
Chapter 15
Maximal Regularity

In this chapter, we address the issue of maximal regularity. More precisely, we
provide a criterion on the ‘structure’ of the evolutionary equation

(
∂t,νM(∂t,ν) + A

)
U = F

in question and the right-hand side F in order to obtain U ∈ dom(∂t,νM(∂t,ν)) ∩
dom(A). If F ∈ L2,ν(R; H), U ∈ dom(∂t,νM(∂t,ν)) ∩ dom(A) is the optimal
regularity one could hope for. However, one cannot expect U to be as regular since(
∂t,νM(∂t,ν) + A

)
is simply not closed in general. Hence, in all the cases where(

∂t,νM(∂t,ν) + A
)

is not closed, the desired regularity property does not hold for
F ∈ L2,ν(R; H). However, note that by Picard’s theorem, F ∈ dom(∂t,ν) implies
the desired regularity property for U given the positive definiteness condition for the
material law is satisfied and A is skew-selfadjoint. In this case, one even has U ∈
dom(∂t,ν)∩dom(A), which is more regular than expected. Thus, in the general case
of an unbounded, skew-selfadjoint operator A neither the condition F ∈ dom(∂t,ν)

nor F ∈ L2,ν(R; H) yields precisely the regularity U ∈ dom(∂t,νM(∂t,ν))∩dom(A)

since

dom(∂t,ν) ∩ dom(A) ⊆ dom(∂t,νM(∂t,ν)) ∩ dom(A) ⊆ dom(∂t,νM(∂t,ν) + A),

where the inclusions are proper in general. It is the aim of this chapter to provide an
example case, where less regularity of F actually yields more regularity for U . If one
focusses on time-regularity only, this improvement of regularity is in stark contrast
to the general theory developed in the previous chapters. Indeed, in this regard, one
can coin the (time) regularity asserted in Picard’s theorem as “U is as regular as
F ”. For a more detailed account on the usual perspective of maximal regularity
(predominantly) for parabolic equations, we refer to the Comments section of this
chapter.
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244 15 Maximal Regularity

15.1 Guiding Examples and Non-Examples

Before we present the abstract theory, we motivate the general setting looking at a
particular example. Traditionally, in the discussion of partial differential equations
and their classification, people focus on regularity theory. Thus, one finds the non-
exhaustive categories ‘elliptic’, ‘parabolic’, and ‘hyperbolic’. Since we do not want
to dive into the intricacies of this classification much less their regularity, we only
name some examples of the said subclasses. Laplace’s equation from Chap. 1
falls into the class of elliptic PDEs, the heat equation is a paradigm example
of a parabolic equation and Maxwell’s equations or the transport equation are
hyperbolic.

Since we predominantly treat time-dependent equations and elliptic PDEs
usually are time-independent, we only look at examples for hyperbolic and parabolic
equations more closely. As for the hyperbolic case, we consider the transport
equation next and highlight that any ‘gain’ in regularity as hinted at in the
introduction of this chapter is not possible.

Example 15.1.1 We define ∂ : H 1(R) ⊆ L2(R) → L2(R), φ �→ φ′. Then, by
Corollary 3.2.6, ∂∗ = −∂ ; that is, ∂ is skew-selfadjoint. We consider for ν > 0 the
operator

∂t,ν + ∂

in L2,ν(R; L2(R)). Then, by Picard’s theorem, 0 ∈ ρ
(
∂t,ν + ∂

)
; that is,(

∂t,ν + ∂
)−1 ∈ L(L2,ν(R; L2(R))). Next, consider the functions

u : (t, x) �→ 1R≥0(t)te
−t h(x − t)

f : (t, x) �→ 1R≥0(t)(1 − t)e−t h(x − t)

for some h ∈ L2(R). Then it is not difficult to see that u, f ∈ L2,ν(R; L2(R)). If
h ∈ C∞

c (R), then

u ∈ H 1
ν (R; H 1(R)) ⊆ dom(∂t,ν + ∂)

and

(∂t,ν + ∂)u = f.

If h ∈ L2(R)\H 1(R), then one can show that u ∈ dom
(
∂t,ν + ∂

)
,
(
∂t,ν + ∂

)
u = f

and

u /∈ dom(∂t,ν) ∩ dom(∂).
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For this observation, we refer to Exercise 15.1. Thus, being in the domain of ∂t,ν + ∂

does not necessarily imply being in the domain of either dom(∂t,ν) or dom(∂).

