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The current work presents a numerical modelling approach for investigating the effect of ligament shape
and disorder on the macroscopic mechanical response of nanoporous gold (NPG). The approach starts
from a ‘single ligament’ analysis with respect to three fundamental deformation modes, bending, torsion,
and compression, that depend on the ligament shape. It can be shown that the predictive capability of the
highly computationally efficient beam model is sufficient for a large variation in ligament shapes. Using a
representative volume element (RVE) composed of such ligaments, different degrees of disorder are
included. For both the single ligament and RVE models, the cylindrical beam serves as a common refer-
ence to compare the results when varying the ligament shape. From the comparison of the RVE elastic
response with the single ligament results and the further analysis of statistical information from the ele-
ments in the RVE, it is found that bending is the major deformation mode for perfectly ordered RVEs,
whereas torsion gains importance for increasing RVE disorder. The effect of compression of the ligaments
can be neglected in general. It is concluded that the transition to torsion deformation due to disorder is
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the cause of the strongly reduced lateral expansion during compression deformation of NPG.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nanoporous gold (NPG) made by de-alloying can be produced
as macroscopic objects that exhibit a bi-continuous network of
nanoscale pores and solid ‘ligaments’ [1]. The solid fraction of the
porous body is approximately 30% [1,2]. Recent studies explored
the use of NP metals, especially NPG, made by de-alloying as a
functional material for catalysis, actuation and sensing [3-5].
Mechanical performance is relevant to each of these fields. It is
therefore necessary to gain a fundamental understanding of the
mechanical behavior of such a material. Experimental tests on
the compression, tension, fracture, and indentation of NPG reflect
the current interest in this material [6,7]. Numerous experimental
studies reported that in addition to the relative density, the
strength of NPG strongly depends on its average ligament radius
[8-10], that is, the macroscopic strength of NPG increases with
decreasing ligament size [2,11-14].

There is no doubt that one of the most interesting features that
NPG materials possess is the famous ‘size effect’ [9,14], i.e., differ-
ent macroscopic mechanical responses have been observed for dif-
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ferent ligament sizes, specifically different ligament radii, for the
same solid fraction. However, the fundamental reason for this
effect is still under debate.

It would be rational to state that the macroscopic mechanical
response of an NPG material is mostly influenced by two aspects:
the constitutive material law and the geometrical/structural prop-
erties of the ligament network. Concerning the constitutive law,
extensions to classical continuum plasticity models, e.g., as applied
in [7,15], have been suggested for including size effects by splitting
the volume and the surface into separate models [16] or in the
form of a gradient extended crystal plasticity theory [17]. In this
way, a size-dependent elastic modulus or size-dependent plasticity
can be predicted. The latter is computationally expensive, so until
now, relatively simple honeycomb-like 2D-structures have been
studied.

Choosing an arbitrary average ligament size, the size effect
reduces to a given Young’s modulus and yield strength captured
with the material parameters of a conventional plasticity model.
Microscopic features such as surface effects are ignored. In this
way, attention is drawn towards the influence of the shape-
related parameters of NP materials as has been analyzed previ-
ously in several works [7,15,18-21]. One could argue that the
determination of the size effect for NP materials, typically making
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use of models translating macroscopic stress into local stresses act-
ing in the ligaments, requires the knowledge of the relationship
between the shape-related properties and the macroscopic
mechanical response.

Motivated by previous publications [7,15,18-21], where all liga-
ments were assumed to be cylindrical and of the same size, Pia and
Delogu [18] conducted a statistical analysis for quadratic beams,
focusing on the relationship between the morphological features
of the ligaments and the mechanical responses of the NP materials.
In their study, a simplified polynomial equation (Eq. (1)) was
applied to describe the geometrical profiles of different ligament
variations extracted from scanning electron microscopy (SEM)
micrographs. Based on these statistical morphology data, a phe-
nomenological model based on Timoshenko’s beam bending the-
ory was developed to describe elastic bending. Their work
brought further insight towards revealing the influences on the
elastic response produced by the ligament geometry of NP
materials.

r=nx*+m (1)

In Eq. (1), r denotes the ligament radius and x is the axial coor-
dinate with x = 0 being the ligament’s center. The shape of the
ligament is defined as n = (Tena — 1',,”-5,)/(1/2)2 and m = ruq, Where,
Tena 1S the radius at the ends, ry;y is the radius in the middle of
the ligament, and [ is the length of the ligament.

