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Abstract

In this paper we consider a rational eigenvalue problem governing the vibra-
tions of a tube bundle immersed in an inviscid compressible fluid. Taking
advantage of eigensolutions of appropriate sparse linear eigenproblems the
large nonlinear eigenvalue problem is projected to a much smaller one which
is solved by inverse iteration.

1 Introduction

Vibrations of a tube bundle immersed in an inviscid compressible fluid are
governed under some simplifying assumptions by an elliptic eigenvalue prob-
lem with non-local boundary conditions which can be transformed to a
rational eigenvalue problem. Discretizing this problem by finite elements
one obtains a rational matrix eigenvalue problem

K
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where the matrices A, B and C; are symmetric and positive (semi-) definite,
and they are typically large and sparse.

For linear sparse eigenvalue problems one gets approximations to eigen-
values and eigenvectors by projection methods where a sequence of low
dimensional spaces V}, is constructed by the Lanczos process or the Jacobi-
Davidson method, e.g., and taking advantage of shift—-and—invert or rational



Krylov techniques one gets approximate eigenvalues in the wanted part of
the spectrum.

Generalizations of this approach to the nonlinear eigenvalue problem
T(M\)x = 0 are contained in recent papers by Ruhe [7] and Hager and Wiberg
[3], [4] who updated linear eigenvalue problems which approximate the pro-
jection of the nonlinear eigenproblem to a Krylov space of T'(o)™1T'(\) for
some shift ¢ and varying A, and for symmetric nonlinear problems hav-
ing a Rayleigh functional by Betcke and the author [1] who constructed
ansatz vectors for a projection method by a Jacobi-Davidson type approach
and solved the low dimensional projected nonlinear eigenproblem by inverse
iteration. Work on a variant for non-symmetric problems is in progress.

In this paper we exploit the special structure of the nonlinear eigenprob-
lem in fluid-solid interaction in a projection method. Motivated by a min-
max characterization of eigenvalues for the rational eigenproblem (1) and
by comparison theorems for problem (1) we determine ansatz vectors from
suitable linear eigenproblems. This method turns out to be much more effi-
cient than the Jacobi-Davidson approach in [1]. Notice however, that the
method in [1] applies to a much wider class of nonlinear eigenproblems.

The paper is organized as follows: Section 2 describes the model for the
fluid-structure interaction problem under consideration, and Section 3 sum-
marizes numerical methods for nonlinear eigenvalue problems. In Section 4
we present a projection method for large and sparse nonlinear eigenvalue
problems, and Section 5 contains a numerical example.

2 A Spectral Problem in Fluid-Solid Structures

This section is devoted to the presentation of the mathematical model which
describes the problem governing free vibrations of a tube bundle immersed
in a slightly compressible fluid under the following simplifying assumptions:
The tubes are assumed to be rigid, assembled in parallel inside the fluid,
and elastically mounted in such a way that they can vibrate transversally,
but they can not move in the direction perpendicular to their sections.
The fluid is assumed to be contained in a cavity which is infinitely long,
and each tube is supported by an independent system of springs (which
simulates the specific elasticity of each tube). Due to these assumptions,
three-dimensional effects are neglected, and so the problem can be studied
in any transversal section of the cavity. Considering small vibrations of the
fluid (and the tubes) around the state of rest, it can also be assumed that
the fluid is irrotational.

Mathematically this problem can be described in the following way (cf.
[2]). Let © C R? (the section of the cavity) be an open bounded set with
locally Lipschitz continuous boundary I'. We assume that there exists a
family Q; # 0, j =1,..., K, (the sections of the tubes) of simply connected
open sets such that Q; C Q for every j, Q; NQ; = 0 for j # i, and each €
has a locally Lipschitz continuous boundary I';. With these notations we set



Qo =0\ U;il (2;. Then the boundary of Q consists of K + 1 connected
components which are I'and I';, j = 1,..., K.

We denote by H'(Qg) = {u € L*(Qo) : Vu € L?*(Q)?} the standard
Sobolev space equipped with the usual scalar product. Then the eigenfre-
quencies and the eigenmodes of the fluid-solid structure are governed by the
following variational eigenvalue problem (cf. [2])

Find A € R and u € H*(Qy) such that for every v € H' ()

K
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Here u is the potential of the velocity of the fluid, ¢ denotes the speed of
sound in the fluid, pg is the specific density of the fluid, k; represents the
stiffness constant of the spring system supporting tube j, m; is the mass per
unit length of the tube j, and n is the outward unit normal on the boundary
of Qo.

The eigenvalue problem is non—standard in two respects: The eigenpa-
rameter \ appears in a rational way in the boundary conditions, and the
boundary conditions are non-local.