The last example has shown that we cannot expect an improvement of regularity
for the considered transport equation. In fact, it is possible to provide an example
of a similar type for the wave equation (and similar hyperbolic type equations
including Maxwell’s equations). Thus, in order to have an improvement of regularity
one needs to further restrict the class of evolutionary equations. We now provide a
guiding example, where we discuss an abstract variant of the heat equation.

Example 15.1.2 Let �2 be the space of square summable sequences indexed by n ∈
N. We note that �2 is isomorphic to L2(#N), where #N is the counting measure on N.
We introduce m : dom(m) ⊆ �2 → �2 the operator of multiplying by the argument.
Then, m is an unbounded, selfadjoint operator. Next, we consider the operator

∂t,ν

(
1 0
0 0

)
+

(
0 0
0 1

)
+

(
0 −m
m 0

)

on L2,ν(R; �2). Then, Picard’s theorem applies and we obtain

0 ∈ ρ

(
∂t,ν

(
1 0
0 0

)
+

(
0 0
0 1

)
+

(
0 −m
m 0

))
.

For f ∈ L2,ν(R; �2) define

(
u

q

)
:=

(
∂t,ν

(
1 0
0 0

)
+

(
0 0
0 1

)
+

(
0 −m
m 0

))−1 (
f

0

)
.

Then u ∈ dom(∂t,ν) ∩ dom(m) and q ∈ dom(m). We ask the reader to fill in the
details in Exercise 15.2.

Remark 15.1.3 The last example is in fact an abstract version of the heat equation
on bounded domains. We refer to [90, Section 2.2.2] for a corresponding reasoning
for the Schrödinger equation.

Let us compare the two different examples, the transport equation and the abstract
parabolic equation. From the perspective of evolutionary equations; that is, looking
at equations of the form

(∂t,νM0 + M1 + A)U = F,

for the transport equation we have M0 = 1 and M1 = 0. In the case of the
abstract parabolic equation, M0 has a nontrivial kernel, which is compensated in
M1. Moreover, the decomposition of kernel and range of M0 is comparable to the
block structure of A. Thus, we may hope for an improvement of regularity as in
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Example 15.1.2 if these abstract conditions are met. This observation is the starting
point of parabolic evolutionary pairs to be defined in the next section.

15.2 The Maximal Regularity Theorem and Fractional
Sobolev Spaces

In order to be able to formulate the main theorem of this chapter, we need the notion
of fractional Sobolev spaces. For this, we recall from Example 5.3.4 and Sect. 7.2
that we already dealt with fractional powers of the time-derivative. For α, ν≥ 0, we
thus consistently define

∂α
t,ν := L∗

ν(im + ν)αLν,

with maximal domain in L2,ν(R; H), where we agree with setting L0 := F . Note
that in this case, using Proposition 7.2.1, 0 ∈ ρ(∂α

t,ν) given ν > 0. Hence, the
following construction yields Hilbert spaces; for this also recall that 〈·, ·〉A denotes
the graph inner product of a linear operator A defined in a Hilbert space.

Definition Let α, ν ≥ 0. Then we define

Hα
ν (R; H) :=

(
dom(∂α

t,ν), (f, g) �→ 〈∂α
t,νf, ∂α

t,νg〉L2,ν (R;H)

)

for ν > 0 and

Hα
0 (R; H) :=

(
{f ∈ L2(R; H); Ff ∈ dom((im)α)}, (f, g) �→ 〈Ff,Fg〉(im)α

)
.

Lemma 15.2.1 For all α, ν ≥ 0 the space Hα
ν (R; H) is a Hilbert space. Moreover,

Hα
ν (R; H) ↪→ L2,ν(R; H) continuously and densely.

Proof We only show the claim for ν > 0. By Fourier–Laplace transformation, the
claim follows if we show that

(im + ν)α : dom((im + ν)α) ⊆ L2(R; H) → L2(R; H)

is densely defined and continuously invertible. For this, we find n ∈ N and β ∈
[0, 1) such that α = n + β. It is easy to see that (im + ν)α = (im + ν)n(im + ν)β .
Thus, continuous invertibility readily follows from the continuous invertibility of
(im + ν) and (im + ν)β (for the latter, see also Proposition 7.2.1). For the case when
H = K, it follows from Theorem 2.4.3 that (im + ν)α is densely defined. Thus, it
follows from Lemma 3.1.8 that (im + ν)α is densely defined also for general H . 
�
In order to state our main theorem, we introduce the notion of parabolic pairs.
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Definition Let M : dom(M) ⊆ C → L(H) be a material law, A : dom(A) ⊆
H → H and α ∈ (0, 1]. We call (M,A) an (α-)fractional parabolic pair if the
following conditions are met: there exist ν > max{0, sb (M)} and c > 0 such that

