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Subordination for sequentially equicontinuous equibounded
Co-semigroups

KARSTEN KRUSE@), JAN MEICHSNER( AND CHRISTIAN SEIFERT

Abstract. We consider operators A on a sequentially complete Hausdorff locally convex space X such that
— A generates a (sequentially) equicontinuous equibounded Cy-semigroup. For every Bernstein function f
we show that — f(A) generates a semigroup which is of the same ‘kind’ as the one generated by —A. As a
special case we obtain that fractional powers —A%, where « € (0, 1), are generators.

1. Introduction

In this paper we aim to generalise subordination of bounded Cy-semigroups from
the well-known case of Banach spaces to sequentially complete Hausdorff locally
convex spaces.

The theory of Co-semigroups on Banach spaces is by now a classical topic, see, e.g.
the monographs [10,13,17,20,33]. It has been generalised to locally convex spaces
in various contexts in [45, Chapter IX] and [6,7,11,15,21,22,24,26]. Since on these
spaces continuity and sequential continuity may differ, we work with the (weaker)
notion of sequential (equi-) continuity as in [15].

Subordination (in the sense of Bochner) for bounded Cp-semigroups on Banach
spaces describes a technique to associate a new semigroup to a given one by integrating
orbits against a convolution semigroup of measures. It plays an important role in
operator theory, functional calculus theory and stochastic processes, see, e.g. [2,34,
36]. As is well-known (see also Proposition 4.6) these convolution semigroups of
measures correspond via Laplace transform to the class of Bernstein functions, cf.
the monograph [37]. It turns out that the generator of the subordinated semigroup
can be described by means of the Bernstein function and the generator of the original
semigroup [34, Theorem 4.3].

Although the framework of Cp-semigroups on Banach spaces yields a rich theory
as described above, for example even the classical heat semigroup on C,(RR") does
not fit in this context, however can be treated in our generalised setting; cf. Example
5.16 below.
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Let us outline the content of the paper. In Sect. 2 we review the Pettis-integral which
provides a suitable integral in our context of locally convex spaces, in particular those
satisfying the so-called metric convex compactness property, see Theorem 2.2 below.
The theory of locally sequentially equicontinuous, equibounded Cp-semigroups on
sequentially complete Hausdorff locally convex spaces can be developed analogously
to the classical theory of Cp-semigroups on Banach spaces, apart from the fact that the
continuity properties need to be described by sequences. We collect the facts needed
in Sect. 3. We then turn to subordination in this context in Sect. 4. After introducing
Bernstein functions, the right class of functions for this purpose, we develop the
theory of subordination in our generalised setting. It turns out that the subordinated
semigroup is again a locally sequentially equicontinuous, equibounded Cy-semigroup
(see Proposition 4.9) and that its generator can be related to the one of the original
semigroup (see Theorem 4.14 and Corollary 4.17). These are our main abstract results.
We will then apply these results to bounded (locally) bi-continuous semigroups (as
introduced in [27]) and to transition semigroups for Markov processes in Sect. 5. In
particular, the above-mentioned classical heat semigroup, also called Gau—Weierstraf}
semigroup, on Cp(RR") fits into this context.

2. Integration in locally convex spaces

In this section we review the notion of the Pettis-integral.

Definition 2.1. (Pettis-integral) Let (£2, X, u) be a measure space and X be a Haus-
dorff locally convex space. A function f : 2 — X is called weakly (scalarly)
essentially measurable if the function (x/, f) : 2 — K, (X, f)(w) = (x/, f(w))
is essentially measurable (i.e. it has a measurable representative) for all x’ € X'.
Here X’ denotes the topological dual space of X and (-, -) is the canonical pairing. A
weakly essentially measurable function is said to be weakly (scalarly) integrable if
(x', f) € L'(£2, ). A weakly integrable function f is called (j-Pettis-) integrable
if

xeXVx eX (X, x) = / (', f(w))u(dw).
2

In this case x is unique due to the Hausdorff property and we set

/ f@)p(dw) = x.
2

Recall that a Hausdorff locally convex space X is said to have the metric convex
compactness property if for each metrisable compact subset C C X also the closed
convex hullcx C of C is compact. Note that if X is sequentially complete and Hausdorff
locally convex, then X has the metric convex compactness property by [41, Remark
4.1.b].
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Theorem 2.2. ([41, Theorem 0.1]) Let X be a Hausdorf{f locally convex space. Then
the following are equivalent.

(a) X has the metric convex compactness property.
(b) If 2 is a compact metric space, [ a finite Borel measure on 2 and f : 2 — X
continuous, then f is u-Pettis-integrable.

If X is a Hausdorff locally convex space with metric convex compactness property
and p a positive and finite Borel measure on [0, c0), then by Theorem 2.2 every
continuous function f : [0,00) — X is u-Pettis-integrable over every compact
interval [a, b] C [0, c0) with 0 < a < b. In this case we can construct the Pettis-
integral explicitly by using Riemann sums. To that end, fix 0 < a < b and forn € IN

let (a = x(") e (") = b) be a partition of [a, b] such that maxy (x(") x,ﬁ")]) — 0,

and {E(”) | & ) ¢ (xl(")l, M i e {1,...,kn}} a corresponding set of intermediate
points. Then

kll
S = lim 3 (67) w0 1) + S @(la).
@ i=1

If f is additionally bounded, by boundedness of i we can also integrate f with respect
to u over the entire interval [0, 00).

Lemma 2.3. Let X be a sequentially complete Hausdorff locally convex space, i a
finite Borel measure on [0, 00) and f € Cy([0, 00), X). Then f is ju-Pettis-integrable.

Proof. By the above we can integrate f over every compact interval. Consider the
sequence (x,) defined by

Xn :=/ fMu(dr) (nelN).
[0,n]

Letn,m € IN,m < n.Forevery seminorm ||-|| , of the family of seminorms generating
the topology of X we have

1260 = Xmllp < 11Nl oo (G, 1),

implying that (x,) is a Cauchy sequence. Since X is sequentially complete, (x,) is
convergent. Let x := lim,,_, 5 X,,. Then the equation x = f[o ) S ) (dAr) is verified
by a direct calculation. 0

3. Locally sequentially equicontinuous semigroups

Let (X, t) be aHausdorff locally convex space. The system of seminorms generating
the topology 7 will be denoted by (|||l ,) pep- W.1.0.g. we may assume that (||-|,) is
directed.
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Definition 3.1. A semigroup (T;);>0 of linear operators defined on X is a family of
linear operators 7;: X — X fort > 0, such that Ty = [ and Ty, = T,T; for all
s,t > 0. A semigroup (7;);>0 on X is said to be
(a) a Co-semigroup on (X, t) if for all x € X we have lim;_. o4+ T}x = x,
(b) locally sequentially equicontinuous if for all sequences (x,) in X such that
X, — 0,10 > 0 and p € P we have lim,_, o SUP;[0.10] ||T,x,1||p =0,
(¢) locally equibounded if for all bounded sets B C X, fop > 0 and p € P it holds

that sup rep [ITix|l, < oo.
t€[0,10]

We drop the word ‘locally’ if the properties (b) and (c) hold uniformly on [0, 00).

