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ON STRUCTURED PENCILS ARISING IN SONNEVELD METHODS∗
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Abstract. The pencils arising in Sonneveld methods, e.g., methods based on the induced
dimension reduction (IDR) principle by Sonneveld and van Gijzen, are highly structured and some
eigenvalues are known. The other eigenvalues are approximations to eigenvalues of the matrix used
to compute the Sonneveld pencil. In [SIAM J. Matrix Anal. Appl. 34(2), 2013, pp. 283–311] we
proved that it is possible to purify the characteristic polynomial from the known values by moving
them to infinity and to deflate the problem to obtain a smaller pencil that has only the other
eigenvalues. Depending on the strategy used to select the known eigenvalues, this may result in large
condition numbers or even break down due to a singular pencil. In this paper we prove that there are
one-dimensional families of purified and deflated pencils that all have the same eigenvalues. We give
a selection scheme to chose a pencil suitable for the stable computation of the wanted eigenvalues.
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1. Introduction. In [13] we developed the mathematical theory of an eigensolver
based on Sonneveld’s and van Gijzen’s method of induced dimension reduction (IDR)
[36, 29]. In [18] we refined the theory and extended it to its generalization IDRStab
[31, 25]. The arising pencils are banded upper Hessenberg/triangular, a property that
is destroyed if we use a standard QZ algorithm. Due to the peculiarities of IDR-based
methods, some eigenvalues of the pencils are known in advance. We sketch our ideas to
reliably compute the other eigenvalues. It turns out that the pencils that are used in
[13, 18] to compute the wanted portion of eigenvalues might be numerically unstable,
i.e., close to a singular pencil or even non-existent. Our main result in this paper is that
it is possible to develop a stable scheme to extract only the unknown eigeninformation
by picking an alternate pencil from infinitely many at virtually no extra cost.

1.1. Motivation. In [13] we proved that it is possible to compute eigenvalue
approximations based on the induced dimension reduction (IDR) principle. We treated
only the prototype IDR(s) [29] and considered error-free computations apart from a
small numerical example. In [18] we extended these ideas to the methods described
in [35, 31, 25]. Recent variations of IDR(s) [18, 34, 19] are based on different basis
expansions and on different selection schemes for the known eigenvalues, which can
result in almost or exactly singular purified pencils if they are computed as sketched
in [13, 18]. We state a particular simple observation we missed in [13] that enables
us to come up with families of purified and deflated pencils with varying eigenvalue
condition, such that the purification and deflation used in [13, 18] are special instances
of the general scheme.

1.2. Notation. We use boldface letters to denote matrices and vectors. The
identity matrix of size n × n is denoted by In with columns by ej , 1 6 j 6 n, and
elements δi,j , 1 6 i, j 6 n (Kronecker delta). A zero matrix of size n× k is denoted
by On,k, a zero column vector of length k by ok. We omit indices when they are
easily deducible from the context. We are interested in the eigenvalues λ of the
matrix A ∈ Cn×n. Column vectors of matrices are denoted by the same letter, e.g.,
aj ∈ Cn, 1 6 j 6 n, are the columns of A. Scalars are denoted by Greek letters,
entries of matrices and vectors are denoted by small Roman letters, e.g., ai,j is the
entry of A in row i and column j. Spaces are denoted by calligraphic letters like S,
Kk, Gj . Sonneveld methods are related to a set of basis vectors that live in certain
spaces Gj . These are denoted by gk ∈ Cn and are collected in matrices Gk ∈ Cn×k,
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1 6 k. Krylov methods in general, and Sonneveld methods in particular, compute
unreduced extended Hessenberg matrices. These are denoted by Hk ∈ C(k+1)×k, where
the underbar should remind of an additional row vector appended at the bottom
of the square upper Hessenberg matrix Hk ∈ Ck×k. Sonneveld methods differ from
other Krylov subspace methods in constructing additionally upper triangular matrices
Uk ∈ Ck×k. The Schur complement of the nonsingular matrix B in the partitioned
matrix A = ( B C

D E ) is denoted by A/B := E−DB−1C, cf. [40, p. 3]. The inclusion
and strict inclusion of sets is denoted by ⊆ and ⊂, respectively. For a linear subspace
S ⊆ Cn, S⊥ := {v ∈ Cn | sTv = 0 ∀ s ∈ S} denotes the annihilator, sometimes
called orthogonal complement, of S in Cn. For reasons stated in [18], we call all
transpose-free Lanczos-type methods Sonneveld methods.

1.3. Outline. In §2 we briefly sketch the origin of Sonneveld pencils and the
processes of purification and deflation, for details we refer to [13, 18]. In §3 we remark
on possible implementations to compute the eigenvalues of interest of these Sonneveld
pencils, and their possible drawbacks. In §4 we present our main result, namely, that
a given Sonneveld pencil defines a one-dimensional family of purified pencils and a
one-dimensional family of deflated pencils with corresponding families of left and right
eigenvectors that are polynomials in the parameter of the pencils, thereby with varying
condition numbers of its constant eigenvalues. The deflated family is very simple,
it consists of a block-wise diagonal scaling of a particular single deflated pencil. In
§5 we sketch how to pick a pencil that has the potential that there exists a method
to compute its eigenvalues in a stable manner. In §6 we present a few numerical
experiments that show the effectiveness of our approach. We conclude in §7 and give
an outlook on the application of the results of §4 to the computation of eigenvectors
and to the solution of linear systems.

2. Sonneveld methods. In [1] the authors presented a family of Lanczos meth-
ods based on a different number of starting vectors for the left and right Krylov
subspaces. IDR(s) is related to a method we call Lanczos(s, 1) that is based on s left
starting vectors and one right starting vector. Let A ∈ Cn×n. Skipping over technical
details, ks steps of Lanczos(s, 1) compute, provided no breakdown or deflation occurs,

block-biorthogonal bases Qks, Q̂ks of the two Krylov subspaces

Kks := Kks(A,q) := span {q,Aq,A2q, . . . ,Aks−1q}, q ∈ Cn,

K̂k := Kk(AH, Q̂) := span {Q̂,AHQ̂,A2HQ̂, . . . ,A(k−1)HQ̂}, Q̂ ∈ Cn×s,
(2.1)

the latter a block Krylov subspace, such that

Q̂H
ksAQks = Lks, Q̂H

ksQks = Iks, Qkse1 = q, Q̂ksIn,s = Q̂, (2.2)

where the Lanczos(s, 1) matrix Lks ∈ Cks×ks is upper Hessenberg and block tridiagonal

with blocks of size s × s. Numerical experiments suggest that when Q̂ is chosen
at random, for larger s the resulting eigenvalue approximations get closer to the
approximations obtained by Arnoldi’s method [2] started with q. A partial explanation
of this phenomenon can be found in [28], a supporting numerical experiment can be
found in [18].

