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Abstract The current push toward lightweight struc-
tures in aerospace and aeronautical engineering is lead-
ing to slender design airfoils, which are more likely
to undergo large deformation, hence experiencing geo-
metrical nonlinearities. The problem of vibration local-
ization in a rotor constituted by N coupled airfoils with
plunge and pitch degrees of freedom subjected to flut-
ter instability is considered. For a single airfoil, it is
shown that depending on the system parameters, mul-
tiple static and dynamic equilibria coexist which may
be a fixed point, a limit cycle, or irregular motion.
By elastically coupling N airfoils, a simplified rotor
model is obtained. The nonlinear dynamical response
of the rotor is studied via time integration with par-
ticular attention to the emergence of localized vibrat-
ing solutions, which have been classified introducing
a localization coefficient. Finally, the concept of basin
stability is exploited to ascertain the likelihood of the
system to converge to a certain localized state as a func-
tion of the airstream velocity. We found that homoge-
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neous and slightly localized states are more likely to
appear with respect to strongly localized states.
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1 Introduction

There are several examples in engineering for struc-
tures constituted by mechanical elements arranged in a
cyclic and symmetric fashion, which range from aero-
engine fans [1], turbine and compressor rotors [2], wind
turbine rotors [3], propellers [4], blisks [5] and space
structures [6–8]. Some of them are illustrated in Fig. 1.
The repeating sector (unit cell) is typically constituted
by a slender beam (the blade in aeroengines), which is
connected to the hub through amechanical joint, which
provides the weak elastic coupling between different
sectors. Since the ‘50s, it was recognized in solid state
physics that a small disorder added to a linear crys-
tal lattice may lead to spatial localization of vibration
energy [9], which, in turn, may strongly influence the
lattice transport properties [10]. Later on, the problem
of vibration localization became central in engineering
as for the relevance it has in turbomachinery [2,11,12].
Indeed, small deviations in the inertia or elastic prop-
erties of the rotor blades (unavoidable due to the manu-
facturing tolerances and wear) substantially change the
underlyingmode shapes of the system leading to spatial
localization of vibration, up to remarkable amplifica-
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tion factor, e.g., about � 6 in a rotor with 121 blades
[11] (although extreme cases are unlikely to happen).
Clearly, such an event may be life-threatening for the
blade [13–15], hence design strategies opt for consid-
erable damping when large vibration amplitudes are
reached, e.g., by introducing frictional dampers [16–
20].

More recent studies have shown that vibration local-
ization may take place also in nonlinear systems, due
to the mode shape dependence on may lead to energy
confinement [21–29]. For example Sato and co-authors
[23,24] first observed localization in an array of few
hundreds micro-mechanical cantilever oscillators, in
the presence of external excitation, disorder and damp-
ing. Even perfectly cyclic symmetric structures may
suffer spatial localization of vibrations, with only a
small part of the full structure vibrating with a con-
siderable amplitude. This is mainly due to the sys-
tem’s strong nonlinearities, such as nonlinear damping
[30,31], impacts [32] or nonlinear stiffness [33] (see
also [34–36]). A key characteristic of these systems
is that the “unit cell” is nonlinear and has multiple
coexisting stable solutions (fixed points and/or peri-
odic orbits) in a certain range of the operation condi-
tions and parameters [33,37,38]. When the unit cells
are assembled in a cyclic symmetric structure they may
experience several coexisting stable states, which are
typically obtainedwith fewof the unit cells being on the
excited state (typically a high amplitude limit cycle),
while the others vibrate with a smaller amplitude.

The claim for high power output and low energy
consumption constantly pushes the design of new-
generation turbomachinery toward larger rotors with
higher blade aspect-ratio (see Fig. 1). Slender blades,
alike those in the new-generation turbofan [41] or in
wind turbines, undergoing large deformations are a per-
fect candidate to show localization in weakly coupled
structures. In this work, we consider a cyclic symmet-
ric structure constituted of three blades connected to
the same hub. Each blade (the unit cell) is modeled as a
thin airfoil with two degrees of freedom (2-DOF, pitch
and plunge) loaded by a uniform airstream at a certain
velocity V . When, at the critical flutter speed, the bifur-
cation is subcritical, the blade shows a range of bista-
bility, which gives rise to multiple spatially localized
stable states when a rotor, constituted by several elas-
tically coupled blades, is considered. By following the
solution branches along the airstream velocity for an
isolated airfoil, we show that for low airstream veloci-

ties a stable fixed point and a periodic orbitmay coexist,
and that for high airstream velocity a stable limit cycle
or irregular motion is exhibited, with a different degree
of localization ifmeasured on the plunge or on the pitch
DOF. Finally, the concept of basin stability as a global
stabilitymetric is briefly introduced and the probability
of the system to asymptotically approach a certain state
(localized or not localized) is determined for a set of
operational conditions, i.e., varying airstream velocity
and various sets of initial conditions. It is shown that
the system more likely converges on homogeneous or
slightly localized solutions, while strongly localized
states are restricted to a quite narrow range of airstream
velocity .