In Conca et al. [2] it was shown that the eigenvalues are the characteristic
values of a linear compact operator acting on a Hilbert space. The operator
associated with this eigenvalue problem is not selfadjoint, but it can be
symmetrized in the sense that one can prove the existence of a selfadjoint
operator which has the same spectrum as the original operator. Hence, the
set of eigenvalues is a countably infinite set of positive real numbers that
converge to infinity. The same result was obtained in [9] in a less technical
way from a minmax characterization of eigenvalues of nonlinear eigenvalue
problems (cf. [11]).

Discretizing problem (2) by finite elements one obtains a rational matrix
eigenvalue problem

Find A € R and x # 0 such that

K
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where the matrices A, B and C; are symmetric, B is positive definite, and A
and C; are positive semi—definite. In a similar way as for linear eigenvalue
problems it follows from minmax arguments that the eigenvalues of the
discrete problem (3) are upper bounds of the corresponding eigenvalues of
the nonlinear problem (2).



3 Solving nonlinear eigenvalue problems

In this section we summarize numerical methods for finite dimensional non-
linear eigenvalue problems
T(\)z =0 (4)

where T'(A) is a family of real symmetric n x n-matrices, and we assume
that the dimension n of problem (4) is large.

For dense problems algorithms for problem (4) are investigated in [5], [6],
[8] which are all variants of inverse iteration

2F =, T(O) 71T ()2 (5)

where «y, is a suitable normalization factor and Ay is updated in some way.
Similarly as in the linear case inverse iteration is quadratically convergent
for simple eigenvalues, and the convergence is even cubic if problem (4) is
symmetric and if A\ is updated by the Rayleigh functional.

An essential disadvantage of inverse iteration is the fact that each eigen-
value has to be determined individually by an iterative process, and that
each step of this iteration requires the solution of a linear system. More-
over, the coefficient matrix T'(\;) of system (4) changes in each step, and
in contrast to the linear case replacing (5) by ¢t = a,T(0) 1T (A\g)2"*
with a fixed shift ¢ results in convergence to an eigenpair of the linear sys-
tem T(o)z = vT'(A\)z (v # 0 depending on the normalization condition)
from which we can not recover an eigenpair of the nonlinear problem (4). A
remedy against this wrong convergence was proposed by Neumaier [5] who
introduced the so called residual inverse iteration which converges linearly
with a fixed shift, and quadratically or cubically if \; is updated, and the
coefficient matrix changes in every iteration step.

For dense problems inverse iteration is a very capable method, however,
for large and sparse nonlinear eigenvalue problems inverse iteration is much
too expensive.

For sparse linear eigenvalue problems the most efficient methods are iter-
ative projection methods, where approximations of the wanted eigenvalues
and corresponding eigenvectors are obtained from projections of the eigen-
problem to subspaces which are expanded in the course of the algorithm.
Methods of this type for symmetric problems are the Lanczos method, ratio-
nal Krylov subspace methods, and the Jacobi-Davidson method, e.g.

Ruhe [7] and Hager and Wiberg [3], [4] generalized this approach to sparse
nonlinear eigenvalue problems linearizing (4) by the secant method and
solving the resulting linear eigenproblem by Arnoldi’s method. In [4] Hager
points out that the eigenpairs of (4) are determined one after another. After
a Ritz value has converged only the approximate eigenvectors from previous
Arnoldi runs, the just converged Ritz vector, and an approximation to a
further eigenvector to be computed in the next Arnoldi run are kept, and
the rest of the current Krylov space is purged. Hence, each eigenvalue of (4)



is determined by an individual approximate Arnoldi process essentially from
scratch, and therefore the cost of the rational Krylov method for nonlinear
problems is similar to the cost of inverse iteration.

A further generalization of projection methods to symmetric sparse non-
linear eigenvalue problems having real eigenvalues was proposed in [1] where
an orthonormal basis of a suitable finite dimensional space is constructed
by a Jacobi-Davidson approach. The projected nonlinear problem of small
dimension then inherits the symmetry of the sparse problem, and can be
solved by the safeguarded inverse iteration which converges cubically. Work
on a variant for non-symmetric problems is in progress.

4 A Projection Method for Fluid-Solid Vibrations

In this section we propose a projection method for the eigenvalue problem
(3). The choice of the ansatz vectors is motivated by comparison results
which are obtained from a minmax characterization of eigenvalues of (3).