Remark 3.2. If (T;) is a (locally) sequentially equicontinuous semigroup, then (73)
is (locally) equibounded ([15, Propositions A.1 (iii)]). Moreover, if (7}) is a locally
sequentially equicontinuous Co-semigroup on (X, 7), then the mapping [0, 00) > ¢ >
T;x € X is continuous for all x € X.

Let (T;) be a locally sequentially equicontinuous, equibounded Cyp-semigroup on
(X, 7). As in the case of Cyp-semigroups on Banach spaces we define the generator
—A of (T;) by

D(A) := {x € X | lim %(T,x —X) exists},
t—0+

—Ax = lim X(Tix —x) (x € D(A)).
t—0+

Remark 3.3. There is no common agreement whether to use the here presented defi-
nition of a generator or its negative. Throughout the entire paper we will stick to the
above made definition, i.e. —A is the generator.

Let pg(—A) € C be the set of all elements A € C such that the operator A + A has
a sequentially continuous inverse (note that we allow for complex values here).
Let us collect some basic facts for (7;) and A.

Lemma 3.4. (see [15, Propositions 3.10, 3.11, Theorem 3.14, Corollary 3.15 and
Corollary 3.16]) Let X be a sequentially complete Hausdorff locally convex space,
(Ty) a locally sequentially equicontinuous, equibounded Cy-semigroup on (X, T) with
generator —A. Then

(a) D(A) is sequentially dense in X,

(b) for x € D(A) we have T;x € D(A) forallt > 0, t — T;x is differentiable and

%Ttx = —ATix = —T;Ax forallt > 0,
(¢) (0,00) S po(—A) and

A+ A)7x = / e MTxdr (x € X,1>0),
(0,00)

(d) A is sequentially closed,
(e) forall x € X one has lim)_, o0 L(A + A lx =x
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Remark 3.5. (a) Note that compared to [15], we only assume local sequential equi-
continuity for (7;). However, this does not affect the results and proofs.

(b) Unless we assume (7;) to be (sequentially) equicontinuous on the whole of
[0, 00), we cannot show that the resolvent family (A A+ A)_l) 120 correspond-
ing to (T;) is (sequentially) equicontinuous. However, for ¢ > 0 the rescaled re-
solvent family (A A+A+e)! ) 5.~ corresponding to the (sequentially) equicon-
tinuous semigroup (e’ T;) is (sequentially) equicontinuous.

4. Subordination for equicontinuous Cy-Semigroups

We start with the definition of the class of functions in which we will plug in the
negative of a generator of a locally sequentially equicontinuous, equibounded Cy-
semigroup in order to get a new generator.

Definition 4.1. (Bernstein function)Let f: (0, co) — [0, 0c0). Then f is called Bern-
stein function provided f € C*(0, 00) and (—1)*~! f® > 0 for all k € IN.

Bernstein functions appear in a vast number of fields such as probability theory,
harmonic analysis, complex analysis and operator theory under different names, e.g.
Laplace exponents, negative definite functions or Pick, Nevanlinna or Herglotz func-
tions (complete Bernstein functions, cf. [37]). They allow for a very useful represen-
tation formula in terms of measures.

Proposition 4.2. ([37, Theorem 3.2]) Let f: (0, 00) — [0, 00). The following are
equivalent.

(a) f is a Bernstein function.
(b) There exist constants a,b > 0 and a positive Radon measure  on (0, 00)
satisfying f(o ooy | AT (dr) < 00 such that

f) :a+bk+/ (1 —e‘“) w(dr) (A > 0). @)
(0,00)
The representation of f in (1) is called Lévy-Khintchine representation. The function
f determines the two numbers a, b and the measure p uniquely. The triplet (a, b, )
is called Lévy triplet of f.
Every Bernstein function admits a continuous extension to [0, 0o) since by applying
dominated convergence to the representation formula (1) one gets f(0+) = a.

Example 4.3. Let o € (0,1) and f: (0, 00) — [0, c0) be defined by f(x) := x“
for all x > 0. Then f is a Bernstein function with Lévy triplet (0, O, u), where for
measurable sets B C (0, oo) we have

o -1 —1l—a
w(B) = M) /Bt dr.



2670 K. KRUSE ET AL. J. Evol. Equ.

Hence,

1
x% = ) o l)fl*"‘dt.
—&) J(0,00)

Let us now turn to a concept closely related to Bernstein functions.

Definition 4.4. Let (;);>0 be a family of Radon measures on [0, co), ¢ a Radon
measure on [0, 00). Then (u,) is called

(a) afamily of sub-probability measures if Vt € [0, 00) : u,([O, oo)) <1,

(b) convolution semigroup if wy = 8o and Vs, t € [0, 00) : s * s = Urts,

(c) vaguely continuous at s € [0, co) with limit p if

v ecd0.00: fim [ o) m@n =/[0 SO ),

—>S [0,00

Remark 4.5.  (a) A family (u;) of sub-probability measures which is vaguely con-
tinuous at 0 with limit dy is also weakly continuous at 0, i.e. (c) in Definition 4.4
actually holds for all f € Cy[0, 00). In order to see this, choose f € C.[0, co)
such that 0 < f < 1 and f = 1 in a neighbourhood of 0. Then

lzut([0,00))zf fO) pue(dr) — f(0) =1ast — 0+,
[0.00)

ie. ,u,t([O, oo)) — 1. By [37, Theorem A.4] this implies weak continuity at 0.
(b) Let (uy) be a convolution semigroup of sub-probability measures which is

vaguely continuous at 0 with limit ég. Then (i) is vaguely continuous at every

point s > 0 with limit ;. Indeed, we can define a contractive semigroup via

(T f)(x) := /[0 )f(x + 1) ui(dr) (x €0, 00), f € Col0, 00))

on the Banach space Cp[0, o0) = C.[0, 00). We claim that (7}) is strongly
continuous. Then vague continuity of (u;) follows since this also implies weak
continuity and 8¢ € Co[0, 0o)’. To show the claim, let f € Cy[0, 00). Fore > 0,
by uniform continuity of f, there exists § > O such that | f(x + 1) — f(x)| < &
if » € [0,8) and x € [0, 00). By (a), one actually sees u;([0,5)) — 1 and
consequently w,([§, 00)) — 0 as t — 0+. Thus,

T, £ () — F0Ol = Vw OB @) = £

=< /[‘0 5 [f x4+ —FO] o (dA)+2 ] f oo 1 ([, 00))

+ 1 flloo (1 = 14([0, 00)))
<€+ 2| flloo e ([8,00)) + 1 flloo (1 = 11([0, 00))),

which can be made arbitrarily small, uniformly in x. The estimate shows strong
continuity at # = 0 and by standard arguments this holds for all ¢+ > 0.
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Every Bernstein function is naturally associated to a family (u;) of sub-probability
measures which form a vaguely (and hence weakly) continuous convolution semigroup
and vice versa.