2 Single airfoil

First, the dynamical response of a system constituting
the unit cell, i.e., the 2-DOF airfoil system, is studied
via time integration.

2.1 Governing equations for the single airfoil

The model analyzed in the present work describes a
planar oscillator by the plunge h and pitch α degrees-
of-freedom (DOF). The equations of motion provide a
direct coupling between pitch and plunge by the inertial
contributions. The nonlinear response of the system is
provided by the cubic stiffness coefficients on the pitch
and on the plunge (see Fig. 2). The pitch angle about
the elastic axis is considered positive with the nose
up; the plunge deflection is considered positive in the
downward direction. The elastic center CE is located
at a distance ab from the mid-chord point (b represents
half the chord length while a is a dimensionless param-
eter),while themass centerCM is located at a distance e
from the elastic center. CA represents the aerodynamic
center of the system. Both distances are positive when
measured toward the trailing edge of the airfoil.
Hence, the governing equations ofmotion for the aeroe-
lastic system under consideration are

m ¨̃h + meα̈ + ch
˙̃h + kh0h̃ + kh3h̃

3 = −L(t),

Iαα̈ + me ¨̃h + cαα̇ + kα0α + kα3α
3 = M(t),

(1)

where the expression ·̃ denotes a dimensional variable.
In the above equations,m is the mass of the blade, Iα is
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Fig. 1 Engineering applications with rotors with slender blades.
In clockwise sense: high bypass ration turbofan engine, wind
turbine, merchant ship propeller, aircraft turboprop engine (right
panels). Images adapted from Wikipedia (https://en.wikipedia.
org/wiki/Main_Page). Evolution of the turbofan engine bypass

ratio (top-right panel) through years, entailing an increase in the
fan blade slenderness; data taken from [39]. Evolution of the
blade length of off-shore and on-shore wind turbines through the
years; data take from [40]

Fig. 2 Sketch of the
isolated airfoil with relevant
dimensions. The pitch α and
plunge h are denoted with
their positive displacement

V
ab e

bb

h

CA CE CM

α

the mass moment of inertia about the elastic axis. Vis-
cous damping coefficients for plunge and pitch motion
are represented by ch and cα , respectively. L(t) and
M(t) represent the aerodynamic force and moment at
the aerodynamic center. In Eq. (1), t is the time variable
and a dot superimposed represents a time derivative.
For both pitch and plunge, a linear and a cubic stiffness
coefficients are considered, respectively {kα0, kα3} and
{kh0, kh3}.

Modeling the time-dependent load,without prior assump-
tions on the airfoil motion periodicity is a challenging
tasks in lumped-parameter models. According to the
theory of isolated oscillating airfoil in an incompress-
ible stream [42], the lift force L(t) and the aerodynamic
moment M(t), reduced to the aerodynamic center, are
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given by

L(t) = ρU 2b cL
(
αe) ,

M(t) = ρU 2b

(
1

2
+ a

)
cL

(
αe) ,

(2)

being U the airstream velocity, ρ the air density and
cL the lift coefficient, expressed as a function of the
equivalent pitch angle αe. Under the assumption of
infinitesimal variation of the angle of attack, the lift
coefficient can also be expressed as the product of the
lift coefficient in the reference configuration c0L and the
equivalent pitch angle

cL
(
αe) = c0L αe. (3)

The equivalent pitch angle is defined under the assump-
tions of incompressible, inviscid flow past a zero-
thickness airfoil at infinitesimal angle of attack. Fol-
lowing the theory of isolated oscillating airfoils in a uni-
form freestream [42], the equivalent pitch angle can be
obtained from the summation of three components: (i)
a uniform downwash angle corresponding to the pitch-
ing angle α; (ii) a uniform downwash due to vertical
translation h; (iii) a nonuniform downwash due to α̇ at
the 3/4 chord point

αe = α + ḣ

U
+ b

(
1

2
− a

)
α̇

U
. (4)

In this scenario, the aerodynamic forces are configuration-
dependent parameterswhich actively affect the dynamic
behavior of the system

L(t) = ρU 2bc0L

(
α + ḣ

U
+ b

(
1

2
− a

)
α̇

U

)
,

M(t) = ρU 2bc0L

(
1

2
+ a

)

(
α + ḣ

U
+ b

(
1

2
− a

)
α̇

U

)
.

(5)

From (1) and (5) the equations of motion yield

m ¨̃h + meα̈ + ch
˙̃h + kh0h̃ + kh3h̃

3

= −ρU 2bc0L

(
α + ḣ

U
+ b

(
1

2
− a

)
α̇

U

)
,

Iαα̈ + me ¨̃h + cαα̇ + kαα + kαα3

= ρU 2bc0L

(
1

2
+ a

) (
α + ḣ

U
+ b

(
1

2
− a

)
α̇

U

)
.

