
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2010, Article ID 357839, 13 pages
doi:10.1155/2010/357839

Research Article

A Decimal Floating-Point Accurate Scalar Product Unit with
a Parallel Fixed-Point Multiplier on a Virtex-5 FPGA

Malte Baesler, Sven-Ole Voigt, and Thomas Teufel

Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstraβe 95, 21073 Hamburg, Germany

Correspondence should be addressed to Malte Baesler, malte.baesler@tu-harburg.de

Received 26 February 2010; Revised 1 October 2010; Accepted 20 November 2010

Academic Editor: Viktor K. Prasanna

Copyright © 2010 Malte Baesler et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Decimal Floating Point operations are important for applications that cannot tolerate errors from conversions between binary
and decimal formats, for instance, commercial, financial, and insurance applications. In this paper, we present a parallel decimal
fixed-point multiplier designed to exploit the features of Virtex-5 FPGAs. Our multiplier is based on BCD recoding schemes, fast
partial product generation, and a BCD-4221 carry save adder reduction tree. Pipeline stages can be added to target low latency.
Furthermore, we extend the multiplier with an accurate scalar product unit for IEEE 754-2008 decimal64 data format in order
to provide an important operation with least possible rounding error. Compared to a previously published work, in this paper,
we improve the architecture of the accurate scalar product unit and migrate to Virtex-5 FPGAs. This decreases the fixed-point
multiplier’s latency by a factor of two and the accurate scalar product unit’s latency even by a factor of five.

1. Introduction

Financial calculations are usually carried out using decimal
arithmetic, because the conversion between decimal and
binary numbers introduces unacceptable errors that may
even violate legal accuracy requirements [1]. Therefore,
commercial application often use nonstandardized software
to perform decimal floating-point arithmetic. These software
implementations are usually 100 to 1000 times slower than
equivalent binary floating-point operations in hardware [1].
Because of the increasing importance, specifications for
decimal floating-point arithmetic have been added to the
recently approved IEEE 754-2008 Standard for Floating-
Point Arithmetic [2] that offers a more profound specifi-
cation than the former Radix-Independent Floating Point
Arithmetic IEEE 754-1987 [3]. Therefore, new efficient
algorithms have to be investigated, and providing hardware
support for decimal arithmetic is becoming more and more
a topic of interest. However, most modern microprocessors
still lack of support for decimal floating-point arithmetic,
because additional hardware is costly. The POWER6 is the
first microprocessor with implementing the IEEE 754-2008
decimal floating-point format fully in hardware [4, 5], while
the earlier released Z9 architecture already supports decimal

floating-point operations but implements them mainly in
millicode [6]. Nevertheless, the POWER6 decimal floating-
point unit is as small as possible and optimized to low
cost. Thus, its performance is low. It reuses registers from
the binary floating-point unit, and the computing unit
mainly consists of a wide decimal adder. Other floating-point
operations such as multiplication and division are based on
this adder, that is, they are performed sequentially.

Due to the increasing integration density of CMOS
devices, Field-programmable Gate Arrays (FPGAs) have
recently become attractive for complex computing tasks,
rapid prototyping, and testing algorithms. Furthermore,
today’s FPGA vendors integrate additional dedicated hard-
wired logic, such as embedded multipliers, DSP slices, large
amount of on-chip RAM, and fast serial transceiver modules.
Thus, using FPGA platforms as coprocessors is an interesting
alternative to traditional and expensive VLSI designs.

Besides the four basic arithmetic floating-point oper-
ations, that is, addition +, subtraction −, multiplication
×, and division /, a fifth arithmetical operation was intro-
duced in the IEEE 754-2008 standard, that is called fused
multiply-accumulate (MAC). This operation can assist to
improve the accuracy of scalar products. Unfortunately, this
approach does not go far enough as consecutively applied



2 International Journal of Reconfigurable Computing

MAC operations, for example, a scalar product, can still
lead to totally wrong results because of cancellation. The
reason is rounding of intermediate results. For example, the
summation of a1 = 1030, a2 = −1030, a3 = 10, and a4 =
−20, each with 16 digits precision, can lead to four different
results, depending on the order of execution

((a1 + a2) + a3) + a4 −→ −10,

((a1 + a3) + a2) + a4 −→ −20,

((a1 + a4) + a2) + a3 −→ 10,

((a1 + a3) + a4) + a2 −→ 0.