Proposition 4.6. ([37, Theorem 5.2]) Let (1) be a convolution semigroup of sub-
probability measures on [0, 00) which is vaguely continuous at O with limit §y. Then
there exists a unique Bernstein function f such that for allt > 0 the Laplace transform

of s is given by
L) = e /.

Conversely, given any Bernstein function f, there exists a unique vaguely continuous
convolution semigroup (j4;) of sub-probability measures on [0, 00) such that the above
equation holds.

By the above proposition we obtain that the sub-probability measures j; are prob-
ability measures if and only if f(0+) = 0, since

/_,(,l([()’ OO)) = AE)%I+ 00 e—)»SMt (dS) — )}E{L e—tf()») — e—l‘f(o-f—). (2)
00

Example 4.7. Leta € (0, 1) and f: (0, o0) — [0, 0co) be defined by f(x) := x* for
all x > 0. Then for ¢ > 0 the measure u; has a density g; w.r.t. the Lebesgue measure
given by

1 o
gi(s) = — f e ™ eWdw (s > 0),
2mi Jye

where yo = yg U yg is parametrised by
Vo ()= —re™? (re(=00,0), yg(r)=re'® (€ (0,00)

and ® € [/2, 7).

Im

Re

NIb
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For o = % one can explicitly calculate the integral and finds (see [45, p. 259-268]
for details)

te—17/(4s)

&i(s) = W (s > 0).

Recall that a family (u;);e; of sub-probability measures on [0, oo), where I <
[0, 00), is called uniformly tight if for all ¢ > 0 there exists K C [0, o0) compact
such that

sup i ([0, 00)\K) < &.

tel
Lemma 4.8. Let (141):>0 be a weakly continuous family of sub-probability measures
on [0, co) and J C [0, 00) be compact. Then the sub-family (it )<y is uniformly tight.

Proof. This is just a direct application of Prohorov’s theorem [3, Theorem 8.6.2] for
which we need to show the existence of a weakly convergent subsequence in a given
sequence (i, ). But this follows from the fact that the mapping ¢ — i, is continuous
with respect to the weak topology of measures and the compactness of J. U

Analogously to the case of bounded Cy-semigroups on Banach spaces (see [37,
Proposition 13.1]) we can construct a new (locally) sequentially equicontinuous, equi-
bounded Cp-semigroup from an existing one using a vaguely continuous convolution
semigroup (u;) of sub-probability measures.

Proposition 4.9. Let X be a sequentially complete Hausdorf{f locally convex space,
(Ty) be a (locally) sequentially equicontinuous, equibounded Cy-semigroup on (X, T)
and () be a convolution semigroup of sub-probability measures which is vaguely
continuous at O with limit §y. Fort > 0 define S;: X — X by

Six = f Tix pe(ds) (x € X). 3)
[0,00)

Then (S;) is a (locally) sequentially equicontinuous, equibounded Cy-semigroup on
(X, 7).

We will call (S;) the subordinated semigroup to (Ty) w.r.t. f,where f isthe Bernstein
function associated to ().

Proof. Lett > 0 and (||-||,) pep the family of seminorms generating the topology t
of X. By Lemma 2.3 and equiboundedness and strong continuity of (7;) the above
integral exists. The linearity of S; is clear. To show equiboundedness of (S;), for a
bounded set B C X and a seminorm ||-||,, we observe

sup [[Sixll, < sup [ Tsx|l, -
xeB xeB
t€[0,00) s€[0,00)
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Since (7;) is equibounded, so is (S;). The semigroup property of (S;) is inherited from
the semigroup property of (i;) and of (7). Indeed, let s, > 0. Forx € X, x' € X’
we have

(x', 8 Ssx) =/[0 )/[O )(X’, T Tyx) s (du) e (dv)
,00 ,00

:/ [ (x/, Tyqvx) ps(du) s (dv)
[0,00) J[0,00)

_ / (', Tox) (s * ) (dw)
[0,00)

= / <x/7 Tyx) s (dw) = (x/, St4sX).
[0,00)
For the strong continuity of (S;) let x € X. For p € P we estimate
ISix — xIl,, < / 17sx = xll, e (ds) + (1= (10, 0)) ) 1l = O,
[0,00)

since [s > || Tyx — xlll,] € Cp[0, oo) with value 0 at 0 and p; — §p weakly.

It remains to show that (S;) is (locally) sequentially equicontinuous. Let (x,) in X
be such that x, — 0. Let#y > 0, p € P and ¢ > 0. By Remark 4.5 (u;) is weakly
continuous. Hence, by Lemma 4.8 and equiboundedness of (7;) we can choose 5o > 0
such that

I
sup s ([s0,00)) - sup [ Tsxall, < <.
t€[0,10] nelN 2

5€[0,00)

By virtue of the local sequential equicontinuity of (7§) there exists ng € IN such that

&
sup ”Tsxn”p =5
s€[0,s0]

for all n > ng. Hence, for n > ng we obtain

sup [|Sixnll, < sup / 1 Texall, e (ds)
[0,00)

t€[0,1] te[0,19]
< sup / 1Tyl 20(ds)
t€[0,19] /[0,s0]

€
2

&
+ sup / ITsxnllp, mi(ds) = 5 + 5 =e.
(50,00) 2

t€[0,10]

In case (Ty) is even equicontinuous we may directly choose ng € IN such that

sup [ Tsxall, < e
s€[0,00)

holds for n > ng. Hence, it follows that
sup [|Sixnll, < sup / 1 Tsxnll, pne(ds) <e,
t€[0,00) te[0,00) J[0,00)

which finishes the proof. g
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Definition 4.10. Let X be a sequentially complete Hausdorff locally convex space,
(T;) a (locally) sequentially equicontinuous, equibounded Cp-semigroup on (X, )
with generator —A and f a Bernstein function. Then we will denote the generator of
the subordinated semigroup (S;) by —A/.

Our next goal is to represent the generator —A/ of a subordinated semigroup (S;)
for a given Bernstein function f as it was performed in [37, Eq. (13.10)] for Banach
spaces. We need some preparation. To begin with, we need to show that the function
s = Tyx — x can be approximated linearly in a neighbourhood of s = 0 and thus is
capable to compensate the measure appearing in the Lévy triplet (a, b, i) which is
singular at s = 0.

Proposition 4.11. Let X be a sequentially complete Hausdorff locally convex space,
(Ty) a (locally) sequentially equicontinuous, equibounded Cy-semigroup on (X, T)
with generator — A, f a Bernstein function with Lévy triplet (a, b, i), and x € D(A).
Then

0,0)5s—>Tix —xeX
is u-Pettis-integrable.