(6)

Anequivalent dimensionless formulation canbeobtained
using the definitions

h = h̃

b
; t = t̃ωα; ε = ẽ

b
, (7)

where ωα = √
kα/m. Thus, by substituting these into

Eq. (6), and introducing the dimensionless parameters

r2 = Iα
mb2

; μh = ch
mωα

; μα = cα

mb2ωα

;

ξh0 = kh0
mω2

α

;

ξα0 = kα0

mb2ω2
α

;

ξh3 = kh3b2

mω2
α

; ξα3 = kα3

mb2ω2
α

;

ξu = ρc0L
mb2ω2

α

; V = U

bωα

,

(8)

the equations of motion finally read

ḧ + εα̈ + μhḣ + ξh0h + ξh3h
3

= −ξuV
2
(

α + ḣ

V
+

(
1

2
− a

)
α̇

V

)
,

εḧ + r2α̈ + μa α̇ + ξα0α + ξα3α
3

= ξuV
2
(
1

2
+ a

) (
α + ḣ

V
+

(
1

2
− a

)
α̇

V

)
,

(9)

which can be written in matrix form as

Mq̈(t) + Cq̇(t) + K1q(t) + K3q3(t) = 0 (10)

where

q =
[
h
α

]
,

M =
[
1 ε

ε r2

]
,

C =
[

μh + ξuV ξuV
( 1
2 − a

)

−ξuV
( 1
2 − a

)
μα − ξuV

( 1
4 − a2

)
]

,

K1 =
[
ξh0 ξuV 2

0 ξα0 − ξuV 2
( 1
2 + a

)
]

,

K3 =
[
ξh3 0
0 ξα3

]
.

(11)

Following [43,44], the set of nondimensional param-
eters describing the system behavior is summarized in
Table 1.

2.2 Methodology

The integration of the equations ofmotion is performed
by means of a state–space formulation, where the state
vector is defined as:
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Table 1 Summary of system parameters of the single airfoil
system

Parameter Value

ε 0.25

r2 0.5

a −0.1

ξu 0.0113

μu 0.1

μα 0.1

ξh0 0.2

ξα0 0.8

ξh3 5.0

ξα3 20.0

z = [z1, z2, z3, z4]
T

= [
h, α, ḣ, α̇

]T
. (12)

With this arrangement, the governing equations can be
conveniently expressed in the state-space form, which
yields to four first-order ordinary differential equations
[
I 0
0 M

]
ż =

[
0 I

−K1 −C

]
z +

[
0 0

−K3 0

]
z3. (13)

2.3 Bifurcation behavior

By numerical time-marching integration of the equa-
tions of motion one can detect only stable solutions.
However, it represents a valuable tool for the under-
standing of theDOF coupling effects aswell as it can be
exploited to find the critical speed under which bifurca-
tions occur. Time integration of the equations ofmotion
easily detects periodic, quasi-periodic or chaotic solu-
tions showing how the final state of the system depends
on the initial conditions. Furthermore, this choice of
method will allow us to exploit the concept of basin
stability analysis, which will be introduced later in
Sect. 3.3. The equations of motion are integrated by
an explicit Runge–Kutta scheme with adaptive time
step size update by means of the MATLAB function
ode23t with a relative and absolute tolerance equal
to 10−9. The integrations are initialized with two dif-
ferent disturbances on the plunge and pitch position:
z(1)
0 = [0.01, 0, 0, 0]� and z(2)

0 = [0.5, 0.5, 0, 0]�.
Figure 3 depicts the root-mean-squared (RMS) steady-
state amplitudes

( ·̂ ) of the plunge h and the pitch α

for a range of airstream velocities V . With the aim

of investigating the effect of the stiffness nonlinearity
on the system dynamics, we change the plunge stiff-
ness nonlinear coefficient ξh3 = [100, 180, 260]. For
ξh3 = 100, a stable equilibrium position (fixed point)
can be observed up to airstream velocities V = 7.6,
then the fixed point loses stability to a stable periodic
orbit. As the airstream velocity increases further, the
oscillation amplitudes increase for both DOFs. How-
ever, the plunge starts to saturate at ĥ ≈ 0.07 after
V = 12.0, while the pitch amplitude keeps growing
(see Fig. 3, green triangles). These trends suggest that
the coupling between the DOFs (through the inertial
term) has minimal influence on the system dynamics
for the considered set of parameters. The steady-state
motion is the same for trajectories starting from either
initial conditions, such that no bistability regime can
be observed for ξh3 = 100. This picture changes as
the stiffness value is increased: for ξh3 = 260, we can
observe a bistability regime for 7.2 ≤ V ≤ 7.6, where
the stable equilibrium position and a stable periodic
orbit coexist. Increasing the nonlinear stiffness value,
the bistability regime stretches out along V , as shown
in the lower panels in Fig. 3. Trajectories starting from
the first initial condition z(1)

0 converge toward the fixed

point, while trajectories starting from z(2)
0 are attracted

by the stable periodic orbit.
As the airstream velocity is increased further, at

V = 9.6 (for ξh3 = 260) another bifurcation point can
be identified: trajectories starting from the two differ-
ent initial solutions converge to different steady-state
amplitudes: in case of the plunge, trajectories start-
ing from z(1)