(1)

Scalar products are calculated in many applications, in
which cancellation may cause serious problems or numerical
overhead slows down algorithms. This includes linear system
solving, least squares problems, and eigenvalue problems [7].
In order to overcome these problems, we consider another
operation, the so-called accurate scalar product or accurate
MAC [8] which is calculated in two steps. First, the products
are computed exactly and are added to a long fixed-point
register without loss of accuracy. Then, to obtain a floating-
point number, the result is rounded only once. This approach
guarantees an optimal scalar product with least significant
bit accuracy. It can be shown that by providing the accurate
scalar product all operations of computer arithmetics can be
performed with maximum accuracy, too [9].

Specifications for decimal arithmetic have been added to
IEEE 754-2008 mainly for financial applications. Generally,
these applications only use a limited range of floating-point
numbers such that cancellation errors are not an issue, and
an accurate scalar product unit seems to be no gain for
decimal arithmetic. Nevertheless, the accurate scalar product
unit proposed in this work might be useful because scalar
product calculations and accumulations are common oper-
ations in financial mathematics, for instance, in portfolio
valuation and optimization. Thus, even if cancellation is not
an issue, the accurate scalar product unit speeds up these
operations because one multiplication and accumulation are
computed in the pipeline in one cycle without interlocks, and
the high accuracy is gained at no extra cost.

As specified by IEEE 754-2008 [2], the computation of
the elementary floating-point operations +,−,×, and / is
performed by the computation of the exact (infinitely pre-
cise) result followed by a rounding to the destination format.
We extend this accuracy requirement to the accurate scalar
product operation. Let us denote R = R(b, p, qmin, qmax)
a floating-point system, where b is the radix, p is the
significand’s precision, and qmin and qmax are the exponent’s
range. Moreover, fl(x) : R → R is a rounding operation that
induces floating-point addition ⊕ and multiplication ⊗ such
that

a⊕ b := fl(a + b), a⊗ b := fl(a× b), ∀a, b ∈ R. (2)

Then the exact scalar product s can be expressed by

s :=
n∑

i=1

ai × bi = a1 × b1 + · · · + an × bn,

∀ai, bi ∈ R
(
b, p, qmin, qmax

)
, i = 1 · · ·n,

(3a)

and the accurate floating-point scalar product s by

s := fl

⎛
⎝

n∑

i=1

ai × bi
⎞
⎠ = fl(s). (3b)

For comparison, the traditional floating-point scalar product
s̃ is computed by software, rounding each intermediate
result. It can be expressed by

s̃ := (a1 ⊗ b1)⊕ · · · ⊕ (an ⊗ bn). (3c)

The novelty of the decimal fixed-point multiplier pre-
sented here is its parallel and pipelined FPGA nature that is
faster than other comparable FPGA implementations and is
even time competitive with binary multipliers implemented
in FPGAs. The concept of accurate scalar product is not
new, but hardware support for binary MAC is seldom and
even more rare for the decimal accurate MAC. However,
[9] presents a decimal accurate scalar product, but most of
the components are serial and have long latencies. Contrary
to this, in the new FPGA-based design presented here,
we use a fast parallel decimal multiplier and a parallel
accurate scalar product unit that can be pipelined to improve
latency. This paper summarizes and extends the research
published in [10]; in particular, it gives a more detailed
introduction and description of the proposed architecture.
Furthermore, we improved the speed of the decimal fixed-
point multiplier by a factor of two and the accurate scalar
product unit by a factor of five, respectively. The outline
is given as follows. Section 2 begins with an overview of
decimal fixed-point multiplication followed by the descrip-
tion of our proposed parallel decimal multiplier. Section 3
shortly introduces accurate scalar product and presents our
proposed architecture. In Section 4, the accurate MAC unit
is extended by the concept of working spaces which allow a
quasiparallel use of the accurate scalar product unit. Post-
place & route results are presented in detail in Section 5,
and finally in Section 6, the main contributions of this paper
are summarized. Additionally two proofs about complement
calculation and simplification of the summation of sign
extensions are given in the appendix.