Sonneveld (s = 1) and Sonneveld & van Gijzen (s ∈ N) proved that these
eigenvalue approximations can be obtained without the need for AH by introducing
extra multiplications by A. This follows from the so-called IDR Theorem.

Theorem 2.1. Set S := {v ∈ Cn | Q̂Hv = os}. Define for the seed values
µ1, . . . , µk ∈ C, k ∈ N, the Sonneveld spaces [25]

Gj := Mj(A)
(
Kn(A,q) ∩ K̂⊥j

)
, Mj(z) :=

j∏
`=1

(z − µ`), 0 6 j 6 k. (2.3)

Then these spaces satisfy the recursion

G0 = Kn(A,q), Gj = (A− µjI)Vj−1, Vj−1 := Gj−1 ∩ S, 1 6 j 6 k. (2.4)
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If no eigenvector lies in Kn(A,q) ∩ S,

{o} = Gn ⊆ Gn−1 ⊆ · · · ⊆ Gm ⊂ Gm−1 ⊂ · · · ⊂ Gj ⊂ Gj−1 ⊂ G1 ⊂ G0. (2.5)

We reversed the historical development of IDR(s); the recursion (2.4) came first
[36, 29], the characterization in terms of polynomial images of Krylov subspaces
came later [24, 25]. The first generation of Sonneveld methods, ignoring IDR [36] and
starting with CGS [27] and BiCGStab [33, 32], was based on the explicit computation
of the entries of (a certain factorization of) the Lanczos(1, 1) matrix and Sonneveld’s
trick to rewrite the inner products. The second, new generation of Sonneveld methods
is based on rewriting the spaces in a similar manner, which offers more flexibility in
deriving new methods. Especially, look-ahead strategies are more easily implemented,
as breakdown occurs only at the next level, the selection of appropriate basis vectors.

2.1. Basis expansions. The recursion (2.4) is at the heart of Sonneveld methods.
We ignore breakdowns and look-ahead and use orthonormalization whenever possible.
This gives us s+1 orthonormal vectors g1, . . . ,gs+1 in Ks+1(A,q) and s+1 orthonormal
vectors gj(s+1)+1, . . . ,g(j+1)(s+1) in every Gj \ Gj−1, such that we obtain a generalized

Hessenberg decomposition [13] for Gm+1 =
(
Gm,gm+1

)
, Gm =

(
g1, . . . ,gm

)
,

AVm = AGmUm = Gm+1(Hm + UmDm), Vm = GmUm, (2.6)

where Um ∈ Cm×m is unit upper triangular, Um ∈ C(m+1)×m is Um with an additional
zero row appended at the bottom, Hm ∈ C(m+1)×m is unreduced upper Hessenberg,
and Dm ∈ Cm×m is diagonal with s zeros followed by s + 1 times µ1, s + 1 times
µ2 and so forth. In [18] we sketched three different ways to expand the basis; in the
forthcoming report [19] we term these methods (in the order of appearance in [18])
short recurrence IDR (srIDR), fast matrix IDR (fmIDR), and minimum norm expansion
IDR (mneIDR).

2.2. Sonneveld pencil & Sonneveld matrix. The matrices Um and Hm have
a special structure, we depict a very general structure1 for s = 2 and m = 9 = 3(s+ 1):

U9 =


◦ •••◦•••◦••◦••••◦•••◦••◦••◦•◦

 , H9 =


••◦•◦◦••◦•◦◦••◦•◦◦

 . (2.7)

Circles in U9 depict the unit diagonal elements, circles in H9 depict nonzero elements.
Bullets denote elements defined by the Sonneveld method used to compute basis
vectors. Elements denoted by bullets in U9 are used to ensure that the resulting linear
combination of g-vectors is in S, we term these elements Sonneveld coefficients. As we
are only allowed to use vectors that are in the last Sonneveld space Gj−1 to compute
new vectors in the next Sonneveld space Gj , we can use all s+ 1 vectors in Gj−1 in
the first step. In the following steps we can also use the vectors in Gj ⊂ Gj−1. This
gives the block shape of the upper triangular U9. The elements denoted by bullets
and circles in H9 correspond to basis transformations in the current Gj ; bullets arise
form orthogonalization, and circles from normalization. The first vector is unique up
to scaling. The second vector can be used to compute a linear combination with the
first and can be normalized. This gives the (s+ 1)× (s+ 1) upper triangular parts
in H9. The first s = 2 columns of U9 and H9 are defined by Arnoldi’s method. We
remark that some of the leading submatrices of H9 are singular, e.g., H3 contains a
zero column. It is easy to see that all leading matrices Hi, i = 3, . . . , 9 are singular by
structure.

1This is the structure of mneIDR, the structures of srIDR and fmIDR differ from it only in that
they have more zeros in the computed Um. For details we refer to [19].
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The eigenvalues of the Sonneveld pencil [13]

(Hs
m,U

s
m) := (Hm + UmDm,Um), (2.8)

can be used to obtain approximations to the eigenvalues of A. By structure the matrix
Hs
m − µjUs

m = Hm + UmDm − µjUm is singular, i.e., the seed values µj , 1 6 j 6 k,
are eigenvalues of the Sonneveld pencil. For the sake of clarity we extend example (2.7)
and depict the matrix Hs

9 − µ2U
s
9:

Hs
9 − µ2U

s
9 = H9 + U9(D9 − µ2I9) =


�◦•••◦�•••◦•••◦��◦�◦◦◦◦•◦◦•◦•

 . (2.9)

The circled elements are the same as in H9, elements denoted by bullets are elements
of U9 times some difference µi − µj , elements denoted by diamonds are combinations
of both. The singularity of Hs

m − µjUs
m results from the missing coupling of two

consecutive G-spaces.

By defining the Sonneveld matrix [13, p. 295] Sm := Hs
m(Us

m)−1 we can rewrite
the generalized Hessenberg decomposition to return to a Hessenberg decomposition
[13, p. 287]. This matrix is a full Hessenberg matrix that has the same eigenvalues as
the banded Sonneveld pencil, including the seed values µj .