Re zM(z) � c (z ∈ CRe>ν),

and moreover, we find a closed subspace H0 ⊆ H , H1 := H⊥
0 , C : dom(C) ⊆

H0 → H1 closed and densely defined, and M00 ∈ M(H0; ν), N ∈ M(H ; ν) such
that

M(z) =
(

M00(z) 0
0 0

)
+ z−1N(z), A =

(
0 −C∗
C 0

)
,

and

Re z1−αM00(z) � c′ (z ∈ CRe>ν)

for some c′ > 0, and CRe>ν � z �→ z1−αM00(z) ∈ L(H0) is bounded. A 1-
fractional parabolic pair is called parabolic.

Remark 15.2.2

(a) If (M,A) is α-fractional parabolic and β-fractional parabolic with the same
decomposition H = H0 ⊕ H1, then α = β. Indeed, assume that α < β. Then

z1−βM00(z) = zα−βz1−αM00(z) → 0 (|z| → ∞, z ∈ CRe>ν)

contradicting the real-part condition.
(b) If (M,A) is α-fractional parabolic, then there exists μ > ν such that for all

z ∈ CRe>μ

Re z1−α
(
M00(z) + z−1N00(z)

)
� c′/2 (15.1)

for some c′ > 0, where N00(z) := ι∗H0
N(z)ιH0 ∈ L(H0). Indeed, this follows

from the fact that z−αN00(z) → 0 as Re z → ∞.

The main theorem of this chapter is the following:

Theorem 15.2.3 Let α ∈ (0, 1] and (M,A) be α-fractional parabolic (with H =
H0 ⊕ H1 and C from H0 to H1) and assume that (15.1) holds for all z ∈ CRe>ν for

some ν > max{0, sb (M)}. Let f ∈ L2,ν(R; H0) and g ∈ H
α/2
ν (R; H1). Then the

solution (u, v) := (
∂t,νM(∂t,ν) + A

)−1
(f, g) ∈ L2,ν(R; H) satisfies

u ∈ Hα
ν (R; H0) ∩ Hα/2

ν

(
R; dom(C)

)

v ∈ Hα/2
ν (R; H1) ∩ L2,ν

(
R; dom(C∗)

)
.
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More precisely,

(
∂t,νM(∂t,ν) + A

)−1 : L2,ν(R; H0) ⊕ Hα/2
ν (R;H1)

→ (
Hα

ν (R;H0)∩Hα/2
ν

(
R; dom(C)

))⊕(
Hα/2

ν (R;H1)∩L2,ν

(
R; dom(C∗)

))

is continuous.

Example 15.2.4 (Heat Equation) Let us recall the heat equation from Theo-
rem 6.2.4. For � ⊆ R

d open, we let a ∈ L(L2(�)d) such that

Re a � c

in the sense of positive definiteness. It is not difficult to see that

(
z �→

(
1 0
0 az−1

)
,

(
0 div0

grad 0

))
,

is parabolic; with the obvious orthogonal decomposition of the underlying Hilbert
space. Let f ∈ L2,ν(R; L2(�)). Then

(
θ

q

)
:=

(
∂t,ν

(
1 0
0 0

)
+

(
0 0
0 a−1

)
+

(
0 div0

grad 0

))−1 (
f

0

)

particularly satisfies the regularity statement

θ ∈ H 1
ν (R; L2(�)) ∩ L2,ν

(
R; H 1(�)

)
and q ∈ L2,ν

(
R; H0(div,�)

)
.

The next example deals with a parabolic variant of the equations introduced in (7.3)
and (7.4) describing fractional elasticity. We modify the equations at hand by
considering α ∈ [1, 2].