2. Decimal Fixed-Point Multiplier

The Decimal Fixed-Point Multiplier is the basic component
of the accurate MAC unit. It computes the product A · B of
the unsigned decimal multiplicand A and multiplier B, both
natural numbers with the same precision p.

Decimal multiplication is more complex than binary
multiplication due to the inefficiency of the digit repre-
sentation on binary logic. It requires to handle carries



International Journal of Reconfigurable Computing 3

across decimal and binary boundaries and introduces digit
correction stages. Furthermore, the number of multiplicand
multiples that have to be computed is higher because each
digit ranges from 0 to 9. To reduce this complexity, several
different approaches have been proposed that are described
in the following. All of them have in common that the
multiplication is performed in two steps: the generation
of partial products and their accumulation. However, they
differ in the optimization of these steps.

For the calculation of the partial products, there are two
approaches proposed. The first method generates and stores
the required multiplicand multiples {A×1, . . . ,A×9} a priori
which are then distributed to the reduction stage through
multiplexers controlled by the multipliers digits. Since this
approach requires the generation of eight multiples and some
of them, for example, A × 3, require a time-consuming
carry propagation, Erle et al. [11, 12] proposed a reduced
set of multiples {A × 1,A × 2,A × 4,A × 5}. All remaining
multiplicand multiples can be generated by adding only two
from the set. Lang and Nannarelli [13] describe a parallel
design that recodes the multiplier’s digit set {0, . . . , 9} into
the digit sets {0, 5, 10} and {−2, . . . , +2} exploiting that the
multiplesA×2 and A×5 can be calculated very fast due to the
absence of carry propagation. Vazquez et al. [14, 15] present
three different multiplier recoding schemes. The Signed-
Digit Radix-10 Recoding transforms the digit set {0, . . . , 9}
into the signed digit set {−5, . . . , 5}. The drawback is the
need of a carry propagate adder for the calculation of the
multiple A×3. The two others recoding schemes are Signed-
Digit Radix-4 Recoding and Signed-Digit Radix-5 Recoding
using the transformation sets {0, 4, 8}, {−2, . . . , +2} and
{0, 5, 10}, {−2, . . . , +2}. Both do not need a slow carry
propagate adder for partial product generation but require
a more complex partial product reduction.

The second method generates the partial products only
as needed using digit-by-digit multipliers with overlapped
partial products. To reduce the many combinations, in
[16] is proposed a digit recoding of both operands from
{0, . . . , 9} to {−5, . . . , +5}. In [17] is described a direct
implementation for BCD digit multipliers. It implements a
binary digit multiplication followed by a binary product to
BCD conversion. Compared to this, in [18] the digit-by-digit
multiplier is implemented by means of the FPGA’s memory;
however, no digit recoding is applied.

The accumulation of the partial products consists of
two stages: the fast reduction (addition) to a two-operand
and a final carry propagate addition. Similar to binary
multiplication, the accumulation of the partial products can
be performed sequentially, in parallel, or by a semiparallel
approach. A sequential multiplier iteratively adds up each
partial product to an accumulated sum. In [19], the accu-
mulation is performed sequentially by decimal (3 : 2) carry
save adders and a final carry propagate adder which leads
to a short critical path delay and low area usage but longer
latency. It performs a multiplication in p+4 cycles. In parallel
multipliers, the area consumption is much higher, but the
latency can be reduced and the architecture can be pipelined
to achieve a higher throughput. In [13], a fully parallel
multiplier with digit recoding (see above) is presented. The

accumulation is performed by a tree of carry save adders
and a final carry propagate adder. Vazquez et al. [14] present
a new family of parallel decimal multipliers. The carry-
save addition in the reduction stage uses new redundant
decimal BCD-4221 and BCD-5211 digit encodings. In [20]
is introduced a new method of partial product generation
and together with the reduction scheme of [13] and the carry
propagate addition method of [14] this design is believed
to be the fastest design in literature but sacrifices area for
high speed. Despite the partial product reduction scheme
presented in [20] is the fastest for ASIC designs, the reduction
scheme presented in [14] is more appropriate to FPGA
designs. The reason is that [20] is based on BCD full adders
which introduce a delay of two lookup tables per reduction
stage, whereas the reduction scheme presented in [14] can
be implemented with a delay of only one lookup table per
reduction stage.