2.3. Purified pencil. In [13, Lemma 2.1] it was shown that the basis vectors
gk+1 can be described in terms of characteristic polynomials of leading sections of the
Sonneveld pencil, the matrix A, and the starting vector g1,

gk+1 = gk(A)g1, gk(z) :=
χk(z)∏k
`=1 h`+1,`

, χk(z) := det (zUs
k −Hs

k). (2.10)

This is the IDR-equivalent of the “implicit Q”-Theorem for Arnoldi’s method. The
polynomials g0(z) = 1, g1, . . . can be computed by Schweins’s recurrence2

(g0, g1, . . . , gk−1)zUs
k = (g0, g1, . . . , gk−1, gk)Hs

k (2.11)

from the Sonneveld pencil and have the root µj once the corresponding block has been
reached in the pencil. The polynomials can be purified from the known roots µj , the
purified pencil [13] is obtained from the Sonneveld pencil by omitting multiplication by
z, this corresponds to altering Um by removing the coupling between consecutive G-
spaces. The resulting purified Um is denoted by U�

m. The transition is best explained
by extending example (2.7); again, s = 2 and m = 9 = 3(s + 1). U�

9 is depicted in
comparison with U9,

U9 =


◦ •••◦•••◦••◦••••◦•••◦••◦••◦•◦

 , U�
9 =


◦◦
◦•◦
◦•◦

 . (2.12)

Purification is computationally simple, some (s + 1) × (s + 1) blocks are blanked
out and only unit upper triangular s × s blocks remain on the diagonal, which are
separated by single zero elements on the diagonal. All other entries are unaltered, the
purified pencil (Hs

m,U
�
m) with m = k(s + 1) has k infinite eigenvalues that replace

the seed values, all other eigenvalues are those of the Sonneveld pencil. If some seed
value is zero, this process results in a singular pencil; we extend example (2.7) further

2We term this recurrence for the recursive computation of scaled determinants of Hessenberg
pencils Schweins’s recurrence, because Schweins [23] was the first to publish a basic form of it [13].
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and depict the matrices Hs
9 and U�

9 for the case µ2 = 0:

Hs
9 =


�◦•••◦�•••◦•••◦��◦�◦◦◦◦•◦◦•◦•

 , U�
9 =


◦◦
◦•◦
◦•◦

 . (2.13)

In the inner cycles of IDRStab [25] µ = 0 is used. In [18, pp. 1054–1055] we proved
that a regular purified pencil can be obtained by algebraic manipulations that, instead
of removing them from the upper triangular Um, move the negatives of the square
blocks from the upper triangular Um to the Hessenberg matrix Hs

m. In §4 we show
that this is just a special case of a more general approach.

2.4. Deflated pencil & Lanczos matrix. It is possible to deflate the pencil
to obtain a smaller pencil and get rid of the infinite eigenvalues. A possible deflation
is based on block Gaussian elimination, see [13] and [17, §7]. This elimination results
in the Schur complement of the submatrix with entries in rows and columns j(s+ 1),
1 6 j 6 k. This submatrix is the diagonal matrix diag(µ1, . . . , µk). The purified
pencil reordered, such that diag(µ1, . . . , µk) is the (1, 1) block, looks as follows for
example (2.7),

Hs
9(index, index) =


• ◦••• ◦••• ◦• �◦••• ◦�••◦• ��••• ◦�••◦• ��• ◦�

 , U�
9 (index, index) =

 ◦◦◦•◦◦•◦

 , (2.14)

here, index = [3, 6, 9, 1, 2, 4, 5, 7, 8]. Circles in Hs
9(index, index) denote elements from

H9, bullets denote elements that are products of elements of U9 and some µj , 1 6 j 6 3,
and diamonds denote sums of both. Circles in U�

9 (index, index) denote ones, and the
two bullets denote original elements from U9. Computing the Schur complement(

Hs
k(s+1) − zU

�
k(s+1)

)
/ diag(µ1, . . . , µk) = H�ks − zU�ks (2.15)

results in the deflated pencil (H�ks,U
�
ks), for clarity depicted for our example (2.7)

with k = 3, s = 2:

H�6 =

�◦••◦�••��••◦�••��◦�
−

••◦••◦••
(•••)−1 ( ◦••◦••◦)

=

∗∗∗∗◦∗∗∗•∗∗∗∗◦∗∗∗•∗∗◦∗

 , U�6 =

◦◦◦•◦◦•◦
 ,

(2.16)

The deflated matrix H�ks and the Lanczos(s, 1) matrix Lks := H�ks(U
�
ks)
−1 are both

upper Hessenberg and block tridiagonal with blocks of size s × s. The circles in
H�ks of example (2.16) denote original nonzero quantities from Hk(s+1) in positions
(`+ i+ 1, `+ i) for ` = (j − 1)(s+ 1), 1 6 j 6 k, 1 6 i < s, the bullets are nonzero
and given by −h`+1,`h`,`−1/µj , ` = j(s+ 1), 1 6 j < k. Thus, the matrices H�ks and
Lks are both unreduced upper Hessenberg.

The finite eigenvalues are preserved because of the arising block structure when
computing the Schur complement,

det (Hs
k(s+1) − zU

�
k(s+1)) = det (H�ks − zU�ks) ·

k∏
j=1

µj . (2.17)

Thus, these eigenvalues are also those of the Lanczos(s, 1) matrix Lks = H�ks(U
�
ks)
−1.
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2.5. Finite precision. In finite precision the basis expansion and the strategy
to select the seed values µj become very important. Experiments carried out by the
author during the last five years with various different implementations of IDR(s)
showed that basis expansions that use partially orthonormalized vectors are very stable;
we will only consider pencils that arise in these. Whereas Lanczos-based methods
suffer from multiple copies of Ritz values, Sonneveld methods compute ghost values
close to the seed values, which can substantially change the condition of Ritz values
nearby. From a computational point of view we are interested in using real arithmetic
for real matrices; for real matrices we might want to use solely real seed values. A
comparison of the three different basis expansions classified in [18] and various selection
schemes for the seed values can be found in the forthcoming report [19]; in [3] selection
schemes for the seed values designed for the eigenvalue problem are presented. In this
paper we do not consider the choices of the seed values and the IDR variant used;
we solely consider the preprocessing part: the stable computation of the eigenvalue
approximations defined by the data obtained.

3. Naive computation of eigenvalues. We describe very briefly the results of
using the mathematical theory sketched in the last section naively to compute the
eigenvalues numerically. We collect a few arguments for and against each method. In
particular, we are interested in the weaknesses of each approach.