When considering the work of Pia and Delogu [18] as an impor-
tant element describing the relationship between the ligament
geometrical properties and the macroscopic mechanical response,
another equally important element to consider is the network con-
struction of the NP materials. Based on the ‘ball-and-stick’ beam
model proposed by Huber et al. [7], Roschning and Huber [15] con-
ducted a thorough investigation on the influences of the random-
ization parameter (A) of network randomization on the
mechanical response of an RVE. It was found that the Young’s mod-
ulus (E), yield strength (o), and elastic Poisson’s ratio (vg) are
heavily influenced by A. This is mainly because A, as the major
structural parameter across the whole RVE, is responsible for
describing the length variation and curvatures of the ligaments
that control the deformation mechanisms within the ligament
network.

The works of [7,15,18] were the pioneering efforts for analyt-
ically characterizing the effects of the geometrical and structural
properties of NP materials on the mechanical responses of NP
materials. This inspired a further study combining both
approaches into one comprehensive work. It is worthwhile to
note that most of the work studying the mechanical behavior of
NP metals is based on macroscopic compression. Samples can
be produced in mm to cm scale in a quality allowing large plastic
deformation in such tests [22]. It has been assumed in
[7,18,19,23] that during macroscopic compression, bending is
the dominant deformation mechanism and that the effects of
axial tension and compression within the ligaments can be
neglected.

NP materials show immediate brittle failure in experiments
under macroscopic tension. So far, the only way to prevent this is
by infiltration with a polymer. It has been shown recently that such
a material can be deformed in four-point bending to considerable
strains [24]. However, there exist theoretical studies, such as
[25], that investigated the scaling laws of an NPG under macro-
scopic tension. In addition, in the MD simulations presented in
[25], progressive necking and rupture were observed, but the
stress-strain data before that point could be used to fit the
Gibson-Ashby model. The resulting scaling law contains an addi-
tional term, which is linear for the Young’s modulus. This underli-
nes the relevance of tension deformation within the ligaments,

which reflects the increasing alignment of the ligaments during
macroscopic tensile deformation.

The present work establishes the relationship between the geo-
metrical and structural properties and the corresponding mechan-
ical responses, beginning with the analysis of single ligaments. The
ligaments serve as building blocks with variable geometrical prop-
erties defined by a few parameters. In an extension to [18], the
mechanical response is investigated not only for bending but also
for three fundamental loading cases, i.e., bending, torsion, and
compression, depending on the geometrical parameters. This is fol-
lowed by analyses of compressing ordered and disordered NPG
networks composed of a large number of such ligaments within
an RVE with regard to the elastic modulus and yield strength. This
brings the discussion to the structural level, following [7,15]. A
close correlation between the single ligament geometry and the
macroscopic mechanical response of the RVE is revealed, and the
contributions from bending, torsion, and compression on the
deformation mechanisms are discussed.

2. Single ligament analysis
2.1. Model setup

2.1.1. Geometry determination

The finite element analysis (FEA) code ABAQUS/Implicit [26] is
used for this analysis. Both beam and solid elements are applied
for the single ligament analysis. The objective of applying a compu-
tationally more expensive solid model is to examine the applicabil-
ity and accuracy of the beam model that offers excellent
computational efficiency for a spectrum of typical ligament geome-
tries and loading conditions. In the following, r and [ denote liga-
ment radius and ligament length, respectively, as illustrated in
Fig. 1a. According to Eq. (1), the ligament radius of the cylindrical
ligament is denoted as r(n = 0) = ry, and the aspect ratio of a liga-
ment is defined as rq/l, i.e., the cylindrical ligament serves as a
common reference for all ligament geometries throughout this
work.

A shear deformable beam element has been compared with a
solid element using a Kalvin unit cell [27], validating the modelling
capability of the beam element for open cell foam structures with a
solid fraction ¢ ranging from 2% to 9% for polyester urethane and
aluminum foams. However, unlike the thin beam with a small
aspect ratio ro/l =~ 0.1 as used in [27], ligaments with a larger
1o/l ratio of approximately 0.25 are typical for NPG materials
[7,15]. This leads to the question of whether the beam element is
capable of capturing the main characteristics of the thick ligaments
with sufficient accuracy, i.e., deviations should be below the uncer-
tainties in the experiments on NPG.