Contrary to the several works on implementations in
ASICs, decimal multipliers are not often implemented in
FPGAs. These few are [10, 18, 21]. The method in [21]
exploits the FPGA’s internal binary adders and uses decimal
to binary conversion and vice versa. This approach is only
feasible for small multipliers. The decimal multiplication in
[18] is sequentially and is based on digit-by-digit multipliers
that are implemented by memory (BRAM or distributed
RAM). It also describes a combinational multiplier design
which is only applicable for small precisions p. In a recent
work [10], we proposed a fully combinational decimal fixed-
point multiplier optimized for Xilinx Virtex-II Proarchitec-
tures [22]. It is based on fast partial product generation and a
combinational fast carry save adder tree. It can be pipelined
to achieve a high throughput which is a crucial feature for
the usage in an accurate scalar product unit. In this work, we
adapted the design for Xilinx Virtex-5 devices [23], and in
doing so we could double speed and throughput.

2.1. Proposed Parallel Decimal Multiplier. The proposed Dec-
imal Fixed-Point Multiplier computes the productA·B of the
unsigned decimal multiplicand A and multiplier B. It is fully
combinational and can be pipelined. In particular, it is based
on BCD recoding schemes, fast partial product generation,
and a BCD-4221 carry save adder (CSA) reduction tree,
which is based on [15]. It is optimized for use on Xilinx
Virtex-5 FPGAs. A decimal natural number Z is called BCD-
β3β2β1β0 coded when Z can be expressed by

Z =
p−1∑

m=0

Zm · 10m,

Zm =
3∑

n=0

Zmn · βn, Zmn ∈ {0, 1}.
(3)

Time-critical components are BCD-8421 carry propagate
adders (CPAs) that are used in partial product generation
to calculate the multiplicand’s triple fold A × 3 and for final
addition. The adders are proposed in [24] and are designed
and placed on slice level, considering a minimum carry chain
length and least possible propagation delays. Figure 1 shows



4 International Journal of Reconfigurable Computing

B0(i)
B1(i)
B2(i)
B3(i)

A0(i)
A1(i)
A2(i)
A3(i)

“0” c(i)

“0”

“0”

X0(i)
X1(i)
X2(i)
X3(i)
X4(i)

Fast carry
computation

c(i + 1)

S3(i)
S2(i)
S1(i)
S0(i)

Figure 1: BCD-8421 full adder.

LUT

≥10

=9
P(i)

G(i)

c(i)

0 1

X0(i)
X1(i)
X2(i)
X3(i)
X4(i)

c(i + 1)

P(i) = X4(i)∧ X3(i)∧ X2(i)∧ X1(i)∧ X0(i)

G(i) = X4(i)∨ (X3(i)∧ X1(i))∨ (X3(i)∧ X2(i))

Figure 2: Fast carry computation.

an elementary BCD-8421 full adder. It consists of an adding
and a correction stage using two binary 4-bit adder and a
fast carry computation unit that is depicted in Figure 2. It
exploits the FPGA’s internal fast carry chains to minimize
latency. The fast carry computation unit implements two
functions on the intermediate result of the first stage,
propagate P(i) = P(y(i)) and generate G(i) = G(y(i)) with
y(i) := 16x4(i) + 8x3(i) + 4x2(i) + 2x1(i) + x0(i),

P(i) = P
(
y(i)

) =
⎧
⎨
⎩

1 if y(i) = 9,

0 otherwise,

G(i) = G
(
y(i)

) =
⎧
⎨
⎩

1 if y(i) ≥ 10,

0 otherwise,

(4)

and the carry signal c(i + 1) yields to

c(i + 1) =
⎧
⎨
⎩
c(i) if P(i) = 1,

Gi otherwise.
(5)

Altogether the adder consumes 9 lookup tables (LUTs)
per digit. In particular, the fast carry-bypass logic (carry
computation unit) spans only over one LUT.