Example 15.2.5 (Parabolic Fractional Viscoelasticity) Let � ⊆ R
d open and recall

the differential operators Div and Grad0 from Sect. 7.1 defined in the spaces
L2(�)d×d

sym and L2(�)d , respectively. Let c > 0 and D ∈ L
(
L2(�)d×d

sym

)
, ρ = ρ∗ ∈

L(L2(�)d). For ν > 0 and f ∈ L2,ν(R; L2(�)d) consider the problem of finding
u : R × � → R

d such that

∂t,νρ∂t,νu − Div T = f (15.2)

T = D∂α
t,ν Grad0 u, (15.3)
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for some α ∈ [1, 2), where ρ � c and Re D � c in the sense of positive definiteness.
We rewrite the system just introduced by using v := ∂α

t,νu to (formally) obtain

∂t,νρ∂1−α
t,ν v − Div T = f

T = D Grad0 v.

Note that γ := 1 + (1 − α) ∈ (0, 1]. Thus, using the selfadjointness and positive
definiteness of ρ as well as Proposition 7.2.1, we infer

Re(zγ ρ) � νγ c (z ∈ CRe�ν).

Consequently, applying Proposition 6.2.3(b) to a = D, we get that

(
z �→

(
zγ−1ρ 0

0 z−1D−1

)
,

(
0 − Div

− Grad0 0

))

is γ -fractional parabolic. In consequence, the solution (v, T ) of

⎛
⎝∂t,ν

(
∂

γ−1
t,ν ρ 0

0 ∂−1
t,ν D−1

)
+

(
0 − Div

− Grad0 0

)⎞
⎠

(
v

T

)
=

(
f

0

)

additionally satisfies the following regularity properties

v ∈ Hγ
ν

(
R; L2(�)d

) ∩ Hγ/2
ν

(
R; dom(Grad0)

)
,

T ∈ Hγ/2
ν

(
R; L2(�)d×d

sym

) ∩ L2,ν

(
R; dom(Div)

)
.

Rephrasing this for u = ∂−α
t,ν v, we even have

u ∈ H 2
ν

(
R; L2(�)d

) ∩ H 1+α/2
ν

(
R; dom(Grad0)

)
,

which, since α/2 � 1, particularly implies that the equations (15.2) and (15.3) are
equalities valid in L2,ν

(
R; L2(�)d

)
and L2,ν

(
R; L2(�)d×d

sym

)
, respectively.

15.3 The Proof of Theorem 15.2.3

The decisive estimate in connection to the proof of Theorem 15.2.3 is contained
in the following statement. For the entire rest of the section, we shall denote the
norm and scalar product in Hα

ν (R; K), K some Hilbert space, by ‖ · ‖α and 〈·, ·〉α ,
respectively.
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Lemma 15.3.1 Let H0,H1 be Hilbert spaces, C : dom(C) ⊆ H0 → H1 densely
defined and closed. Let α ∈ [0, 1], Mj : dom(Mj ) ⊆ C → L(Hj ) material laws
for j ∈ {0, 1}, ν > max{sb (M0) , sb (M1) , 0} with

CRe�ν � z �→ z1−αM0(z) ∈ L(H0)

bounded. Assume there exists c > 0 such that for all z ∈ CRe�ν

Re zM0(z) � c, Re M1(z) � c, Re z1−αM0(z) � c.

Let f ∈ L2,ν(R; H0), g ∈ H
α/2
ν (R; H1) as well as u ∈ H 1

ν

(
R; dom(C)

)
and

v ∈ H 1
ν

(
R; dom(C∗)

)
. Assume the equalities

∂t,νM0(∂t,ν)u − C∗v = f,

v + M1(∂t,ν)Cu = g.

Then

‖u‖2
α + ‖Cu‖2

α/2 + ‖v‖2
α/2 + ∥∥C∗v

∥∥2
0

� 2

(
1 +

(
m2

1 + m2
0 + 1

2

) (
2

c
+ m1

c2

)2
) (

‖f ‖2
0 + ‖g‖2

α/2

)

with m1 := ‖M1‖∞,CRe>ν
and m0 := ∥∥z �→ z1−αM0(z)

∥∥∞,CRe>ν
.