Fig. 1b shows that the ligament shape varies significantly in a
real material. To analytically describe the ligament shapes, a quad-
ratic equation (Eq. (1)) is implemented, following Pia and Delogu
[18]. Ligaments with varying shapes can be characterized using
the dimensionless parameter n-ro. For n-ro > 0, the ligament
shape is concave, while for n-ry < 0, the ligament has a convex
shape. While [18-20] exclusively studied the case of n-ry >0,
the geometries found in [28] by analyzing the 3D FIB tomography
of polymer-infiltrated NPG suggests extending the analysis to
n-ro < 0. Such convex ligaments are supposed to originate from
the pinching-off and retracting of ligaments during heat treatment
and coarsening, leaving a mass concentration, also called a
“dangling” ligament.

The solid fraction ¢ is the major parameter for describing the
structure-property relationship of NP materials [2,29]. The
calculation of ¢ for RVE in the current paper can be found in
[15], which is derived from the ball-stick model of the diamond
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Fig. 1. (a) Schematic of the ligament shape, characterized by the ratio i /Tend; (b) SEM of the surface of an NPG sample [30].

unit cell structure proposed in [7]. In the following study, a con-
stant material volume is assigned to all the ligaments of different
shapes to eliminate the influence of the solid fraction. Therefore,
the ligament shape is the only variable in the analysis. In the cur-
rent section, the ligament material volume is chosen as equal to
the volume of the cylindrical ligament of ry/l = 0.25 that is statis-
tically close to the aspect ratio found in the NPG studies of [7,15].
The relation can be described with Eq. (2), where m (= rpy) can be
determined for given values of n and ry according to Eq. (3). The
shape representative ratio rpig/rens used in the rest of the paper,
as illustrated in Fig. 1a, can be calculated by combining Eq. (3)
and Eq. (1).

2 2 2 2
nrgl = n/’/z (nx* +m)"dx (2)

Pn ) I*n2
mf—ﬁ—&-\/ro—m (3)

For the beam model, different radii of sections were assigned to
the elements along an entire ligament consisting of 20 elements
(B31), which is schematically illustrated in Fig.2a. A sketch of
the solid element geometry (C3D8R) model is shown in Fig. 2b,
presenting the same geometry. The solid model is uniformly
meshed with approximately 60,000 elements. Its accuracy is
ensured by a mesh convergence check.

2.1.2. Loading and boundary conditions

To analytically dissect the complex loading condition of the
ligaments, which appears during compression of a real NPG mate-
rial, three fundamental loading conditions are separately analyzed,
which are bending, torsion, and compression. As shown in Fig. 2,
only half of the ligament is modelled to reduce the computational
cost. The load is applied in the center of the ligament, while the
other end of the ligament, which would connect to other ligaments
in a node of an NPG network, is fixed by the boundary conditions.
The load is applied in the form of displacements (w for bending and
v for compression) and rotation (0 for torsion), as shown in Fig. 2.
This approach is feasible because until the onset of plastic yielding,
all three deformation modes can be superimposed due to the lin-
earity of the elasticity.

To apply the same loading condition to the solid model as to the
beam model, the symmetry surface is coupled to a rigid plate a
‘Coupling’ constraint that has a ‘Continuum distribution’ [26], as
shown in Fig. 2b. The loading can therefore be assigned to the cen-
ter point of the rigid plate and distributed to the whole surface
[26]. This approach ensures the maximum level of the similarity
between the solid and beam models with respect to the load appli-

cation. An elastic-perfectly plastic material model of the bulk gold
is implemented across the whole work, with an elastic modulus of
81 GPa and a Poisson’s ratio of 0.42, and the yield strength is
500 MPa without work hardening [7,15]. This arbitrarily chosen
ligament strength corresponds to an average ligament diameter
of approximately 200 nm [2], i.e., o = 100 nm and [ = 400 nm for
a cylindrical ligament.

Table 1 lists the computational times for both the beam and
solid models. The beam model shows a significant computational
advantage over the solid model of approximately 3 orders of mag-
nitude. Although the computational cost of the solid model could
still be affordable in this single ligament analysis, the situation is
completely different for the case of RVE simulations that contain
thousands of ligaments resulting in a very high computational cost.
The application of the beam model for NPG modelling is therefore
vital for carrying out parametric studies and analyzing structure-
property relationships. The current single ligament analysis pro-
vides an assessment of the accuracy level that the beam model
could reach and has outstanding computational efficiency.