We consider the nonlinear eigenvalue problem (4) where T'(A) is a family
of real symmetric matrices for every A in an open real interval J. We assume
that f(\, z) :== 2TT(\)z is continuously differentiable on J x R™, and that
for every fixed z € R™ \ {0} the real equation

fz) =0 (6)

has at most one solution in J. Then equation (6) implicitly defines a func-
tional p on some subset D of R™\ {0} which we call the Rayleigh functional.
Moreover, we assume that %f(/\7 x)|/\:p(z) > 0 for every x € D.

For a linear eigenvalue value problem T'(A)x := (M — A)z = 0 where A
is a symmetric matrix the assumptions above are fulfilled, p is the Rayleigh
quotient and D = R™\ {0}. In this case the eigenvalues can be characterized
as minmax values of p.

For nonlinear eigenvalue problems variational properties using the Rayleigh
functional were proved by Duffin, Rogers, Hadeler, and Werner if the prob-
lem is overdamped, i.e. if the Rayleigh functional p is defined in the entire
space R™ \ {0}. Nonoverdamped problems were studied by Werner and the
author [11]. In this case the natural enumeration for which the smallest
eigenvalue is the first one, the second smallest is the second one, etc. is not
appropriate, but the number of an eigenvalue A\ of the nonlinear problem
(4) is obtained from the location of the eigenvalue 0 in the spectrum of the
matrix T'(A).

If A € J is an eigenvalue of problem (4) then p = 0 is an eigenvalue of
the linear problem T'(\)y = py, and therefore there exists k € N such that

0= max min v T(\)v
VeSs,y vewy



where Sy denotes the set of all k~dimensional subspaces of R® and V! :=
{v € V : ||v|| = 1} is the unit sphere in V. In this case we call A a k-th
eigenvalue of (4).

With this enumeration the following minmax characterization of the eigen-
values of the nonlinear eigenproblem (4) was proved in [11] (under an addi-
tional compactness condition even for the infinite dimensional case):

Theorem 1 Under the conditions given above the following assertions hold:

(i) For every k € N there is at most one k-th eigenvalue of problem (4)

which can be characterized by

)\ =
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The set of eigenvalues of (4) in J is at most countable.
(i) If
A= inf sup p)ed
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for some k € N then A\ is the k-th eigenvalue of (4) and (7) holds.
For the nonlinear eigenproblem (3) the general conditions obviously are
satisfied for every open interval J C Ry which does not contain k;/m; for
j=1,..., K. Moreover for fixed x € R"

K
A
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is monotonely increasing with respect to A. Hence, every open interval J
such that k;/m; ¢ J for j = 1,..., K contains at most countably many
eigenvalues which can be characterized as minmax value of the Rayleigh
functional p defined by f(p(x),x) = 0 where f is defined in (8).

We now assume that the quotients :TJ are ordered by magnitude
J

k k k k k
0=: -0 < - < 22 f;...<:——§; < 00 =: _liiln
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If % < % for some ¢ € {1,..., K + 1} then problem(3) has a Rayleigh
functional p, corresponding to the interval J, := (:fz 11 S 23 which is defined
in the domain of definition denoted by D,.

Comparing p, with the Rayleigh quotient of the linear eigenvalue problem

(A+Zm _kC’)m— (B+Zk_ )x 9)

for a parameter k € J; we obtained in [9] the following inclusion result for
the eigenvalues in Jj.



Theorem 2 Let xk € Jy, and assume that the m-th eigenvalue p,, of the
comparison problem (9) is contained in Jy. Then the rational eigenvalue
problem (8) has an m-th eigenvalue X\, in Jy, and the following inclusion
holds

min(pem, k) < Ay < max(fim, K).

For the rational eigenvalue problem (3) the proof of the Inclusion The-
orems 2 demonstrates that eigenvectors of the linear system (9) are good
approximations to eigenvectors of the nonlinear problem, at least if the
shift k is close to the corresponding eigenvalue. This suggests the following
projection method (which was already considered in [10] for the extreme
intervals J; and Jgy1) if we are interested in eigenvalues of the nonlinear
problem (3) in the interval J,.

Projection method

1. Choose a small number of shifts k1,...,k, € Jy.

2. For j =1,...,r determine the eigenvectors u;i, k = 1,...,s;, of the
linear problem (9) with shift x; corresponding to eigenvalues in Jy.

3. Let U be the matrix with columns u;, j = 1,...,7, k = 1,...,s;.

Determine the QR factorization with column pivoting which produces
the QR factorization of UE where E denotes a permutation matrix
such that the absolute values of the diagonal elements of R are mono-
tonely decreasing.

4. For every j with |r;;| < 7 -|r11| drop the j-th column of @ where
7 € [0,1) is a given tolerance, and denote by V the space that is
spanned by the remaining columns of Q.

5. Project the nonlinear eigenvalue problem (3) to V' and solve the pro-
jected problem by inverse iteration with variable shifts.