Proof We compute

c ‖Cu‖2
α/2 � c ‖Cu‖2

α/2 + c ‖u‖2
α/2

� Re
〈
M1(∂t,ν)Cu,Cu

〉
α/2 + Re

〈
∂t,νM0(∂t,ν)u, u

〉
α/2

= Re 〈g − v,Cu〉α/2 + Re
〈
∂t,νM0(∂t,ν)u, u

〉
α/2

� ‖g‖α/2 ‖Cu‖α/2 + Re
〈
∂t,νM0(∂t,ν)u − C∗v, u

〉
α/2

= ‖g‖α/2 ‖Cu‖α/2 + Re
〈
f,

(
∂∗
t,ν

)α/2 (
∂t,ν

)α/2
u
〉
0

� ‖g‖α/2 ‖Cu‖α/2 + ‖f ‖0 ‖u‖α ,
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where we used that

∥∥ (
∂∗
t,ν

)α/2 (
∂t,ν

)α/2
u
∥∥

0 = ∥∥ (−im + ν)α/2 (im + ν)α/2 u
∥∥

L2(R;H0)

=
∥∥∥∥∥
(−im + ν)α/2

(im + ν)α/2 (im + ν)α u

∥∥∥∥∥
L2(R;H0)

� ‖ (im + ν)α u‖L2(R;H0) = ‖u‖α.

Moreover,

c ‖u‖2
α � Re

〈
∂1−α
t,ν M0(∂t,ν)∂

α
t,νu, ∂α

t,νu
〉
0

= Re
〈
∂t,νM0(∂t,ν)u, ∂α

t,νu
〉
0

= Re
〈
f + C∗v, ∂α

t,νu
〉
0

� ‖f ‖0 ‖u‖α + Re
〈(

∂∗
t,ν

)α/2
v, ∂

α/2
t,ν Cu

〉
0

� ‖f ‖0 ‖u‖α + ‖v‖α/2 ‖Cu‖α/2

= ‖f ‖0 ‖u‖α + ∥∥g − M1(∂t,ν)Cu
∥∥

α/2 ‖Cu‖α/2

� ‖f ‖0 ‖u‖α + ‖g‖α/2 ‖Cu‖α/2 + m1 ‖Cu‖2
α/2

�
(

1 + m1

c

)( ‖f ‖0 ‖u‖α + ‖g‖α/2 ‖Cu‖α/2
)
.

Thus, we obtain for ε > 0

c
(
‖u‖2

α + ‖Cu‖2
α/2

)

�
(

2 + m1

c

) (‖f ‖0 ‖u‖α + ‖g‖α/2 ‖Cu‖α/2
)

� 1

2

(
2 + m1

c

)(
1

ε

(
‖f ‖2

0 + ‖g‖2
α/2

)
+ ε

(
‖u‖2

α + ‖Cu‖2
α/2

))
.

Choosing ε = c2/(2c + m1) and subtracting the term involving u and Cu on both
sides of the inequality, we deduce

c

2

(
‖u‖2

α + ‖Cu‖2
α/2

)
� 1

2

(
2 + m1

c

) 1

ε

(
‖f ‖2

0 + ‖g‖2
α/2

)

= 1

2c

(
2 + m1

c

)2 (
‖f ‖2

0 + ‖g‖2
α/2

)
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and therefore

(
‖u‖2

α + ‖Cu‖2
α/2

)
�

(
2

c
+ m1

c2

)2 (
‖f ‖2

0 + ‖g‖2
α/2

)
.

Finally, we compute

1

2
‖v‖2

α/2 � ‖g‖2
α/2 + ∥∥M1(∂t,ν)Cu

∥∥2
α/2

� ‖g‖2
α/2 + m2

1

(
2

c
+ m1

c2

)2 (
‖f ‖2

0 + ‖g‖2
α/2

)

and

1

2

∥∥C∗v
∥∥2

0 �
∥∥∂t,νM0(∂t,ν)u

∥∥2
0 + ‖f ‖2

0

�
∥∥∥∂1−α

t,ν M0(∂t,ν)∂
α
t,νu

∥∥∥
2

0
+ ‖f ‖2

0

� m2
0 ‖u‖2

α + ‖f ‖2
0

� m2
0

(
2

c
+ m1

c2

)2 (
‖f ‖2

0 + ‖g‖2
α/2

)
+ ‖f ‖2

0 . 
�

The next preliminary finding is a refinement of the surjectivity statement in Picard’s
theorem.

Proposition 15.3.2 Let H be a Hilbert space, M : dom(M) ⊆ C → L(H) a
material law, ν > sb (M), with ν > 0, and A : dom(A) ⊆ H → H skew-
selfadjoint. Assume there exists c > 0 such that for all z ∈ CRe>ν we have

Re zM(z) � c.