Proof. Since x € D(A), the mapping s — T,x is differentiable and

d
d_TSx = —ATsx = —T,Ax (s > 0),
s

see Lemma 3.4. Hence,
T,x—x:—/ ATgxds (t > 0)
0,1)

and thus forevery x’ € X’ there is a continuous seminorm ||| p (remember we assumed
the family of seminorms to be directed) and a constant C > 0 such that
|, Tox = )| < C I Tx = xll, = € sup I Axll, 1) A sup IToxll, + vl
5€[0,00) 5€[0,00)
forallt > 0. Hence, s — Tyx — x is p-weakly integrable by Proposition 4.2. Further,
by Theorem 2.2 we know that the function is integrable over every compact subset

K C (0, 00). Now we adapt the argument of the proof of Lemma 2.3 by considering
the sequences (y,) and (z,) defined by

YV 1= /[1 ](Tsx — x) pu(ds), Zn 2=‘/[ ](Tsx — x) n(ds),
;,r r,n

where r > 0 is a point of continuity of the measure p, i.e. u({r}) = 0. As before one
shows that both (y,) and (z,) are Cauchy sequences in X. Let their limits be denoted
by y and z, respectively. Since

yn+Zn=/1 (Tsx —x) u(ds) (n € IN),
[L.n]

ne
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we thus obtain
z+y= f (Tsx — x) u(ds),
(0,00)

which finishes the proof. d

Lemma 4.12. Let X be a sequentially complete Hausdorff locally convex space, (T})
a locally sequentially equicontinuous, equibounded Cy-semigroup on (X, t) with gen-
erator —A, f a Bernstein function, and (S;) the subordinated semigroup to (T;) w.r.t.
f. Then both (S;) and (A(A + Af)_l)k>0 leave D(A) invariant and the operators of
both families commute with A (on D(A)) and with the operators of (Ty).

Proof. The argument is the same as for the usual Banach space case. Let (u;) be the
family of measures associated to f according to Proposition 4.6. Let x € D(A). For
t > 0 we have

Sx = / Tsx py(ds) = lim Tsx e (ds)
[0,00) 1

n—=00 Ji0.»

by Lemma 2.3. For n € IN we can approximate f[o’ ) TsX It (ds) by (finite) Riemann
sums which belong to D(A). Since A is sequentially closed, also f[(),n] Tox s (ds) €
D(A) and therefore S;x € D(A).

Lets, t > 0. We now show that S; commutes with 7. Then S; also commutes with
A on D(A) since S; is sequentially continuous by Proposition 4.9. Let x € X. By
Lemma 2.3 and sequential continuity of 75 we obtain

TsSix = Ts/ Ty x p(dr) = Ty lim Tyx p(dr) = lim Tv/ Trx pe(dr).
[0,00) n—o0o

n—oo [O,Vl] [O,Vl]

Approximating f[o n) Trx e (dr) by (finite) Riemann sums, using the sequential con-
tinuity of 7, and taking into account the semigroup law for (7}), we conclude

T, S;x = lim TS/ Trx ps(dr) = lim T, Tx pue(dr) = S Tyx
n—oo [O,n] n—od [O,Yl]
again by Lemma 2.3.
Let 2 > 0. By Lemma 3.4 we have

A0+ A Ix = )\/ e MSxdr (x € X).
(0,00)

Thus, the claims for A (A + Af)~! follow from the claims for (S;) by approximating
the integral by integrals over compact subsets and then by finite Riemann sums and
taking into account the sequential closedness of A and of the operators 7; (which for
them follows from sequential continuity). 0
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Definition 4.13. Let X be a sequentially complete Hausdorff locally convex space,
(T;) a (locally) sequentially equicontinuous, equibounded Cp-semigroup on (X, )
with generator —A, and f a Bernstein function with Lévy-Khintchine representation

f) =a+br+ / (1—e ) udn (> 0).
(0.00)

We define the linear operator A s on X by D(Ay) := D(A) and

Afx :=ax +bAx + / (x —Tix)u(dt) (x € D(Ay)) %)
(0,00)

where the integral exists by Proposition 4.11.

Theorem 4.14. Let X be a sequentially complete Hausdorff locally convex space, (T;)
a (locally) sequentially equicontinuous, equibounded Cy-semigroup on (X, t) with
generator —A, f a Bernstein function, and —A7 the generator of the subordinated
semigroup (Sy) to (Ty) w.rt. f. Then D(A) € D(AT) and Af|D(A) =Ay.

Remark 4.15. For Banach spaces X this result is due to Phillips [34].

Proof. We adapt the proof of [37, Theorem 13.6] to our context. Let (a, b, 1) be the
Lévy triplet for f, and (i) the associated family of measures.

(i) Letus firstassume that f(0+) = a = 0, 1.e. (i;) is actually a family of probability
measures. Then by Proposition 4.6

e nf®
fa) = / (I—e™)npi(ds) = ———— = f(Masn — oo,
(0,00) "

for all A > 0, i.e. (f) is a sequence of Bernstein functions converging pointwise to
f.By [37, Corollary 3.9] we have

lim np1 = p vaguely on (0, 00), (@)
n— 00 n
lim lim nui ([C, 00)) =0, (6)
C—o0 n—>0oo n
r({CH=0
lim lim tnui(dt) =b. 7)
c—>0+ n—>o0 [ch) n

n({c)=0
Let x € D(A) and x’ € X’. Let ¢, C > 0 be such that u({c, C}) = 0, i.e. c and C
are points of continuity. Then nu 1 |[c.c) — wl[e,c) weakly since vague convergence
implies
w(le, ©)) = u((c, ©)) < liminf npu . ([c, €))
<limsupnp i ([e. ©)) < p([e. C1) = p(le. ©)).

n—00
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Now weak convergence follows from [37, Theorem A.4]. Hence, since the function
[[c,C) 3t — (x’,x — T;x)] is bounded and continuous, one has

fim [ o= im0 = [ ox = T .
n—oo [C,C) n [C,C)
By dominated convergence, we obtain
lim lim (x',x = Tyx)npi(dt) = / (x', x = T;x) pu(dr).
8%04» n—o00 [C,C) n (0,00)
—00
u({e,CH=0

By Lemma 3.4, for ¢ > 0 we have

/ (x',x — T;x) npi (dt) = / (x', TyAx — Ax)dsnpi(dr)
[0,¢) 0,1) n

[0,¢)

—}—/ t(x', Ax)nu1 (de).
[0,¢) "

Note that [0,¢) 2 ¢t +— f(o N (x', T,Ax — Ax)ds is continuous and bounded, and

takes the value 0 at ¢+ = 0. Moreover, the sequence (f(o N (x', TsAx — Ax)dsnu 1) ,

interpreted as measures on [0, c¢), is bounded and converges vaguely to the (finite)
measure f(o),) x', TyAx—Ax) ds pon (0, ¢), which does not charge {0}. If . ({c}) = 0,
we thus obtain that the convergence is even weakly. Hence, for such ¢ we have

lim / / (x’, T;Ax—Ax)ds nul(dt)z/ / (x', Ty Ax — Ax) dsu(de),
=0 J10,c) J(0,1) " [0,¢) J(0,1)

and therefore

lim lim / / (x', TsAx — Ax)dsnui(dt) = 0.
[0,¢) J(0,1) "