2.2. Results and discussion

The stiffness with respect to the three deformation modes,
bending stiffness kj, torsion stiffness k;, and compression stiffness
k., are calculated using Egs. (4)-(6), respectively, where F,, M; and
F. are the resulting reaction forces for the bending, torque, and
reaction forces for the compression of the ligament, respectively:

F

ky = Wb (4)

ke == (5)
Fe

ke=— (6)

Fig. 3 shows the normalized stiffness results of both the beam
(white marker) and solid models (black marker) for the three fun-
damental deformation modes (S.L. Bend, S.L. Torq, and S.L. Comp
are the abbreviated terms for single ligament bending, torsion,
and compression, respectively). All the stiffness results obtained
for the different ligament shapes were normalized by the results
from the cylindrical shape that serves as a reference (kyo, Kio, Kco
for bending, torsion and compression, respectively). It can be found
that the two models show an almost symmetrical pattern in a sin-
gle log plot: the center peak is near rpy;/rena =1 with concave
(Tmia/Tena < 1) and conveXx (1miq/Tena > 1) shapes located to the left
and right sides of the peak, respectively.
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Fig. 2. An example of a ligament shape (7mia/Tend =~ 0.66) for (a) beam model; (b) solid model; with load applications in the ligament center (with radius r,,4) and fixed

boundary at the ligament end (with radius reng).

Table 1
Computational cost of the single ligament analysis and estimation for an RVE analysis.

Model

CPU time for single ligament [h]

14-1073-2.8-1072
1.1-1.7

Estimated CPU time for RVE [h]

0.33-0.67
200-300

Beam
Solid

With respect to bending (Fig. 3a), the maximum stiffness is
reached for the concave shape of rpq/Tens ~ 0.66, which is close
to the center line and approximately 1.25 and 1.1 times larger than
the cylindrical ligament (g /Tenq = 1) for the solid and beam mod-
els, respectively. For this loading case, the maximum deviation of
—12%is located at the peak, i.e., the beam model is more compliant

121 ™ = SLBend-Solid

1.0 5/ —0— S.L.Bend-Beam

0.8
0.6

kp/Kpo
[ Im|

0.4+
0.2+

0.0

0.1 1 10

—um— S.L.Comp-Solid
—0O— S.L.Comp-Beam

ko/keo

0.0

T T

0.1 1 10
Tmid”Tend

(c)

compared to the solid model. In contrast, the results from the two
other deformation modes (Fig. 3b and c) both reach their maxi-
mum stiffness for the cylindrical ligament. Deviations between
the beam and solid models are negligible for torsion independent
of the ligament shape and for compression of the concave liga-
ments. However, the convex ligaments under compression loading
show an increasing overestimation of the stiffness by the beam
model.

For the cases of compression and torsion, it can be concluded
from Fig. 3 that a lower shape variation and deviation from the
cylindrical shape leads to a stiffer mechanical response. For these
two loading cases it is unimportant where the small cross section

12 —m S.L.Torg-Solid
1.04 o —O0—S.L.Torg-Beam
/“\
0.81 g\
J
9. / "\
< 06+
<& ui \
0.4 \
0.21 |
/
004 O
01 1 10
rmid/rend

Fig. 3. Comparison between beam and solid models for the normalized stiffness results with respect to ligament shape variations in (a) bending; (b) torsion; (c) compression.
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is located. It weakens the ligament stiffness in the same way every-
where, independent of whether it is at the ligament end or in the
mid-section. Additionally, both appear symmetric around
Tmid/Tena = 1, which can be distinguished by the width of their dis-
tribution: torsion shows a sharp peak, while compression results in
a much broader distribution.

On the other hand, bending involves not only the moment of
inertia but also the lever of load application, which causes asym-
metry in the bending mode. That is, a slightly concave shape pos-
sesses maximum stiffness among all shape variations, which leads
to its bending resistance being the strongest.

The agreement between the results from the beam and solid
models indicates that it would be an applicable step to construct
an RVE using beam elements only; 6% of the average deviation
between these two models can be observed against the beam
results, assuming there is an equal distribution of ligament shapes.
This is well below the uncertainties and deviations between the
models and the experimental data (see, e.g., [15]) and can be con-
sidered to be negligible. However, concerning the results shown in
Fig. 3c, one critical question remaining for the RVE analysis is
determining the relative contribution of compression deformation
compared to bending and torsion. If compression turns out to be
significant, using convex ligament shapes would lead to a system-
atic overestimation of the RVE'’s stiffness. In this case, it would be
an important task to determine the probability distribution, e.g.,
from 3D FIB tomography data, particularly with regard to the
occurrence of convex ligament shapes with larger r;4/rena Values.

Using the observations and conclusions detailed above, further
questions are raised to be answered in the next section. Could the
characteristics of the single ligament behavior in different geome-
tries be transferred to RVEs? What is the possible additional effect
brought by network-construction (structural parameter) of the
RVE to the relationship between the ligament geometry and the
mechanical responses demonstrated in the current section?