Generally, the fixed-point multiplier consists of six
functional blocks as depicted in Figure 3. The basic idea is to
generate p + 1 partial products and to sum them up which
is performed by the parallel carry save adder tree (CSAT)
and the final BCD-8421 carry propagate adder (CPA). The
CSAT is based on (3 : 2) CSA blocks for BCD-4221 format.

B′BCD-4221

A× 4BCD-4221

A× 3BCD-4221

A× 2BCD-4221

A× 1BCD-4221

A× 5BCD-4221

B′signs

D
R

ec

N
eg

D
C

P
P

M
u

x

NDCBCD-4221

M
M

G
en

2p

2p

p digits

BBCD-8421

p digits

ABCD-8421

C
SA

T

C
PA

S WBCD-8421

S SBCD-8421

SBCD-8421

2p digits

P0
BCD-4221

P1
BCD-4221

...
P
p+1
BCD-4221

Figure 3: Parallel fixed-point multiplier.

The partial products are the multiplicand’s multiples and are
selected via the partial product multiplexer (PPMux). Due
to the multiplier recoding that transforms the multiplier’s
digit set {0, . . . , 9} into the signed digit set {−5, . . . , 5} [15],
and a simple method to handle negative partial sums (10’s
complement), only five multiples (A× 1, A× 2, A× 3, A× 4,
A × 5) have to be generated by the multiplicand multiples
generator (MMGen) a priori. It can be easily proven that the
10’s complement can be calculated by inverting each bit of all
digits and adding one (see the appendix) . The functionality
of the negative digits correction (NegDC) block is explained
in the following.

The MMGen is similar to the generator of multiplicand
multiples for SD radix10 encoding in [15], but the decimal
quaternary tree is replaced by the BCD-8421 CPA. It exploits
the correlation between shift operation and constant value
multiplication. For example, a BCD-5421 coded decimal
number left shifted by one bit is equivalent to a multiplica-
tion by 2, and the result is being BCD-8421 coded. Similarly,
a BCD-5211 coded number left shifted by one results in a
multiplication by two with a BCD-4221 coded result. And
finally, a BCD-8421 coded decimal number shifted by three
results in a multiplication by 5, and the result is of type BCD-
5421.

(X)BCD−5421 � 1 ≡ (X · 2)BCD−8421,

(X)BCD−5211 � 1 ≡ (X · 2)BCD−4221,

(X)BCD−8421 � 3 ≡ (X · 5)BCD−5421.

(6)

A recoding operation is very fast and consumes two (6 :
2) LUTs per digit, whereas a constant shift operation costs
nothing because it is just a renaming of signals. Hence, with
exception of A × 3, all multiples can be easily generated
by simple shift operations and digit recodings. For the
A × 3 multiple, an additional CPA is inevitable which
unfortunately limits the maximum working frequency and
thus emphasizes the need of pipelining. Alternatively, the
multiples could be composed of two operands and be added
in the following CSAT, as proposed in [12]. This would
speedup the MMGen but would also double the inputs
to the CSA and increase significantly its complexity and
resource consumption. Figure 4 depicts the functionality of
the MMGen. It is similar to the generator of multiplicand
multiples presented in [14], but we replaced the decimal
quaternary tree by our BCD-8421 adder.



International Journal of Reconfigurable Computing 5

A× 3BCD-4221A× 2BCD-4221A× 4BCD-4221A× 1BCD-4221 A× 5BCD-4221

ABCD-8421 ABCD-8421 ABCD-8421 ABCD-8421

BCD-8421-to-5421
converter

BCD-8421-to-4221
converter

BCD-8421-to-5211
converter

BCD-8421-to-4221
converter

BCD-8421
adder

BCD-8421-to-4221
converter

BCD-5421-to-4221
converter

L3 shifter
�3

L1 shifter
�1

L1 shifter
�1

Figure 4: Multiplicand multiples generator.