0 converge to a solution branch of larger

amplitude, while trajectories starting from z(2)
0 con-

verge to the previously observed solution path. Hence,
for V ≥ 9.6 there coexist two stable dynamical equi-
libria for the airfoil. Depending on the choice of initial
conditions, the system tends to converge to one of them.
Interestingly, the second branch of oscillatory solu-
tions in the pitch DOF appears at a significantly lower
amplitude compared to the previous solution path. As
a consequence, severe jumping phenomena may occur
if the system is slightly perturbed, e.g., at V = 10.0:
the plunge amplitude may suddenly jump to a motion
of larger amplitude, while the pitch at the same time
will jump to a significantly smaller amplitude motion.
For ξh3 = 260, the single airfoil system in Eq. 9
exhibits two bistability regimes for the airstream veloc-
ity: for V ∈ R1 = [7.2, 7.6], a periodic orbit coexists
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Fig. 3 Oscillation RMS ĥ
and α̂ as function of the
airstream velocity obtained
through time integrations.
Open markers relate to
solutions starting from
z(1)
0 = [0.01, 0, 0, 0]� and
filled markers relate to
initial conditions
z(2)
0 = [0.5, 0.5, 0, 0]�. The
second row provides two
close-ups of the bifurcation
diagrams in the first
bistability region

6 8 10 12
0

0.1 R1 R2

V

ĥ

ξh3 =100 , ξh3 =180 , ξh3 =260

6 8 10 12
0

0.1

0.2

0.3
R1 R2

V

α̂

7 7.2 7.4 7.6 7.8

0

5

·10−2

V

ĥ

7 7.2 7.4 7.6 7.8

0

0.1

V

α̂

with the stable equilibrium position (fixed point). For
V ≥ 9.6, two stable dynamical equilibria exist. Even-
tually, one can notice from Figure 3 that the two DOFs
provides significantly different oscillation amplitudes,
which might be relevant for structural integrity. Notice
that the sensitivity of the flutter behavior on the ini-
tial conditions has been experimentally measured in
several nonlinear systems, including airfoil and shell
structures [28,29,45,46].

Next, the dynamics are studied in more detail in
Figs 4 and 5 for ξh3 = 260 at three different airstream
velocity values: (a) in the first bistability regimeR1 at
V = 7.3, (b) in the regime of a unique periodic solu-
tion at V = 8.0, and (c) in the second bistability regime
R2 at V = 11.0. The trajectories of the plunging and
pitching motions are depicted for two representative
initial conditions that illustrate the bistability behavior.
It becomes visible that the steady-state vibrations are
not given by trivial period-1 cycles. At V = 7.3, the
Poincar sections of both pitch and plunge indicate that
the orbit is in fact a period-7 cycle with an amplitude-
modulating behavior visible from the time series. In the
mono-stable regime at V = 8.0, the dynamics of the
plunge motion turns out to have a more complicated

temporal behavior, whereas the pitch motion keeps a
vibration with one dominating frequency. The Poincar
section states that this motion is a regular period-9
cycle, even if the time traces may appear to be irreg-
ular. In the second bistability regime at V = 11.0, a
small-amplitude period-1 orbit exists for initial con-
ditions starting from very small deflections on both
DOFs. Larger initial conditions on the plunge converge
to an orbit of larger amplitudes that exhibits irregular
dynamics. No clear attractor can be observed in the
phase diagram of the plunge, and the Poincar section
displays a point cloudwith some structure. On the other
hand the same initial conditions provide a much more
regular trajectory on the pitch and a clearly circular
structure of the Poincar section.

Figure 6 concisely summarizes the results of Figs. 4
and 5. For the same loading conditions, it shows the
RMS oscillation amplitude Â as a function of the ratio
ξh3/ξα3, (with ξα3 = 20) and for three airstream veloc-
ity V = [7.3, 8, 11]. Up to ξh3/ξα3 about 5, both h
and α have unique dynamical equilibria independently
on the initial conditions. For larger ξh3/ξα3, the system
dynamics changes consistently. The system is attracted
bydifferent solutionswhichdependon the initial condi-
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Fig. 4 Plunge trajectories of the airfoil system for three
airstream velocity values (from top to bottom), one row cor-
responds to the initial condition indicated on the left. Left col-
umn: trajectories; center column: steady-state response depicted

in the state space of the plunge degree-of-freedom; right column:
Poincar section displaying the intersections of the trajectories
with the plane of zero pitch α = 0

tions. In a real rotor, severe jumps from one solution to
the othermay take place, whichmay be life-threatening
for the airfoil. Further, in the next section, it will be
shown that the existence of multiple equilibria for the
unit cell in a rotor configuration may lead to strongly
spatially localized vibrating states that coexist for the
same airstream velocity.