In addition, the effect of the geometry on the yield strength has
not yet been investigated. For compression and torsion, one can
assume linearity until the yield stress is reached. However, the
location and load level where plastic yield initiates in bending
and mixed loading scenarios may not be represented simply by a
linear dependency of the ligament stiffness. The resulting question
is how well the single ligament results correlate with the macro-
scopic yield strength of a randomized RVE that contains a homog-
enized response of many ligaments as well as a mixture of the
three load cases.

3. RVE analysis

In this section, the ligament shapes from Section 2 with an
aspect ratio of ro/l = 0.25 are implemented to construct RVEs.

(b)

Additionally, two more cases using aspect ratios of ro/l =0.35
and 0.5 are also examined for broadening the range of RVE analy-
ses. The RVE modelling approach in the current study is based on
the beam model proposed in [7] and further refined in [15], where
detailed information on the numerical modelling can be found.

3.1. Ordered RVE

To study the structural influences from a single ligament on the
macroscopic behavior, the RVE is periodically constructed as a dia-
mond lattice network [7] by unit cells (A = 0). The parameter of the
unit cell size a is defined in [7] to characterize its structure (see
Appendix A.1 of [7]). Three extreme examples with an aspect ratio
of ro/l = 0.25 are presented in Fig. 4a—c for a concave ligament RVE
(Tmia/Tena = 0.14), cylindrical ligament RVE (7'ig/Tena = 1), and con-
vex ligament RVE (7niq/Tena = 24.24), respectively.

Table 2 defines the parameter range for the simulation runs. All
ligament shapes (variations of rq/renq) for the same ro /I ratio pos-
sess the same material volume, which is equal to the volume of its
corresponding cylindrical shape ligament (rpig/Tena =1). This
ensures a constant material volume in the RVEs for the same /!
ratio. The different RVEs are loaded with the same compression
deformation on the top surface. In Table 2, the variation of nry
applied to different ry/I ligament groups leads to different ranges
of T'mia/Tena, Which is due to the fact that ry,4 /7., needs to be con-
strained to realistic geometries. Visual inspections of SEM images
[10,22,28] encourage using a range of rpig/Tena =03 to 3 to
describe the ligament shapes To make the analysis more compre-
hensive, ligament geometries outside of this range are also covered
in the analyses but have fewer data points, as shown in Fig. 5.

Fig. 5a and b shows the results of the macroscopic Young’s mod-
ulus (E) and yield strength (o), respectively, for the perfectly
ordered ligament network. As shown in Fig. 5a, three curves of dif-
ferent ro/l ratios are constructed as a function of the ligament
shape variations, parametrized via g /Teng. E increases as expected
with the ro /I ratio that relates to the solid fraction ¢. For a constant
solid fraction, i.e., ro/l = const., varying the ligament shape shows
the same effect on the stiffness of the RVE as is found for the single
ligament under bending: the concave ligament with a shape close
to the cylindrical shape leads to the highest value for E. Interest-
ingly, for the yield strength o, in Fig. 5b, the peak value is at the

Table 2
Definition of the ranges of the rq/I ratio and the shape variations rpq/renq of ordered
RVEs for the numerical simulation runs.

o/l [-] Range of n-rq [-] Range of g /Tena [-]
0.5 [-0.87, 0.87] [0.44, 3.23]

0.35 [-0.61, 0.61] [0.29, 12.82]

0.25 [-0.32, 0.43] [0.14, 24.24]

Fig. 4. Three examples of RVEs characterized by (a) concave ligament shape; (b) cylindrical ligament shape; and (c) convex ligament shape.
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Fig. 5. Dependence of the macroscopic mechanical properties of the RVE on ligament shape rpq/Tenq for different rq/I ratios. (a) Young’s modulus E; (b) yield stress a,; (c)

normalized macroscopic modulus; (d) normalized yield strength.

same value of rpig/Tena =~ 0.7, but the distribution appears to be
sharper than that of the Young’s modulus.

In Fig. 5¢ and d, the results of E and o, for each of these three
curves are normalized by the results of Ey and o,,, respectively.
Ey and o, are the Young’s modulus and the yield strength of the
corresponding cylindrical ligament RVES (rpig/Tend = 1), respec-
tively. It is found that this normalization strategy leads to the
converging of the E and o, results for different ro/I ratios. The con-
verged curves describe the relationship between the ligament
geometry/network construction and the mechanical response of
the RVE, where the effect of ro/I (the material volume) is conve-
niently eliminated. This means that the very same network struc-
ture with cylindrical ligaments provides a common quantitative
reference. The remaining deviations within the investigated range
of the ligament aspect ratio are within 5% for the Young’s modulus
and 3% for the yield strength.

