξx, t)) = z, (5.37)

where ξx = (0, x1, . . . , xn, 0, 0, . . .) is the initial state comprising the input x = (x1, . . . , xn) ∈ Nn0 .
Clearly, (e,x, z, t) ∈ Sn if and only if the program φe with input x terminates after t steps with the
result z. The set Sn is primitive recursive since the number of steps is explicitly given.

Let A ⊆ Nn+1
0 be a relation. First, the unbounded minimalization of A is the function µA : Nn0 → N0

defined as

µA(x) = µ(csg ◦ χA)(x) =
{
y if (x, y) ∈ A and (x, i) 6∈ A for all 0 ≤ i < y,
↑ otherwise. (5.38)

We write

µA(x) = µy[(x, y) ∈ A], x ∈ Nn0 . (5.39)

Second, the unbounded existential quantification of A is the relation EA ⊆ Nn0 given by

58 5 Acceptable Programming Systems

EA = {x | ∃y ∈ N0 : (x, y) ∈ A}. (5.40)

Put

∃y[(x, y) ∈ A] :⇐⇒ x ∈ EA, x ∈ Nn0 . (5.41)

Third, the unbounded universal quantification of A is the relation UA ⊆ Nn0 defined by

UA = {x | ∀y ∈ N0 : (x, y) ∈ A}. (5.42)

Set

∀y[(x, y) ∈ A] :⇐⇒ x ∈ EA, x ∈ Nn0 . (5.43)

Theorem 5.11. (Kleene) For each number n ≥ 1, there is a primitive recursive set Tn ⊆ Nn+2
0 called

Kleene predicate such that for all x ∈ Nn0 :

x ∈ domφ(n)e ⇐⇒ (e,x) ∈ ∃y[(e,x, y) ∈ Tn]. (5.44)

If x ∈ domφ
(n)
e , there is a primitive recursive function U : N0 → N0 such that

φ(n)e (x) = U(µy[(e,x, y) ∈ Tn]) (5.45)

=

{
U(y) if (e,x, y) ∈ Tn and (e,x, i) 6∈ Tn for 0 ≤ i < y,
↑ otherwise.

Proof. Define the relation Tn ⊆ Nn+2
0 as follows:

(e,x, y) ∈ Tn :⇐⇒ (e,x,K2(y), L2(y)) ∈ Sn. (5.46)

That is, the component y encodes both, the result of computation z = K2(y) and the number of steps
t = L2(y). Since the relation Sn and the functions K2 and L2 are primitive recursive, it follows that
the relation Tn is primitive recursive, too.

Let x ∈ Nn0 lie in the domain of φ
(n)
e and let φ

(n)
e (x) = z. Then there is a number t ≥ 0 such that

(e,x, z, t) ∈ Sn. Putting y = J2(z, t) yields (e,x, y) ∈ Tn; that is, (e,x) ∈ ∃y[(e,x, y) ∈ Tn].
Conversely, let (e,x) ∈ ∃y[(e,x, y) ∈ Tn] and let y ≥ 0 be a number such that (e,x, y) ∈ Tn. Then

by definition, (e,x,K2(y), L2(y)) ∈ Sn and hence x belongs to the domain of φ
(n)
e .

Finally, let x ∈ domφ
(n)
e . Then there is a number y ≥ 0 such that (e,x, y) ∈ Tn. Define the function

U : N0 → N0 by putting U(y) = K2(y). The function U is primitive recursive and by definition of Sn
yields the result of computation. ⊓⊔

Kleene’s normal form implies that any partial recursive function can be defined by using a single
instance of the µ (minimalization) operator applied to a primitive recursive function. In the context of
programming, this means that any program can be written with a single while loop.

6

Turing Machine

The Turing machine was described by the British mathematician Alan Turing (1912-1954) in 1937 as
a thought experiment representing a computing machine. Despite its simplicity, a Turing machine is a
universal device of computation.

6.1 The Machinery

A Turing machine consists of an infinite tape and an associated read/write head connected to a control
mechanism. The tape is divided into denumerably many cells, each of which containing a symbol from
a tape alphabet. This alphabet contains the special symbol ”b” signifying that a cell is blank or empty.
The cells are scanned, one at a time, by the read/write head which is able to move in both directions.
At any given time instant, the machine will be in one of a finite number of states. The behaviour of
the read/write head and the change of the machine’s state are governed by the present state of the
machine and by the symbol in the cell under scan.

The machine operates on words over an input alphabet. The symbols forming a word are written, in
order, in consecutive cells of the tape from left to right. When the machine enters a state, the read/write
head scans the symbol in the controlled cell, and writes in this cell a symbol from the tape alphabet;
it then moves one cell to the left, or one cell to the right, or not at all; after that, the machine enters a
new state.

A Turing machine is a quintuple M = (Σ,Q, δ, q0, qF) consisting of

• a finite alphabet Σ, called tape alphabet, containing a distinguished blank symbol b; the subset
ΣI = Σ \ {b} is called input alphabet.

• a finite set Q of states,
• a partial function δ : Q×Σ → Q×Σ × {L,R,Λ}, the state transition function,
• a start state q0 ∈ Q, and
• a halt state qF ∈ Q such that δ(qF , σ) is undefined for all σ in Σ.

The symbols L, R, and Λ are interpreted as left move, right move, and no move, respectively. The tape
cells can be numbered by the set of integers Z, and the tape contents can be considered as a mapping
τ : Z → Σ which assigns blank to almost every cell; that is, only a finite portion of the tape contains
symbols from the input alphabet.

60 6 Turing Machine

A configuration of the Turing machine M consists of the contents of the tape which may be given
by the finite portion of the tape containing symbols from the input alphabet, the cell controlled by the
read/write head, and the state of the machine. Thus a configuration can be pictured as follows:

— ai1 ai2 . . . aij . . . ail —
↑
q

where q ∈ Q is the current state, the cell controlled by the read/write head is marked by the arrow,
and all cells to the left of ai1 and to the right of ail contain the blank symbol. This configuration will
also be written as a triple (ai1 . . . aij−1

, q, aij . . . ail).
The equation δ(q, a) = (q′, a′, D) means that if the machine is in state q ∈ Q and reads the symbol

a ∈ Σ from the cell controlled by the read/write head, it writes the symbol a′ ∈ Σ into this cell, moves
to the left if D = L, or moves to the right if D = R, or moves not at all if D = Λ, and enters the
state q′ ∈ Q. Given a configuration (uc, q, av) where a, c ∈ Σ, u, v ∈ Σ∗, and q ∈ Q, q 6= qF . The
configuration reached in one step from it is given as follows:

(u′, q′, v′) =

(uca′, q′, v) if δ(q, a) = (q′, a′, R),
(u, q′, ca′v) if δ(q, a) = (q′, a′, L),
(uc, q′, a′v) if δ(q, a) = (q′, a′, Λ).

(6.1)

In the following, the notation (u, q, v) ⊢ (u′, q′, v′) will signify that (u′, q′, v′) is reached from (u, q, v) in
one step.

A computation of the Turing machine M is started by writing, in order, the symbols of the input
word x = x1x2 . . . xn ∈ Σ∗

I in consecutive cells of the tape from left to right, while all other cells contain
the blank symbol. Moreover, the machine is initially in the state q0 and the read/right head controls
the leftmost cell of the input; that is, the initial configuration can be illustrated as follows:

— x1 x2 . . . xn —
↑
q0

Then the machine eventually performs a sequence of transitions as given by the state transition function.
If the machine reaches the state qF , it stops and the output of the computation is given by the collection
of symbols on the tape.

Example 6.1. Consider the Turing machine M = (Σ,Q, δ, q0, qF), where Σ = {0, 1, b}, Q =
{q0, q1, qF }, and δ is given by the following state diagram:

start // ?>=<89:;q0

1/0,R
,,

0/1,R

22

b/b,Λ
 B

BB
BB

BB
BB

?>=<89:;q1

1/0,R

��

0/1,R

TT

b/b,Λ
~~||
||
||
||
|

GFED@ABC?>=<89:;qF

In such a diagram, the encircled nodes represent the states and an arrow joining a state q to a state q′

and bearing the label a/a′, D indicates the transition δ(q, a) = (q′, a′, D). For instance, the computation
of the machine on the input 0011 is the following:

6.2 Post-Turing Machine 61

(b, q0, 0011) ⊢ (1, q1, 011) ⊢ (11, q1, 11) ⊢ (110, q1, 0) ⊢ (1100, q1, b) ⊢ (1100, qF , b).

In general, the machine calculates the bitwise complement of the given binary word. ♦

6.2 Post-Turing Machine

A Turing machine specified by state diagrams is rather hard to follow. Therefore, a program formulation
of the Turing machine known as Post-Turing machine invented by Martin Davis (born 1928) will
subsequently be considered.

A Post-Turing machine uses a binary alphabet Σ = {1, b}, an infinite tape of binary storage
locations, and a primitive programming language with instructions for bidirectional movement among
the storage locations, alteration of cell content one at a time, and conditional jumps. The instructions
are as follows:

• write a, where a ∈ Σ,
• move left,
• move right, and
• if read a then goto A, where a ∈ Σ and A is a label.

A Post-Turing program consists of a finite sequence of labelled instructions which are sequentially
executed starting with the first instruction. Each instruction may have a label that must be unique in
the program. Since there is no specific instruction for termination, the machine will stop when it has
arrived at a state at which the program contains no instruction telling the machine what to do next.

First, several Post-Turing programs will be introduced used as macros later on. The first macro is
move left to next blank:

A : move left

if read 1 then goto A
(6.2)

This program moves the read/write head to next blank on the left. If this program is started in the
configuration

— b 1 1 1 . . . 1 —
↑

it will end in the configuration
— b 1 1 1 . . . 1 —
↑

The macro move right to next blank is similarly defined:

A : move right

if read 1 then goto A
(6.3)

This program moves the read/write head to next blank on the right. If this program begins in the
configuration

— 1 1 1 . . . 1 b —
↑

62 6 Turing Machine

it will stop in the configuration
— 1 1 1 . . . 1 b —

↑
The macro write b1 is defined as

write b
move right

write 1
move right

(6.4)

If this macro begins in the configuration

— ai0 ai1 ai2 ai3 —
↑

it will terminate in the configuration
— ai0 b 1 ai3 —

↑
The macro move block right is given as

write b
move right to next blank

write 1
move right

(6.5)

This program shifts a block of 1’s by one cell to the right such that it merges with the subsequent block
of 1’s to right. If this macro starts in the configuration

— b 1 1 1 . . . 1 b 1 1 1 . . . 1 b —
↑

it will halt in the configuration

— b b 1 1 . . . 1 1 1 1 1 . . . 1 b —
↑

The macro move block left is analogously defined. The unconditional jump goto A stands for the
Post-Turing program

if read b then goto A
if read 1 then goto A

(6.6)

Another useful macro is erase given as

A : if read b then goto B
write b
move left

goto A
B : move left

(6.7)

6.3 Turing Computable Functions 63

This program deletes a block of 1’s from right to left. If it starts in the configuration

— a b 1 1 1 . . . 1 b —
↑

where a is an arbitrary symbol, it will stop in the configuration

— a b b b b . . . b b —
↑

Finally, the repetition of a statement such as

move left

move left

move left

(6.8)

will be abbreviated by denoting the statement and the number of repetitions in parenthesis such as

move left (3) (6.9)

For instance, the routine move block right (2) shifts two consecutive blocks by one cell to the right.
It turns the configuration

— b 1 1 . . . 1 b 1 1 . . . 1 b 1 1 . . . 1 b —
↑

into the configuration
— b b 1 . . . 1 1 b 1 . . . 1 1 1 1 . . . 1 b —

↑

6.3 Turing Computable Functions

The Turing machine has the same computational capabilities as the unrestricted register machine.
To prove this, it will be shown that the URM computable functions are computable by Post-Turing
programs. For this, let f : Nk0 → N0 be an URM computable function. It may be assumed that there
is a GOTO program P that computes the function f and uses the variables x1, . . . , xn, where n ≥ k.
The goal is to provide a Post-Turing program P ′ that simulates the computation of P . The program
P ′ consists of three subroutines:

start: initiate
simulate

clean up

(6.10)

The routine initiate presets the program for the computation of the function f . An input x =
(x1, . . . , xk) ∈ Nk0 of the function f is encoded on the tape in unary format; that is, a natural number
x is represented by a block of x + 1 ones and a sequence of k numbers is described by k blocks such
that consecutive blocks are separated by one blank. Thus the initial tape looks as follows:

64 6 Turing Machine

—

x1+1
︷ ︸︸ ︷

11 . . . 1 b

x2+1
︷ ︸︸ ︷

11 . . . 1 b . . . b

xk+1
︷ ︸︸ ︷

11 . . . 1 —
↑

(6.11)

The idea is that the blocks will correspond to the registers R1, R2, . . . , Rk of the URM. The remaining
registers used during the computation will be initialized by zeros. This will be accomplished by the
routine initiate:

init: move right to next blank (k)
write b1 (n− k)
move left to next blank (n)
move right

(6.12)

If the procedure initiate is started in the configuration (6.11), it will end in the configuration

— b

x1+1
︷ ︸︸ ︷

11 . . . 1 b

x2+1
︷ ︸︸ ︷

11 . . . 1 b . . . b

xk+1
︷ ︸︸ ︷

11 . . . 1 b 1 b 1 b . . . b 1 b 1 b —
↑

(6.13)

The tape can now be interpreted in a way that it contains the numbers x1, . . . , xk followed by n − k
zeros.

The routine simulate is the heart of the simulation program. The idea is to simulate each GOTO
instruction by a corresponding Post-Turing program such that the Post-Turing programs concatenated
in order, constitute the procedure simulate. For this, the simulation should keep track of the registers
R1, R2, . . . , Rn used to carry out the program P . To this end, the tape will always contain n blocks of
ones which will in turn correspond to these registers.

The GOTO instruction (l, xi ← xi + 1, l′) is simulated by the Post-Turing program

Al : move right to next blank (i)
Bl : write 1

move right

if read b then goto Cl
write b
move right to next blank

goto Bl
Cl : move left to next blank (n)

move right

goto Al′

(6.14)

This program enlarges the ith block by an additional 1 and shifts all blocks to the right by one cell to
the right.

The GOTO instruction (l, xi ← xi −̇ 1, l′) is simulated by the program

6.3 Turing Computable Functions 65

Al : move right to next blank (i)
move left (2)
if read 1 then goto Bl
goto Cl

Bl : move left to next blank (i)
move right

move block right (i− 1)
write b
move left to next blank (i− 1)
move right

goto Al′

Cl : move left to next blank (i− 1)
move right

goto Al′

(6.15)

This subroutine shortens the ith block by a single 1 if it contains at least two 1’s which corresponds to
a non-zero number; otherwise, the block is left invariant. Then all blocks to the left are shifted by one
cell to the right.