3.1. Sonneveld matrix & Sonneveld pencil. Introducing the Sonneveld ma-
trix and thus an ordinary Hessenberg decomposition opens up all possibilities that
are known for classical Krylov subspace methods. One immediate disadvantage is
that we end up with a full Hessenberg matrix, which increases the storage needed.
This approach is used in [3] in conjunction with implicit shifts in Francis’s (aka the
QR) algorithm [11, 12] or implicit filtering [30] in the Hessenberg decomposition. The
extended Sonneveld matrix Sm = Hs

mU−1m is updated columnwise using the previously
computed columns and the last column of Hs

m,

SmUm = Hs
m, Smem = Hs

mem −
∑
`<m

Sme`u`,m. (3.1)

The sum is over those few values of u`,m that might be nonzero. This is a short
recurrence for the computation of the Sonneveld matrix. Close seed values and
eigenvalues with large condition numbers might pose a problem, see Figure 3.1. In this
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Fig. 3.1. srIDR(4) for m = 124 steps on a Grcar matrix of size n = 100. Plus signs depict
the computed eigenvalues of A, crosses depict the seed values used. Squares depict the computed
eigenvalues of the Sonneveld matrix computed by inversion of Um, diamonds depict the computed
eigenvalues of the Sonneveld matrix updated via (3.1), circles depict the computed eigenvalues of the
Sonneveld pencil.
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figure we used srIDR(4), which is the IDR variant used in [34] and [3], on a Grcar matrix
of size n = 100. This matrix is real, i.e., has complex conjugate eigenvalues. The outer
eigenvalues are badly conditioned. The so-called vanilla strategy [26] to chose real seed
values resulted in some seed values close to the computed Sonneveld Ritz values. For
the computation we used Matlab’s eig command, i.e., the QR (Francis’s) [11, 12]
and QZ [16] algorithms. The three different eigenvalue approximations coincide in
theory; the difference is due to the conditioning of the different representations. The
best results are obtained by using the Sonneveld pencil.

As to be expected [16, p. 254], QZ beats QR: QZ on the Sonneveld pencil with
explicit deflation of seed values, similar to [3], behaves better than QR on the Sonneveld
matrix. The drawback is that the unitary deflation or any other steps of QZ result in
a full Hessenberg/upper triangular pencil. In standard software no deflation of seed
values is possible, we have to alter parts of the code or to write some preprocessing
routine. A variant of the LZ algorithm [15] with restricted pivoting preserves the
structure at the expense of increasing the conditioning of the eigenvalues.

Even for the Sonneveld pencil, close seed values might be harmful, even when
we deflate first, which can be seen on the real axis in Figure 3.1: close to a genuine
eigenvalue approximation on the real axis there are several approximations that
correspond to seed values. It is hard to distinguish seed values and eigenvalue
approximations, especially, as Ritz values close to seed values may be ghost values,
visible close to the real axis in the interval [3, 5].

3.2. Purified pencil. We use the data computed for Figure 3.1 and invoke QZ on
the purified pencil. The resulting Figure 3.2 shows that this gives only one eigenvalue
approximation in the real cluster near 2 and gives even better approximations of the
badly conditioned eigenvalues. This need not be the case, as counterexample consider
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Fig. 3.2. srIDR(4) for m = 124 steps on a Grcar matrix of size n = 100, vanilla strategy. Plus
signs depict computed eigenvalues, triangles the seed values. Circles depict computed eigenvalues of
the Sonneveld pencil, dots depict computed eigenvalues of the purified pencil.

Figure 3.3. In this example we used the same shadow vectors and starting vector as in
the previous example, only the strategy to select the seed values was changed. The
seed value selection scheme gives many small seed values. In this case we observe a
drastical difference between the approximations obtained using the Sonneveld and the
purified pencil. The reason is that the purified pencil is badly conditioned due to the
small seed values that give an almost singular pencil.

Thus, if we want to use the purified pencil from §2.3, we either have to use a
technique that ensures a good condition, or we can use special QZ-like algorithms. A
good condition is typically obtained, if we are close to the Lanczos(s, 1) data, which is
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Fig. 3.3. srIDR(4) for m = 124 steps on a Grcar matrix of size n = 100, different seed value
selection scheme. Plus signs depict computed eigenvalues, triangles the seed values. Circles depict
computed eigenvalues of the Sonneveld pencil, dots depict computed eigenvalues of the purified pencil.

the case, e.g., for the vanilla selection scheme. If µ = 0, we can use a method designed
for singular pencils, possibly with known ranks, e.g., GUPTRI [5, 6] or other staircase
algorithms.

For Hermitian ill-conditioned pencils methods do exist that extract eigenvalues,
see [10]. In contrast, no stable method exists for almost singular pencils as the one
corresponding to Figure 3.3. We remark that the seed value selection scheme used in
this example is superior to the vanilla strategy for all eigenvalues with real part greater
or equal one. One way is to discard the purified pencil and stick to the Sonneveld
pencil, another way is presented in §6, where we show that we can compute the
eigenvalue approximations with an alternate purified pencil. In any case, if we use a
standard QZ algorithm on the purified pencil, we destroy the structure and obtain a
full upper Hessenberg/upper triangular pencil.

3.3. Deflated pencil & Lanczos matrix. The deflated pencil might not exist
due to zero seed values or be badly conditioned due to small seed values, as we
compute the Schur complement of the diagonal matrix diag(µ1, . . . , µk). If we use
the QZ algorithm, we end up with a full upper Hessenberg/upper triangular pencil.
Using the LZ algorithm [15] ‘as is’ does not help, again we obtain a full upper
Hessenberg/upper triangular pencil. Like for the Sonneveld pencil, the structure is
preserved if we restrict the permutations to respect the structure, thus potentially
increasing the instabilities of LZ.

Explicitely computing the Lanczos matrix will typically result in a worse condi-
tioning of its eigenvalues. Using Francis’s QR algorithm on the Lanczos matrix will
result in a full Hessenberg matrix. If we use Rutishauser’s LR algorithm [21, 22] on
the Lanczos matrix without pivoting across blocks, we preserve the band structure.
Unfortunately, the approach to compute the Ritz values using the Lanczos(s, 1) matrix
is mostly very badly conditioned. If it were not, we could use the LR algorithm with
some sort of threshold pivoting to only slightly increase the bandwith. In case of real
matrices we would like to use the implicit double-shift LR [37, p. 537].

Suppose that we could obtain the Lanczos matrix in a stable way. We would like
to use a variant of qd [20] on the Lanczos matrix, preferably something similar to dqds
[7]. For s = 1 we could use complex dqds or tridqds [8, 9]. For s > 1 there do exist
some block generalizations of qd, namely block QD by [38], a block qds for arbitrary
quasiseparable matrices and a dqds for Hessenberg (1, s)-quasiseparable matrices [41].
In contrast to the dqds for Hessenberg (1, 1)-quasiseparable nonnegative matrices in
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[4], the latter comes with no proof for stability, but is the only algorithm of dqds type
the author is aware of that could be applied to the Lanczos matrix.

4. Families of pencils with identical eigenvalues. In this section we prove
that Sonneveld methods compute one-dimensional families of pencils that have the
same eigenvalues. The proof is based on the translation invariance of the structure.