Two critical points can be derived from these results, which will
form the basis for the next section. First, the ordered diamond
network adds no significant effects on the normalized results of
the macroscopic stiffness compared to the various shaped single
ligament analysis. In other words, the ligament geometrical
parameters still dominate the mechanical behavior of the ordered
RVEs. This suggests that the modelling of a single ligament is a
proper approach for describing the mechanical behavior as well
as for the possible mixed loading induced by the deformation of
the ligament network, at least with regard to the stiffness.

Second, the effects introduced by the aspect ratio of the
ligament, ro/l, can be eliminated by normalizing the results for
both stiffness and strength with the results from the cylindrical
ligament network. This includes the important effect of the solid
fraction, as it has a one-to-one relationship with ry /L. It can be con-

cluded that the findings based on cylindrical ligaments from the
previous work [7,15] serve as a valid reference at rp;g/Tena = 1 for
the generalized case with an arbitrary ligament shape with
rmid/rend#‘l-

3.2. Randomized RVE

As originally stated in [31], the randomization of the structure
plays a significant role in three-dimensional open-cell solids. This
motivates further analyses by adding another structural parame-
ter, A, that governs the severity of the nodal disorder for the beam
model, as proposed in [7,15]. The randomization parameter A is
related to the unit cell size a and determines the amplitude of a
ligament connecting node’s random shifts in space. In the current
section, 23% and 40% of a are applied as magnitudes for the random
shifting of the connecting nodes (A = 0.23 and 0.4, respectively).
These selections are based on the investigation conducted in
[15], where it is stated that A = 0.4 might be the maximum possi-
ble randomization, while A = 0.23 was found to be a proper ran-
domization level that fit the measured vg best. Table 3
summarizes the parameter ranges for the simulation runs with
randomized RVEs.

Table 3
Parameter ranges for the numerical simulation runs of RVEs with respect to nodal
randomization levels, ro/I ratio, and shape variations.

Al-] ro/l[-] Range of Tmig/Tend [-]
023,04 05 [0.44, 3.23]

0.23,0.4 035 [0.29, 12.82]
023,04 0.25 [0.14, 24.24]
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Fig. 6. Dependence of the macroscopic mechanical properties on the ligament shape r4/7enq for different ry/I ratios. The markers represent the single ligament results of (a)
normalized Young's modulus for A = 0.23; (b) normalized yield stress for A = 0.23; (c) normalized Young’s modulus for A = 0.4; (d) normalized yield stress for A = 0.4.

Table 4
Parameters of the log-normal Eq. (7) fit to the normalized macroscopic modulus and
yield strength of RVE.

Result normalization A 01 0 P3

£ 0 2.52 0.89 1.59
0.23 2.52 0.86 1.68
0.4 2.51 0.80 1.73

& 0 1.40 0.57 0.90
0.23 1.55 0.60 1.06
0.4 1.30 0.56 1.11

The normalized results (of E and o,) for the two randomized
networks A =0.23 and A= 0.4 are shown in Fig. 6a-d, respec-
tively. The comparison between Fig. 6 and Fig. 5 for the disordered
and ordered RVE results shows that highly similar patterns in the
RVE mechanical response can be obtained across different levels
of randomization. The peak of the mechanical stiffness is again
slightly below rmiq/rens = 1, representing the cylindrical ligament
shape.

For a better comparison and for further discussion, all the
results are brought together in a single plot. To this end, the log-
normal fitting function is used and represented with Eq. (7), where
P, P1, P2, and ps are the ratio of rpia/rend, area, log standard devia-
tion, and mean value, respectively; p and p, represent the macro-
scopic property for a given value of p = ryq/renq (i-€., the result
of E or g,) and the corresponding value for the cylindrical ligament
(i.e., Eo or oy,), respectively. The parameters of the log-normal

function, Eq. (7), for the normalized macroscopic modulus and
the yield strength of A =0, 0.23 and 0.4 are listed in Table 4. The

coefficient of determination R? is in the range of 95-100% for all
cases. The quality of the fits is demonstrated by the continuous
curves in Fig. 6.