The GOTO instruction (l, if xi = 0, l′, l′′) is simulated by the program

Al : move right to next blank (i)
move left (2)
if read 1 then goto Bl
goto Cl

lBl : move left to next blank (i)
move right

goto Al′′

Cl : move left to next blank (i− 1)
move right

goto Al′

(6.16)

This program checks if the ith block contains one or more 1’s and jumps accordingly to the label Al′

or Al′′.
Note that when one of these subroutines ends, the read/write head always points to the first cell of

the first block.
Suppose the routine simulate starts with the configuration (6.11) and terminates; this will exactly

be the case when the input x = (x1, . . . , xk) belongs to the domain of the function f . In this case, the
tape will contain in the first block the unary encoding of the result f(x):

— b

f(x)+1
︷ ︸︸ ︷

11 . . . 1 b

y2+1
︷ ︸︸ ︷

11 . . . 1 b . . . b

yn+1
︷ ︸︸ ︷

11 . . . 1 b —
↑

(6.17)

Finally, the subroutine clean up will rectify the tape such that upon termination the tape will only
contain f(x) ones. This will be achieved by the code

66 6 Turing Machine

clean: move right to next blank (n)
move left

erase (n− 1)
write b
move left to next blank

move right

(6.18)

This subroutine produces the tape:

— b

f(x)
︷ ︸︸ ︷

11 . . . 1 b —
↑

(6.19)

This kind of simulation captures the notion of Post-Turing computability. A function f : Nk0 →
N0 is Post-Turing computable if there is a Post-Turing program P such that for each input x =
(x1, . . . , xk) in the domain of f , the program P started with the initial tape (6.11) will terminate with
the final tape (6.19); otherwise, the program P will not stop. Summing up, the following result has
been established.

Theorem 6.2. Each GOTO computable function is Post-Turing computable.

6.4 Gödel Numbering of Post-Turing Programs

This section provides a Gödel numbering of Post-Turing programs similar to that of SGOTO programs.
This numbering will be used to show that Post-Turing computable functions are partial recursive.

To this end, let Σs+1 = {b = a0, a1, . . . , as} be the tape alphabet containing the blank symbol b,
and let P = σ0;σ1; . . . ;σq be a Post-Turing program given by a sequence of instructions σj , 0 ≤ j ≤ q.
A configuration of the Post-Turing program P consists of the contents of the tape, the position of
the read/write head, and the instruction σj to be performed. Such a configuration can be pictured as
follows:

— ai1 ai2 . . . aiv . . . ait —
↑
σj

(6.20)

where all cells to the left of ai1 and to the right of ait contain the blank symbol.
A Gödel numbering of such a configuration can be considered as a triple (u, v, j) consisting of

• the Gödel numbering u = J(i1, i2, . . . , it) of the contents of the tape,
• the position v of the read/write head, with 1 ≤ v ≤ t = µk(Kk(u) = 0), and
• the number j of the next instruction σj .

First, define a one-step function E : N3
0 → N3

0 that describes the process of moving from one
configuration to the next one during the computation of program P . For this, let z = (u, v, j) be a
configuration of the program given as in (6.20). The configuration z′ = (u′, v′, j′) is reached in one step
from z, written z ⊢P z′, if one of the following holds:

6.4 Gödel Numbering of Post-Turing Programs 67

• If σj is write ai,

(u′, v′, j′) = (J(i1, . . . , iv−1, i, iv+1, . . . , it), v, j + 1). (6.21)

• If σj is move left,

(u′, v′, j′) =

{
(u, v − 1, j + 1) if v > 1,
(J(0, i1, . . . , it), v, j + 1) otherwise.

(6.22)

• If σj is move right,

(u′, v′, j′) =

{
(u, v + 1, j + 1) if v < µk(Kk(u) = 0),
(J(i1, . . . , it, 0), v + 1, j + 1) otherwise.

(6.23)

• If σj is if read ai then goto A, where the label A is given as an instruction number,

(u′, v′, j′) =

{
(u, v,A) if iv[= L(Kt−v(u)] = i,
(u, v, j + 1) otherwise.

(6.24)

The function E : z 7→ z′ is defined by cases and primitive recursive operations. It follows that E is
primitive recursive.

Second, the execution of the GOTO program P is given by a sequence z0, z1, z2, . . . of configurations
such that zi ⊢P zi+1 for each i ≥ 0. During this process, a configuration zt may eventually be reached
such that the label of the involved instruction does not belong to the set of instruction numbers
L(P) = {0, 1, . . . , q}. In this case, the program P terminates. Such an event may eventually not happen.
In this way, the runtime function of P is a partial function ZP : N3

0 → N0 given by

ZP : z 7→
{

min{t ∈ N0 | (π(3)
2 ◦ EtP)(z) 6∈ L(P)} if {. . .} 6= ∅,

↑ otherwise.
(6.25)

The runtime function may not be primitive recursive as it corresponds to an unbounded search process.
Claim that the runtime function ZP is partial recursive. Indeed, the one-step function EP is primitive
recursive and thus its iteration is primitive recursive:

E′
P : N4

0 → N3
0 : (z, t) 7→ EtP (z). (6.26)

But the set L(P) is finite and so the characteristic function χL(P) is primitive recursive. Therefore, the
following function is also primitive recursive:

E′′
P : N4

0 → N0 : (z, t) 7→ (χL(P) ◦ π(3)
2 ◦ E′

P)(z, t). (6.27)

This function has the property that

E′′
P (z, t) =

{
1 if EtP (z) = (u, v, j) and j ∈ L(P),
0 otherwise.

(6.28)

By definition, ZP = µE′′
P and thus the claim follows.

The residual step function of the GOTO program P is given by the partial function RP : N3
0 → N3

0

that maps an initial configuration to the final configuration of the computation, if any:

68 6 Turing Machine

RP (z) =

{
E′
P (z, ZP (z)) if z ∈ dom(ZP),
↑ otherwise.

(6.29)

This function is also partial recursive, since for each z ∈ N3
0, RP (z) = E′

P (z, (µE
′′
P)(z)).

Define the total functions

αk : Nk0 → N3
0 : (x1, . . . , xk) 7→ (J(x1, . . . , xk), 1, 0) (6.30)

and

ω1 : N3
0 → N0 : (u, v, j) 7→ J−1(u). (6.31)

Both functions are primitive recursive; αk and ω1 provide the initial configuration and the result of
the computation, respectively. For each arity k ∈ N0, the Post-Turing program P provides the partial
recursive function

‖P‖k,1 = ω1 ◦RP ◦ αk. (6.32)

It follows that each Post-Turing computable function is partial recursive. Hence, the Theorems 3.13
and 6.2 yield the following.

Theorem 6.3. The class of Post-Turing computable functions equals the class of partial recursive func-
tions.

7

Undecidability

In computability theory, undecidable problems refer to decision problems which are yes-or-no questions
on an input set. An undecidable problem does not allow to construct a general algorithm that always
leads to a correct yes-or-no answer. Prominent examples are the halting problem, the word problems
in formal language theory and group theory, and Hilbert’s tenth problem.

7.1 Undecidable Sets

A set of natural numbers is decidable, computable or recursive if there is an algorithm which terminates
after a finite amount of time and correctly decides whether or not a given number belongs to the set.
More formally, a set A in Nk0 is called decidable if its characteristic function χA is recursive. An algorithm
for the computation of χA is called a decision procedure for A. A set A which is not decidable is called
undecidable.

Example 7.1.

• Every finite set A of natural numbers is computable, since

χA(x) = sgn ◦
∑

a∈A

χ=(a, x), x ∈ N0. (7.1)

In particular, the empty set is computable.
• The entire set of natural numbers is computable, since N0 = ∅ (see Proposition 7.2).
• The set of prime numbers is computable (see Proposition 2.35).

♦

Proposition 7.2.

• If A is a decidable set, the complement of A is decidable.
• If A and B are decidable sets, the sets A ∪B, A ∩B, and A \B are decidable.

70 7 Undecidability

Proof. We have

χA = csg ◦ χA, (7.2)

χA∪B = sgn ◦ (χA + χB), (7.3)

χA∩B = χA · χB , (7.4)

χA\B = χA · χB . (7.5)

⊓⊔

There are two general methods to prove that a set is undecidable. One method is diagonalization
similar to Georg Cantor’s (1845-1918) famous diagonalization proof showing that the set of rational
numbers is denumerable. Another method is reduction which can be used if there is an undecidable set
at hand.

Here is a prototypical undecidable set. Note the proof of undecidability requires diagonalization
since there is no another undecidable set available at the moment.

Proposition 7.3. The set K = {x ∈ N0 | x ∈ domφx} is undecidable.

Proof. Assume the setK would be decidable; i.e., the function χK would be recursive. Then the function
f : N0 → N0 given by

f(x) =

{
0 if χK(x) = 0,
↑ if χK(x) = 1,

(7.6)

is partial recursive. To see this, take the function g : N2
0 → N0 defined by g(x, y) = χK(x). The function

g is recursive and has the property that f = µg. Thus f is partial recursive and so has an index e, i.e.,
f = φe. Then e ∈ domφe is equivalent to f(e) = 0, which in turn is equivalent to e 6∈ K, which means
that e 6∈ domφe contradicting the hypothesis. ⊓⊔

Note that in opposition to the function f used in the proof, the function h : N0 → N0 defined by

h(x) =

{
0 if χK(x) = 1,
↑ if χK(x) = 0,

(7.7)

is partial recursive. To see this, observe that for each x ∈ N0,

h(x) = 0 · φx(x) = 0 · ψ(1)
univ(x, x). (7.8)

Moreover, the function h′ : N0 → N0 given by

h′(x) =

{
x if χK(x) = 1,
↑ if χK(x) = 0,

(7.9)

is partial recursive. Indeed, for each x ∈ N0,

h′(x) = x · sgn(φx(x) + 1) = x · sgn(φ(1)univ(x, x) + 1). (7.10)

7.1 Undecidable Sets 71

It is interesting to note that the domain and range of the function h′ are undecidable sets, since

domh′ = ranh′ = K. (7.11)

Now for any other undecidable set reduction can be applied using the set K. More specifically, a
subset A of Nk0 is said to be reducible to a subset B of Nl0 if there is a recursive function f : Nk0 → Nl0,
called reduction function, such that

x ∈ A ⇐⇒ f(x) ∈ B, x ∈ Nk0 . (7.12)

This assertion is equivalent to

χA(x) = χB(f(x)), x ∈ Nk0 . (7.13)

This means that if B is decidable, A is also decidable; or by contraposition, if A is undecidable, B is
also undecidable.

The halting problem is one of the famous undecidabilty results. It states that given a program and
an input to the program, decide whether the program finishes or continues to run forever when run
with that input. Alan Turing proved in 1936 that a general algorithm to solve the halting problem for
all possible program-input pairs cannot exist. By Church’s thesis, the halting problem is undecidable
not only for Turing machines but for any formalism capturing the notion of computability.

Proposition 7.4. The set H = {(x, y) ∈ N2
0 | y ∈ domφx} is undecidable.

Proof. The set K can be reduced to the set H by the function f : N0 → N2
0 given by x 7→ (x, x). Indeed,

χK(x) = χH(x, x) = χH(f(x)) for any value x ∈ N0. But the set K is undecidable and so is H. ⊓⊔

The next undecidability result makes use of the smn theorem.

Proposition 7.5. The set C = {x ∈ N0 | φx = c
(1)
0 } is undecidable.

Proof. Take the function f : N2
0 → N0 given by

f(x, y) =

{
0 if χK(x) = 1,
↑ if χK(x) = 0.

(7.14)

This function is partial recursive, since it can be written as f = h ◦ π(2)
1 , where h is the function given

in (7.7). By the smn theorem, there is a monadic recursive function g such that f(x, y) = φg(x)(y) for
all x, y ∈ N0. Consider two cases:

• If x ∈ K, then f(x, y) = 0 for all y ∈ N0 and so φg(x)(y) = c
(1)
0 (y) for all y ∈ N0. Hence, g(x) ∈ C.

• If x 6∈ K, then f(x, y) is undefined for all y ∈ N0 and thus φg(x)(y) is undefined for all y ∈ N0.
Hence, g(x) 6∈ C.

It follows that the recursive function g provides a reduction of the set K to the set C. But K is
undecidable and so C is also undecidable. ⊓⊔

Proposition 7.6. The set E = {(x, y) ∈ N2
0 | φx = φy} is undecidable.

72 7 Undecidability

Proof. Let c be an index for the function c
(1)
0 ; i.e., φc = c

(1)
0 . Define the function f : N0 → N2

0 given
by f(x) = (x, c). This function is clearly primitive recursive. Moreover, for each x ∈ N0, x ∈ C is

equivalent to φx = c
(1)
0 which in turn is equivalent to f(x) ∈ E. Thus the recursive function f provides

a reduction of the set C to the set E. Since C is undecidable, it follows that E is undecidable. ⊓⊔

Proposition 7.7. For each number a ∈ N0, the sets Ia = {x ∈ N0 | a ∈ domφx} and Oa = {x ∈ N0 |
a ∈ ranφx} are undecidable.

Proof. Take the function f : N2
0 → N0 defined by

f(x, y) =

{
y if χK(x) = 1,
↑ if χK(x) = 0.

(7.15)

This function is partial recursive, since it can be written as

f(x, y) = y · sgn(φx(x) + 1) = y · sgn(ψ(1)
univ(x, x) + 1). (7.16)

By the smn theorem, there is a monadic recursive function g such that

f(x, y) = φg(x)(y), x, y ∈ N0. (7.17)

Consider two cases:

• If x ∈ K, then f(x, y) = y for all y ∈ N0 and thus domφg(x) = N0 = ranφg(x).
• If x 6∈ K, then f(x, y) is undefined for all y ∈ N0 and so domφg(x) = ∅ = ranφg(x).

It follows that for each a ∈ N0, x ∈ K is equivalent to both, g(x) ∈ Ia and g(x) ∈ Oa. Thus the recursive
function g provides a simultaneous reduction of K to both, Ia and Oa. Since the set K is undecidable,
the result follows. ⊓⊔

Proposition 7.8. The set T = {x ∈ N0 | φx is total} is undecidable.

Proof. Assume that T would be decidable. Pick the function f : N0 → N0 defined as

f(x) =

{
φx(x) + 1 if χT (x) = 1,
0 if χT (x) = 0.

(7.18)

This function is recursive, since φx(x) is only evaluated if φx is total. Thus there is an index e ∈ T such
that f = φe. But then φe(e) = f(e) = φe(e) + 1 contradicting the hypothesis. ⊓⊔

The undecidability results established so far have a number of practical implications, which will be
briefly summarized using the formalism of GOTO programs:

• The problem whether an GOTO program halts with a given input is undecidable.

• The problem whether an GOTO program computes a specific function (here c
(1)
0) is undecidable.

• The problem whether two GOTO programs and are semantically equivalent, i.e., exhibit the same
input-output behaviour, is undecidable.

• The problem whether an GOTO program halts for a specific input is undecidable.
• The problem whether an GOTO program always halts is undecidable.

7.2 Semidecidable Sets 73

These undecidability results refer to the input-output behaviour or the semantics of GOTO pro-
grams. The following result of Henry Gordon Rice (born 1920) is a milestone in computability theory.
It states that for any non-trivial property of partial recursive functions, there is no general and effective
method to decide whether an algorithm computes a partial recursive function with that property. Here
a property of partial recursive functions is called trivial if it holds for all partial recursive functions or
for none of them.

Theorem 7.9. (Rice, 1953) If A is a proper subclass of monadic partial recursive functions, the cor-
responding index set

prog(A) = {x ∈ N0 | φx ∈ A} (7.19)

is undecidable.

By Example 7.1, if A is a class of monadic partial recursive functions, prog(A) is decidable if and only
if A is either empty or consists of all partial recursive functions.