5 A numerical example

Consider the rational eigenvalue problem (2) where Q is the ellipse with
center (0,0) and length of semiaxes 8 and 4, and Q;, j =1,...,9 are circles
with radius 0.3 and centers (—4,—2), (0,-2), (4,-2), (—5,0), (0,0), (5,0),
(—4,2), (0,2) and (4,2). Weassumec=1, pg =1, k; =1forall j, m; =5
for the circles with centers (—4, —2), (0,—2) and (4, —2) and m; = 1 for all
other circles in problem (2).

We discretized this eigenvalue problem with linear elements obtaining a
matrix eigenvalue problem

Cix + LCQ.’I; (10)

A
Az = \B
T=ABr+ 11—\

where C7 and C5 collect the contributions of all tubes corresponding to
m; =5 and m; = 1, respectively. Problem (10) of dimension n = 36040 has
10 eigenvalues A\; < ... < Ajp in the interval J; = [0,0.2), 19 eigenvalues



o[ 1=0.001

10° | - L E
E F— E
F , S~ - +
—: 7/ —~ - = -
107°F s + - - - = T~ _ 4
E , T~ o
11: i\ +//
10 / T~ o
E / e
£ /
107 / §
E /
F, T1=0
_iz| /7
107, E|
17
10’14 L L L L L L L
2 3 4 5 6 7 8 ° 10

Fig. 1: relative errors; eigenvalues in (0,0.2); shifts 0.1e, 0.15, 0.175, 0.1875

J3 = (1,3).
To approximate the eigenvalues in J; we solved the linear eigenvalue
problem

As < ... < Aog in Jo = (0.2,1), and 19 eigenvalues M2 < ... < Ay in

1-—5k 1—k

by Lanczos’ method with complete reorthogonalization for different parame-
ters of x obtaining approximations to eigenvectors of problem (9). We added
o B on the right hand side with a small o > 0 since A is singular.

With 4 parameters k1 = 0.1, ko = 0.15, k3 = 0.175 and k4 = 0.1875 and
tolerances 71 = le — 1, 79 = le — 3, and 73 = 0 we obtained eigenvalue
approximations to A1, ..., Ajo the relative errors of which are displayed in
Figure 1. The dimensions of the projected eigenvalue problems were 27, 36
and 45, respectively.

On an Intel Pentium 4 with 2 GHz and 1 GB RAM it took 28.70 sec-
onds to solve the 4 linear eigenvalue problems, and 1.06 seconds for the QR
factorization with column pivoting. To solve the projected nonlinear eigen-
value problems by safeguarded inverse iteration it took 2.14, 3.17 and 3.08
seconds, respectively.

To approximate the eigenvalues in J; we solved the linear problem

(B—l— ! C1+ ! C’Q):UZN(A—FUB):E

(B—&-;C'g)x:,u(A—F " C’1—|—JB)3U
1-—k 5k —1

for 4 parameters k1 = 0.6, ko = 0.8, k3 = 0.9, and k4 = 0.95, and with
the same tolerances as before we obtained the relative errors in Figure 2.
The dimensions of the projected problems are 39, 58 and 68, respectively.
The CPU times in this run were 91.41 seconds for the linear eigenproblems,



Fig. 2: relative errors; eigenvalues in (0.2,1); shifts 0.6, 0.8, 0.9, 0.95

2.63 seconds for the QR factorization, and 4.45, 8.14, and 7.61 seconds for
inverse iteration.

Figure 3 shows the relative errors of eigenvalues S\j, 7 =12,...,30, in the
interval J3 = (1,3) which were obtained with shift parameters x; = 1.25
and ko = 1.5, k3 = 2 and k4 = 2.5 in the linear problem

Bmz,u(A—i— Cl—i—ﬂing—l—aB)x

K
5k — 1
and tolerances 71 = le — 1, 79 = le — 3 and 73 = 0. The dimensions of the
nonlinear projected problem are 46, 61, and 87, respectively. The CPU times
in this run were 211.41 seconds for the linear eigenproblems, 3.83 second for
the QR factorization, and 5.69, 9.00, and 13.82 seconds for inverse iteration.

The Jacobi-Davidson type method proposed in [1] achieved the same accu-
racy as our method for 7 = 0 for the eigenvalue approximations in Jy, Js,
and Js, respectively, projecting problem (2) to a rational eigenproblem of
dimension 31, 64, and 75, and requiring 296.38, 575.34, and 608.53 seconds,
respectively. Hence, the method considered here is much more efficient than
the method from [1] which on the other hand applies to a much wider class
of nonlinear eigenproblems, including non-symmetric problems.
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