4.1. A purified family. The data that defines the Sonneveld pencil defines
infinitely many purified pencils, the purified pencil presented in §2 corresponds to the
instance τ = 0 in the following theorem.

Theorem 4.1. Suppose that Hm, Um, m = k(s+ 1) and µj, 1 6 j 6 k define a
Sonneveld pencil (2.8) with eigenvalues µ1, . . . , µk and θi, 1 6 i 6 ks. Let U�

m denote
Um after purification, and define the matrix of removed blocks by U�

m := Um −U�
m.

Then every member of the family

(Hs
m − τU�

m,U
�
m), τ ∈ C \ {µ1, . . . , µk} (4.1)

of pencils has k infinite eigenvalues and the eigenvalues θi, 1 6 i 6 ks.

Proof. The shifted pencil (Hs
m− τUm,Um) has the eigenvalues µ1− τ, . . . , µk − τ

and θi − τ , 1 6 i 6 ks. The block structure is preserved: purification of the
characteristic polynomials from the known nonzero roots µ1 − τ, . . . , µk − τ works
exactly in the same manner as sketched in §2.3. The pencil (Hs

m − τUm,U
�
m) has k

infinite eigenvalues and the eigenvalues θi − τ , 1 6 i 6 ks. We shift back by τ and
obtain the pencil (Hs

m − τUm + τU�
m,U

�
m) that has k infinite eigenvalues and the

eigenvalues θi, 1 6 i 6 ks.

The pencils obtained for τ = µj , j = 1, . . . , k are singular, the example τ = µ2,
s = 2, m = 9 = 3(s + 1) looks structurally identical to example (2.13). Without
realizing it at that time, we used τ = 1 in our derivation [18, pp. 1051–1055] of a
purified pencil in case of IDRStab [25].

The eigenvalues are shift-invariant; the eigenvectors are not. This is obvious, as
the pencils change with respect to the parameter τ ; the impact of this change on the
eigenvectors is clarified in the next theorem.

Theorem 4.2. Let the notation be as in Theorem 4.1. Define the bivariate
eigenvector polynomials ν̌(z, τ) ∈ Cm[z, τ ] and ν(z, τ) ∈ Cm[z, τ ] by

ν̌(z, τ) :=
(
ν̌1(z, τ), . . . , ν̌m(z, τ)

)T
, ν(z, τ) :=

(
ν1(z, τ), . . . , νm(z, τ)

)T
, (4.2)

where

ν̌i(z, τ) :=
det (zU�

1:i−1 + τU�
1:i−1 −Hs

1:i−1)∏i−1
`=1 h`+1,`

,

νi(z, τ) :=
det (zU�

i+1:m + τU�
i+1:m −Hs

i+1:m)∏m
`=i+1 h`,`−1

,

1 6 i 6 m, (4.3)

with the convention that ν̌1(z, τ) = νm(z, τ) = 1. Then, for all τ ∈ C, 1 6 i 6 ks,

ν̌(θi, τ)T(Hs
m − τU�

m) = ν̌(θi, τ)TθiU
�
m,

(Hs
m − τU�

m)ν(θi, τ) = θiU
�
mν(θi, τ).

(4.4)

The eigenvector polynomials factor componentwise, i.e., with Mi:j(τ) :=
∏j
`=i(τ − µ`),
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ν̌(z, τ) =
(
ρ̌1(z), ρ̌2(z), . . . , ρ̌s(z), %̌s+1(z),

(τ − µ1)ρ̌s+1(z), (τ − µ1)ρ̌s+2(z), . . . ,

(τ − µ1)ρ̌2s(z), (τ − µ1)%̌2s+1(z),

(τ − µ1)(τ − µ2)ρ̌2s+1(z), (τ − µ1)(τ − µ2)ρ̌2s+2(z), . . . ,

(τ − µ1)(τ − µ2)ρ̌3s(z), (τ − µ1)(τ − µ2)%̌3s+1(z), . . . ,

Mk−1(τ)ρ̌(k−1)s+1(z),Mk−1(τ)ρ̌(k−1)s+2(z), . . . ,

Mk−1(τ)ρ̌ks(z),Mk−1(τ)%̌ks+1(z)
)T
, (4.5a)

ν(z, τ) =
(
M1:k(τ)ρ1(z),M1:k(τ)ρ2(z), . . . ,M1:k(τ)ρs(z),

M2:k(τ)%s(z),

M2:k(τ)ρs+1(z),M2:k(τ)ρs+2(z), . . . ,M2:k(τ)ρ2s(z),

M3:k(τ)%2s(z), . . . ,

Mk−1:k(τ)ρ(k−2)s+1(z),Mk−1:k(τ)ρ(k−2)s+2(z), . . . ,Mk−1:k(τ)ρ(k−1)s(z),

(τ − µk)%(k−1)s(z),

(τ − µk)ρ(k−1)s+1(z), (τ − µk)ρ(k−1)s+2(z), . . . ,

(τ − µk)ρks(z), %ks(z)
)T
. (4.5b)

Proof. We know from [13, Lemma 2.1], a result already anticipated in [39, §5],
that

ν̌(z, τ)T(zU�
m + τU�

m −Hs
m) =

χ(z, τ)∏m−1
`=1 h`+1,`

eT
m,

(zU�
m + τU�

m −Hs
m)ν(z, τ) = e1

χ(z, τ)∏m−1
`=1 h`+1,`

,

(4.6)

where χ(z, τ) := det (zU�
m + τU�

m −Hs
m), which has the roots z = θi for all τ . Thus,

the eigenvector polynomials evaluated at z = θi give the corresponding eigenvectors.
Not only the characteristic polynomial factors into a product of a univariate polynomial
in z and a univariate polynomial in τ , all trailing and leading characteristic polynomials
factor in a similar manner. We only give the proof for the left eigenvector polynomial
coefficients, the proof for the right eigenvector polynomial coefficients is analogous. It
helps to keep in mind that U�

m contains the interactions between consecutive blocks.
The first s columns of U�

m are zero, thus, the degree of ν̌j(z, τ) as polynomial in τ is
zero for j = 1, . . . , s+ 1. The next s+ 1 columns are zero below the s+ 1st row, the
element in position (s+ 1, s+ 1) is given by τ . This implies that the degree of ν̌j(z, τ)
as polynomial in τ is one for s+ 2 6 j 6 2s+ 2. This pattern repeats itself, the degree
as polynomial in τ increases by one after every multiple of s + 1. Setting τ = µj ,
1 6 j 6 k, results in a right upper zero block that has its lower left corner on the
diagonal, i.e., every characteristic polynomial of a pencil that contains such a diagonal
element has a linear factor τ − µj , where µj is the seed value of the corresponding
block. Dividing by the known linear factors we end up with a left set of polynomials
{ρ̌`} and (some members of) a second left set of polynomials {%̌`}, its elements in
both cases univariate in z of degree `− 1. The corresponding elements of the right
sets of polynomials {ρ`} and (for some `) {%`} have degree ks − `; by construction,
ρ̌1(z) = %ks+1(z) = 1.