[lnp—lnp3)2
o 2

D P1 e (7)

bo V2m-p-p,

For a direct comparison, in Fig. 7a, the fitting functions of RVE
with A=0, 0.23 and 0.4 for the macroscopic modulus (colored
lines') are plotted together with the single ligament normalized
stiffness results from Fig. 3 (scatter lines). It can be seen from the
comparison of the three continuous curves that the macroscopic
Young’s modulus decreases with increasing A only for rpig/Tena < 1.
For rmia/Tena > 1, the effect of the randomization is comparably
low. This can be understood from the concentration of the elastic
deformation in the ligament ends in the vicinity of the nodes. The
thicker the middle section is, the stiffer the ligaments remain, so that
ligament-to-ligament variations in curvature and length have no
noticeable effect.

The bending and torsion results for the single ligament seem to
be highly correlated to the results from RVE for A =0 and A = 0.4,
respectively (see Fig. 7a). In other words, the mechanical charac-
teristics of bending and torsion of individual ligaments govern

! For interpretation of color in Figs. 7 and 8a-c, the reader is referred to the web
version of this article.
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Fig. 7. (a) Comparison between the normalized E fitting functions of various randomization levels and single ligament normalized stiffness of bending, compression and
torsion for RVE; (b) idealized models for extreme cases of perfectly ordered and ultimately disordered ligament network structures explaining the shift of the deformation

mechanism from mainly bending to mainly torsion.

the deformation mechanisms of RVE during macroscopic compres-
sion deformation, depending on the degree of disorder. This
hypothesis is supported by the shifting of the peak from
Tmid/Tena = 0.66 to 1 and the narrowing of the distribution that is
characteristic for torsion deformation, indicating that with increas-
ing disorder, the deformation mode shifts from bending towards
torsion. If we consider that each of these deformation modes are
responsible for a certain percentage of the total deformation of
the RVE, the contribution of bending would be dominant for
A=0. With increasing A, the proportion of bending would
decrease, while that of torsion would increase.

The shift in the deformation mechanism can be intuitively
understood by imagining the deformation of a straight beam and
a spiral spring, as shown in Fig. 7b, where the latter is known as
a mechanical element that mainly undergoes torsion deformation.
Thus, the two models represent the extreme cases of a perfectly
ordered and an ultimately disordered ligament network structure,
illustrating why the patterns shown in Fig. 7a are mainly governed
by the two deformation modes of bending and torsion.

On the other hand, the compression mode of the single ligament
with its broad distribution is clearly the least relevant mechanism,
and in view of the proposed spiral spring model shown in Fig. 7b, of
no relevance for disordered network structures. This spiral spring
model also explains the origin of the low degree of lateral expan-
sion that is observed during compression of NPG [2,22]. This effect
was successfully reproduced by tuning the degree of randomiza-
tion of the ligament network [7,15], but until now, the underlying
deformation mechanism remained unexplained.

Although bending is suggested to be the most dominant defor-
mation in NPG compression by [7,18,19,23], our findings show that
the effect of torsion is similarly important and should also be con-
sidered using nodal randomization. The macroscopic mechanical
response of an RVE is the result of a mixture of these two funda-
mental deformation modes, which depends on the degree of ran-
domization in the networking structure and the predominant
ligament geometries.

Fig. 8 statistically underpins the previous hypothesis. To con-
struct Fig. 8a—c, histograms of the bending moment, torque and
compression force from all elements in the RVEs for
Tmid/Tena =~ 0.66 ligament shape are collected under pure elastic
deformation. The results of the bending moment M, and torque
M, are then normalized by the product of the corresponding
macroscopic reaction force of the RVE, Fryg, and [; in addition, the
data of the compression force are normalized by Fgy. This
approach cancels out the effect from the randomization on the

stiffness of the RVE, providing dimensionless quantities for the
quantitative comparison across RVEs with different randomization
levels. For the special case of a perfectly ordered (A = 0) ligament
network, the histogram of the bending moment in Fig. 8a shows
a wavy pattern that possesses ten peaks. This is a result of the dis-
cretization of the ligaments with 20 elements (as introduced in
Section 2.1.1). Each element has a certain distance to the next con-
necting node that, when multiplied by the bending force applied
on each ligament end, yields the local bending moment. Due to
the symmetry of the ordered structure, the resulting ten values
for each half ligament (in the perfect structure all the ligaments
are loaded in the same way) are reflected in the ten peaks, as
shown in Fig. 8a.

With the increase of the nodal randomization level from 0 to
0.4, there are three aspects to note with regard to the deformation
mechanism on the change in bending (Fig. 8a). First, the number of
elements with bending deformation equal to or close to zero
increases significantly from 100 for A = 0 to 1600 for A = 0.4. Sec-
ond, the number of elements undergoing bending moments rang-
ing from (not including) 0-0.0075, showing a significant
reduction. Third, the number of elements undergoing larger bend-
ing moments ranging from 0.0075 to 0.015 increases but remains
small.