¢c—0+ n—o0

u({ch=0
Moreover,
lim lim t(x', Ax)npi(dt) = b (x', Ax)
c—>0+ n—>00 [0,¢) n
u({ch=0

by (7). Hence,

lim lim (x',x = Tyx)npi(dt) = b (x', Ax).
c—>0+ n—oo [0,¢) n
u(fch=0

Furthermore, since (7;) is equibounded, by (6) we obtain

Clim lim (x',x — Tyx)npi (ds) = 0.
—00 h—>0o0 n
n{cpH=o (€00
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Thus,

(', Asx) = <x/, bAx +/ (x — T,xm(dz)>

(0,00)
= lim lim (x',x = Tyx)npi (de)
c—>0+ n—o0 [0,¢) n
n({c)=0 ’
+ lim lim (x',x = Tyx)npi (dt)

20 e
u({e,CH=0

+ Clim lim (x',x = Tyx)npi (dr)
n—0o0 n
1(CH=0 [C.00)
= lim lim (x',x = Tyx)npi(df) = lim (x', n(x — S1x)).
c—0+ n—o0 [0,00) n n—o00 n
C—o0 ’
u({c,CH=0

For A > 0let x; := A(A 4+ A/)~!x. We now apply Lemma 4.12 multiple times. Then,
on the one hand, x; € D(Af) N D(A), and moreover (approximating the integral by
integrals over compacta and then by finite Riemann sums again)

O AN A = (¢ bax [ = T uian)
(0,00)
= lim (x',n(xy — S1x0)) = (¥, A xy).
n—oo n
Since this holds true for all x’ € X’, we obtain
A+ AT A px = ATy,

By Lemma 3.4 we have A(A + A7)~ — I strongly as A — oo. Since A/ is sequen-
tially closed by Lemma 3.4, we thus obtain x € D(A/) and A/ x = Arx.

(i) For the general case f(0+) = a > O consider h := f —a. Then k is a Bernstein
function with 2(0+) = 0. Let (v;) be the associated family of sub-probability measures.
Then (u;) given by u; = ey, for t > 0 is the family of measures associated to f.
Thus, for t > 0 and x € X we have

Slfx = / Tox s (ds) = / Tyxe v, (ds) = e "98"x,
[0,00) [0,00)
ie. (S,f ) is a rescaling of (Sth). Analogously to the case of Cp-semigroups on Banach

spaces one proves that then —A/ = — A" — 4. Thus the general case follows from (i).
O

Remark 4.16. In the above proof, we first showed that x € D(A) belongs to the weak
generator of (S;), and then did a regularisation by resolvents to obtain the result. If
(Sy) is continuous (and not just sequentially continuous), we can directly conclude
that (x, Ax) belongs to the weak closure of A which coincides with Af since A7 is
closed.
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Corollary 4.17. Let X be a sequentially complete Hausdorff locally convex space,
(Ty) a (locally) sequentially equicontinuous, equibounded Cy-semigroup on (X, T)
with generator — A, f a Bernstein function, and —A? the generator of the subordinated
semigroup (S;) to (I;) w.rt. f. Then Ay is (sequentially) closable in X and the
sequential closure of A y equals A/,

Proof. By Lemma 3.4 D(A) is sequentially dense in X, by Theorem 4.14 we have
D(A) C D(Af) and by Lemma 4.12 it is invariant under (S;). Thus, as in the case
of Cp-semigroups on Banach spaces we conclude that D(A) is a ‘sequential core’ for
AT, ie. the sequential closure of Af|D(A) equals AT (see, e.g. [1, Proposition 1.14]
for the case of Co-semigroups on Banach spaces). Since A/ D4y = Ay by Theorem
4.14, we obtain the assertion. O

Analogously to the scalar-valued case we shall write from now on
f(A) = AT.

Note that similar to the situation in Banach spaces one could have developed an entire
functional calculus in the sense of [19] which enables one to define f(A) with the
same outcome.

5. Applications

We now consider two applications, namely bi-continuous semigroups and transition
semigroups of stochastic processes.

5.1. Bi-continuous semigroups

In this subsection let X be a Banach space with norm-topology ..

Definition 5.1. Let (7;) in L(X) be a semigroup on X and t a Hausdorff locally
convex topology on X. We say that (7;) is (locally) bi-continuous (w.r.t. T) if
(@) T < 1, (X, 7) is sequentially complete on ||-]-bounded sets and (X, 7)" C
(X, 7j.)’ is norming for X,
(b) there exists M > 1, w € R such that || T;|| < Me®! forall t > 0,
(c) (Tp) is a Cp-semigroup on (X, 1),

(d) for every sequence (x,) in X, x € X with sup ||x,|| < oo and - lim x, = x
nelN n—od
we have

- lim T;(x, —x) =0
n—o0
(locally) uniformly for ¢ € [0, 00).
We say that a bi-continuous semigroup is uniformly bounded if sup, [ T3]l < oc.

Remark 5.2. The notion of bi-continuous semigroups first appeared in [26], see also
[27, Definition 3].
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First, we study bi-continuous semigroups. In order to do this, we need some prepa-
ration.

Remark 5.3.  (a) Given any Hausdorff locally convex topology t coarser than 7.
one can construct a Hausdorff locally convex topology y := y (7, 7)), called
mixed topology [44, Section 2.1], such that T C y C 7). and y is the finest
linear topology that coincides with T on || - ||-bounded sets by [44, Lemmas 2.2.1,
2.2.2].

(b) The triple (X, |- ||, ) is called Saks space by [9, Section 1.3, 3.1 Lemma (c), 3.2
Definition] if 7 is a Hausdorff locally convex topology on X such that T C 7
and

lxll = sup lxll, (x € X). ®
peEP

Equation (8) is equivalent to the property that (X, )’ € (X, 7))’ is norming
for X (cf. [6, Remark 5.2] and [25, Lemma 4.4]).

(c) It is convenient to characterise the mixed topology y := y(z, ).) by its con-
tinuous seminorms. In the case that (8) holds a useful representation of these
seminorms may be given in the following way. For a sequence (p,) in P and a
sequence (ay) in (0, co) with lim,,_, o, a, = 0o we define the seminorm

¢y, cany == sup 1l @y (x € X).
nelN

If either

(i) foreveryx € X,e > Qand p € P there are y, z € X such that x = y 4+ z,
lzll, =0and |lyll <Ixll,+¢,or

(ii) the ||-|[-unit ball B := {x € X | [lx|| < 1} is T-compact,

then y is generated by (|||‘|||([,”),(an)) due to [9, Section 1.4, 4.5 Proposition].

Example 5.4. Let X := Cp(R") with supremum norm |||, Tco the compact-open
topology, i.e. the topology of uniform convergence on compact subsets of R”, and
y the mixed topology determined by 7. and 7co. (X, ||l » Teo) is a Saks space
which fulfils condition (i) of Remark 5.3 (c) and y is also generated by the weighted
seminorms || f||, := sup,cgn [8(x) f(x)| for f € Cp(R™) with weights g € Co(R™)
by [9, Section II.1, 1.11 Proposition] (cf. [38, Theorem 2.3, 2.4]).