Let β ∈ [0, 1].
(a) The inclusion

(
∂t,νM(∂t,ν) + A

) [
H 2

ν

(
R; dom(A)

)] ⊆ Hβ
ν (R; H)

is dense.
(b) Let H0 ⊆ H be a closed subspace and H1 := H⊥

0 . Then

(
∂t,νM(∂t,ν) + A

) [
H 2

ν

(
R; dom(A)

)] ⊆ L2,ν(R; H0) ⊕ Hβ
ν (R; H1)

is dense.
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Proof

(a) Since H 1
ν (R; H) is dense in H

β
ν (R; H) (this is a consequence of

Lemma 15.2.1), it suffices to show the claim for β = 1. Next, by Picard’s
theorem, for f ∈ dom(∂t,ν), we obtain u = (

∂t,νM(∂t,ν) + A
)−1

f ∈
dom(∂t,ν) ∩ L2,ν

(
R; dom(A)

)
. In particular, it follows that

(
∂t,νM(∂t,ν) + A

) [
H 1

ν (R; H) ∩ L2,ν

(
R; dom(A)

)] ⊆ L2,ν(R; H)

is dense. Multiplying this inclusion by ∂−1
t,ν , we infer that

(
∂t,νM(∂t,ν) + A

) [
H 2

ν (R; H) ∩ H 1
ν

(
R; dom(A)

)] ⊆ H 1
ν (R; H)

is dense. Hence, for f ∈ H 1
ν (R; H), we find (un)n in H 2

ν (R; H) ∩
H 1

ν (R; dom(A)) such that fn := (
∂t,νM(∂t,ν) + A

)
un → f in H 1

ν (R; H)

as n → ∞. Next, for ε > 0, (1 + ε∂t,ν)
−1u ∈ H 2

ν (R; dom(A)) given
u ∈ H 1

ν (R; dom(A)). Moreover, (1 + ε∂t,ν)
−1f → f in H 1

ν (R; H) as ε → 0,
by Lemma 9.3.3(b) and the fact that ∂−1

t,ν commutes with (1 + ε∂t,ν)
−1. Thus,

we compute for ε > 0 and n ∈ N

∥∥∥(
∂t,νM(∂t,ν) + A

)
(1 + ε∂t,ν)

−1un − f

∥∥∥
1

�
∥∥∥(1 + ε∂t,ν)

−1fn − (1 + ε∂t,ν)
−1f

∥∥∥
1
+

∥∥∥(1 + ε∂t,ν)
−1f − f

∥∥∥
1

� ‖fn − f ‖1 +
∥∥∥(1 + ε∂t,ν)

−1f − f

∥∥∥
1

→ 0

as n → ∞ and ε → 0, which concludes the proof of (a).
(b) By (a), it suffices to show that

Hβ
ν (R; H) = Hβ

ν (R; H0) ⊕ Hβ
ν (R; H1) ⊆ L2,ν(R; H0) ⊕ Hβ

ν (R; H1)

is dense (note that the first equality follows from the fact that H � u �→
(u0, u1) ∈ H0 ⊕ H1 is unitary). The desired density result thus follows from
Lemma 15.2.1. 
�

Next, we shall proceed with a proof of our main theorem in this chapter.

Proof of Theorem 15.2.3 For i, j ∈ {0, 1} we set Nij (z) := ι∗Hi
N(z)ιHj . Let

(f, g) ∈ (
∂t,νM(∂t,ν) + A

)[
H 2

ν

(
R; dom(C) ⊕ dom(C∗)

)]
. Defining

(u, v) := (
∂t,νM(∂t,ν) + A

)−1
(f, g) ∈ H 2

ν

(
R; dom(C) ⊕ dom(C∗)

)
,
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we have

∂t,νM00(∂t,ν)u + N00(∂t,ν)u − C∗v = f − N01(∂t,ν)v,

N11(∂t,ν)v + Cu = g − N10(∂t,ν)u.

Since Re zM(z) � c, we infer

Re N11(∂t,ν) � c.

Thus, by Proposition 6.2.3(b), we deduce that M1(∂t,ν) := N11(∂t,ν)
−1 satisfies the

real-part condition imposed on M1 in Lemma 15.3.1. Moreover, since (M,A) is
α-fractional parabolic,

M0(z) := M00(z) + z−1N00(z)

fulfills the real part and boundedness assumptions in Lemma 15.3.1. Introducing

f̃ := f − N01(∂t,ν)v ∈ H 1
ν (R; H0) ⊆ L2,ν(R; H0)

g̃ := M1(∂t,ν)g − M1(∂t,ν)N10(∂t,ν)u ∈ H 1
ν (R; H1) ⊆ Hα/2

ν (R; H1) ,

we get

∂t,νM0(∂t,ν)u − C∗v = f̃ ,

v + M1(∂t,ν)Cv = g̃.