Proof. By Proposition 7.2, if a set is decidable, its complement is also decidable. Therefore, it may be
assumed that the nowhere defined function f↑ does not belong to A. Take any function f ∈ A and
define the function h : N2

0 → N0 as follows:

h(x, y) =

{
f(y) if χK(x) = 1,
↑ if χK(x) = 0.

(7.20)

This function is partial recursive, since

h(x, y) = f(y) · sgn(φx(x) + 1) = f(y) · sgn(ψ(1)
univ(x, x) + 1). (7.21)

Therefore by the smn theorem, there is a monadic recursive function g such that

h(x, y) = φg(x)(y), x, y ∈ N.0 (7.22)

Consider two cases:

• If x ∈ K, then h(x, y) = f(y) for all y ∈ N0 and thus φg(x) = f . Hence, g(x) ∈ prog(A).
• If x 6∈ K, then h(x, y) is undefined for all y ∈ N0 and so φg(x) = f↑. Hence, by hypothesis,

g(x) 6∈ prog(A).
Therefore, the recursive function g reduces the set K to the set prog(A). Since the set K is undecidable,
the result follows. ⊓⊔

7.2 Semidecidable Sets

A set A of natural numbers is called computably enumerable, semidecidable or provable if there is an
algorithm such that the set of input numbers for which the algorithm halts is exactly the set of numbers
in A. More generally, a subset A of Nk0 is called semidecidable if the function f : Nk0 → N0 defined by

f(x) =

{
1 if x ∈ A,
↑ otherwise, (7.23)

is partial recursive.

74 7 Undecidability

Proposition 7.10. A subset A of Nk0 is semidecidable if and only if the set A is the domain of a k-ary
partial recursive function.

Proof. Let A be semidecidable. Then the corresponding function f given in (7.23) has the property
that dom f = A. Conversely, let A be a subset of Nk0 for which there is a partial computable function

h : Nk0 → N0 with the property that domh = A. Then the function f = ν ◦ c(1)0 ◦ h is also partial
recursive and coincides with function in (7.23). Hence the set A is semidecidable. ⊓⊔

Example 7.11. The prototype set K is semidecidable as it is the domain of the partial recursive
function in (7.7). ♦

A program for the function f given in (7.23) provides a partial decision procedure for A:

Given x ∈ Nk0 . If x ∈ A, the program started with input x will halt giving a positive answer.
Otherwise, the program will not terminate in a finite number of steps.

Proposition 7.12. Each decidable set is semidecidable.

Proof. Let A be a decidable subset of Nk0 . Then the function g : Nk+1
0 → N0 defined by

g(x, y) = (csg ◦ χA)(x) =
{
0 if x ∈ A,
1 otherwise,

(7.24)

is recursive. Thus the function f = µg is partial recursive. It has the property that µg(x) = y if
g(x, y) = 0 and g(x, i) 6= 0 for all 0 ≤ i < y, and µg(x) is undefined otherwise. It follows that
µg(x) = 0 if x ∈ A and µg(x) is undefined otherwise. Hence, A = dom f as required. ⊓⊔

Proposition 7.13. The halting problem is semidecidable.

Proof. Consider the corresponding set H. The universal function ψ
(1)
univ has the property

ψ
(1)
univ(x, y) =

{
φx(y) if y ∈ domφx,
↑ otherwise.

(7.25)

It follows that H = domψ
(1)
univ as required. ⊓⊔

Proposition 7.14. Let A be a subset of Nk0 . If A is reducible to a semidecidable set, then A is semide-
cidable.

Proof. Suppose A is reducible to a semidecidable subset B of Nl0. Then there is a recursive function
f : Nk0 → Nl0 such that x ∈ A if and only if f(x) ∈ B. Moreover, there is a partial recursive function
g : Nl0 → N0 such that B = dom g. Thus the composite function g ◦ f : Nk0 → N0 is partial recursive.
Furthermore, for each x ∈ Nk0 , x ∈ A is equivalent to f(x) ∈ B which in turn is equivalent that g(f(x))
is defined. Hence, A = dom g ◦ f as required. ⊓⊔

The next assertion states that each semidecidable set results from a decidable one by unbounded
existential quantification. That is, a partial decision procedure can be formulated as an unbounded
search to satisfy a decidable relation.

7.2 Semidecidable Sets 75

Proposition 7.15. A set A is semidecidable if and only if there is a decidable set B such that A =
∃y[(x, y) ∈ B].

Proof. Let B be a decidable subset of Nk+1
0 and A = ∃y[(x, y) ∈ B]. Consider the function f : Nk0 → N0

given by

f(x) = µ(csg ◦ χB)(x) =
{
0 if (x, y) ∈ B for some y ∈ N0,
↑ otherwise. (7.26)

This function is partial recursive and has the property that dom f = A.

Conversely, let A be a semidecidable subset of Nk0 . Then there is an index e such that domφ
(k)
e = A.

By Kleene’s normal form theorem, an element x ∈ Nk0 satisfies x ∈ A if and only if x ∈ ∃y[(e,x, y) ∈ Tk],
where the index e is kept fixed. Hence, A = ∃y[(e,x, y) ∈ Tk] as required. ⊓⊔

The next result shows that the class of semidecidable sets is closed under unbounded existential
minimalization.

Proposition 7.16. If B is semidecidable, then A = ∃y[(x, y) ∈ B] is semidecidable.

Proof. Let B be a semidecidable subset of Nk+1
0 . By Proposition 7.15, there is a decidable subset C of

Nk+2
0 such that B = ∃z[(x, y, z) ∈ C]. But the search for a pair (y, z) of numbers with (x, y, z) ∈ C

can be replaced by the search for a number u such that (x,K2(u), L2(u)) ∈ C. It follows that A =
∃u[(x,K2(u), L2(u)) ∈ C]. Thus by Proposition 7.15, the set A is semidecidable. ⊓⊔

It follows that the class of semidecidable sets is closed under existential quantification. This is not true
for the class of decidable sets. To see this, take the Kleene predicate T1 which is primitive recursive
by the Kleene normal form theorem. The prototype set K, which is semidecidable but not decidable,
results from T1 by existential quantification as follows:

K = ∃y[(x, x, y) ∈ T1]. (7.27)

Another useful connection between decidable and semidecidable sets is the following.

Proposition 7.17. A set A is decidable if and only if A and A are semidecidable.

Proof. If A is decidable, then by Proposition 7.2, the set A is also decidable. But each decidable set is
semidecidable and so A and A are semidecidable.

Conversely, if A and A are semidecidable, a decision procedure for A can be established by simul-
taneously applying the partial decision procedures for A and A. One of these procedures will provide a
positive answer in a finite number of steps giving an answer to the decision procedure for A. ⊓⊔

Example 7.18. The complement of the halting problem is given by the set

H = {(x, y) ∈ N2
0 | y 6∈ domφx}. (7.28)

This set is not semidecidable, since the set H is semidecidable but not decidable. ♦

Recall that the graph of a partial function f : Nn0 → N0 is given as

graph(f) = {(x, y) ∈ Nn+1
0 | f(x) = y}. (7.29)

76 7 Undecidability

Proposition 7.19. A function f : Nn0 → N0 is partial recursive if and only if the graph of f is
semidecidable.

Proof. Suppose the function f is partially recursive. Then there is an index e for f , i.e., f = φ
(n)
e .

The Kleene set Sn used to derive Kleene’s normal form shows that f(x) = y is equivalent to (x, y) ∈
∃t[(e,x, y, t) ∈ Sn]. Thus the set graph(f) is obtained form the decidable set Sn with e being fixed by
existential quantification and so is semidecidable.

Conversely, let the set graph(f) be semidecidable. Then there is a decidable set A ⊆ Nn+2
0 such that

graph(f) has the form ∃z[(x, y, z) ∈ A]. To compute the function f , take an argument x ∈ Nn0 and
systematically search for a pair (y, z) ∈ N2

0 such that (x, y, z) ∈ A, say by listing the elements of N2
0 as

in (2.37). If such a pair exists, put f(x) = y. Otherwise, f(x) is undefined. ⊓⊔

7.3 Recursively Enumerable Sets

In this section, we restrict our attention to sets of natural numbers. To this end, the terminology
will be changed a bit. A set A of natural numbers is called recursive if its characteristic function
χA is recursive, and a set A of natural numbers is called recursively enumerable (r.e. for short) if its
characteristic function χA is partial recursive.

The first result provides the relationship between decidable and recursive sets as well as semidecid-
able and recursively enumerable sets.

Proposition 7.20. Let Jk : Nk0 → N0 be a primitive recursive bijection.

• A subset A of Nk0 is decidable if and only if Jk(A) is recursive.
• A subset A of Nk0 is semidecidable if and only if Jk(A) is recursively enumerable.

Proof. Let Jk(A) be recursive. Then for each number x ∈ N0,

χJk(A)(x) =

{
1 if x ∈ Jk(A),
0 otherwise,

=

{
1 if ∃a ∈ Nk0 : Jk(a) = x ∧ χA(a) = 1,
0 otherwise,

=

{
1 if χA ◦ J−1

k (x) = 1,
0 otherwise.

Thus χJk(A) = χA ◦ J−1
k and hence χA is recursive. Conversely, if A is recursive, then χA = χJk(A) ◦ Jk

and so χJk(A) is recursive.

Second, if A is semidecidable given by the domain of a partial recursive function f : Nk0 → N0, the
function g = f ◦J−1

k is partial recursive and has the domain Jk(A). Conversely, if Jk(A) is semidecidable
defined by the domain of a partial recursive function g : N0 → N0, the function f = g ◦ Jk is partial
recursive with domain A. ⊓⊔

Thus it is sufficient to consider subsets of N0 instead of subsets of Nk0 for any k ≥ 1. Next, closure
properties of recursive sets are studied.

Proposition 7.21. If A and B are recursive sets, the sets A, A ∪B, A ∩B, and A \B are recursive.

7.3 Recursively Enumerable Sets 77

Proof. Let the functions χA and χB be recursive. Then the functions χA = csg ◦ χA, χA∪B = sgn ◦
(χA + χB), χA∩B = χA · χB , and χA\B = χA · χB are also recursive. ⊓⊔

The Gödel numbering of GOTO programs yields an enumeration of all monadic partial recursive
functions

φ0, φ1, φ2, . . . (7.30)

By taking the domains of these functions, i.e., De = domφe, this list provides an enumeration of all
recursively enumerable sets

D0, D1, D2, . . . (7.31)

Let A be a recursively enumerable set. Then there is a Gödel number e ∈ N0 such that De = A. The
number e is called an index for A.

Proposition 7.22. For each set A of natural numbers, the following assertions are equivalent:

• A is recursively enumerable.
• A = ∅ or there is a monadic recursive function f with A = ran f .
• There is a k-ary partial recursive function g with A = ran g.

Proof.

• First, let A be a non-empty recursively enumerable set. By the above discussion, the set A has an
index e. Fix an element a ∈ A and use Kleene’s normal form theorem to define the monadic function

f : x 7→
{
K2(x) if (e,K2(x), L2(x)) ∈ T1,
a otherwise.

(7.32)

This function is primitive recursive and since A = domφe it follows that A = ran f as required.
• Second, let A = ∅ or A = ran f for some monadic recursive function f . Define the partial recursive

function g such that g is the nowhere-defined function if A = ∅, and g = f if A 6= ∅. Then A = ran g
as required.

• Third, let g be a k-ary partial recursive function with A = ran g. By Proposition 7.19, the set
B = {(x, y) ∈ Nk+1

0 | g(x) = y} is semidecidable and thus by Proposition 7.16, the set A =
∃x1 . . . ∃xk[(x1, . . . , xk, y) ∈ B] is recursively enumerable. ⊓⊔

This result shows that a non-empty set of natural numbers A is recursively enumerable if and only if
there is a monadic recursive function f that allows to enumerate the elements of A, i.e.,

A = {f(0), f(1), f(2), . . .}. (7.33)

Such a function f is called an enumerator for A. As can be seen from the proof, the enumerators can
be chosen to be primitive recursive.

Proposition 7.23. If A and B are recursively enumerable sets, the sets A ∩ B and A ∪ B are also
recursively enumerable.

78 7 Undecidability

Proof. First, let f and g be monadic partial recursive functions where A = dom f and B = dom g.
Then f · g is partial recursive with the property that dom f · g = A ∩B.

Second, let A and B be non-empty sets, and let f and g be monadic recursive functions where
A = ran f and B = ran g. Define the monadic function h as follows,

h : x 7→
{
f(⌊x/2⌋) if x is even,
g(⌊x/2⌋) otherwise.

(7.34)

Thus h(0) = f(0), h(1) = g(0), h(2) = f(1), h(3) = g(1) and so on. The function h defined by cases is
recursive and satisfies ranh = A ∪B.

⊓⊔

Proposition 7.24. An infinite set A of natural numbers is recursive if and only if the set A has a
strictly monotonous enumerator, i.e., A = ran f with f(0) < f(1) < f(2) <

Proof. Let A be an infinite and recursive set. Define the monadic function f by minimalization and
primitive recursion as follows:

f(0) = µy[y ∈ A], (7.35)

f(n+ 1) = µy[y ∈ A ∧ y > f(n)]. (7.36)

This function is recursive, strictly monotonous and satisfies ran f = A.
Conversely, let f be a strictly monotonous monadic recursive function where A = ran f is infinite.

Then f(n) = y implies y ≥ n and thus

y ∈ A ⇐⇒ ∃n[n ≤ y ∧ f(n) = y]. (7.37)

The relation on the right-hand side is decidable and so A is recursive. ⊓⊔

Corollary 7.25. Each infinite recursively enumerable set contains an infinite recursive subset.

7.4 Theorem of Rice-Shapiro

The theorem of Rice provides a class of sets that are undecidable. Now we present a similar result for
recursively enumerable sets called the theorem of Rice-Shapiro, which was posed by Henry Gordan Rice
and proved by Norman Shapiro (born 1932).

For this, a monadic function g is called an extension of an monadic function f , written f ⊆ g, if
dom f ⊆ dom g and f(x) = g(x) for all x ∈ dom f . The relation of extension is an order relation on the
set of all monadic functions with smallest element given by the nowhere-defined function. The maximal
elements are the monadic recursive functions.

A monadic function f is called finite if its domain is finite. Each finite function f is partial recursive,
since

f(x) =
∑

a∈dom f

csg(|x− a|)f(a), x ∈ N0. (7.38)

7.4 Theorem of Rice-Shapiro 79

Theorem 7.26. (Rice-Shapiro) Let A be a class of monadic partial recursive functions whose corre-
sponding index set prog(A) = {x ∈ N0 | φx ∈ A} is recursively enumerable. Then a monadic partial
recursive function f lies in A if and only if there is a finite function g ∈ A such that g ⊆ f .
Proof. First, let f ∈ A and assume that no finite function g which is extended by f lies in A. Take
the recursively enumerable set K = {x | x ∈ domφx}, let e be an index for K, and let Pe be a GOTO
program that computes φe. Define the function

g : (z, t) 7→
{
↑ if Pe computes φe(z) in ≤ t steps,
f(t) otherwise.