3 Rotor model

In Sect. 2, the dynamical behavior of a single airfoil
immersed in a uniform airstream was studied. Never-
theless, the single and slender airfoil constitutes only
the unit cell of a larger cyclic-symmetric structure.
Here, we consider a ’rotor model,’ which is constituted
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Fig. 5 Pitch trajectories of the airfoil system for three airstream
velocity values (from top to bottom), one row corresponds to the
initial condition indicated on the left. Left column: trajectories;
center column: steady-state response depicted in the state space

of the pitch degree-of-freedom; right column: Poincar section
displaying the intersections of the trajectories with the plane of
zero plunge h = 0

by N = 3 unit cells, elastically connected through a lin-
ear spring connecting the plunge degrees-of-freedom
(Fig. 7), which accounts for the mechanical coupling
originated at the common hub at which all the airfoils
are mechanically connected.

3.1 Governing equations

Assuming that all airfoils have the same mechanical
properties, and are excited by the same aerodynamic
load, the nondimensional governing Equations written
for the n-th airfoil
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Fig. 6 RMS vibration
amplitude against nonlinear
stiffness ratio. Plunging and
pitching amplitudes are
displayed with red and blue
markers, respectively,
whereas the line type is
associated with the initial
perturbation
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Fig. 7 Sketch of the rotor mode configuration with three airfoils
connected through the plunge DOF. Each airfoil represents the
unit illustrated in Fig. 2

as:

ḧn + εα̈n + μhḣn + ξh0hn + ξh3h
3
n

+ ηc (2hn − hn+1 − hn−1) =

− ξuV
2
(

αn + ḣn
V

+
(
1

2
− a

)
α̇n

V

)
, (14)

εḧn + r2α̈n + μa α̇n + ξα0αn + ξα3α
3
n

= ξuV
2
(
1

2
+ a

) (
αn + ḣn

V
+

(
1

2
− a

)
α̇n

V

)
.

(15)

where the nondimensional plunge coupling coefficient
ηc is related to its dimensional counterpart kc by:

ηc = kc
mb2ω2

α

. (16)

Following the state-space arrangement used for the sin-
gle airfoil characterization, the state vector for a chain

of airfoil is defined as:

z = [z1, . . . , z4N ]
T

= [
h1, α1, . . . , hN , αN , ḣ1, α̇1, . . . , ḣN , α̇N

]T
.

(17)

With this arrangement, the matrix formulation corre-
sponding to Eq. (14) can be conveniently implemented
by means of the local coefficient matrices (10). Each
blade within the oscillator chain is assumed to have the
same values of nondimensional coefficients of the sin-
gle airfoil case. The other systemparameters are chosen
as

N = 3, ηc = 0.02. (18)

3.2 Bifurcation behavior

Figure 8 shows the rotor bifurcation plots with the same
parameter setting and the load range of V used for the
unit cell analysis. Specifically, we selected the largest
value of nonlinear plunge stiffness ξh3 = 260, i.e.,
where the unit cell exhibits two bistable regimes. The
flutter amplitude of the rotor is computed as a rootmean
square value of the RMS amplitude of each blade:

Ã =
√√√√ 1

N

N∑

i=1

Â2
i , (19)

The different localization states are identified by per-
forming two time stepping simulations (increasing-V
sweep and decreasing-V sweep) for each of the follow-
ing initial conditions

z(1)
0 = [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0, . . . , 0]�

z(2)
0 = [0.5, 0.5, 0.01, 0.01, 0.01, 0.01, 0, . . . , 0]�
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z(3)
0 = [0.5, 0.5, 0.5, 0.5, 0.01, 0.01, 0, . . . , 0]�

z(4)
0 = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0, . . . , 0]� . (20)

According to Fig. 8 (panels a, b), several bifurcations of
the equilibrium solutions take place andmultiple stable
states coexist. Depending on the sweep direction1 and
the initial values, the rotor converges to different states
at the same loading condition. These states correspond
to different patterns of vibration localization, which
can be observed by looking at the normalized RMS
amplitude of each blade in Fig. 9.

To quantify the degree of localization, the localiza-
tion coefficient L is introduced

L
(
ẑ
) =

(
max

(
ẑ
)

∑N
i ẑi

− 1

N

)
N

N − 1
, L ∈ [0, 1] ,

ẑ = [
ẑ1, . . . , ẑN

]
(21)

where ẑi denotes the RMS steady-state amplitude of
the i th state, and N denotes the number of blades, e.g.,
N = 3 in this study. Essentially, the localization coef-
ficient represents a measure for the degree of spatial
localization for a given vibration pattern, such that for
an exemplary set of vibration patterns the following
localization coefficients result:

L ([1, 1, 1]) = 0.0,

L ([1, 0, 0]) = 1.0,

L ([2, 2, 1]) = 0.1. (22)

Hence, L is vanishing for the case of a homogeneous
vibration pattern, and it is equal to unity in the limiting
case in which a single blade vibrates, while the two
others remain at the fixed point solution. In Fig. 8c,
d, we have reworked the bifurcation diagrams shown
in Fig. 8a, b to show the localization coefficient L as
a function of the airstream velocity V for the different
solutions found. These results indicate that the localiza-
tion characteristics are different in the two multistable
regimes: at lower V values, there exist states that are
highly localized with L close to 1, i.e., where one blade
vibrates while the other two remain at the fixed point
solution. For different initial values, two blades vibrate
and one stays at the fixed point, resulting in L ≈ 0.25.
Lastly, all blades can either vibrate or collectively stay

1 Notice that upward and downward sweeps are not perfectly
superimposed due to the irregular motion of the airfoil in the high
velocity regime (see also Figs. 3, 4),whichmakes the systemvery
sensitive to the initial conditions

at the fixed point, i.e., resulting in L = 0. In the veloc-
ity range V = [7.6, 9.6] homogeneous vibration pat-
terns can be observed in between the two multistable
regimes. In the second multistable regime at larger V
values, significantly lower L values are found, i.e., less
pronounced localization characteristics are observed.