The decimal recoding unit (DRec) depicted in Figure 3
reduces the number of multiplicand multiples that have to be
computed by the MMGen, as proposed by Vazquez et al. [15].
In the first step, it transforms each multiplier’s digit Bk from
the digit set {0, . . . , 9} into the signed digit set {−5, . . . , 4}
and an output carry bit ck which coincides with the sign
signal signk

(
B′k, ck

)
=
⎧
⎨
⎩

(Bk, 0) for Bk ∈ 0, . . . , 4,

(Bk − 10, 1) for Bk ∈ 5, . . . , 9.
(7)

In the second step, the carry signal from the previous digit is
added to the intermediate result

B′′k = B′k + ck−1. (8)

This recoding increases the number of partial products by
one (p + 1) but gets along without any ripple carry, hence it
is a very fast operation.

Since the multiplier’s output is of length 2p but one
single partial product is of length p, for 10’s complement
generation each partial product has to be extended and
if necessary padded with 9. To keep the input length of
CSAT short, the negative digits correction unit (NegDC)
combines the paddings of all partial products in a single word
and passes it to the CSAT. This is feasible because adding
several words, composed of leading nines and following
zeros, always yields to a decimal word composed of only 0,
8, and 9 (see the appendix) . For example,

+
+

999999990000
999900000000
990000000000

=x989899990000.

(9)

Moreover, as shown in Figure 5 the position of the nines and
eights can be calculated very fast by means of the FPGA’s fast
carry chain considering the following equations:

NDC(i) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

9 for c(i) = 0 and signB(i) = 1,

8 for c(i) = 1 and signB(i) = 1,

0 else,

c(i + 1) =
⎧
⎨
⎩

1 for signB(i) = 1,

c(i) else.

(10)

The reduction of the partial products is based on BCD-
4221 (3 : 2) CSAs [15] that reduce three BCD-4221 digits to
a sum and a carry digit, both of BCD-4221 coding scheme. In
a first version, CSA1, the carry save adder is implemented as
proposed by Vazquez et al. [15]. It consists of a 4-bit binary
(3 : 2) CSA and a BCD-4221 to BCD-5211 digit recoder. By
means of an implicit shift operation of the BCD-5211 coded
carry digit, we obtain a multiplication by two. The block
diagram of CSA1 is shown in Figure 6. It consumes overall
six LUTs per digit. The drawback of this architecture is that
the computation of the sum digit si has a latency of one LUT,
whereas the computation of the carry digit wi has a latency
of two LUTs. To reduce the computation latency of wi, we
propose a new type of carry save adder, CSA2. It consists of a
2-bit binary (3 : 2) CSA and a carry digit computation unit.
The block diagram of CSA2 is shown in Figure 7. The 2-bit
binary (3 : 2) CSA sums up the two least significant bits of
the three input digits and generates the sum digit. The carry
digit is computed from the remaining six most significant
bits of the three input digits which requires four (6 : 2) LUTs.
The CSA2 method also consumes six LUT per digit but has a
lower latency than CSA1.

The (n : 2) CSA tree is composed of parallel and
consecutively wired (3 : 2) CSAs. It reduces n decimal words
to two BCD-4221 coded decimal words. The n = p + 2
decimal words are composed of p + 1 partial products and
one summand that regards the sign paddings, as described
previously. The CSAT is organized in stages, each reduces pi



6 International Journal of Reconfigurable Computing

SignB(i) NDC0(i)

SignB(i)

NDC1(i)
NDC2(i)

NDC3(i)

c(i)

c(i + 1)

0 1

Figure 5: NegDC unit.

c(i + 1) Inplicit shift c(i)

s3(i) s2(i) s1(i) s0(i)

3 : 2
CSA
LUT

3 : 2
CSA
LUT

3 : 2
CSA
LUT

3 : 2
CSA
LUT

z 3
(i

)
y 3

(i
)

x 3
(i

)

z 2
(i

)
y 2

(i
)

x 2
(i

)

z 1
(i

)
y 1

(i
)

x 1
(i

)

z 0
(i

)
y 0

(i
)

x 0
(i

)

w3(i) w2(i) w1(i) w0(i)

BCD-4221 to BCD-5211

LUT LUT LUT LUT

Figure 6: (3 : 2) CSA type1 implementation.

words to pi+1 = pi ·2/3 words. As in general the ranges of the
input words differ, the word length increases with each stage
as depicted exemplary in Figure 8.