(7.39)

The function g is partial recursive. Thus by the smn theorem, there is a monadic recursive function s
such that

g(z, t) = φs(z)(t), t, z ∈ N0. (7.40)

Hence, φs(z) ⊆ f for each z ∈ N0. Consider two cases:

• If z ∈ K, the program Pe(z) halts after, say t0 steps. Then

φs(z)(t) =

{
↑ if t0 ≤ t,
f(t) otherwise.

(7.41)

Thus φs(z) is finite and hence, by hypothesis, φs(z) does not belong to A.
• If z 6∈ K, the program Pe(z) does not halt and so φs(z) = f which implies that φs(z) ∈ A.
It follows that the function s reduces the non-recursively enumerable set K to the set prog(A) contra-
dicting the assumption that prog(A) is recursively enumerable.

Conversely, let f be a monadic partial recursive function that does not belong to A and let g be a
finite function in A with g ⊆ f . Define the function

h : (z, t) 7→
{
f(t) if t ∈ dom g or z ∈ K,
↑ otherwise.

(7.42)

The function h is partial recursive. Thus by the smn theorem, there is a monadic recursive function s
such that

h(z, t) = φs(z)(t), t, z ∈ N0. (7.43)

Consider two cases:

• If z ∈ K, φs(z) = f and so φs(z) 6∈ A.
• If z 6∈ K, φs(z)(t) = f(t) = g(t) for all t ∈ dom g and φs(z) is undefined elsewhere. Hence, φs(z) ∈ A.
It follows that the function s provides a reduction of the non-recursively enumerable set K to the set
prog(A) contradicting the hypothesis that prog(A) is recursively enumerable. ⊓⊔
Note that in applications the contraposition of the above assertion is used. That is, if the following
condition does not hold,

for each monadic function f : f ∈ A ⇐⇒ g ⊆ f for some finite g ∈ A, (7.44)

then the index set prog(A) will not be recursively enumerable.

80 7 Undecidability

Corollary 7.27. Let prog(A) = {x ∈ N0 | φx ∈ A} be recursively enumerable. Then any extension of
a function in A lies itself in A.

Proof. Let h be an extension of a function f ∈ A. By the theorem of Rice-Shapiro, there is a finite
function g which extends f . But then also h extends g and so it follows by the theorem of Rice-Shapiro
that h lies in A. ⊓⊔

Corollary 7.28. Let prog(A) = {x ∈ N0 | φx ∈ A} be recursively enumerable. If the nowhere-defined
function is in A, all monadic partial recursive functions lie in A.

Proof. Each monadic computable function extends the nowhere-defined function and so by the theorem
of Rice-Shaprio lies in A. ⊓⊔

Note that the theorem of Rice is a consequence of the theorem of Rice-Shapiro. To see this, let
A be a set of monadic partial recursive functions. Suppose the set prog(A) is decidable. Then both,
prog(A) and its complement are recursive enumerable. Thus we may assume that the set A contains
the nowhere-defined function. By the theorem of Rice-Shapiro, it follows that A is not proper.

Example 7.29. The setA = {φx | φx bijective} is not recursively enumerable. Indeed, suppose prog(A)
would be recursive enumerable. Then by the theorem of Rice-Shapiro, the set prog(A) would contain a
finite function. But finite functions are not bijective and so cannot belong to A. A contradiction. ♦

7.5 Diophantine Sets

David Hilbert (1982-1943) presented a list of 23 mathematical problems at the International Mathe-
matical Congress in Paris in 1900. The tenth problem can be stated as follows:

Given a diophantine equation with a finite number of unknowns and with integral coefficients.
Devise a procedure that determines in a finite number of steps whether the equation is solvable
in integers.

In 1970, a result in mathematical logic known as Matiyasevich’s theorem settled the problem negatively.
Let Z[X1, X2, . . . , Xn] denote the commutative polynomial ring in the unknowns X1, X2, . . . , Xn

with integer coefficients. Each polynomial p in Z[X1, X2, . . . , Xn] gives rise to a diophantine equation

p(X1, X2, . . . , Xn) = 0 (7.45)

asking for integer solutions of this equation. By the fundamental theorem of algebra, every non-constant
single-variable polynomial with complex coefficients has at least one complex root, or equivalently, the
field of complex numbers is algebraically closed.

Example 7.30. Linear diophantine equations have the form a1X1+ . . .+anXn = b. If b is the greatest
common divisor of a1, . . . , an (or a multiple of it), the equation has an infinite number of solutions.
This is Bezout’s theorem and the solutions can be found by applying the extended Euclidean algorithm.
On the other hand, if b is not a multiple of the greatest common divisor of a1, . . . , an, the diophantine
equation has no solution. ♦

7.5 Diophantine Sets 81

Let p be a polynomial in Z[X1, . . . , Xn]. The natural variety of p is the zero set of p in Nn0 ,

V (p) = {(x1, . . . , xn) ∈ Nn0 | p(x1, . . . , xn) = 0}. (7.46)

Each polynomial function is defined by composition of addition and multiplication of integers and so
leads the following result. Here we assume that addition and multiplication of integers are computable
functions.

Proposition 7.31. Each natural variety is a decidable set.

A diophantine set results from a natural variety by existential quantification. More specifically, let
p be a polynomial in Z[X1, . . . , Xn, Y1, . . . , Ym]. A diophantine set is an n-ary relation

{(x1, . . . , xn) ∈ Nn0 | p(x1, . . . , xn, y1, . . . , ym) = 0 for some y1, . . . , ym ∈ N0}, (7.47)

which will subsequently be denoted by

∃y1 . . . ∃ym[p(x1, . . . , xn, y1, . . . , ym) = 0]. (7.48)

Proposition 7.15 yields the following assertion.

Proposition 7.32. Each diophantine set is semidecidable.

Example 7.33.

• The set of positive integers is diophantine, since it is given by {x | ∃y[x = y + 1]}.
• The predicates ≤ and < are diophantine, since x ≤ y if and only if ∃z[y = x+ z], and x < y if and

only if ∃z[y = x+ z + 1].
• The predicate a ≡ bmod c is diophantine, since it can be written as ∃x[(a− b)2 = c2x2]. ♦

The converse of the above proposition shown by Yuri Matiyasevich (born 1947) in 1970 is also valid,
but the proof is not constructive.

Theorem 7.34. Each semidecidable set is diophantine.

That is, for each semidecidable set A in Nn0 there is a polynomial p in Z[X1, . . . , Xn, Y1, . . . , Ym] such
that

A = ∃y1 . . . ∃ym[p(x1, . . . , xn, y1, . . . , ym) = 0]. (7.49)

The negative solution of Hilbert’s tenth problem can be proved by using the four-square theorem
due to Joseph-Louis Lagrange (1736-1813). For this, an identity due to Leonhard Euler (1707-1783) is
needed which is proved by multiplying out and checking:

(a2 + b2 + c2 + d2)(t2 + u2 + v2 + w2) = (7.50)

(at+ bu+ cv + dw)2 + (au− bt+ cw − dv)2 + (av − ct− bw + du)2 + (aw − dt+ bv − cu)2.

This equation implies that the set of numbers which are the sum of four squares is closed under
multiplication.

Theorem 7.35. (Lagrange, 1770) Each natural number can be written as a sum of four squares.

82 7 Undecidability

For instance, 3 = 12 + 12 + 12 + 02, 14 = 32 + 22 + 12 + 02, and 39 = 52 + 32 + 22 + 12.

Proof. By the above remark it is enough to show that all primes are the sum of four squares. Since
2 = 12 + 12 + 02 + 02, the result is true for 2.

Let p be an odd prime. First, claim that there is some number m with 0 < m < p such that mp is
a sum of four squares. Indeed, consider the p+ 1 numbers a2 and −1− b2 where 0 ≤ a, b ≤ (p− 1)/2.
Two of these numbers must have the same remainder when divided by p. However, a2 and c2 have the
same remainder when divided by p if and only if p divides a2 − c2; that is, p divides a + c or a − c.
Thus the numbers a2 must all have different remainders. Similarly, the numbers −1− b2 have different
remainders. It follows that there must be a and b such that a2 and −1 − b2 have the same remainder
when divided by p; equivalently, a2 + b2 + 12 + 02 is divisible by p. But a and b are at most (p− 1)/2
and so a2 + b2 + 12 + 02 has the form mp, where 0 < m < p. This proves the claim.

Second, claim that if mp is the sum of four squares with 1 < m < p, there is a number n with
1 ≤ n < m such that np is also the sum of four squares. Indeed, let mp = x21+x

2
2+x

2
3+x

2
4 and suppose

first that m is even. Then either each xi is even, or they are all odd, or exactly two of them are even. In
the last case, it may be assumed that x1 and x2 are even. In all three cases each of x1±x2 and x3±x4
are even. So (m/2)p can be written as ((x1+x2)/2)

2+((x1−x2)/2)2+((x3+x4)/2)
2+((x3−x4)/2)2,

as required.
Next let m be odd. Define numbers yi by xi ≡ yimodm and |yi| < m/2. Then y21 + y22 + y23 + y24 ≡

x21 + x22 + x23 − x24 modm and so y21 + y22 + y23 + y24 = nm for some number n ≥ 0. The case n = 0 is
impossible, since this would make every yi zero and so would make every xi divisible by m. But then
mp would be divisible by m2, which is impossible since p is a prime and 1 < m < p.

Clearly, n < m since each yi is less thanm/2. Note thatm
2np = (x21+x

2
2+x

2
3−x24)(y21+y22+y23+y24).

Use Euler’s identity to write m2np as a sum of four squares. Claim that each integer involved in this
representation is divisibe by m. Indeed, one of the involved squares is (x1y1+x2y2+x3y3+x4y4)

2. But
the sum x1y1+x2y2+x3y3+x4y4 is congruent modm to y21+y

2
2+y

2
3+y

2
4 , since xi ≡ yimodm. However,

y21 + y22 + y23 + y24 ≡ 0modm, as needed. Similarly, the other three integers involved are divisible by m.
Now m2np is the sum of four squares each of which is divisible by m2.p It follows that np itself is the
sum of four squares, as required.

Finally, the process to write a multiple mp of p as a sum of four primes iterates leading to smaller
multiples np of p. This process will end by reaching p. ⊓⊔

Let p be a polynomial in Z[X1, . . . , Xn]. Define the integral polynomial q in the unknowns T1, . . . , Tn,
U1, . . . , Un, V1 . . . , Vn, W1, . . . ,Wn such that

q(T1, T2, . . . , Tn, U1, U2, . . . , Un, V1, V2, . . . , Vn,W1,W2, . . . ,Wn) = (7.51)

p(T 2
1 + U2

1 + V 2
1 +W 2

1 , T
2
2 + U2

2 + V 2
2 +W 2

2 , . . . , T
2
n + U2

n + V 2
n +W 2

n).

Let x = (x1, . . . , xn) ∈ Nn0 be a solution of the diophantine equation

p(X1, . . . , Xn) = 0 (7.52)

and let t = (t1, . . . , tn), u = (u1, . . . , un), v = (v1, . . . , vn), w = (w1, . . . , wn) be elements of Zn such
that by the theorem of Lagrange,

xi = t2i + u2i + v2i + w2
i , 1 ≤ i ≤ n. (7.53)

7.5 Diophantine Sets 83

Then (t,u,v,w) ∈ Z4n is a solution of the diophantine equation

q(T1, . . . , Tn, U1, . . . , Un, V1, . . . , Vn,W1, . . . ,Wn) = 0. (7.54)

Conversely, if (t,u,v,w) ∈ Z4n is a solution of the diophantine equation (7.54), then x ∈ Nn0 defined
as in (7.53) provides an integer solution of the diophantine equation (7.52).

It follows that if there is an effective procedure to decide whether the diophantine equation (7.54)
has integer solutions, there is one to decide if the diophantine equation (7.52) has non-negative integer
solutions.

Theorem 7.36. Hilbert’s tenth problem is undecidable.

Proof. The set K = {x | x ∈ domφx} is recursively enumerable and so by Matiyasevich’s result there
is a polynomial p in Z[X,Y1, . . . , Ym] such that

K = ∃y1 . . . ∃ym[p(x, y1, . . . , ym) = 0]. (7.55)

Suppose there is an effective procedure to decide whether or not a diophantine equation has non-
negative integer solutions. Then the question whether a number x ∈ N0 lies in K or not can be decided
by finding a non-negative integer solution of the equation p(x, Y1, . . . , Ym) = 0. However, this contradicts
the undecidability of K. ⊓⊔

84 7 Undecidability

8

Word Problems

The undecidability of the halting problem has many consequences not only in computability theory
but also in other branches of science. The word problems encountered in abstract algebra and formal
language theory belong to the most prominent undecidability results.

8.1 Semi-Thue Systems

The word problem for a set is the algorithmic problem of deciding whether two given representatives
stand for the same element. In abstract algebra and formal language theory, sets have a presentation
given by generators and relations which allows the word problem for a set to be decribed by utilizing
its presentation.

A string rewriting system, historically called a semi-Thue system, is a pair (Σ,R) where Σ is an
alphabet and R is a dyadic relation on non-empty strings over Σ, i.e., R ⊆ Σ+ × Σ+. Each element
(u, v) ∈ R is called a rewriting rule and is written as u → v. Semi-Thue systems were introduced by
the Norwegian mathematician Axel Thue (1863-1922) in 1914.

The rewriting rules can be naturally extended to strings in Σ∗ by allowing substrings to be rewritten
accordingly. More specifically, the one-step rewriting relation →R induced by R on Σ∗ is a dyadic
relation on Σ∗ such that for any strings s and t in Σ∗,

s→R t :⇐⇒ s = xuy, t = xvy, u→ v for some x, y, u, v ∈ Σ∗. (8.1)

That is, a string s is rewritten by a string t when there is a rewriting rule u→ v such that s contains
u as a substring and this substring is replaced by v giving the string t.

The pair (Σ∗,→R) is called an abstract rewriting system. Such a system allows to form a finite or
infinite sequence of strings which is produced by starting with an initial string s0 ∈ Σ+ and repeatedly
rewriting it by using one-step rewriting. A zero-or-more steps rewriting or derivation like this is captured
by the reflexive transitive closure of →R denoted by

∗→R. That is, for any strings s, t ∈ Σ+, s
∗→R t

if and only if s = t or there is a finite sequence s0, s1, . . . , sm of elements in Σ+ such that s0 = s,
si →R si+1 for 0 ≤ i ≤ m− 1, and sm = t.

Example 8.1. Take the semi-Thue system (Σ,R) with Σ = {a, b} and R = {(ab, bb), (ab, a), (b, aba)}.
The derivation abb→R ab→R bb→R baba→R bbba shows that abb

∗→R bbba. ♦

86 8 Word Problems

The word problem for semi-Thue systems can be stated as follows:

Given a semi-Thue system (Σ,R) and two strings s, t ∈ Σ+. Can the string s be transformed

into the string t by applying the rules from R; that is, s
∗→R t?

This problem is undecidable. To see this, the halting problem for SGOTO-2 programs will be
reduced to this word problem. For this, let P = s0; s1; . . . ; sn−1 be an SGOTO-2 program consisting of
n instructions. We may assume that the label n which does not address an instruction is the only one
signifying termination.