Looking at the vibration patterns reported in Fig. 9,
one can observe that solution (1) is strongly localized,
while solutions (3,4) are homogeneous in space (com-
pare Fig. 8a,b with Fig. 9). Some degree of localiza-
tion can be observed for the other solutions. In the first
multistable region (7.2 ≤ V ≤ 7.7), the localization
pattern directly relates to the initial perturbances on
each DOF: larger initial values on the first blade excite
a strongly localized vibration where the first blade is in
the ’excited state,’ while the two other blades remain
close to the fixed point solution showing a very small
vibration amplitude. Larger initial conditions on two
blades cause excited states in these two DOFs, which
is a behavior that one would expect from the analysis of
the unit cell. The interaction between the unit cells is not
strong enough to excite neighboring blades irrespective
of their initial perturbances. Interestingly, in the second
multistable region (V > 9.6, points (4–6)) the localiza-
tion of pitch and plunge vibrations is ’opposite’: when
the plunge shows weak localization, the pitch shows
significantly stronger localization, and vice versa. So,
in real-life applications,whenmeasuring amplitudes on
either of these DOFs, one would come to different con-
clusions about the localization in the systemwith strong
localization in the torsional motion and slight localiza-
tion in the bending motion. Overall, in the parameter
range of larger airstream velocities there are no strong
localizations as the blades vibrate either on the lower-
amplitude periodic solution, or on the higher-amplitude
irregular state.

It has been shown that the rather simple rotor model
constituted of three bistable units cells can exhibit sev-
eral different vibration patterns, both homogeneous
and localized. As a strongly localized vibration may
cause serious threats (enhancing wear, exceeding criti-
cal mechanical resistance, reducing fatigue life, etc.) to
realistic cyclic structures, we are interested in the like-
lihood of occurrence of specific vibration patterns. In
the following basin stability analysis, we aim at quan-
tifying how likely all of the observed vibration patterns
are for a given range of initial perturbances prescribed
on each blade.
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Fig. 8 Bifurcation
diagrams (a,b) of plunge h
(left panel) and pitch α

(right panel) as function of
the airstream velocity for a
cyclic symmetric chain of
N = 3 blades. The
coexisting stable states are
identified by applying n = 4
combinations of small and
large initial perturbation.
The normalized vibration
RMS amplitude of the
solutions labeled with
numbers from 1–6 are
shown in Fig. 9. The
corresponding localization
coefficients from Eq. (21)
are displayed in (c,d)
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3.3 Basin stability

The concept of basin stability was recently intro-
duced by Menck et al. [47] and denotes a probabilistic
approach to assessing the global stability of a solu-
tion in a multistability scenario. Local stability met-
rics such as the Lyapunov exponent indicate stability
against small perturbations. Hence, they characterize
the attractiveness of a solution in its neighborhood, and
quantify the rate of trajectories approaching/diverging
from that solution. However, local stability measures
do not resolve the largest permissible perturbation that
will still converge back to that solution. In multistable
nonlinear systems, even small perturbations may let
the trajectory jump to a different basin of attraction,
such that the trajectory will be attracted by another
solution. Explicit knowledge of the basins of attrac-
tionwould allow to state permissible perturbations, i.e.,
the global stability of a solution. However, expressions
for the basin boundaries are difficult to obtain even for
low-dimensional systems. The concept of basin stabil-
ity aims at approximating the basins’ volumes through
Monte Carlo simulations, and thereby measuring the

global stability of a solution by the volume of its basin
of attraction in the state space.

To derive the basin stability value, a reference sub-
set Z of the state space must be chosen such that the
Monte Carlo simulations can draw samples for the ini-
tial conditions from this set. The selection of Z affects
the final basin stability values, and is obviously subject
to the domain expert that has some a priori knowledge
about reasonable perturbations of the system’s state of
operation. Then, a number of n samples is drawn uni-
formly at random from Z . The resulting long-term tra-
jectories are obtained through time marching solutions
of the system, and the steady-state behavior is classi-
fied to have converged to one of the multiple attractors.
Finally, the basin stability value SB (A) of the attractor
A is derived from the ratio of n (A) /n solutions that
converged to it. Hence, the basin stability measures the
likelihood of the system to converge to a specific attrac-
tor given a reference set of initial conditions at a given
probability density function. The basin stability analy-
sis in this work was performed using the open-source
and MATLAB-based bSTAB code [48].
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Â
α
/A