Thus, using Lemma 15.3.1, we find κ � 0 in terms of M0, M1 and the positivity
constants such that (recall that m1 := ‖M1‖∞,CRe>ν

)

‖u‖2
α + ‖Cu‖2

α/2 + ‖v‖2
α/2 + ∥∥C∗v

∥∥2
0

� κ
( ∥∥f̃

∥∥2
0 + ‖g̃‖2

α/2

)

� 2κ
( ‖f ‖2

0 + ‖N‖2
∞,CRe>ν

‖v‖2
0 + m2

1 ‖g‖2
α/2 + m2

1 ‖N‖2
∞,CRe>ν

‖u‖2
α/2

)

� 2κ
( ‖f ‖2

0 + ‖N‖2
∞,CRe>ν

‖v‖2
0 + m2

1 ‖g‖2
α/2 + 2m2

1 ‖N‖2
∞,CRe>ν

(
ε ‖u‖2

α + 1

ε
‖u‖2

0

))

for all ε > 0, where in the last estimate, we used

‖u‖2
α/2 =

〈
∂

α/2
t,ν u, ∂

α/2
t,ν u

〉
0

=
〈
u, (∂

α/2
t,ν )∗∂α/2

t,ν u
〉
0
� ‖u‖0 ‖u‖α .
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Hence, choosing ε > 0 small enough and using that
(
∂t,νM(∂t,ν) + A

)−1
is

continuous from L2,ν(R; H) into itself, we find κ ′ � 0 such that

‖u‖2
α + ‖Cu‖2

α/2 + ‖v‖2
α/2 + ∥∥C∗v

∥∥2
0 � κ ′( ‖f ‖2

0 + ‖g‖2
α/2

)
,

which establishes the assertion (using the density result in Proposition 15.3.2(b)).

�

15.4 Comments

The issue of maximal regularity (in Hilbert spaces for simplicity) is a priori
formulated for equations of the type

u′ + Au = f,

where f lies in some L2
(
(0, T ); H

)
and A is an unbounded operator in H .

The question of maximal regularity then addresses, whether a solution u to this
equation exists and satisfies u ∈ L2

(
(0, T ); dom(A)

) ∩ H 1
(
(0, T ); H

)
. In Hilbert

spaces, whether or not this question can be answered in the affirmative solely
relies on the properties of A. Hence, one shortens this question to whether A

‘has maximal regularity’. The present situation is conveniently understood: A has
maximal regularity if and only if −A is the generator of a holomorphic semigroup,
see [33, Theorem 2.2] and [105, Lemma 3,1]. One major example class is the class
of operators that are defined with the help of forms, see [5] for an introductory
text. People then studied the situation of time-dependent A. It has then been shown
in various contexts and under suitable conditions on the (smoothness of the) time-
dependence of A, whether A has maximal regularity or not. For this, we refer to
[2, 8, 30] for an account of possible conditions. The evolutionary equations case,
which is addressed for the first time in [88] in the time-independent and in [123]
for the non-autonomous case, is different in as much as the focus of the underlying
rationale is shifted away from the spatial derivative operator towards the material
law. The proof of Theorem 15.2.3 outlined above is the autonomous version of
[123].
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Exercises

Exercise 15.1 Consider the situation of Example 15.1.1.

(a) Show that 0 ∈ ρ(∂t,ν + ∂) for all ν > 0. Next, let u be as in Example 15.1.1
and show that u /∈ dom(∂t,ν).

(b) Let ν > 0 and show using Picard’s theorem that

0 ∈ ρ

(
∂t,ν

(
1 0
0 1

)
+

(
0 ∂

∂ 0

))
.

Show that there exist f, g ∈ L2,ν(R; L2(R)) such that for

(
uf

vf

)
:=

(
∂t,ν

(
1 0
0 1

)
+

(
0 ∂

∂ 0

))−1 (
f

0

)

and

(
ug

vg

)
:=

(
∂t,ν

(
1 0
0 1

)
+

(
0 ∂

∂ 0

))−1 (
0
g

)

we have uf , ug /∈ dom(∂t,ν).