A configuration of the two-register machine is given by a triple (j, x, y), where 0 ≤ j ≤ n − 1 is
the actual instruction number, x is the content of the first register, and y is the content of the second
register. These numbers can be encoded in unary format as follows:

x =

x
︷ ︸︸ ︷

LL . . . L and y =

y
︷ ︸︸ ︷

LL . . . L . (8.2)

In this way, each configuration of the two-register machine can be written as a string

axjyb (8.3)

over the alphabet Σ = {a, b, 0, 1, 2, . . . , n− 1, n, L}.
Define a semi-Thue system (Σ,RP) that simulates the mode of operation of the SGOTO-2 pro-

gram P . For this, each SGOTO-2 instruction is assigned an appropriate rewriting rule as follows:

GOTO-2 instructions rewriting rules
(j, x1 ← x1 + 1, k) (j, Lk)
(j, x2 ← x2 + 1, k) (j, kL)
(j, x1 ← x1 − 1, k) (Lj, k), (aj, ak)
(j, x2 ← x2 − 1, k) (jL, k), (jb, kb)
(j, if x1 = 0, k, l) (Lj, Ll), (aj, ak)
(j, if x2 = 0, k, l) (jL, lL), (jb, kb)

(8.4)

Moreover, the semi-Thue system contains two clean-up rewriting rules

(Ln, n) and (anL, an). (8.5)

Example 8.2. Consider the SGOTO-2 program P :

(0, if x1 = 0, 3, 1)
(1, x1 ← x1 − 1, 2)
(2, x1 ← x2 − 1, 0)
(3, if x2 = 0, 5, 4)
(4, x2 ← x2 + 1, 3)

This program computes the partial function

‖P‖2,1(x, y) =
{
0 if x ≥ y,
↑ otherwise. (8.6)

8.1 Semi-Thue Systems 87

The corresponding semi-Thue system over the alphabet Σ = {a, b, 0, 1, 2, 3, 4, 5, L} consists of the
rewriting rules

(L0, L1), (a0, a3), (L1, 2), (a1, a2), (2L, 0), (2b, 0b), (3L, 4L), (3b, 5b), (4, 3L), (L5, 5), (a5L, a5). (8.7)

Here is a sample computation, where the registers initially hold the values x1 = 3 and x2 = 2:

SGOTO-2 program semi-Thue system
(0, 3, 2) aLLL0LLb
(1, 3, 2) aLLL1LLb
(2, 2, 2) aLL2LLb
(0, 2, 1) aLL0Lb
(1, 2, 1) aLL1Lb
(2, 1, 1) aL2Lb
(0, 1, 0) aL0b
(1, 1, 0) aL1b
(2, 0, 0) a2b
(0, 0, 0) a0b
(3, 0, 0) a3b
(5, 0, 0) a5b

♦

The contruction immediately yields the following result.

Proposition 8.3. If (j, x, y) is a configuration of the SGOTO-2 program P with j < n, the semi-Thue
system (Σ,RP) provides the one-step rewriting rule

axjyb →RP
aukvb, (8.8)

where (k, u, v) is the successor configuration of (j, x, y). There is no other one-step rewriting rule in the
semi-Thue system applicable to axjyb.

The iterated application of this statement implies the following.

Proposition 8.4. A configuration (j, x, y) of the SGOTO-2 program P with j < n leads to the config-
uration (k, u, v) if and only if

axjyb
∗→RP

aukvb. (8.9)

Moreover, if the SGOTO-2 program terminates, its final configuration is of the form (n, x, y). The
corresponding word in the semi-Thue system is axnyb which can be further rewritten according to the
clean-up rules (8.5) as follows:

axnyb
∗→RP

anb. (8.10)

This establishes the following result.

88 8 Word Problems

Proposition 8.5. An SGOTO-2 program P started in the configuration (0, x, y) halts if and only if in
the corresponding semi-Thue system,

ax0yb
∗→RP

anb. (8.11)

This proposition yields an effective reduction of the halting problem for SGOTO-2 programs to the
word problem for semi-Thue systems. But the halting problem for SGOTO-2 programs is undecidable
and thus we have established the following.

Theorem 8.6. The word problem for semi-Thue systems is undecidable.

8.2 Thue Systems

The Thue systems form a subclass of semi-Thue systems. A Thue system is a semi-Thue system (Σ,R)
whose relation R is symmetric, i.e., if u → v ∈ R then v → u ∈ R. In a Thue system, the reflexive
transitive closure

∗→R of the one-step rewriting relation →R is also symmetric and thus an equivalence
relation on Σ+.

The word problem can be summarized as follows:

Given a Thue system (Σ,R) and two strings s, t ∈ Σ+. Can the string s be transformed into

the string t by applying the rules from R; that is, s
∗→R t?

This problem is also undecidable. To see this, Thue systems will be related to semi-Thue systems.
For this, let (Σ,R) be a semi-Thue system. The symmetric closure of the rewriting relation R is the
symmetric relation

R(s) = R ∪R−1, (8.12)

where R−1 = {(v, u) | (u, v) ∈ R} is the inverse relation of R. The set R(s) is the smallest symmetric

relation containing R, and the pair (Σ,R(s)) is a Thue system. The relation
∗→R(s) is thus the reflexive

transitive and symmetric closure of →R and hence an equivalence relation on Σ+. That is, for any
strings s, t ∈ Σ+, s

∗→R(s) t if and only if s = t or there is a finite sequence s0, s1, . . . , sm of elements in

Σ+ such that s = s0, si →R si+1 or si+1 →R si for 0 ≤ i ≤ m− 1, and sm = t. Note that if s
∗→R(s) t

holds in a Thue system (Σ,R(s)), neither s
∗→R t nor t

∗→R s need to be valid in the corresponding
semi-Thue system (Σ,R).

Example 8.7. Consider the semi-Thue system (Σ,R) with Σ = {a, b} and R = {(ab, b), (ba, a)}. The
corresponding Thue system is (Σ,R(s)), where R(s) = R ∪ {(b, ab), (a, ba)}.

In the semi-Thue system, rewriting is strictly antitone leading to smaller strings, i.e., if u
∗→R v and

u 6= v, then |u| > |v|, e.g., aabb→R abb→R bb.
On the other hand, in the Thue system, aabb →R(s) abb →R(s) abab, but in the semi-Thue system

neither aabb
∗→R abab nor abab

∗→R aabb. ♦
Theorem 8.8. (Post’s Lemma) Let P be an SGOTO-2 program with n instructions, let (Σ,RP)

be the corresponding semi-Thue system, and let (Σ,R
(s)
P) be the associated Thue system. For each

configuration (j, x, y) of the program P ,

axjyb
∗→RP

anb ⇐⇒ axjyb
∗→
R

(s)

P

anb. (8.13)

8.3 Semigroups 89

Proof. The direction from left-to-right holds since R ⊆ R(s). Conversely, let (j, x, y) be a configuration
of the program P . By hypothesis, there is a rewriting sequence in the Thue system such that

s0 = axjyb→
R

(s)

P

s1 →R
(s)

P

. . .→
R

(s)

P

sq = anb, (8.14)

where it may be assumed that the length q+1 of the derivation is minimal. It is clear that each occurring
string si corresponds to a configuration of the program P , 0 ≤ i ≤ q.

Suppose the derivation (8.14) cannot be established by the semi-Thue system. That is, the sequence
contains a rewriting step sp ←RP

sp+1, 0 ≤ p ≤ q − 1. The index p can be chosen to be maximal with
this property. Since there is no rewriting rule applicable to sq = anb, we have p+ 1 < q. This leads to
the following situation:

sp ←RP
sp+1 →RP

sp+2. (8.15)

However, the string sp+1 encodes a configuration of P and there is at most one rewriting rule applicable
to it. Thus the words sp and sp+2 must be identical and hence the derivation (8.14) can be shortened
by deleting the string sp+1 contradicting the assumption. ⊓⊔

The above result is due to the Jewish logician Emil Post (1897-1954) and provides an effective
reduction of the derivations in semi-Thue system to derivations in Thue systems. But the word problem
for semi-Thue systems is undecidable and thus we obtain the following.

Theorem 8.9. The word problem for Thue systems is undecidable.

8.3 Semigroups

Word problems are also encountered in abstract algebra. A semigroup is an algebraic structure consisting
of a non-empty set S together with an associative dyadic operation. For instance, the set of all non-
empty strings Σ+ over an alphabet Σ together with the concatenation of strings is a semigroup, called
free semigroup over Σ.

Each Thue system gives rise to a semigroup in a natural way. To see this, let (Σ,R(s)) be a Thue

system. We already know that the rewriting relation
∗→R(s) on Σ+ is an equivalence relation. The

equivalence class of a string s ∈ Σ+ is the subset [s] of all strings in Σ+ that can be derived from s by
a finite number of rewriting steps:

[s] = {t ∈ Σ+ | s ∗→R(s) t}. (8.16)

Proposition 8.10. The set of equivalence classes H = H(Σ,R(s)) = {[s] | s ∈ Σ+} forms a semigroup
with the operation

[s] ◦ [t] = [st], s, t ∈ Σ+. (8.17)

Proof. Claim that the operation is well-defined. Indeed, let [s] = [s′] and [t] = [t′], where s, s′, t, t′ ∈ Σ+.

Then s
∗→R(s) s′, s′

∗→R(s) s, t
∗→R(s) t′, and t′

∗→R(s) t. Thus st
∗→R(s) s′t

∗→R(s) s′t′ and s′t′
∗→R(s)

st′
∗→R(s) st. Hence, [st] = [s′t′]. ⊓⊔

90 8 Word Problems

The semigroup H = H(Σ,R(s)) can be defined by generators and relations. To see this, let Σ =
{a1, . . . , an} and R = {(u1, v1), . . . , (um, vm)}. Then the semigroup H has a presentation in terms of
generators and relations as follows:

H = 〈[a1], . . . , [an] | [u1] = [v1], . . . , [um] = [vm]〉.

The semigroup H is presented as the quotient semigroup of the free semigroup Σ+ by the subsemigroup
of Σ+ generated by the relations [ui] = [vi], 1 ≤ i ≤ m.

Example 8.11. Consider the Thue system (Σ,R(s)), where Σ = {a, b} and R = {(ab, b), (ba, a)}. The
semigroup H = H(Σ,R(s)) has the presentation

H = 〈[a], [b] | [b] = [ab], [a] = [ba]〉.

For instance, the derivations a →R(s) ba →R(s) aba →R(s) aa and b →R(s) ab →R(s) bab →R(s) bb give
rise to the equations [a] = [aa] and [b] = [bb] in the semigroup H. For instance, [a] = [ba] = [b][a] =
[ab][a] = [aba] = [a][ba] = [a][a] = [aa].

Any word of H is of the form [ai1bj1 . . . aikbjk], where i1, . . . , ik, j1, . . . , jk ≥ 0 such that at least one
of these numbers is non-zero. But the relations [b] = [ab] and [a] = [ba] imply [a] = [ba] = [aba] = [aa]
and [b] = [ab] = [bab] = [bb]. Thus the semigroup H only consists of two elements [a] and [b] which are
idempotent, i.e., [a] ◦ [a] = [a] and [b] ◦ [b] = [b], and satisfy [a] ◦ [b] = [b] and [b] ◦ [a] = [a]. ♦

The word problem for the semigroup H = H(Σ,R(s)) asks whether arbitrary strings s, t ∈ Σ+

describe the same element [s] = [t] or not. By definition,

[s] = [t] ⇐⇒ s
∗→R(s) t, s, t ∈ Σ+. (8.18)

This equivalence provides an effective reduction of the word problem for Thue systems to the word
problem for semigroups. This leads to the following result which was independently established by
Emil Post (1987-1954) and Andrey Markov Jr. (1903-1979).

Theorem 8.12. The word problem for semigroups is undecidable.

8.4 Post’s Correspondence Problem

The Post correspondence problem is an undecidable problem that was introduced by Emil Post in 1946.
Due to its simplicity it is often used in proofs of undecidability.

A Post correspondence system (PCS) over an alphabet Σ is a finite setΠ of pairs (αi, βi) ∈ Σ+×Σ+,
1 ≤ i ≤ m. For each finite sequence i = (i1, . . . , ir) ∈ {1, . . . ,m}+ of indices, define the strings

α(i) = αi1 ◦ αi2 ◦ · · · ◦ αir (8.19)

and

β(i) = βi1 ◦ βi2 ◦ · · · ◦ βir . (8.20)

A solution of the PCS Π is a sequence i of indices such that α(i) = β(i).

8.4 Post’s Correspondence Problem 91

Example 8.13. The PCS Π = {(α1, β1) = (a, aaa), (α2, β2) = (abaa, ab), (α3, β3) = (aab, b)} over the
alphabet Σ = {a, b} has the solution i = (2, 1, 1, 3), since

α(i) = α2 ◦ α1 ◦ α1 ◦ α3 = abaa ◦ a ◦ a ◦ aab
= abaaaaaab

= ab ◦ aaa ◦ aaa ◦ b = β2 ◦ β1 ◦ β1 ◦ β3 = β(i).

♦

The word problem for Post correspondence systems asks whether a Post correspondence system has
a solution or not. This problem is undecidable. To see this, the word problem for semi-Thue systems
will be reduced to this one. To this end, let (Σ,R) be a semi-Thue system, where Σ = {a1, . . . , an}
and R = {(ui, vi) | 1 ≤ i ≤ m}. Take a copy of the alphabet Σ given by Σ′ = {a′1, . . . , a′n}. In this way,
each string s = ai1ai2 . . . air over Σ can be assigned a copy s′ = a′i1a

′
i2
. . . a′ir over Σ′.

Put q = m+n and let s, t ∈ Σ+. Define the PCSΠ = Π(Σ,R, s, t) over the alphabetΣ∪Σ′∪{x, y, z}
by the following 2q + 4 pairs:

(αi, βi) = (ui, v
′
i), 1 ≤ i ≤ m,

(αm+i, βm+i) = (ai, a
′
i), 1 ≤ i ≤ n,

(αq+i, βp+i) = (u′i, vi), 1 ≤ i ≤ m,
(αq+m+i, βp+m+i) = (a′i, ai), 1 ≤ i ≤ n, (8.21)

(α2q+1, β2p+1) = (y, z),

(α2q+2, β2p+2) = (z, y),

(α2p+3, β2p+3) = (x, xsy),

(α2p+4, β2p+4) = (ztx, x).

Example 8.14. Take the semi-Thue system (Σ,R), whereΣ = {a, b} andR = {(ab, bb), (ab, a), (b, aba)}.
The corresponding PCS Π = Π(Σ,R, s, t) over the alphabet {a, b, a′, b′, x, y, z} consists of the following
pairs:

(ab, b′b′),
(ab, a′),
(b, a′b′a′),
(a, a′),
(b, b′),
(a′b′, bb),
(a′b′, a),
(b′, aba),
(a′, a),
(b′, b),
(y, z),
(z, y),
(x, xsy),
(ztx, x).

♦

92 8 Word Problems

First, observe that the derivations of a semi-Thue system can be mimicked by the corresponding
PCS.

Proposition 8.15.

• If s, t ∈ Σ+ with s = t or s→R t, there is a sequence i ∈ {1, . . . , q}+ of indices such that α(i) = s
and β(i) = t′, and there is a sequence i′ ∈ {q + 1, . . . , 2q}+ of indices such that α(i′) = s′ and
β(i′) = t.

• If s, t ∈ Σ+ such that there is a sequence i ∈ {1, . . . , q}+ of indices such that α(i) = s and β(i) = t′,

then s
∗→R t.