The redundant carry-save format of the CSAT can be
further reduced by a carry propagate adder of length 2p to
obtain a unique result. However, this CPA can be omitted
because the accurate scalar product unit processes on the
carry-save format directly.

The maximum frequency of the fixed-point multiplier is
limited on the one hand by time-critical components like the
CPA and on the other hand by the FPGA’s routing overhead.
While the maximum propagation delay of the time-critical
components can be determined in advance, the routing
delay depends highly on the overall project’s size. Hence,
several pipeline registers can be optionally implemented by
means of VHDL generic switches. For a 16 × 16 digits
multiplier, this is one possible pipelining stage to buffer
the input words, three for the MMGen, one for PPMux,
six for the CSAT (one for each reduction stage), and two
for the final BCD-8421 conversion and CPA. Altogether,
these are 11 possible pipeline registers for the BCD-4221
carry-save format output and 13 stages for the final BCD-
8421 carry-propagation format output. It should be noted
that the last CSA stage can be combined with the final
BCD-8421 converter, as it is proposed by [15]. However,
since the following accurate scalar product unit accumulates
redundant BCD-4221 numbers, this improvement could not
be applied.

s 3
(i

)

s 2
(i

)

s 1
(i

)

s 0
(i

)

c(
i+

1)

w
3
(i

)

w
2
(i

)

w
1
(i

)

w
0
(i

)

3 : 2
CSA
LUT

3 : 2
CSA
LUT LUT LUT LUT LUT

w-computation

z 1
(i

)
y 1

(i
)

x 1
(i

)

z 0
(i

)
y 0

(i
)

x 0
(i

)

z 3
(i

)

y 3
(i

)

x 3
(i

)

z 2
(i

)

y 2
(i

)

c(
i)

x 2
(i

)

Figure 7: (3 : 2) CSA type2 implementation.

7 digits
3 : 2
CSA

6 digits
3 : 2
CSA

Stage 1

Regular digit

Stage 2 Stage 3

9 digits
3 : 2
CSA

9 digits
3 : 2
CSA

NegDC input
No digit

Figure 8: Example: CSA Tree for 6 input words.

3. Accurate Scalar Product

The accurate scalar product is important for applications
in which cancellation may cause problems or numerical
overhead slows down algorithms. It is calculated in two steps.
First, the products are computed exactly and are summed
up to a long fixed-point register without loss of accuracy.
Then the result is rounded only once to obtain a floating-
point number. Hardware support for the accurate binary
scalar product is rare; the accurate decimal scalar product
is even less supported by hardware. In [25] is presented a
coprocessor with an accurate binary scalar product using
the concept of the long accumulator. Reference [9] presents
a decimal floating-point arithmetic with hardware as well
as software support. It implements the concept of accurate
scalar product, but due to the given hardware restrictions
most of the components are serial and have long latencies.
Contrary to this, in the new FPGA-based design presented
here, we use a fast parallel multiplier and parallel shift
registers. We accelerate the scalar product’s accumulation by
use of carry save adders and get rid of overflow and carry
signals by the concept of carry caches. Our design is pipelined
and requires generally five cycles to multiply and accumulate
with an operating frequency of more than 100 MHz.

3.1. Proposed Accurate Scalar Product Unit. The fundamental
concept of the long accumulator (LA) is to provide a fixed-
point register that covers the entire floating-point range of
products, as well as adder, that accumulates these products
without loss of accuracy, see Figure 9. When computing
the scalar product (3a) n, individual results coming from
the decimal fixed-point multiplier are shifted and added