The topology generated by the seminorms ||-||,, § € Co(R"), on Cp(R") was
introduced under the name strict topology, denoted by B, in [5, Definition, p. 97]
and the example shows that the strict topology is indeed a mixed topology (cf. [8,
Proposition 3] and also Remark 5.22 (b), (c) below).

Lemma 5.5. Let X be a Banach space with norm-topology t.|, T C 7). a Hausdorff
locally convex topology on X such that (X, t)’ is norming for X, and y = y (t, 1)
the mixed topology. Then the following holds.

(a) (X, y) is norming for X.
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(b) (X, 1) is sequentially complete on |-||-bounded sets if and only if (X, y) is
sequentially complete.

Proof. (a) This is clear since T C y,s0 (X, 1) C (X, y).

(b) First, we remark that the norming property guarantees that condition (d) of [44,
Theorem 2.3.1]) and [44, Corollary 2.3.2] is fulfilled. By [44, Corollary 2.3.2]
(x,) is a Cauchy sequence in (X, y) if and only if (x,) is a Cauchy sequence
in (X, t) and (x,) is ||-||-bounded, and [44, Theorem 2.3.1] yields that (x;)
is convergent in (X, y) if and only if (x,) is convergent in (X, 7) and (x,) is

|-][-bounded. Thus, the assertion follows.
O

Let us recall the concept of a sequential space (see [16, Proposition 1.1], [14, p.
53]). A subset A of a topological space (X, 7) is called sequentially closed if for every
sequence (x,) in A converging to a point x € X the point x is already in A. A subset
U of (X, 1) is called sequentially open if every sequence (x,) in X converging to a
pointx € U is eventually in U. A topological space (X, 7) is called a sequential space
if each sequentially closed subset of X is closed. Equivalently, (X, t) is a sequential
space if and only if each sequentially open subset of X is open. In particular, all first
countable spaces are sequential spaces [14, Theorem 1.6.14] as well as all Montel
(DF)-spaces [23, Theorem 4.6] like the space of tempered distributions or the space of
distributions with compact support with the strong dual topology. A topological vector
space (X, 7) is called convex-sequential or C-sequential if every convex sequentially
open subset of X is open (see [40, p. 273]). Obviously, every sequential topological
vector space is C-sequential. Further, every bornological topological vector space is
C-sequential by [40, Theorem 8]. The bornological spaces D(IR") of test functions
on R" with its inductive limit topology and D(IR")" of distributions with its strong
dual topology are examples of C-sequential spaces that are not sequential by [39,
Théoreme 5] and [12, Proposition 1]. For our next proofs we need a classification
of C-sequential Hausdorff locally convex spaces. Let (X, ) be a Hausdorff locally
convex space and U™ be the collection of all absolutely convex subsets U C X which
satisfy the condition that every sequence (x,) in X converging to O is eventually in
U. Then U™ is a zero neighbourhood basis for a Hausdorff locally convex topology
T C 1 on X, which is the finest Hausdorff locally convex topology on X with the
same convergent sequences as T by [42, Proposition 1.1].

Proposition 5.6. ([43, Theorem 7.4]) Let (X, t) be a Hausdor{f locally convex space.
Then the following assertions are equivalent.
(a) X is C-sequential.
b) Tt =1.
(c) Forany Hausdorfflocally convex spaceY alinearmap f : X — Y is continuous
if and only if it is sequentially continuous.

Proposition 5.7. Let X be a Banach space with norm-topology v and t C 7). a
Hausdorff locally convex topology on X such that t is metrisable on the ||-||-unit ball
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By, and y = y(z, 1)) the mixed topology. Then (X, y) is a C-sequential space
and yt =y.

Proof. Let Y be any Hausdorff locally convex space and f : (X, y) — Y any linear
sequentially continuous map. It follows from [9, Section 1.1, Proposition 1.9] that f
is even continuous. We conclude that (X, y) is a C-sequential space and y+ = y by
Proposition 5.6. g

In particular, Proposition 5.7 is applicable if (X, 7) is metrisable, and implies the
BT = B partin [25, Theorem 8.1]. Further, Proposition 5.7 gives a sufficient condition
for yT = y that is simple to check and relevant for the relation between bi-continuous
semigroups and SCLE semigroups [25, Section 7]. If (X, y) is even metrisable or
equivalently first countable [46, Proposition 1.1.11 (ii)], then we are in the uninterest-
ing situation that y = 1)) by [9, SectionI.1, Proposition 1.15]. However, X = Cy(R")
with the mixed (=strict) topology from Example 5.4 is a C-sequential space by Propo-
sition 5.7 which is not metrisable (not even bornological or barrelled) since the strict
topology does not coincide with the norm-topology (cf. [9, Section II.1, Proposition
1.2 5)).

Proposition 5.8. Let X be a Banach space with norm-topology 7. and t C 1| a
Hausdorff locally convex topology such that (X, t)’ is norming and (X, T) a sequen-
tially complete C-sequential space. Then T = y (7, 7)), i.e. further mixing does not
extend the topology.

Proof. Denote y := y(t, 7). From [44, Lemma 2.1.1 (3)] (condition (n) there is
satisfied) one gets T C y. The other inclusion will be proved by contradiction. Let us
assume that there is U € y such that U ¢ t. Due to (X, 7) being C-sequential we
obtain U ¢ t by Proposition 5.6. Since U ¢ 1™, there is xo € U such that U is
not a neighbourhood of xo w.r.t. T+, i.e. for all V € U* it holds that xo + V ¢ U.
W.l.o.g. xo = 0 because t7 is a locally convex topology. As U € y and xo = 0,
there is an absolutely convex zero neighbourhood Vo € U w.r.t. y. Then there is a
sequence (x,) in X such that x, — 0 w.r.t. T but (x,) is not eventually in Vj because
otherwise Vo € U™ with xg + Vo = Vo € U. The sequence (x,) cannot be ||-|-
bounded otherwise it would follow that x, — 0 w.r.t. y by [44, Theorem 2.3.1] (the
norming property implies condition (d) of [44, Theorem 2.3.1]) and thus that (x,) is
eventually in Vj. Therefore, (x,) is ||-||-unbounded. W.1.0.g. we assume

YnelN: ||x,|| >n

and that all x,, are distinct from each other. By the norming property for n € IN there
exists a t-continuous functional f, in the unit sphere of the dual space such that
[{fu,xn)| > n. The sets {{f,, x) | n € IN} are bounded by ||x| for every x € X.
Further, the set K := {x,, | n € IN} U {0} is compact w.r.t. T since the sequence (x,)
is convergent to 0. The topology on K is metrisable as image of the continuous map

|
x, ifx= o

:l ]NUO =
g:{yIneNJU{0} 5 x - gx) {0 ifx =0,
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where the domain is equipped with the standard metric ([4, Chapter IX, §2.10, Propo-
sition 17]). Using [41, Remark 4.1.b] we know that ¢X K is compact and convex.
By a variant of the uniform boundedness principle [35, Theorem 2.9] we obtain the
boundedness of |,y fn(€X K). In particular, ({f5, x,)) is bounded, contradicting
[{fn, Xn)| — 00. O

We remark that the condition of sequential completeness of (X, t) in the preceding
proposition can be weakened to the metric convex compactness property since we
only need the compactness of cX K.