• If s, t ∈ Σ+ such that there is a sequence i′ ∈ {q + 1, . . . , 2q}+ of indices such that α(i′) = s′ and

β(i′) = t, then s
∗→R t.

Example 8.16. (Cont’d) Let s = aabb and t = aab. Then s →R t by the rule (ab, a) ∈ R and the
sequences i = (4, 2, 5) and i′ = (9, 7, 10) yield

α(i) = α4 ◦ α2 ◦ α5 = a ◦ ab ◦ b = aabb,

β(i) = β4 ◦ β2 ◦ β5 = a′ ◦ a′ ◦ b′ = a′a′b′,

α(i′) = α9 ◦ α7 ◦ α10 = a′ ◦ a′b′ ◦ b′ = a′a′b′b′,

β(i′) = β9 ◦ β7 ◦ β10 = a ◦ a ◦ b = aab.

Let s = bbaba = α(5, 3, 2, 4) and t′ = b′a′b′a′a′a′ = β(5, 3, 2, 4). Then s = bbaba →R babaaba →R

babaaa = t and so s
∗→R t. ♦

Second, the solutions of the constructed PCS can always be canonically decomposed.

Proposition 8.17.

• Let i = (i1, . . . , ir) be a solution of the PCS Π = Π(Σ,R, s, t) with w = α(i) = β(i). If w = w1yw2

for some w1, w2 ∈ Σ′∗, there is an index j, 1 ≤ j ≤ r, such that

α(i1, . . . , ij−1) = w1, α(ij) = y, and α(ij+1, . . . , ir) = w2. (8.22)

• Let i = (i1, . . . , ir) be a solution of the PCS Π = Π(Σ,R, s, t) with w = α(i) = β(i). If w = w1zw2

for some w1, w2 ∈ Σ′∗, there is an index j, 1 ≤ j ≤ r, such that either

α(i1, . . . , ij−1) = w1, α(ij) = z, and α(ij+1, . . . , ir) = w2, (8.23)

or

α(i1, . . . , ij−1) = w1, α(ij) = ztx, α(ij+1, . . . , ir) = u, and w2 = txu. (8.24)

Example 8.18. (Cont’d) Let s = b and t = abaa. A solution of the PCS Π is given by

i = (13, 3, 11, 6, 9, 12, 3, 5, 4, 11, 9, 10, 7, 9, 14),

since

8.4 Post’s Correspondence Problem 93

α(i) = x ◦ b ◦ y ◦ a′b′ ◦ a′ ◦ z ◦ b ◦ b ◦ a ◦ y ◦ a′ ◦ b′ ◦ a′b′ ◦ a′ ◦ zabaax
= xbya′b′a′zbbaya′b′a′b′a′zabaax

= xby ◦ a′b′a′ ◦ z ◦ bb ◦ a ◦ y ◦ a′b′a′ ◦ b′ ◦ a′ ◦ z ◦ a ◦ b ◦ a ◦ a ◦ x
= β(i).

Here we have

w1 = xbya′b′a′zbba = α(13, 3, 11, 6, 9, 12, 3, 5, 4)

and

w2 = a′b′a′b′a′zabaax = α(9, 10, 7, 9, 14),

or

w1 = xbya′b′a′ = α(13, 3, 11, 6, 9)

and

w2 = bbaya′b′a′b′a′zabaax = α(3, 5, 4, 11, 9, 10, 7, 9, 14),

or

w1 = xbya′b′a′zbbaya′b′a′b′a′ = α(13, 3, 11, 6, 9, 3, 5, 4, 11, 9, 10, 7, 9),

and

ztx = zabaax = α(14) and w2 = abaax = tx.

♦

Note that if the PCS Π = Π(Σ,R, s, t) has a solution α(i) = β(i) with i = (i1, . . . , ir), the solution
starts with i1 = 2q + 3 and ends with ir = 2p+ 4, i.e., the corresponding string has the prefix xsy and
the postfix ztx. The reason is that (α2p+3, β2p+3) = (x, xsy) is the only pair whose components have
the same prefix and (α2p+4, β2p+4) = (ztx, x) is the only pair whose components have the same postfix.

Proposition 8.19. Let s, t ∈ Σ+. If there is a derivation s
∗→R t in the semi-Thue system (Σ,R), the

PCS Π = Π(Σ,R, s, t) has a solution.

Proof. Let s
∗→R t with

s = s1 →R s2 →R . . .→R sk−1 →R sk = t, (8.25)

where si →R si+1 or si = si+1, 0 ≤ i ≤ k − 1. The inclusion of steps without effect allows to assume

that k is odd. By Proposition 8.15, for each j, 1 ≤ j < k, there is a sequence i(j) of indices such that
α(i(j)) = sj and β(i

(j)) = s′j+1 if j is odd and α(i(j)) = s′j and β(i
(j)) = sj+1 if j is even.

Claim that a solution of the PCS is given by the sequence

94 8 Word Problems

i = (2p+ 3, i(1), 2p+ 1, i(2), 2p+ 2, i(3), 2p+ 1, . . . , i(k−2), 2p+ 1, i(k−1), 2p+ 4). (8.26)

Indeed, the sequence can be evaluated as follows:

α(i) : x s1 y s′2 z s3 y . . . sk−2 y s′k−1 zskx
.

i : 2p+ 3 i(1) 2p+ 1 i(2) 2p+ 2 i(3) 2p+ 1 . . . i(k−2) 2p+ 1 i(k−1) 2p+ 4
.

β(i) : xs1y s′2 z s3 y s′4 z . . . s′k−1 z sk x

This proves the claim. ⊓⊔
Example 8.20. (Cont’d) Consider the derivation

s = aab→R abb→ abb→R aabab→R aaab→R aaa = t.

A solution of the PCS Π = Π(Σ,R, aab, aaa) is given by the sequence

i = (13, 4, 1, 11, 9, 8, 10, 12, 4, 2, 4, 5, 11, 9, 9, 7, 14),

where
α(i) : x aab y a′b′b′ z aabab y a′a′a′b′ zaaax

.
i : 13 (4, 1) 11 (9, 8, 10) 12 (4, 2, 4, 5) 11 (9, 9, 7) 14

.
β(i) : xaaby a′b′b′ z aabab y a′a′a′b′ z aaa x

♦
Proposition 8.21. Let s, t ∈ Σ+. If the PCS Π = Π(Σ,R, s, t) has a solution, there is a derivation

s
∗→R t in the semi-Thue system (Σ,R).

Proof. Let i = (i1, . . . , ir) be a minimal solution of the PCSΠ. The observation prior to Proposition 8.19
shows that the string w = α(i) = β(i) must have the form w = xsy . . . ztx.

By Proposition 8.17, there is a sequence i(1) of indices such that α(i(1)) = s = s1. Put s
′
2 = β(i(1)).

It follows that w = xs1ys
′
2z . . . and by Proposition 8.15, s1

∗→R s2.

By Proposition 8.17, there is a sequence i(2) of indices such that α(i(2)) = s′2. Set s3 = β(i(2)). Thus

w = xs1ys
′
2zs3 . . . and by Proposition 8.15, s2

∗→R s3.
By Proposition 8.17, there are two possibilities:

• Let i = (2q + 3, i(1), 2q + 1, i(2), 2q + 2, . . .), i.e., w = xs1ys
′
2zs3y Then the sequence can be

continued as indicated above.
• Let i = (2q + 3, i(1), 2q + 1, i(2), 2q + 4, . . .). This is only possible if s3 = t and w = xs1ys

′
2ztx. It

follows that i = (2q + 3, i(1), 2q + 1, i(2), 2q + 4) is already a solution due to minimality:

α(i) : x s1 y s′2 ztx
.

i : 2q + 3 i(1) 2q + 1 i(2) 2q + 4
.

β(i) : xs1y s′2 z t x

But s = s1
∗→R s2 and s2

∗→R s3 = t, and so s
∗→R t.

8.4 Post’s Correspondence Problem 95

By induction, there are strings s = s1, s2, s3, . . . , sk = t in Σ+ with k odd such that

α(i) = x ◦ s1 ◦ y ◦ s′2 ◦ z ◦ s3 ◦ . . . ◦ sk−2 ◦ y ◦ s′k−1 ◦ z ◦ sk ◦ x = β(i)

and si
∗→R si+1, 1 ≤ i ≤ k − 1. Hence, s

∗→R t as required. ⊓⊔

Example 8.22. (Cont’d) Let s = b and t = abaa. A solution of the PCS Π is given by

i = (13, 3, 11, 6, 9, 12, 3, 5, 4, 11, 9, 10, 7, 9, 14).

The string

α(i) = β(i) = xbya′b′a′zbbaya′b′a′b′a′zabaax

provides a derivation in the semi-Thue system:

s = b
∗→R aba

∗→R bba
∗→R ababa

∗→R abaa = t.

♦

The last two propositions provide a reduction of the word problem for semi-Thue systems to the word
problem for Post correspondence systems. But the word problem for semi-Thue systems is undecidable.
This gives rise to the following result.

Theorem 8.23. The word problem for Post correspondence systems is undecidable.

96 8 Word Problems

9

Computational Complexity Theory

The previous chapters centered around the problem to decide what is mechanically computable. From
the practical point of view, however, another question is what can be computed by an ordinary computer
with reasonable resources. This will naturally lead to the central open challenge of computational
complexity theory and simultaneously to one of the most important questions in mathematics and
science at large, namely if the class of polynomial-time computable problems equals the class of problems
with polynomial-time verifiable solutions. This chapter gives a brief introduction into this subject from
the view point of modern complexity theory. In the following, all functions considered will be recursive
and we will be particularly interested in the resource of time needed for the computation.

9.1 Efficient Computations

The Turing machine is still used in complexity theory as a basic model of computation despite its freaky
nature. One reason is that the Turing machine is a universal computing model and so by Church’s thesis
able to simulate all physically realizable computational tasks. Another one is that it can serve as a
starting point for other computational models like the multi-tape or nondeterministic Turing machines.

Multi-Tape Turing Machines

A Turing machine with k ≥ 2 tapes is similarly defined as the one-tape one. A Turing machine with k
tapes, where k ≥ 2, has an input tape and k− 1 working tapes. Each tape is equipped with a tape head
so that the machine can access one symbol per tape at a time. The machine can only read symbols
from the input tape which is thus a read-only tape. The working tapes are read-write tapes onto which
symbols can also be written, and the last working tape is designated as output tape onto which the
result of a computation is written.

The operation of a multi-tape Turing machine is similar to that of the one-tape one. The transition
function δ : Q × Σk → Q × Σk−1 × {L,R,Λ} describes the operations performed in each step: If the
machine is in state q ∈ Q, (σ1, σ2, . . . , σk) are the symbols being read in the k tapes, and

δ(q, (σ1, σ2, . . . , σk)) = (q′, (σ′
2, . . . , σ

′
k), z),

98 9 Computational Complexity Theory

where z ∈ {L,R,Λ}, then at the next step the symbol σi will be replaced by σ′
i on the working tapes,

2 ≤ i ≤ k, the machine will enter the state q′ and the k tape heads will move according to the value
of z.

Example 9.1. A string x ∈ {0, 1}∗ is a palindrome if it reads the same from the left as from the right,
like 11011 and 010010.

Claim that there is a Turing machine which on input x ∈ {0, 1}∗ decides in 3·|x|+1 steps whether the
string is a palindrome. Indeed, take a 3-tape Turing machine (input, work, and output) with alphabet
Σ = {b, 0, 1}. First, the machine copies the input string x to the work tape in reverse order. This
requires 2 · |x| steps since the tape head has first to move to the right end of the input word and then
copy its symbols from right to left. Second, it checks from left to right if the symbols on the input
and work tape are equal. For this, it enters a new state if two symbols are not equal and halts there.
Simultaneously reading the strings necessites |x| steps. The machine can output 1 or 0 depending on
whether the string is a palindrome or not. ♦

In the sequel, the running time and storage space of a Turing machine will be viewed as a function
of the input, and inputs of the same length will be treated in the same way. The key idea to measure
time and space as a function of the input was developed by Hartmanis and Stearns in the early 1960’s.
This was the starting point of the theory of computational complexity.

The set of palindroms over the alphabet {0, 1} forms a binary language. A binary language is a
subset of the free monoid {0, 1}∗. Note that each binary language L can be described by a Boolean
function f : {0, 1}∗ → {0, 1} given as the characteristic function of the language L, i.e., for each string
x ∈ {0, 1}∗, x ∈ L if and only if f(x) = 1.

Let T, S : N0 → N0 be functions. We say that a Turing machine M decides a binary language L
in time T (n) and uses space S(n) if for each string x ∈ {0, 1}∗, the machine M halts on input x after
T (|x|) steps, visits at most S(|x|) work-tape cells, and outputs 1 if and only if x ∈ L. For instance, the
above Turing machine for palindromes runs in 3n+ 1 steps and uses 2n+ 1 tape cells.

A function T : N0 → N0 is time constructible if T (n) ≥ n and there is a Turing machine which
computes the function x 7→ {T (|x|)}2 in time T (n). Here {m}2 denotes the binary representation of
the number m. Note that the constraint T (n) ≥ n will allow the machine to read the whole input. All
time bounds that will subsequently be encountered are time constructible such as n, n log n, n2, and
2n. Time bounds that are not time constructible like log n or

√
n may lead to abnormal results.

Our definition of Turing machine is robust in such a way that details of the definition do not matter
as long as the model is not substantially changed. Two examples of robustness are given whose proofs
are left to the reader. First, the size of the alphabet is considered.

Proposition 9.2. Let L be a binary language and T : N0 → N0 be a function. If T is time constructible
and L is decidable in time T (n) by a Turing machine with alphabet Σ, then L is decidable in time
4n · log |Σ| · T (n) by a Turing machine with alphabet {b, 0, 1}.
Second, multi-tape Turing machines are related to single-tape ones which have been studied in Chap-
ter 6.

Proposition 9.3. Let L be a binary language and T : N0 → N0 be a function. If T is time constructible
and L is decidable in time T (n) by a Turing machine using k tapes, then L is decidable in time 5kT (n)2

by a single-tape Turing machine.

It follows that the exact model of computation does not matter as long as the polynomial factor in the
running time can be ignored.

9.1 Efficient Computations 99

Landau Notation

In computational complexity, when running time and working space are considered, constants will not
be taken into account; e.g., it will not be distinguished if a machine runs in time 10n3 or n3. For this,
the Landau (or big- and little-Oh) notation is used describing the limiting behavior of a function when
the argument tends to infinity.

Given two functions f and g from N0 to N0. We say that (1) f = O(g) if there there is a positive
constant c such that f(n) ≤ c · g(n) for all sufficiently large values of n, (2) f = Θ(g) if f = O(g) and
g = O(f), and (3) f = o(g) if for each ǫ > 0, f(n) ≤ ǫ · g(n) for every sufficiently large value of n.

Example 9.4. If f(n) = 10n2+n+1 and g(n) = n2, then f = O(g) and f = Θ(g). If f(n) = 100n log n
and g(n) = n2, then f = O(g) and f = o(g). ♦
By abuse of notation, the Landau symbol can appear in different places of an equation or inequality,
such as in (n+ 1)2 = n2 +O(n) and nO(1) = O(en).

The Class P

A complexity class is a class of functions which can be computed within a given frame of resources. The
first and most important complexity class is P that makes precise the notion of efficient computation.
To this end, it will be convenient to restrict the following considerations to binary languages which
allow to study decision problems.