On the other hand, it is obvious that torsion deformation
increases with A, as shown in Fig. 8b. The number of ligaments
with zero torsion abruptly decreases from 6000 for A =0 to 1300
for A = 0.4, and this is accompanied by the increase in the range
of the normalized torsion moment from approximately [—0.001,
0.001] to [—0.007 to 0.007]. These changes are caused by the liga-
ment shape and curvature changes with respect to the increase in
the randomization level.

As discussed in previous paragraphs, the compression is the
least relevant factor for RVE macroscopic mechanical responses,
and this is confirmed by Fig. 8c. It has some contribution in the
ordered structure, which is visible in the form of a peak next to
0, but the peak is immediately shifted to zero normal force for dis-
ordered structures. For the diamond structure, the ratio of com-

pression stress to bending stress is % :ﬁ%ﬂz 0.357 (also see

Appendix A.2&3 in [7]), yielding a ratio of 0.09 for a typical liga-
ment geometry of ry/l = 0.25. Therefore, the contribution of com-
pressive stress is slightly below 10% for the perfectly ordered
structure and rapidly decreases with increasing degree of disorder.
In conclusion, there are no issues concerning an overestimation of
the macroscopic stiffness due to compression deformation of
convex ligaments, as raised in the single ligament analysis in
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Section 2.2, particularly when dealing with disordered ligament
networks.

Up to now, the change for each of the fundamental deforma-
tions during RVE compression was analyzed; however, a clearer
picture needs to be drawn to reveal the relationship between the
fundamental deformation modes and RVE deformation with ran-
domization. To this end, data from Fig. 8a and b are used to com-
pute the ratio of the averaged torque to the averaged bending
moment (M; s and M, q,¢, Tespectively) over all elements in the
RVE. The results are shown in Fig. 8d for RVEs of ligament shapes
of T'mia/Tena = 0.66,0.44 and 0.27. The choice of these geometries
was motivated from the vertical lines inserted in Fig. 7a. The effect
of randomization is clearly visible for concave shapes, while the
effect vanishes for convex ligaments with rpmiq/Teng > 1. Fig. 8d con-
firms that bending is the dominant deformation for A = 0. How-
ever, its influence decreases with increasing A. On the other
hand, torsion contributes only a little for A = 0, but its contribution
increases linearly with increasing disorder. As the randomization
level reaches A = 0.23, the average ratios of torsion to bending
are already within the same order of magnitude. The ratio
approaches approximately 40% for A = 0.4. Furthermore, the ratio
of torsion to bending is nearly independent of ligament shape
Tmid/Tend- Fig. 8d quantitatively underpins the hypothesis deduced
from Fig. 7 that bending and torsion govern the deformation char-
acteristics of a nanoporous metal under macroscopic compression.

4. Conclusions

The paper provides new insights to the numerical modelling of
nanoporous metals with respect to fundamental deformation
mechanisms. The influences of the geometric parameters of the
ligaments and randomization of the ligament network on the
macroscopic mechanical response of an RVE are systematically
analyzed and studied.

In the analysis of single ligaments, the applicability of the beam
model is validated by a solid model in terms of three fundamental
deformations, i.e., bending, torsion, and compression, for aspect
ratios of ligament radius to ligament length of up to 0.5. The liga-
ment shape has a strong effect on the stiffness and strength of the
ligament. For torsion and compression, the cylindrical ligament
reaches the maximum values, while the optimum ligament shape
for bending is slightly concave. A significant deviation between
the beam and solid models was found only for convex ligament
shapes under compression loading. The RVE analysis showed that
compression can be neglected as a deformation mechanism within
the ligament network.

On the level of the RVE, it was concluded that the macroscopic
mechanical response of the RVE is controlled by the ligament
geometries comparable to the single ligament analysis. The find-
ings based on cylindrical ligaments from previous work can be
used as a common reference for the generalized cases with arbi-
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trary ligament shapes. Moreover, the characteristics of the funda-
mental deformation mechanisms obtained for the single ligament
were used for analyzing the deformation mechanisms in the RVE.

One key finding was that with increasing degree of randomiza-
tion, the main deformation mechanism changes from bending to a
mixed mode of deformation governed by bending and torsion. A
simple spiral spring model was proposed that intuitively explains
this effect and explains the low degree of lateral expansion that
is observed during the compression of nanoporous gold.
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