We remark that the computation of U�
m and U�

m from Um is exact, even in finite
precision. We have a family of pencils at hand to compute the wanted eigenvalues, the
only difference is in the corresponding eigenvectors and thus the eigenvalue condition
numbers. For τ = µi the resulting pencil is singular; the shift should be far from the
seed values, but not to close to infinity.

We computed a Sonneveld pencil using mneIDR(3) for m = 39 steps on a Grcar
matrix of size n = 30 and plotted the normwise condition numbers of the simple, finite,
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nonzero eigenvalues θi [14, eq. (2.9), Theorem 2.5] of the family of purified pencils (4.1)
for the Euclidean norm and absolute errors,

κ(θi, τ) := lim sup
ε→0

{
|∆θi|
ε|θi|

| (Hs
m − τU�

m + ∆Hm)(ν(θi, τ) + ∆ν) =

(θi + ∆θi)(U
�
m + ∆Um)(ν(θi, τ) + ∆ν) (4.7)

‖∆Hm‖ 6 ε‖Hs
m − τU�

m‖, ‖∆Um‖ 6 ε‖U�
m‖
}

=
‖ν̌(θi, τ)‖‖ν(θi, τ)‖(‖Hs

m − τU�
m‖+ |θi|‖U�

m‖)
|θi||ν̌(θi, τ)TU�ν(θi, τ)|

. (4.8)

We used Matlab’s symbolic math toolbox, i.e., the MuPAD kernel, to compute
the exact bivariate eigenvector polynomials, substituted the numerically computed
eigenvalues of the purified pencil for τ = 1 and numerically computed the norms of
the matrices involved. The resulting Figure 4.1 shows the expected behaviour. The
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Fig. 4.1. Normwise condition numbers of all 30 eigenvalues of the family of purified pencils
computed by mneIDR(3) for m = 39 steps on a Grcar matrix of size n = 30 with the vanilla seed
value selection scheme.

two lowest condition number curves correspond to the real Ritz values close to one
and close to four, clearly visible in Figure 4.2. In this figure we depict the computed
eigenvalue approximations. The condition numbers close to the seed values are very
large. This is even more pronounced if two or more seed values coalesce, which is
almost the case in our example, where µ2 ≈ 3.7400 and µ3 ≈ 3.7691. We also observe
the expected increase in the condition numbers for τ far from the spectrum and the
seed values.

As the normwise condition numbers do not respect the structure, which is done in
part even by QZ, more by LZ, we depict the componentwise condition number of the
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Fig. 4.2. Eigenvalue approximations by the 30 Ritz values computed by mneIDR(3) for m = 39
steps on a Grcar matrix of size n = 30 with the vanilla seed value selection scheme.

simple, finite, nonzero eigenvalues θi [14, eq. (3.4), Theorem 3.2]

cond(θi, τ) := lim sup
ε→0

{
|∆θi|
ε|θi|

| (Hs
m − τU�

m + ∆Hm)(ν(θi, τ) + ∆ν) =

(θi + ∆θi)(U
�
m + ∆Um)(ν(θi, τ) + ∆ν) (4.9)

|∆Hm| 6 ε|Hs
m − τU�

m|, |∆Um| 6 ε|U�
m|
}

=
|ν̌(θi, τ)T||Hs

m − τU�
m||ν(θi, τ)|+ |θi||ν̌(θi, τ)T||U�

m||ν(θi, τ)|
|θi||ν̌(θi, τ)TU�ν(θi, τ)|

(4.10)

in Figure 4.3. It is clearly visible that the componentwise eigenvalue condition is
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Fig. 4.3. Componentwise condition numbers of all 30 eigenvalues of the family of purified
pencils computed by mneIDR(3) for m = 39 steps on a Grcar matrix of size n = 30 with the vanilla
seed value selection scheme.

independent of the shift3, which follows from the block structure of the matrices, the
factorization of the bivariate eigenvector polynomials (4.5), and the formula (4.10) for

3We computed the data for this plot using Matlab’s symbolic math toolbox, unaware of this
fact. The computation of these few horizontal lines took two days.
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the componentwise condition numbers. The componentwise condition numbers are
smaller than the best corresponding normwise condition numbers, but still larger than
the corresponding Wilkinson’s eigenvalue condition numbers of the eigenvalues of the
Grcar matrix that are approximated by them.

There does not exist a solver for these structured pencils that will not destroy the
structure. The observed behaviour lies somewhere between both, the normwise, and
the componentwise world. As a rule of thumb: the more structure is preserved, the
better the structured eigenvalue condition numbers.

4.2. A deflated family. The computation of the Schur complements of the
purified pencils results in a family of deflated pencils. This family turns out to be just
a structured block-diagonal scaling of a single pencil.

Theorem 4.3. Let the notation be as in Theorem 4.1. The family of deflated
pencils obtained by computation of the Schur complement is given by

(H�ks(τ),U�ks), H�ks(τ),U�ks ∈ Cks×ks, τ ∈ C \ {µ1, . . . , µk}, (4.11)

where H�ks = H�ks(0), and the unreduced Hessenberg block tridiagonal matrices H�ks(τ),
τ ∈ C \ {µ1, . . . , µk}, are defined as

H�ks(τ) :=



h•1,1 (τ − µ1)h•1,2
h•2,1
τ − µ1

h•2,2
. . .

. . .
. . . (τ − µk−1)h•k−1,k

h•k,k−1
τ − µk−1

h•k,k


, (4.12)

with the non-trivial blocks h•i,j ∈ Cs×s, 1 6 i, j 6 k, |i− j| 6 1, given by

h•1,1 := H1:s,1:s −U1:s,s+1hs+1,se
T
s , (4.13a)

h•i,i := Hi(s+1)−s:i(s+1)−1,i(s+1)−s:i(s+1)−1

+ µi−1Ui(s+1)−s:i(s+1)−1,i(s+1)−s:i(s+1)−1, 2 6 i 6 k, (4.13b)

h•i+1,i := hi(s+1)+1,i(s+1)hi(s+1),i(s+1)−1e1e
T
s , 1 6 i < k, (4.13c)

h•i,i+1 := Ui(s+1)−s:i(s+1)−1,i(s+1)Ui(s+1),i(s+1)+1:i(s+1)+s

−Ui(s+1)−s:i(s+1)−1,i(s+1)+1:i(s+1)+s

−U(i+1)(s+1)−s:(i+1)(s+1)−1,(i+1)(s+1)h(i+1)(s+1),(i+1)(s+1)−1e
T
s

− e1hi(s+1)+1,i(s+1)Ui(s+1),i(s+1)+1:i(s+1)+s, 1 6 i < k. (4.13d)

All members of the family of deflated pencils (4.11) are block diagonally similar to the
basic deflated pencil (H•ks,U

•
ks), where

H•ks :=


h•1,1 h•1,2

h•2,1 h•2,2
. . .