Exercise 15.2 Let u and q be defined as in Example 15.1.2. Show that u ∈
dom(∂t,ν) and q ∈ dom(m) by explicit computation (not using Theorem 15.2.3).
Hint: Find an ordinary differential equation satisfied by u. Use the explicit solution
of this ordinary differential equation to show the claim.

Exercise 15.3 Let α � 0 and ν > 0. Show that

∂t,ν : dom(∂
�α�+1
t,ν ) ⊆ Hα

ν (R) → Hα
ν (R)

u �→ ∂t,νu

is densely defined closable with continuous invertible closure.

Exercise 15.4 (Local Maximal Regularity) Let H0,H1 be Hilbert spaces,
a ∈ L(H1) be such that Re a � c for some c > 0. Furthermore, let
C : dom(C) ⊆ H0 → H1 be densely defined and closed. Let T > 0. Show
that for every f ∈ L2

(
(0, T ) ; H0

)
there exists a unique u ∈ H 1

(
(0, T ) ; H0

) ∩
L2

(
(0, T ) ; dom(C∗aC)

)
with u(0) = 0 such that

u′(t) + C∗aCu(t) = f (t) (a.e. t ∈ (0, T )).
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Hint: Reformulate the equation satisfied by u into an evolutionary equation, apply
Theorem 15.2.3.

Exercise 15.5 Let H0,H1 be Hilbert spaces, a ∈ L(H1) be such that Re a � c for
some c > 0. Furthermore, let C : dom(C) ⊆ H0 → H1 be densely defined and
closed. Let T > 0. Define ∂0 : dom(∂0) ⊆ L2

(
(0, T ) ; H0

) → L2
(
(0, T ) ; H0

)
with ∂0u = u′ and

dom(∂0) =
{
u ∈ H 1( (0, T ) ; H0

) ; u(0) = 0
}

.

Show that for u ∈ H 1
(
(0, T ) ; H0

)
the point-evaluation u(0) = 0 is well-defined.

Then show that ∂0 + C∗aC is continuously invertible and closed as an operator in
L2

(
(0, T ) ; H0

)
.

Hint: For the first part use Theorem 12.1.3. For the second part, apply the result of
Exercise 15.4. Show that in the situation of the previous exercise, there exists κ > 0
independently of f and u with

‖u‖
H 1

(
(0,T );H0

)
∩L2

(
(0,T );dom(C∗aC)

) � κ‖f ‖
L2

(
(0,T );H0

).

Exercise 15.6 Recall Maxwell’s equations from Theorem 6.2.8:

∂t,ν

(
ε 0
0 μ

)
+

(
σ 0
0 0

)
+

(
0 − curl

curl0 0

)

in L2,ν

(
R; L2(�)3 × L2(�)3

)
with ε, μ, σ : � → R

3×3 satisfying the following
property: there exist c > 0 and ν0 > 0 such that for all ν � ν0 we have

νε(x) + Re σ(x) � c, μ(x) � c (x ∈ �).

By Theorem 6.2.8, for ν � ν0 and j0 ∈ L2,ν(R; L2(�)3), there exists a unique pair
(E,H) ∈ L2,ν(R; L2(�)6) such that

(
E

H

)
:=

(
∂t,ν

(
ε 0
0 μ

)
+

(
σ 0
0 0

)
+

(
0 − curl

curl0 0

))−1 (
j0

0

)
.

Assume there exist open sets �0,�1 ⊆ � such that �0 ⊆ �1 ⊆ �1 ⊆ � with
spt j0(t) ⊆ �0 for a.e. t ∈ R. Moreover, j0 ∈ H

1/2
ν

(
R; L2(�1)

3
)
. Furthermore,

assume ε = 0 on �1. Show that t �→ H(t)|�0 ∈ H 1
ν

(
R; L2(�0)

3
)
.

Exercise 15.7 Let H0,H1 be Hilbert spaces, a, b ∈ L(H1) be such that Re b � c

for some c > 0. Furthermore, let C : dom(C) ⊆ H0 → H1 be densely defined
and closed. Let f ∈ L2(R; H0) with inf spt f > −∞. Show that for ν > 0 large
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enough, there exists for a unique u ∈ H 2
ν (R; H0)∩dom

(
C∗(a+b∂t,ν)C

)
satisfying

∂2
t,νu + C∗(a + b∂t,ν)Cu = f.

Hint: Use the substitution w := ∂t,νu and q := −(a + b∂t,ν)Cu to reformulate the
equation in question as an evolutionary equation. Then apply Theorem 15.2.3.
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