We say that a Turing machine M decides a binary language L in polynomial time if there is a
polynomial function p : N0 → N such that for each string x ∈ {0, 1}∗, the machine M halts on input x
after p(|x|) steps (by reaching the halting state) and outputs 1 if and only if x ∈ L. Thus the machine
M computes the characteristic function of the language L in polynomial time.

Let T : N0 → N0 be a time constructible function. The class DTIME(T (n)) consists of all binary
languages that can be decided by a Turing machine in time O(T (n)). Here the letter D stands for
deterministic, since there are other kinds of Turing machines like nonderministic ones which will be
considered later on.

The complexity class P captures the notion of efficient computation or polynomial running time
and is defined as the union of the classes DTIME(nc) for any c ≥ 1; that is,

P =
⋃

c≥1

DTIME(nc). (9.1)

Example 9.5. The problem of graph connectivity is to decide for a given graph G and two vertices u, v
in G if u and v are connected in G. This problem lies in P. Indeed, a depth-first search can be used to
traverse the graph starting with the vertex u. At the beginning, the vertex u is visited and all other
vertices are unvisited. In each step, the most recently visited vertex is taken and one of its adjacent
vertices which is unvisited is marked visited. If no such vertex exists, then backtracking will eventually
lead to the most recently visited vertex which has some unvisited adjacent vertex. The procedure ends
after at most

(
n
2

)
steps; this is the number of edges in a fully connected graph with n vertices. Then all

vertices are either visited or will never be visited. ♦

100 9 Computational Complexity Theory

Note that the class P refers to decision problems. So we cannot say that ”integer addition” lies in P.
But we may consider a decision version that belongs to P, namely, the following language:

{(x, i) | the ith bit of x+ y is equal to 1}.
Dealing with decision problems alone can be rather limiting. However, computational problems like
computing non-Boolean functions, search problems, optimization problems, interaction, and others can
generally be expressed as decision problems.

The class P is intended to capture the notion of efficient computation. One may question if decision
problems in DTIME(n99) are efficiently computable in the real world because n99 is a huge number
even for smaller values of n. However, in practice, we can usually find algorithms for a problem that
work in shorter time like n2 or n3.

The class P only involves algorithms that compute a function on all possible inputs. This worst-case
scenario is sometimes criticized since in practice not all possible inputs may arise and the algorithms
need only be efficient on inputs that are relevant. A partial answer to this issue is the average-case
scenario which defines an analog of P for the case of real-life distributions. For instance, the Simplex
algorithm developed by George B. Dantzig (1914-2005) in 1947 is a method for solving linear program-
ming problems. The algorithm has an exponential worst-case behaviour but its average-case behaviour
is polynomial.

9.2 Efficiently Verifiable Computations

The classes P and NP belong to the most important practical computational complexity classes. Cook’s
hypothesis asks whether or not the two classes are equal.

The Class NP

The class P captures the notion of efficient computation. In contrast to this, the class NP will capture
the notion of efficiently verifiable solution.

We say that a Turing machine M verifies a binary language L in polynomial time if there is a
polynomial function p : N0 → N0 such that for each string x ∈ {0, 1}∗, there is a string w = w(x) ∈
{0, 1}∗ of length at most p(|x|) such that the machine M halts on input x and w after p(|x|) steps
(by reaching the halting state) and outputs 1 if and only if x ∈ L. The above string w = w(x) is a
certificate or witness for x. Thus the machine M verifies in some sense the characteristic function of
the language L.

Example 9.6. Here are some interesting decision problems that lie in the class NP:

• Independent set: Given a graph G and a number k, decide if G contains an independent set (i.e., a
subset of vertices with no edges between them) of at least k elements. The corresponding language
consists of all pair (G, k), where G is a graph that contains an independent set of size at least k.
The certificate is a set of at least k vertices forming an independent set in G. Note that if the graph
has n vertices, a set of k vertices in G can be encoded in O(k log n) bits. Thus a witness w has at
most O(n log n) bits which is polynomial in the size of the representation of G. Moreover, checking
that m ≥ k vertices form an independent set in G can be done in polynomial time depending on
the representation of the graph. For instance, if the graph is given by an adjacency matrix, then
checking all pairs of m vertices requires

(
m
2

)
steps.

9.2 Efficiently Verifiable Computations 101

• Clique: Given a graph G and a number k, decide if G contains a clique (i.e., a subset of vertices in
which each pair of vertices is connected by an edge) of at least k elements. A certificate is a set of
at least k vertices comprising the clique.

• Graph connectivity: Given a graph G and two vertices u, v in G, decide if u and v are connected by
a path in G. The certificate is a path between u and v.

• Vertex cover: Given a graph G and a number k, decide if G has a vertex cover (i.e., a subset of
vertices such that each edge is incident to at least one vertex in the set) of size at most k. The
witness is a set of vertices of size at most k that forms a vertex cover.

• Graph isomorphism: Given two n×n adjacency matrices A1 and A2, decide if A1 and A2 define the
same graph up to some relabelling of the vertices. The certificate is an n×n permutation matrix P
such that PA1 = A2.

• Subset sum: Given a list of n numbers a1, . . . , an and a number t, decide if there is a subset of
numbers that sum up to t. The witness is the list of numbers adding to t.

• Linear programming: Given a list of m linear inequalities with rational coefficients over n variables
x1, . . . , xn, determine if there is an assignment of rational numbers to the variables that satisfies all
the inequalities. The certificate is such an assignment.

• Integer programming: Given a list of m linear inequalities with rational coefficients over n variables
x1, . . . , xn, determine if there is an assignment of zeros and ones to the variables which fulfills all
the inequalities. The witness is such an assignment.

• Travelling salesman: Given a road map with n cities and a number k, decide if there is a closed path
that visits each city exactly once and has total length at most k. The certificate is the sequence of
cities in such a tour which is also called a Hamiltonian circuit.

• Integer factoring: Given three numbers N , a, and b, decide if N has a prime factor in the interval
[a, b]. The witness is the corresponding factor. ♦

In the above list, the problems of connectivity and linear programming lie in P. For connectivity, this is
clear from 9.5, and for linear programming, this is highly nontrivial and follows from the ellipsoid method
of Leonid Khachiyan (1952-2005) developed in 1979. The other problems in the list are not known to
be in P. The problems independent set, clique, vertex cover, subset sum, integer programming, and
travelling salesman are NP-complete which means that they are not in P unless P=NP. The problems
of graph isomorphism and integer factoring are potential candidates for being NP-intermediates, i.e.,
languages that are neither NP-complete nor in P provided that P 6=NP.

In order to study the relationship between the classes P and NP, we consider the exponential-time
analog of the class P.

EXP =
⋃

c≥1

DTIME(2n
c

). (9.2)

Proposition 9.7. We have P ⊆ NP ⊆ EXP.

Proof. Let L be a binary language in P which is decidable in polynomial time by a Turing machine M .
By taking for each input the empty certificate w = ǫ, the machine M verifies L in polynomial time and
so the language L lies in NP.

Let L be a binary language in NP that can be verified in polynomial time with polynomial function
p by a Turing machine M . Then the language L can be decided in time 2O(p(n)) by enumerating all
possible strings w and using M to check if w = w(x) is a witness for the input x. ⊓⊔

102 9 Computational Complexity Theory

The proof shows that each problem in NP can be solved in exponential time by exhaustive search for
a certificate. The use of certificates in the definition of the class NP captures a far-reaching episode
beyond mathematics, namely that the correctness of an answer is often much easier to perceive than
conceiving the answer itself. Examples include verifying a proof versus establishing one, hearing a sonata
versus composing one, and appreciating a design such as a car or a building versus making one.

Nondeterministic Turing Machines

The class NP can also be defined in terms of nondeterministic Turing machines which were used in the
original definition of NP. This acronym stands for nondeterministic polynomial time.

A nondeterministic Turing machine M is similarly defined as the deterministic one in Chapter 6.
However, it has a specific accepting state qa and two transition functions δ0 and δ1 such that in each
computational step it makes an arbitrary choice what function to apply. This captures the concept of
nondeterminism.

We say that a nondeterministic Turing machine M decides a binary language L in polynomial time
if there is a polynomial function p : N0 → N such that for each string x ∈ {0, 1}∗, the machine M
halts on input x in p(|x|) steps, and x ∈ L if and only if there is a sequence of choices of the transition
functions such that the machine stops in the accepting state. Note that if x 6∈ L, there is no sequence
of choices of the transition functions such that the machine terminates in the accepting state. Instead,
the machine will halt in the halting state.

Let T : N0 → N0 be a time constructible function. The class NTIME(T (n)) consists of all binary
languages that can be decided by a nondeterministic Turing machine in time O(T (n))). This defini-
tion leads to an alternative characterization of the class NP as the class of all languages calculated
by polynomial-time nondeterministic Turing machines. However, note that nondeterministic Turing
machines are not intended to model any kind of physically realizable computational process.

Proposition 9.8. We have NP =
⋃

c≥1 NTIME(nc).

Proof. Let L be a binary language in NP, and let M be a Turing machine that verifies L in polynomial
time. For each string x ∈ L, the corresponding witness w = w(x) can be used to provide a sequence
of choices of the transition functions such that the associated nondeterministic Turing machine reaches
the accepting state. It follows that L lies NTIME(nc) for some c ≥ 1.

Conversely, let L be a binary language which is decided by a nondeterministic Turing machine N in
polynomial time. For each string x ∈ L, there is a sequence of nondeterministic choices of the transition
functions such that the machine N on input x reaches the accepting state. This sequence can serve as
a certificate w = w(x) for the string x. Thus the language L belongs to NP. ⊓⊔

9.3 Reducibility and NP-Completeness

Languages can be related to each other by the notion of reduction. A binary language L is reducible to
another binary language L′ denoted L ≤p L′, if there is a function p : {0, 1}∗ → {0, 1}∗ computable in
polynomial time such that for each string x ∈ {0, 1}∗, x ∈ L if and only if p(x) ∈ L′.

The definitions immediately give the following result.

Proposition 9.9. If L′ ∈ P and L ≤p L′, then L ∈ P .

9.3 Reducibility and NP-Completeness 103

Proof. A Turing machine M that decides the language L can be defined in such a way that it first
transforms an input string x to the string p(x) in polynomial time and then it uses the Turing machine
M ′ which decides the language L′ in polynomial time. ⊓⊔

The notion of reducibility allows to define two important subclasses of languages in NP. A binary
language L is NP-hard if L′ ≤p L for each language L′ in NP. Moreover, L is NP-complete if L is
NP-hard and L lies in NP.

Proposition 9.10. Let L, L′, and L′′ be binary languages.

• If L ≤p L′ and L′ ≤p L′′, then L ≤p L′′.
• If L is NP-hard and L ∈ P , then P = NP.
• If L is NP-complete, then L ∈ P if and only if P = NP.

Proof. First, let p be a polynomial-time reduction from L to L′ and let p′ be a polynomial-time reduction
from L′ to L′′. Then the mapping x 7→ p′(p(x)) provides a polynomial-time reduction from L to L′′.

Second, let L be an NP-hard language in P and let L′ lie in NP. Then L′ ≤p L and so there is a
polynomial-time reduction p such that x ∈ L′ if and only if p(x) ∈ L. But p(x) ∈ L can be decided in
polynomial time and so x ∈ L also can. Thus L′ belongs to P and hence NP is a subclass of P. The
converse follows from 9.7.

Third, let L be an NP-complete language. If L lies in P, then the second assertion implies that the
classes P and NP are equal. Conversely, if the classes P and NP are equal, then L also lies in P. ⊓⊔

The NP-complete problems are the hardest problems in the class NP in the sense that they can be
tackled by a polynomial-time algorithm if and only if the classes P and NP are equal.

Example 9.11. The independent set problem can be reduced to the clique problem. To see this, let
G be a graph with vertex set V and edge set E. The complementary graph of G is a graph G′, whose
vertex set is V and whose edge set is the complement of the edge set E. Then it is clear that a graph
G and its complementary graph G′ have the property that a vertex subset U of G is independent in G
if and only if U is a clique in G′. The reduction can be accomplished by converting the n×n adjacency
matrix of G to the n×n adjacency matrix of G′ in a such a way that all off-diagonal entries are switched
from 1 to 0 and vice versa. This can be accomplished in O(n2) steps. ♦

The consequences of P = NP would be mind-blowing. It would mean that computers could quickly find
proofs for mathematical statements for which a verification exists. However, many researchers believe
that the classes P and NP are distinct since decades of effort have brought no evidence that efficient
algorithms for NP-complete problems exist.

The concept of NP-completeness was independently discovered by Stephen Cook and Leonid Lewin
in the early 1970’s. Shortly afterwards, Richard Karp demonstrated that many problems of practical
interest are NP-complete. Today, several thousands of problems in various fields are known to be NP-
complete.

104 9 Computational Complexity Theory

Satisfiability Problem

One of the first studied NP-complete problems came from mathematical logic. In propositional calculus,
the basic Boolean operations are Not (¬), And (∧), and Or (∨) as defined in Table 9.1.

x y ¬x x ∧ y x ∨ y

0 0 1 0 0
0 1 0 1
1 0 0 0 1
1 1 1 1

Table 9.1. Boolean operations: Not, And, and Or.

Using these operations, Boolean formulas over variables x1, . . . , xn can be inductively defined:

• Each variable is a Boolean formula.
• If φ and ψ are Boolean formulas, then ¬(φ), (φ ∧ ψ), and (φ ∨ ψ) are also Booelan formulas.

It is assumed that Not has higher precedence than And and Or. This allows Boolean formulas to be
slightly simplified for better readability; e.g., ((¬x) ∨ y) can also be written as (¬x ∨ y) or ¬x ∨ y.

The variables of a Boolean formula can be assigned truth values 0 or 1. A Boolean formula φ over
the variables x1, . . . , xn is satisfiable if there is an assignment a = (a1, . . . , an) ∈ {0, 1}n such that the
substitution xi = ai for 1 ≤ i ≤ n and the corresponding expansion φ(a) of the formula yields φ(a) = 1.
For instance, the formula (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) is satisfiable since the assignment x1 = 1 and x2 = 0
(or x1 = 0 and x2 = 1) gives the value 1.

A Boolean formula over variables x1, . . . , xn is in conjunctive normal form (CNF) if it is composed
of And’s of Or’s of variables and their negations. The Or’s of variables are called clauses and the
variables and their negations are called literals. For any number k ≥ 1, a k-CNF is a CNF in which all
clauses contain at most k literals. For example, the formula (x1 ∨¬x2 ∨ x3)∧ (¬x1 ∨ x2) is a 3-CNF. It
is well-known that each Boolean function and so each combinatorial circuit, i.e., a digital circuit whose
output only depends on the input and not on internal states given by registers or other kind of memory,
can be described by a suitable CNF.

Proposition 9.12. For each Boolean function f : {0, 1}n → {0, 1}, there is an n-CNF φ in n variables
such that for each assignment a ∈ {0, 1}n, φ(a) = f(a).