. . .
. . . h•k−1,k

h•k,k−1 h•k,k

 , U•ks := U�ks. (4.14)

The basic deflated pencil has the left and right eigenvectors ρ̌(θj) and ρ(θj), where

ρ̌(z) :=
(
ρ̌1(z), . . . , ρ̌ks(z)

)T
, ρ(z) :=

(
ρ1(z), . . . , ρks(z)

)T
, (4.15)

with ρ̌`(z) and ρ`(z), 1 6 ` 6 ks, defined in (4.5).

Proof. The Schur complement is computed following the steps outlined in sec-
tion 2.4. Careful examination of the structure depicted in example (2.16) shows that
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some terms τ − µj cancel and that the matrix (4.12) with the elements (4.13) arises.
Let I ∈ Cs×s. The diagonal similarity transformation T(τ),

T(τ)(H�ks(τ),U�ks)(T(τ))−1 = (H•ks,U
•
ks), (4.16)

of the family (4.11) of pencils to the basic deflated pencil (4.14) is given by

T(τ) := diag(I,M1(τ)I,M2(τ), . . . ,Mk−1(τ)). (4.17)

The Schur complement is connected to left and right block Gaussian elimination. To
understand the impact of deflation on the right eigenvectors, we look at the right
block Gaussian eliminator Mm [13, Eqn. (4.33)], which, when applied from the right,
transforms the family (4.1) of purified pencils to the pencils

(Hs
m − τU�

m,U
�
m)Mm = (H̃m(τ),U�

m), H̃m(τ) :=


••◦••••◦••◦•◦••◦••••◦••◦•◦••◦••◦◦

 , (4.18)

where the bullets denote the elements of H�ks(τ), and the circles denote original elements,
here depicted for s = 2, m = k(s + 1) = 9. The matrix Mm looks structurally as
follows for the example s = 2, m = k(s+ 1) = 9 of the purified pencil (2.12):

M9 :=


◦◦•◦••◦◦•◦••◦◦•◦

 ,


◦◦•◦••◦◦•◦••◦◦•◦


−1

=


◦◦∗◦∗∗◦◦∗◦∗∗◦◦∗◦

 = M−1
9 . (4.19)

Here, the circles in the diagonal denote ones, and the stars in the right-hand side are the
negatives of the bullets in the left-hand side in the same position. As the eigenvectors
of the pencils on the right-hand side of (4.18) are given by M−1

m times those of the
purified pencils, which are given by (4.5), and because M−1

m modifies only every
entry with index j(s+ 1), 1 6 j 6 k, all other eigenvector entries remain unchanged.
Deflation can be described as omitting exactly the indices that correspond to those
that have been changed. Thus, the right eigenvectors of the deflated pencils (4.11)
consist of the right eigenvectors of the purified pencils (4.5), omitting every entry
with index j(s+ 1), 1 6 j 6 k. The scaling that results in the basic deflated pencil
causes the common factor Mk(τ) in all entries, which is left out for simplicity. The
last element ρks(z) is constant; by definition of Um, the diagonal element um,m is one,
and by definition of the bivariate eigenvector polynomials (4.3),

νm−1(z, τ) =
(τ − µk)um,m

hm,m−1
, i.e., ρks(z) = h−1m,m−1 6= 0.

This proves that the right polynomial vector in (4.15) defines the right eigenvectors
of the basic deflated pencil. A similar derivation proves that the inverse of the left
block Gaussian eliminator, when applied from the right to the left row eigenvector
ν̌(z, τ)T, modifies only every entry with index j(s+ 1), 1 6 j 6 k. These are removed
in the process of deflation; the scaling to obtain the basic deflated pencil removes the
dependency on τ . The first entry of the left eigenvector polynomial in (4.15) is one,
thus we have proven that the polynomials (4.15) are eigenvector polynomials of the
basic deflated pencil (4.14).

We remark that we obtain the “natural” eigenvector polynomials if we scale the
right eigenvector polynomial on the right of (4.15) by hm,m−1.

5. Pick your favorite pencil. In the last section we proved that there are
families of purified and deflated pencils, and showed by example how the normwise
condition numbers of its constant eigenvalues differ. We introduced a new pencil, the
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basic deflated pencil, which has only a mild and mostly implicit dependency on the
seed values µj , 1 6 j 6 k.

This offers much more flexibility: we can chose, depending on the application we
have in mind, the appropriate type of pencil to compute eigenvalues. At the same
time, we introduced more flexibility by adding a new parameter, the shift parameter τ
in the families of deflated pencils. In the following list we gather all approaches and
their properties.

Sonneveld matrix: Might be used if we are only interested in rough approximations
to eigenvalues that are far from the selected seed values and rely on an existing
code for Francis’s (QR) algorithm, but do not have a code for the QZ algorithm
at hand.

Sonneveld pencil: Might be used if we are only interested in eigenvalues that are
far from the selected seed values.

Purified pencil: If we can select a shift parameter far form the seed values, but
sufficiently far from infinity, the QZ algorithm or an adapted LZ algorithm
gives good results. Numerical experiments suggest selecting a shift in the
region of the converged eigenvalues.

Deflated pencil: As the shift just introduces a scaling, we ignore the family of
deflated pencils and directly scale the basic deflated pencil blockwise using
powers of two, such that the upper and lower blocks approximately have the
same Frobenius norm. This removes the dependency on the shift parameter
and gives good results using the QZ algorithm or an adapted LZ algorithm.

Lanczos matrix: At present this approach seems to be less stable than the others,
but if we want to use Wilkinson’s implicit double shift LR algorithm [37,
p. 537] or Zhlobich’s quasi-separable dqds [41], it might prove useful.

The QZ variants result in full pencils, the adapted LZ algorithms do not. If the pencils
become large, which is an option, as they are computed by short recurrences, we might
want to use an adapted LZ algorithm that preserves the banded structure. We could
think of a variant based on a local strategy of pivoting, that only slowly destroys the
banded structure. It remains to investigate the conditioning of LZ, LR, and dqds
approaches.

6. Numerical experiments. The numerical experiments in this section are
used to show also the weaknesses of the approaches. For this reason we select a small
s, in a real computation we would use a larger s. For the same reason we only use a
well known academic toy example.