α
n
(1
)

L(α) = 0.97

1 2 3
0

0.2

0.4

0.6

0.8

1

Â
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Â
α
/A

α
n
(2
)

L(α) = 0.25

1 2 3
0

0.2

0.4

0.6

0.8

1

Â
h
/A

h
n

(3
)

L(h) = 0.0

1 2 3
0

0.2

0.4

0.6

0.8

1

Â
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Â
h
/A

h
n

(5
)

L(h) = 0.06

1 2 3
0

0.2

0.4

0.6

0.8

1

Â
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Fig. 9 For the solutions labeled with numbers from 1 to 6
in Figure 8 the normalized RMS vibration amplitude of each
blade Âi and the resulting localization coefficient L is dis-
played. The plunge amplitude Âh is normalized by the value
Ahn = 0.25, whereas the pitch amplitude Âα is normalized

by the value Aαn = 0.8. Red bars refer to the plunging DOF
and blue bars refer to the pitching DOF. The load parameter for
each labeled solution is V1 = 7.4103, V2 = V3 = 7.5385 and
V4 = V5 = V6 = 10.359

We study the probability of localized vibrations for
a strictly prescribed range of initial conditions. As a
reference set Z(0) of initial solutions, we choose all
plunge hi and pitch αi DOFs to be limited to the inter-
val (hi, αi) ∈ [−0.01, 0.01]. For the Monte Carlo sim-
ulations, n = 2000 initial conditions are drawn from
a uniform random distribution within this interval. All
velocities initial conditions, i.e., ḣi and α̇i, are fixed to 0

Z(0) =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

h1
α1

h2
α2

h3
α3

ḣ1
...

α̇3

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

t=0

=

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

−0.01, . . . , 0.01
−0.01, . . . , 0.01
−0.01, . . . , 0.01
−0.01, . . . , 0.01
−0.01, . . . , 0.01
−0.01, . . . , 0.01

0
...

0

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

. (23)
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Variants of Z(0) are studied in the remainder of
this section: First, larger initial conditions Z(1): h1 ∈
[−0.15, 0.15], α1 ∈ [−0.5, 0.5] for the first blade
are introduced. Secondly, larger initial conditions are
allowed for two blades Z(2): h1,2 ∈ [−0.15, 0.15],
α1,2 ∈ [−0.5, 0.5], and lastly all blades are subjected to
larger initial conditions Z(3): h1,2,3 ∈ [−0.15, 0.15],
α1,2,3 ∈ [−0.5, 0.5]. The basin stability analysis will
then compute the probability of specific vibration pat-
tern. Four classes of (potentially localized) vibration
patterns are defined through the localization coefficient
in Eq. 21:

L0.0−0.05 : 0.00 ≤ L < 0.05

homogeneous vibrations

L0.05−0.15 : 0.05 ≤ L < 0.15

slightly localized vibrations

L0.15−0.45 : 0.15 ≤ L < 0.45

moderately localized vibrations

L0.45−1.0 : 0.45 ≤ L ≤ 1.00

strongly localized vibrations.

(24)

Basin stability values are computed for these localiza-
tion classes along the parameter variation of V , thus
indicating which localization pattern is the most prob-
able for the given choice of initial conditions at a spe-
cific airstream velocity value. Localization coefficients
and related classes are computed for the plunge DOF.

3.3.1 Localization after perturbation of a single blade

First, larger initial conditions are allowed for the first
blade only. Practically, this setup may correspond to
one blade of the rotor experiencing a severe perturba-
tion, due to a foreign object impact, like a bird strike.
Figure 10 displays the state space of the first blade and
the sampling points for the basin stability at V = 7.3.
For small initial conditions, all blades remain at their
fixed points, such that the resulting dynamics do not
exhibit any localized vibrations. For larger initial con-
ditions, high-amplitude vibrations are excited in the
first blade, such that strongly localized vibrations are
observed and quantified by L0.45−1.0. For the choice of
Z(1), L0.45−1.0 localized vibrations are the most prob-
able to occur at 95% for the plunge h and the plunge
α. Weakly or moderately localized vibrations do not
occur at all at this airstream velocity value. This result
may be somewhat expected: larger perturbations of a

single blade will in most cases lead to vibration that are
strongly localized at that blade.

However, a constant airstream velocity may not be
a realistic assumption, and the picture at V = 7.3
is a rather limited viewpoint. Figure 11 depicts the
basin stability values of all stable solutions along V .
In correspondence with Fig. 8, no flutter (and hence
no localized vibrations) are observed for V < 7.2.
For larger airstream velocities in the first multistable
range, the strongly localized state is the most prob-
able, and only few trajectories remain in the homoge-
neous state. This picture changes instantly as the multi-
stable regime is left at V = 7.7, and all blades oscillate
homogeneously. In the second multistable range 9.7 ≤
V ≤ 10.4, localized vibrations can be observed along
with homogeneous vibrations, before the homogeneous
state becomes the dominating characteristic again.