Proof. For each assignment a ∈ {0, 1}n, there is a clause Ca(x1, . . . , xn) in n variables such that
Ca(a1, . . . , an) = 0 and Ca(b1, . . . , bn) = 1 for each assignment b ∈ {0, 1}n different from a. This clause
is defined as y1 ∨ . . . ∨ yn, where yi = ¬xi if ai = 1, and yi = xi if ai = 0, 1 ≤ i ≤ n. For instance, the
assignment a = (1, 0, 1) gives the clause Ca = ¬x1 ∨ x2 ∨ ¬x3.

Let φ be defined as the And of the clauses Ca for which f(a) takes on the value 0, i.e.,

φ(x1, . . . , xn) =
∧

a

f(a)=0

Ca(x1, . . . , xn). (9.3)

By definition, φ is an n-CNF. Moreover, if f(b) = 0, then Cb(b) = 0 and so φ(b) = 0. On the other
hand, if f(b) = 1, then Ca(b) = 1 for each a with the property f(a) = 0 and so φ(b) = 1. It follows that
for each assignment b, φ(b) = f(b). ⊓⊔

9.3 Reducibility and NP-Completeness 105

The concept of NP-completeness is based on the following pioneering result. For this, let LSAT

denote the language of all satisfiable CNF and in particular let L3SAT be the language of all satisfiable
3-CNF. Both, LSAT and L3SAT lie in NP since each satisfying assignment can be used as a witness that
the formula is satisfiable.

Theorem 9.13 (Cook-Lewin). The language LSAT is NP-complete.

The proof requires to show that each language L in NP is reducible to the language LSAT. This
necessitates a polynomial-time transformation that converts each string x ∈ {0, 1}∗ into a CNF φx in
such a way that x ∈ L if and only if φx is satisfiable. However, nothing is known about the language L
except that it belongs to NP and so the reduction can only use the definition of computation and its
expression by a Boolean formula.

Proof. Suppose L is a language in NP. Then by 9.8 there is a nondeterministic Turing machine M
that decides L in polynomial time p(n). The computation of the machine M can be described by the
following set of Boolean variables:

• For each state q ∈ Q and number 0 ≤ j ≤ p(n), let s(q, j) be true if M is in state q during the jth
step of computation.

• For all numbers 0 ≤ i, j ≤ p(n), let h(i, j) be true if the tape head is at cell i during step j.
• For each tape symbol t and numbers 0 ≤ i, j ≤ p(n), let c(i, j, t) be true if cell i contains the symbol

t during the jth step.
• For each number 0 ≤ i ≤ p(n) and each number 0 ≤ j ≤ p(n) − 1, let u(i, j) be true if cell i is

unchanged from step j to step j + 1.

These variables can be used to describe the computation of the machine M as follows:

• The machine is in exactly one state during any step of the computation; i.e., for each number
0 ≤ j ≤ p(n),

∨

q∈Q

s(q, j)

and for each state q ∈ Q,

s(q, j)⇒
∧

q′∈Q\{q}

¬s(q′, j).

• The machine’s tape head is in exactly one location during any step of the computation; that is, for
each number 0 ≤ j ≤ p(n),

p(n)
∨

i=0

h(i, j)

and for each number 0 ≤ k ≤ p(n),

h(k, j)⇒
∧

i6=k

¬h(i, j).

106 9 Computational Complexity Theory

• Each cell of the machine contains exactly one tape symbol during any step of the computation; i.e.,
for all numbers 0 ≤ i, j ≤ p(n),

∨

t

c(i, j, t)

and for each tape symbol t,

c(i, j, t)⇒
∧

t′ 6=t

¬c(i, j, t′).

• If a cell remains unchanged from one step to the next, the cell’s content will remain the same; that
is, for all numbers 0 ≤ i ≤ p(n) and 0 ≤ j ≤ p(n)− 1 and each tape symbol t,

c(i, j, t) ∧ u(i, j)⇒ c(i, j + 1, t).

• The computation on input x begins in the initial state q0 with tape head located at cell 0, and the first
p(n) + 1 cells contain the word xbp(n)+1−|x|; i.e., for all numbers 0 ≤ i ≤ p(n) and 0 ≤ j ≤ p(n)− 1,

s(q0, 0) ∧ h(0, 0) ∧ c(0, 0, x1) ∧ . . . ∧ c(n− 1, 0, xn) ∧ c(n, 0, b) ∧ . . . ∧ c(p(n), 0, b),

where x = x1 . . . xn is the input string and b is the blank symbol.
• Given a configuration, the next configuration is determined by applying one of the transition func-

tions δ0 or δ1; that is, for each tape symbol t and each state q ∈ Q,

δ0(q, t) = (q′0, t0, d0) and δ1(q, t) = (q′1, t1, d1).

Then for all numbers 0 ≤ i ≤ p(n) and 0 ≤ j ≤ p(n) − 1, for each tape symbol t, and each state
q ∈ Q,

s(q, j) ∧ h(i, j) ∧ c(i, j, t)⇒
∧

k 6=i

u(k, j) ∧
∨

m=0,1

[s(q′m, j + 1) ∧ h(ηm(i), j + 1) ∧ c(i, j + 1, tm)],

where for each m ∈ {0, 1},

ηm(i) =

i− 1 if dm = L and i > 0,
i if dm = L and i = 0 or dm = R and i = p(n) or dm = Λ,
i+ 1 if dm = R and i < p(n).

• The terminal configuration is accepting if possible; i.e., s(qa, p(n)).

Let φx be the And of the above seven Boolean formulas. For this, note that the implication a⇒ b can
be equivalently written as ¬a ∨ b. For each input string x, x ∈ L means that there is a computation of
the machine M in polynomial time p(n) that reaches the accepting state qa. This in turn is equivalent
to the existence of an assignment of the formula φx. ⊓⊔

In particular, the 3SAT problem has gained specific attention since it has been the starting point
for proving that several other problems are NP-complete.

Corollary 9.14. The language L3SAT is NP-complete.

9.4 Some NP-Complete Languages 107

Proof. We already know that L3SAT lies in NP. So it remains to show that each CNF φ can be mapped
to a 3-CNF ψ such that φ is satisfiable if and only if ψ is. The idea is to replace each clause C = y1∨y2∨
y3∨ . . .∨yk with k > 3 literals by an And of the two clauses C1 = y1∨y2∨z and C2 = y3∨ . . .∨yk∨¬z,
where z is a new variable. If C is true, there is an assignment to z such that both C1 and C2 are true.
On the other hand, if C is false, then either C1 or C2 is false no matter of the assignment of z. The
above transformation can be repeatedly applied to convert a CNF φ into an equivalent 3-CNF ψ in
polynomial-time. ⊓⊔

9.4 Some NP-Complete Languages

After some NP-complete languages like LSAT and L3SAT have become available, reduction has been used
to show that other languages are NP-complete. This approach has quickly led to several thousands of
NP-complete languages. Here are two important examples.

The language LIntProg consists of all satisfiable 0/1 integer programs as defined in 9.6; i.e., a finite
set of linear inequalities with rational coefficients over variables x1, . . . , xn lies in LIntProg if there is an
assignment of values 0 or 1 to the variables x1, . . . , xn which satisfies the inequalities.

Theorem 9.15. The language LIntProg is NP-complete.

Proof. The language LIntProg belongs to NP since each assignment can be taken as a certificate. More-
over, the language LSAT can be reduced to LIntProg. To see this, note that each CNF can be converted
into an integer program by expressing each clause as an inequality. For instance, the clause x1∨¬x2∨x3
represents the inequality x1 + (1− x2) + x3 ≥ 1. ⊓⊔

The reduction of the satisfiability problem to a graph theoretic problem can be a cumbersome task.
The language LClique consists of all pairs (G, k), where G is a graph and k is a number such that G has
a clique with at least k elements.

Theorem 9.16. The language LClique is NP-complete.

Proof. The language LClique lies in NP since for any pair (G, k) a given set of at least k vertices can
be used as a certificate. Furthermore, the language LSAT can be reduced to LClique. To see this, take
a CNF φ = φ1 ∧ . . . ∧ φk consisting of k clauses, where each clause φi = li,1 ∨ . . . ∨ li,ki consists of ki
literals li,j , 1 ≤ i ≤ k, 1 ≤ j ≤ ki. Consider the graph G = (V,E) with vertex set

V = {[i, j] | 1 ≤ i ≤ k, 1 ≤ j ≤ ki}

and edge set
E = {{[r, s], [u, v]} | r 6= u, lr,s 6= ¬lu,v}.

For instance, the 3-CNF φ = (x1 ∨ x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3) gives rise to the graph in 9.1.
Suppose that the CNF φ is satisfiable. Then there is an assignment a such that φ(a) = 1. Thus

φi(a) = 1 for each 1 ≤ i ≤ k and so li,ji(a) = 1 for some literal li,ji in φi, 1 ≤ ji ≤ ki. Claim that
the set {[i, ji] | 1 ≤ i ≤ k} forms a clique. Indeed, if the vertices [i, ji] and [u, ju] are not connected for
some indices i, u with i 6= u, then li,ji(a) = ¬lu,ju(a) contradicting the hypothesis. Thus the given set
forms a clique with k elements.

108 9 Computational Complexity Theory

Conversely, assume that the graph G has a clique with k elements. By construction of the graph,
the clique must have the form {[i, ji] | 1 ≤ i ≤ k}. Define an assignment a with li,ji(a) = 1, 1 ≤ i ≤ k.
It is well-defined since for connected vertices [i, ji] and [u, ju], i 6= u, the literals li,ji and lu,ju are not
complementary to each other. This assignment satisfies the clauses φi, 1 ≤ i ≤ k, and hence the CNF φ.
⊓⊔

[1, 1]

UUUU
UUUU

UUUU
UUUU

UUUU
UU

QQQ
QQQ

QQQ
QQQ

QQQ
QQQ

QQQ
QQQ

QQQ
QQQ

QQQ
[2, 1]

[1, 2]

,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,

iiiiiiiiiiiiiiiiiiiiii

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYYY
YYYYYY

YYYYY [2, 2]

[2, 3]

[3, 1]

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

eee

[3, 2]

��������������������������������

||||||||||||||||||||||||||||||

Fig. 9.1. The graph G corresponding to a 3-CNF φ.

Index

3-CNF, 105

abstract rewriting system, 85
acceptable programming system, 57
Ackermann, Wilhelm, 39
And, 104
anti-diagonal, 19
asymmetric difference, 2
average-case analysis, 100

basic function, 11
bifurcation label, 31
big-Oh notation, 99
blank, 59
block, 4
Boolean formula, 104
Boolean function, 98
bounded minimalization, 18
bounded product, 17
bounded quantification

existential, 22
universal, 22

bounded sum, 17

Cantor function, 19
Cantor, Georg, 70
certificate, 100
characteristic function, 22
Church, Alonso, 38
class P, 99
clause, 104
clique, 101
CNF, 104
combinatorial circuit, 104

complementary graph, 103
complexity class, 99
composition, 2, 11, 14
computable function, 5
configuration, 32, 66, 86
conjunctive normal form, 104
constant function

0-ary, 11
monadic, 11

Cook’s hypothesis, 100
Cook, Stephen, 103
copy, 7
cosign function, 17

Dantzig, George B., 100
Davis, Martin, 61
decidable set, 69
decision

language, 98, 99, 102
decision procedure, 69

partial, 74
decrement function, 2
Dedekind, Richard, 10
depth, 24
derivation, 85
diagonalization, 70
diophantine equation, 80

linear, 80
diophantine set, 81
domain, 2

efficient computation, 99
empty string, 49
enumerator, 77

110 Index

equivalence class, 89
Euler, Leonhard, 81
extension, 78

function
defined by cases, 16
finite, 78
GOTO computable, 34
LOOP computable, 24
partial, 2
partial recursive, 30
Post-Turing computable, 66
recursive, 30
time constructible, 98
total, 2
URM computable, 5

Fundamental Lemma, 10

Gödel number, 49
instruction, 52
program, 52

Gödel numbering, 49, 66
Gödel, Kurt, 49
GOTO computability, 34
GOTO program, 31

instruction, 31
standard, 31, 51
termination, 32

graph, 2, 75
complementary, 103
connectivity, 101
isomorphism, 101

graph connectivity, 99

halt state, 59
halting problem, 71
Hamiltonian circuit, 101
Hartmanis, Juris, 98
Hilbert, David, 80

increment function, 2
independent set, 100
index, 52, 77
induction axiom, 9
input alphabet, 59
input tape, 97
integer factoring, 101
integer programming, 101
inverse relation, 88

iteration, 3, 21

Karp, Richard, 103
Khachiyan, Leonid G., 101
Kleene predicate, 58
Kleene set, 57
Kleene, Stephen Cole, 29, 53

label, 31
Lagrange, Joseph-Louis, 81
Landau notation, 99
language

binary, 98
decision, 98, 99, 102
verification, 100

left move, 59
length function, 51
Lewin, Leonid, 103
linear programming, 101
literal, 104
little-Oh notation, 99
LOOP

complexity, 43
computability, 24
program, 24

Markov, Andrey, 90
Matiyasevich, Yuri, 81
morphism, 9

natural variety, 81
next label, 31
non-move, 59
nondeterminism, 102
normal form, 58
Not, 104
NP, 100
NP-complete, 103
NP-hard, 103
NP-intermediate, 101

one-step function, 32, 54
iterated, 56

Or, 104
output tape, 97

P, 99
pairing function, 19
palindrome, 98
parametrization, 16

Index 111

partial function, 2
partial recursive function, 30
PCS, 90

solution, 90
Peano structure, 9

semi, 9
Peano, Guiseppe, 9
Post correspondence system

see PCS, 90
Post, Emil, 89, 90
Post-Turing

machine, 61
program, 61

power, 3, 21
presentation, 90
primitive recursion, 11, 12
primitive set, 22
primitively closed, 15
projection function, 11

r.e., 76
range, 2
rational numbers, 70
recursive enumerable set, 76
recursive function, 30
recursive set, 76
reducibility, 71, 102
reduction, 70
reduction function, 71
reload, 7
residual step function, 33, 57, 67
rewriting rule, 85
Rice theorem, 73
Rice, Henry Gordon, 73
Rice-Shapiro theorem, 79
right move, 59
runtime function, 33, 56, 67

satisfiability, 104
semi-Thue system, 85
semidecidable set, 73
semigroup, 89

free, 89
semigroup of transformations, 3
SGOTO program, 51
Shapiro, Norman, 78
Simplex method, 100
smn theorem, 53
start state, 59

state transition function, 59
Stearns, Richard E., 98
string rewriting system, 85
subset sum, 101
successor configuration, 32
successor function, 9, 11
symmetric closure, 88

tape alphabet, 59
thesis of Church, 38
Thue system, 88
Thue, Axel, 85
total function, 2
transformation of variables, 15
translation invariance, 6
travelling salesmen, 101
Turing machine, 59

k-tape, 97
computation, 60
configuration
initial, 60

nondeterministic, 102
state, 59

Turing, Alan, 59, 71

unbounded minimalization, 29, 57
existential, 57
universal, 58

undecidable set, 69
universal function, 54
unlimited register machine

see URM, 1
URM, 1

computable function, 5
composition, 4
computability, 5
iteration, 4
program, 3
atomic, 4
normal, 6

state set, 1
URM program

semantics, 4

verification
language, 100

vertex cover, 101

witness, 100

112 Index

word problem
PCS, 91
semi-Thue system, 86
semigroup, 90

Thue system, 88
working space, 98
working tape, 97
worst-case analysis, 100