We present three examples. The first example shows that we can stably compute
Ritz values for singular and almost singular pencils. The second example highlights
the behaviour with respect to the shift parameter τ . In the third example we compare
the shifted pencils for a selected shift with the scaled basic deflated pencil.

6.1. The introductory example reconsidered. We reconsider the numerical
experiment underlying Figure 3.3. We chose as shift parameter τ = 2. The resulting
Figure 6.1 shows that even though the seed values come close to zero, we can stably
compute Ritz values using an alternate purified pencil.

In Figure 6.2, we used the seed value zero throughout and the shift τ = 2 in the
alternate purified pencil. We remark that the standard purified pencil, i.e., the purified
pencil we would obtain for the shift τ = 0, is singular.

As we can see, the techniques introduced in §4 provide us with the countermeasures
to cure the singular and almost singular pencils due to the seed value selection strategy
at no extra cost. The same strategy works for the deflated pencils, which is not shown
here. It remains to investigate the dependency on the shift parameter τ ; this task is
treated in the next subsection.
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Fig. 6.1. srIDR(4) for m = 124 steps on a Grcar matrix of size n = 100, different seed value
selection scheme. Plus signs depict computed eigenvalues, triangles the seed values. Circles depict
computed eigenvalues of the Sonneveld pencil, dots depict computed eigenvalues of the alternate
purified pencil.
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Fig. 6.2. srIDR(4) for m = 124 steps on a Grcar matrix of size n = 100, zero seed value
selection scheme. Plus signs depict computed eigenvalues, triangles the seed values. Circles depict
computed eigenvalues of the Sonneveld pencil, dots depict computed eigenvalues of the alternate
purified pencil.

6.2. The dependency on the shift parameter. As a second example we used
a Grcar matrix of size n = 75. We computed the matrices H103, U103 for mneIDR(3)
with zero shift. The first figure of this example, Figure 6.3, shows the performance of
the standard QZ algorithm on different pencils. All approximations are fairly good,
differences are only visible for the eigenvalues with larger condition numbers. The
Jordan block at zero of the Sonneveld pencil is approximated by a circle of Sonneveld
Ritz values, close to this circle we observe seven ghost Ritz values that converge to
these approximations and are found by all approaches. We (more or less randomly)
selected the shift τ = 10 for the purified pencil, the deflated pencil, and the Lanczos
matrix.

In the second figure of the second example, Figure 6.4, we zoom into the picture
and investigate the approximations close to the eigenvalue λ ≈ 0.2602 + 2.0778i. Using
variable precision with 100 digits, we computed the “exact” Ritz values, depicted with
boxes in the first plot in the upper left corner. The exact Ritz values are really close
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to the eigenvalues, which shows the effectiveness of Sonneveld methods for eigenvalue
computations. In theory, all approximations coincide, what we observe is due to the
finite precision computations and the structure of the pencils. In the upper right
corner we plotted the 1000 nearest approximations obtained for equidistantly selected
shifts τ in the interval [5, 10] using the purified pencil; in the lower left corner we
did the same for the deflated pencil; in the lower right corner we did the same for
the Lanczos matrix. As we can see, the purified pencils and deflated pencils all give
good approximations to the eigenvalue λ ≈ 0.2602 + 2.0778i. In contrast, the Lanczos
matrices give worse approximations, the spread is much larger than for the shifted
pencils.
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Grcar matrix, τ = 10

 

 
eigenvalues

Sonneveld Ritz values

shifted purified Ritz values

shifted deflated Ritz values

shifted Lanczos values

seed values

Fig. 6.3. mneIDR(3) for m = 103 steps on a Grcar matrix of size n = 75, zero seed value
selection scheme. Plus signs depict computed eigenvalues, a lower triangle the seed value zero. Circles
depict computed eigenvalues of the Sonneveld pencil, crosses those of the purified pencil for shift
τ = 10, diamonds those of the deflated pencil for shift τ = 10, upper triangles those of the Lanczos
matrix for shift τ = 10.

We conclude that the process of shifting to obtain an alternate purified or deflated
pencil is only mildly dependent on the shift parameter: there are many shift values
that can be used to obtain the Ritz values in a stable manner. This is supported
by more numerical computations for a variety of matrices and seed value selection
schemes not reported here.

6.3. Using the scaled basic deflated pencil. In this third example we use
a Grcar matrix of size n = 100. The data stems from a run of m = 152 steps of
mneIDR(8) with zero shift strategy. We used a sort of over-scaling with powers of two
such that the off-diagonal blocks become comparable in Frobenius norm. Figure 6.5
depicts the numerical approximations obtained using the Sonneveld pencil, the purified
pencil and the deflated pencil, both with shift τ = 9, and the scaled basic deflated
pencil (4.14).

All approximations are of comparable quality. Repeating this experiment several
times shows that only rarely one of the approaches turns out to be better than the
others.
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Deflated: τ = 5,...,10
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Lanczos: τ = 5,...,10

Fig. 6.4. mneIDR(3) for m = 103 steps on a Grcar matrix of size n = 75, zero seed value
selection scheme. All markers are as in Figure 6.3, except boxes in the top left figure, which denote
the exact Ritz values, and dots in all other figures, which denote the Ritz value approximations for
1000 equidistant shifts in the interval [5, 10] for the shifted purified pencils (top right), deflated pencils
(bottom left), and Lanczos matrices (bottom right), respectively.

7. Conclusion & outlook. In this note we presented ways to overcome insta-
bilities in eigenvalue computations based on Sonneveld methods due to singular or
badly conditioned pencils. The main results are the descriptions of the families of
purified and deflated pencils in §4. It is hoped that this work helps in designing
new, structurally adapted eigenvalue algorithms for the pencils arising in Sonneveld
methods.

As any Hessenberg/upper triangular pencil defines a generalized Hessenberg
decomposition, we might try to utilize these results in the development of adapted
linear system solvers or eigenvector computations, which are both based on linear
combinations of certain basis vectors. The explicit knowledge of the transitions is
helpful in either developing recurrences for other sets of vectors, which might be used
as basis vectors, or in the recomputation of coefficient vectors for the original basis.
The latter can be used for 2-pass Sonneveld methods: firstly, the pencils are computed,
discarding the basis vectors, secondly, after the coefficients of a linear combination
of the basis vectors are known, we recompute the basis vectors and only update the
wanted linear combinations.
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Fig. 6.5. mneIDR(8) for m = 152 steps on a Grcar matrix of size n = 100, zero seed value
selection scheme. All markers are as in Figure 6.3, the shift for the purified and the deflated pencil
was τ = 9. The boxes denote the numerical approximations obtained from the scaled basic deflated
pencil defined in (4.14).
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