3.3.2 Localization
after perturbation of two and three blades

Next, the first two blades are chosen for larger ini-
tial conditions, such that

(
h1,2, α1,2

) ∈ [−0.5, 0.5],
denoted as Z(2). The aim is to study which vibration
pattern, i.e., which localization, will happen in multi-
stability ranges for a set of initial conditions drawn from
Z(2). The resulting basin stability values are depicted
in Fig. 12 (a). For most of the first multistability range,
themoderately localized states, i.e., two excited blades,
are the most likely at > 95% , while only less than
5% of all initial conditions converge to strong localiza-
tion.Notice that in the transitionbetweenhomogeneous
and moderately localized states (V ≈ 7.2) strongly
localized patterns appear with a probability of about
50%. This behavior can be expected for our choice
of initial conditions. The second multistable regime
exhibits two sub-regimes, where first the slight local-
ization and, then the homogeneous vibration compete
with each other.Hence, even though the rotormodel has
four stable solutions depicted in Fig. 8, for our choice
of initial conditions the behavior reduced mostly to a
bistable-alike system for most of the airstream veloc-
ities. However, transitions to localized states happen
instantaneously, thus representing potentially danger-
ous jumping phenomena.

If all three blade DOFs are subjected to larger ini-
tial conditions

(
h1,2,3, α1,2,3

) ∈ [−0.5, 0.5], denoted
as Z(3), the basin stability values show a significantly
different behavior, see Fig. 12b. At the lower end of
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Fig. 10 State-space
sampling at V = 7.3
(n = 2000 samples) for
larger initial conditions of
the first blade (Z(1)) and the
corresponding localization
behavior in (a). The
resulting basin stability
values for the localization
classes of the plunge DOF
are displayed in (b)

0
−0.5

0

0.5

h1
α
1

L0.0−0.05 L0.45−1.0

(a)

L
0−

0.05

L
0.05−

0.15

L
0.15−

0.45

L
0.45−

1.0

0

0.5

1

0.047 0.0 0.0

0.953

vibration pattern L(h)

S B

(b)

Fig. 11 Basin stability
values of the localized
solutions for larger initial
conditions of the first blade
(Z(1)) as a function of the
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the multistability range the moderate and strong local-
ization compete for a narrow airstream velocity (V ≈
7.2). Hereafter, the homogeneous pattern becomes the
strongly dominating vibration behavior, and only few
observations of moderate localization are made. In the
upper multistable range, the homogeneous and weakly
localized patterns compete at almost equal probabil-
ity, while no relevant amounts of stronger localization
patterns can be observed.

Overall, the basin stability analysis shows that
strongly localizedvibrationpatterns are obtained rarely,
only in the low velocity multistability range and only
when a single blade is strongly excited. If larger per-
turbations are selected on two or three blades, then
only slight or moderate localization was found. Our
results suggest that in real-world applications, homo-
geneous (or slightly localized) states should be more
likely to happen, which is beneficial for the mechanical
components as vibration localization is usually cause
of severely localized wear, damage and loss of stiff-
ness. Nevertheless, strongly localized statesmay not be
excluded a priori; hence, the knowledge of the nonlin-
ear dynamical response of themechanical rotor remains
essential.

4 Conclusion

In this paper, the nonlinear dynamical behavior of a
rotor constituted by N = 3 slender airfoils with 2-DOF
each and subjected to flutter instability has been stud-
ied. For a single airfoil (with 2DOFs, plunge and pitch),
it has been shown that for large plunge cubic stiff-
ness coefficient multiple coexisting dynamical equilib-
ria exist which, at low airstream velocity, are a fixed
point and a limit cycle, while for large airstream veloc-
ity, are a limit cycle and an irregular motion. By con-
sidering the full rotor as N = 3 elastically coupled air-
foils, the existence ofmultiple localized vibration states
has been shown. By restricting the state space to a cer-
tain hypervolume of initial conditions, the concept of
basin stability has been exploited to determine the like-
lihood of the system to converge to localized states. A
localization parameterwas defined to classify the possi-
ble states obtained, which equals 1 for highly localized
states and 0 for homogeneous states. It has been shown
that the external perturbation, imposed as different ini-
tial conditions on the three blades, correlates with the
probability of localized vibrations: if a single airfoil is

strongly excited, then strongly localized vibrations are
the most likely system state to observe. If all airfoils
are subjected to a similar range of perturbations, the
homogeneous or weakly localized vibration state dom-
inates the system dynamics. Overall, these results show
that strongly localized vibration patterns are obtained
more rarely than slightly or moderate localized solu-
tions. Nevertheless, strongly localized states may not
be excluded a priori; hence, a detailed knowledge of
the nonlinear rotor dynamics remains essential to avoid
localwear and damage of a single blade. Further studies
are needed to assess the severity and likelihood of non-
linear localization in more realistic rotor models, able
to capture the complex aerodynamic phenomena. For
instance, further studies should account for the effects
of stall on the lift and moment exerted by the flow on
the airfoil, as well as for the aerodynamic coupling
between the blades [49,50].
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