Corollary 5.9. Let X be a Banach space with norm-topology t.|, T < 7). a Haus-
dorff locally convex topology such that (X, t)’ is norming and (X, t) is a sequentially
complete C-sequential space. Then B C X is bounded in (X, t) if and only if B is
bounded in (X, t).).

Proof. Since 1) is finer than 7, the 7). -bounded sets are r-bounded. The other
inclusion follows from Proposition 5.8 and [44, Proposition 2.4.1]. 0

The next proposition shows that bi-continuity of a semigroup is equivalent to being a
Co-semigroup with respect to the corresponding mixed topology. Thus, bi-continuous
semigroups give rise to examples for subordination.

Proposition 5.10. Let X be a Banach space with norm topology t., T S 7). @
Hausdorff locally convex topology, y = y(t, t|.|) the mixed topology, and (T;) a
semigroup in L(X).

(a) Let (Ty) be a (locally) bi-continuous semigroup w.r.t. T. Then (X, y) is sequen-
tially complete, (X, )" is norming for X and (T) is a (locally) sequentially
equicontinuous Co-semigroup on (X, y).

(b) Let (X, T) be a sequentially complete C-sequential space, (X, T)’ norming for X
and (T;) a (locally) sequentially equicontinuous Co-semigroup on (X, t). Then
T =y and (Ty) is a (locally) bi-continuous semigroup w.r.t. T.

Proof. (a) By Lemma 5.5, (X, y) is sequentially complete and (X, y)’ is norming
for X. By [44, Theorem 2.3.1] and properties (b) and (d) in the definition of
(local) bi-continuity, (7;) is (locally) sequentially equicontinuous on (X, y).
Let x € X, (#,) in [0, c0) with t, — 0. Then by (b), (7;,x), is bounded and
T,,x — x in (X, 7). By [44, Theorem 2.3.1], T;,.x — x in (X, y). Thus, (T}) is
a Cp-semigroup on (X, y).

(b) Due to Proposition 5.8 we have T = y. Next, we only have to show (b) and (d) in
the definition of (local) bi-continuity. Clearly, (local) sequential equicontinuity
implies (d), and (b) is a consequence of Corollary 5.9 and [15, Proposition 3.6
@]

O

Remark 5.11. Note that generators of bi-continuous semigroups are Hille—Yosida op-

erators by [27, Proposition 10] while densely defined Hille—Yosida operators are pre-

cisely the generators of Cy-semigroups on Banach spaces (X, 7). ). Moreover, in
reflexive Banach spaces, Hille—Yosida operators are always densely defined.
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Lemma 5.12. Let X be a Banach space with norm-topology t).|, T < 7). a Hausdorff
locally convex topology on X suchthat (X, v)’ € (X, 1).1) is norming for X and (X, t)
is a sequentially complete C-sequential space. Let (T;) be a locally bi-continuous
semigroup. Then (Ty) is uniformly bounded if and only if (T;) is equibounded on
X, 7).

Proof. Let B .= {T;x € X | x € X, ||x|| < 1, ¢t > 0}. Then (7;) is uniformly
bounded if and only if B is bounded in (X, 7.). By Corollary 5.9, this is equivalent
to boundedness of B in (X, t), which in turn is equivalent to equiboundedness of (7}).

d

We can now combine Proposition 4.9 and Corollary 4.17 to easily obtain the fol-
lowing.

Theorem 5.13. Let X be a Banach space with norm-topology t).), T < 1. a Haus-
dorff locally convex topology on X such that (X, t) C (X, .|)’ is norming for X and
(X, y) is a C-sequential space where y := y (T, 1).|) is the mixed topology. Let (T;)
be a uniformly bounded (locally) bi-continuous semigroup on X w.r.t. T with generator
—A and f a Bernstein function. Then the subordinated semigroup (S;) to (T;) w.r.t.
f is uniformly bounded and (locally) bi-continuous w.r.t. T as well and its generator
— f(A) is given by the sequential closure of —A y.

Proof. Let us first show that (S;) is uniformly bounded and (locally) bi-continuous.
First, we apply Proposition 5.10 (a) and obtain that (7;) is a uniformly bounded (lo-
cally) sequentially equicontinuous Cp-semigroup on (X, y), (X, y) is sequentially
complete and (X, y)’ norming for X. Since (X, y) is a C-sequential space, an appli-
cation of Proposition 5.10 (b) yields that (7;) is a uniformly bounded (locally) bi-
continuous semigroup w.r.t. y. From Lemma 5.12 we derive that (7;) is equibounded
on (X, y). Proposition 4.9 yields that (S;) is a (locally) sequentially equicontinu-
ous and equibounded Cp-semigroup on (X, y). Another application of Proposition
5.10 (b) and then of Lemma 5.12 provides that (.S;) is a uniformly bounded (locally)
bi-continuous semigroup w.r.t. y and thus w.r.t. T as well.

Let — f(A) be the generator of (S;). By Corollary 4.17 we have that the sequential
closure of A y coincides with f(A). O

Remark 5.14. 1f (T;) is a bi-continuous semigroup with generator — A, but maybe not
uniformly bounded, one may be tempted to first rescale the semigroup, then apply
Theorem 5.13 and then rescale the subordinated semigroup again. If f is a Bernstein
function, then this procedure ends up with a generator being an extension of — ( f(A+
W) — a)), where o is the rescaling parameter.

Analytic semigroups ([13,30]) provide a basic example for bi-continuous semi-
groups and the generators coincide.

Lemma 5.15. Let (T;) be an analytic or Cy-semigroup on a Banach space (X, t.|)
with generator — A which is at the same time bi-continuous w.r.t. the topology t with
generator —A. Then A = A.
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Proof. We write 7). f and t- f respectively, in order to indicate w.r.t. which topology
we integrate. For x € X and A € p(—A) N p(—A) we have

A+ A)_lx =T)- f e_}"T,x dt = - / e_)"T,x dt = (A + Z)_lx,
(0,00) (0,00)

where the last equality follows from Lemma 3.4. Thus, A = A O

Example 5.16. Let X := Cp(R") with supremum norm ||| o, and 7., the compact-
open topology, i.e. the topology of uniform convergence on compact subsets of R".
Letk: (0,00) x R* - R,

llx 112

1 -
k(t,x) = k,(x) = W@ 4

(t>0,xeRY
be the Gaull—~Weierstrall kernel. For r > 0 define 7; € L(X) by

£, t=0,
T, f =
ke f, t>0.

Then (7;) is a uniformly bounded analytic semigroup with generator —A = A on
the domain D(A) = {f € Co(R") | Vp = 1: f € Wli’cp(R"), Af € Co(R™")}
(for the case n > 2; in case n = 1 we have D(A) = C%(IR)) in Cp(RR"); cf. [29,
Propositions 2.3.1, 4.1.10]. It is locally bi-continuous w.r.t. 7¢, ([26, Example 1.6])
and by Lemma 5.15 its generator is the operator — A as introduced above. Leto € (0, 1)
and f: (0,00) — [0, 00) be defined by f(x) := x* for all x > 0. Let (S;) be the
subordinated semigroup of (7;) w.r.t. . Then (S;) is a uniformly bounded and locally
bi-continuous semigroup, and the generator — f(A) of (S;) is given by the sequential
closure of —(—A)%, i.e. the fractional Laplacian in Cy(IR"), as introduced in [31,
Sections 1.4, 5.6].

Proof. We only need to prove the part on (S;) which directly follows from Theorem
5.13 since (X, y) with the mixed topology y := ¥ (tco, 7| ) is @ C-sequential space
by Proposition 5.7. d

Further examples of semigroups (7;) being strongly continuous for mixed topolo-
gies can be found, e.g. in [18].

Remark 5.17. The situation of Example 5.16 can be generalised. Namely, let A be a
sectorial operator such that — A generates an analytic semigroup which is at the same
time bi-continuous. One can consider fractional powers A%, o € (0, 1) either by means
of the standard sectorial functional calculus (see [19, Chapter 3]) (for this one does
not actually need that — A generates a semigroup) or by using the methods from this
paper. Even without the assumption of dealing with a strongly continuous semigroup,
one can still use (4). This still works since an analytic semigroup is always strongly
continuous on D := D(A). It is essentially equivalent to using the Balakrishnan
formula, see [19, Proposition 3.1.12] for it and [31, Proposition 3.2.1] for the relation
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between the mentioned formulae. Neither of the two approaches in general allows to
obtain the ‘full” fractional power A* defined by the sectorial calculus but only (Ap)?,
the fractional power of Ap which is the part of A in the subspace D. Unless A is
densely defined, A p is a proper restriction of A which follows for example from [31,
Corollary 1.1.4 (iv)].

All those things are also true in rather general Hausdorff locally convex spaces, cf.
[32, Proposition 4.1.13, 4.1.22].

For an operator A as above this means that the here presented approach yields
the same fractional powers as its sectorial functional calculus does in the Banach
space X.

5.2. Transition semigroups for Markov processes

Let (£2, F, IP) be a probability space and (E, £) a measurable space. Let us recall
the notions of (normal) Markov processes and their associated transition semigroups.

Definition 5.18. A tuple X := (2, F, P, (F1)i>0, (Xt)1>0, E, €, (Px)xek) is called
a Markov process if (X;) is an adapted process on (§2, F, IP) w.r.t. the filtration (F;)
with values in E and (PP,) is a family of probability measures on (§2, F) such that
E > x — P,(X; € B) is measurable for all B € £ and P,(X;4s € B | F5) =
Px,(Xs € B) Py-as. forall x € E, t,s > 0, and B € £. A Markov process X is
called normal if {x} € € forallx € E and P,(Xo =x) = 1 forallx € E.

We write By (E) for the bounded measurable (scalar) functions on E.

Definition 5.19. Let X := (22, F, P, (F;), (X;), E, &€, (Py)xeE) be a Markov pro-
cess. For t > 0 we define T;: By(E) — By(E) by

T f(x) :=Ex(f(X1)) (f € Bo(E),x € E),

where IE, is the expectation with respect to IP,. We call (7;) the transition semigroup
associated with the Markov process.

Transition semigroups (7;) for Markov processes satisfy a semigroup law, while
normality of the Markov process yields that Ty = I. We state this well-known fact as
a lemma.

Lemma 5.20. Let (2, F, P, (F;), (Xy), E, E, Py)xecE) be anormal Markov process
with transition semigroup (T;). Then (T;) is a semigroup.

Now, let E be a completely regular Hausdorff space, £ := B(E) the Borel o-field,
and X a normal Markov process with transition semigroup (7;). Let us assume that
Cy(E) is invariant for (7;), i.e. T;(Cp(E)) C Cp(E) for all 1 > 0. Sometimes, X is
then called a Cy-Feller process and (T;) a Cy-Feller semigroup, and we will adopt this
notion. We may then try to restrict the transition semigroup (7;) to Cy(E).

We now introduce the strict topology on Cy(E) as in [38].
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Definition 5.21. Let BE be the Stone—Cech compactification of E. For Q € BE\E
compact we define

Co(E) :={gle € Go(E) | g € C(BE), glo = 0.

Then C o (E) induces a topology B¢ on Cp(E) via the seminorms ||- ||g forg € Co(E)
given by ||f||g := ||8f lloo- Then the strict topology B on Cy(E) is defined to be the
inductive limit topology for (Co(E), Bo) 0cBE\E compact-

Remark 5.22.  (a) Equipped with the strict topology 8, the space (Cp(E), f) is a
Hausdorff locally convex space [38, Theorem 2.1(b)].

(b) If E is o-compact and locally compact, or Polish (i.e. complete metrisable and
separable), then 8 = y(7co, 7)) and the strict topology is induced by the
seminorms from Remark 5.3 (c), by [38, Theorem 2.4, Theorem 9.1].

(c) If E is o-compact and locally compact, then the strict topology B on C,(E) is
induced by the seminorms ||-||, for g € Co(E) given by || fll; := llgf I (see
Example 5.4).

Let us collect some results on Cp-Feller semigroups on (Cy,(E), §). To this end, we
write Lo((§2, F, IP); E) for the space of IP-equivalence classes of strongly measurable
functions from £2 to E equipped with the topology of convergence in measure.

Now, let E be a complete metric space.

Proposition 5.23. Let X = (2, F, P, (F), (Xy), E,E, Py)xcg) be a Cy-Feller
process and (T;) the associated Cy-Feller semigroup on (Cy(E), B).
(a) (Ty) is a Co-semigroup on (Cy(E), B) if and only if for all f € Cy(E) we have
T; f — f uniformly on compact subsets of E.
(b) If (1) is a Co-semigroup on (Cy(E), B), then (Ty) is locally equicontinuous,
hence also locally sequentially equicontinuous.
(c) (Tp) is equibounded.
(d) Let X:[0,00) x E — Lo((£2,F,P); E), X(t,x) := X; where Xo = x, be
continuous. Then (T;) is a Co-semigroup on (Cy(E), B).

Proof. (a) and (b) follow from [28, Theorem 4.4]. To show (c), first note that (7;) is
contractive in (Cy(E), 7)., ). Since B and T, share the same bounded sets, (T;) is
equibounded. (d) is a consequence of [28, Theorem 5.2]. g

Proposition 5.23 yields that as soon as the Markov process is continuous in time and
initial value, then the corresponding transition semigroup satisfies all the properties
needed for subordination.

Theorem 5.24. Let X := (2, F, P, (F), (Xy), E, E, Py)xek) be a Cy-Feller pro-
cess and (T;) the associated Cy-Feller semigroup on (Cy(E), B) with generator —A.
Assume that X : [0,00) x E — Lo((2,F,P); E), X(t,x) := X; where Xg = x,
is continuous. Let f be a Bernstein function. Then — f(A) is the generator of the
subordinated semigroup.
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Proof. This is a direct consequence of Proposition 5.23 and Corollary 4.17. O
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