International Journal of Reconfigurable Computing 7

to a section of the LA. The respective section depends on
the operands’ exponents and is calculated by the address
generator (AGen). In order to avoid time-consuming carry
propagation, the central adder (CAdd) is implemented as
carry-save adders which implies a doubling of the LA’s
memory to store both operands. Contrary to [9], positive
as well as negative operands are accumulated in the same
LA by using 10’s complement data format. To prevent time-
consuming ripple-carry propagations due to sign swapping
and overflow, we use a so-called carry cache (CC) that buffers
any overflow signals. Contrary to a previously published
paper [10], in this work, we have simplified the carry
handling by removing the principle of fast carry resolution in
case of a carry cache overflow. Instead, we have increased the
block size of the long accumulator for carry cache (LACC)
to 16 digits, assuming that the CC will never overflow.
Actually, in the worst case scenario, it would take the CC over
three years to overflow at a reasonable working frequency of
100 MHz. Applying this simplification, we could increase the
operating frequency significantly. Before the final accurate
scalar product can be output and stored on a temporary
result stack (ResSt), the two carry-save operands of the
long accumulator for operands (LAOPs) and the entries
of the LACC must be summed up and reduced by a
final carry propagate adder (FCPA). Therefore, the entire
long accumulator would have to be traversed which is a
highly inefficient step, since due to locality most applications
normally use a minor percentage of the LA and the remaining
entries equal zero. To solve this problem, we introduced
a so-called touched blocks register (TBR). During MAC
operation, the TBR marks the corresponding blocks of the
LA as touched, which means they are most likely unequal
to zero. During final result calculation, only these blocks,
that have previously been marked as touched, are actually
addressed and read out.

The required length l in digits of the long accumulator
can be calculated from the significand’s length p and the
minimum exponent’s value qmin and maximum exponent’s
value qmax, respectively. In order to consider possible over-
flows, k more guarding digits are provided on the left.
For our design, the number of guarding digits k = 18
is chosen. Considering a maximum working frequency of
100 MHz, it would take the LA over 300 years to overflow.
Hence, 18 guarding digits are a reasonable choice. Since
a multiplication doubles the significand’s length and the
exponent’s range, the LA must hold a total number of digits
as follows:

l = k + 2 · (qmax − qmin
)

+ 2 · p. (11)

We implemented the MAC unit for IEEE 754-2008 decimal64
interchange format with p = 16 digits precision. With k =
18, qmax = 369, and qmin = −398, the accumulator length
results in l = 1584. The interchange format decimal32 with
7 digits precision is downward compatible and thus can be
applied to the decimal MAC unit, too.

The LA is implemented by use of local Block SelectRAM
(BRAM). It is organized in l/p� segments, each covers

p = 16 digits. Since the shifted multiplier’s result always
fits into 3p digits, three arbitrary consecutive segments can
be addressed, yielding a word of 3p digits. Therefore, the
LA is organized in three blocks with l/(3 · 16) = 33
lines. It provides memory for both the long accumulator
for operands (LAOP) as well as for the long accumulator
for carry cache (LACC). To each LAOP block, an LACC
block is assigned that handles any overflow signals during
accumulation. This prevents pipeline interrupts and allows
the storage of negative numbers in 10’s complement data
format. One LA line comprises of LACC and LAOP each with
three blocks composed of 16 digits with 4 bits. As the central
adder is of (4 : 2) carry-save type with length 3p, two carry-
save operands and two carry cache entries must be stored
separately. The advantage of this approach is its high speed
because of the absence of a ripple carry signal. The drawback
is twice as much memory consumption. Since BRAM is a
dual-ported memory, the two carry-save operands can be
accessed simultaneously through different ports. Thus, n =
((4 · 16 · 3) · 2) · 2 = 768 bits must be addressed in parallel
which requires 12 parallel dual-ported BRAMs with 32 bit
data ports. Each BRAM has a memory depth of 1024, but
both operands only need a depth of 2 · (l/(3 · p)) = 66.
The remaining memory can be used for the implementation
of the so-called working spaces (WSs) which are introduced
below. The LA runs at double data rate, because within one
cycle the operands and carry cache entries from the LA have
to be fetched and added to the multiplier’s output and then
in the same cycle the result has to be written back to the
LA.

When a block address is not a multiple of three, then
the operand spans over two memory lines, that is, the least
significant digits (LSDs) are not located in the first block but
in the second or third. The block alignment is performed
by the shift register which is therefore implemented as
a cyclic shift register, see Figure 10. Alternatively, the
block alignment could have been implemented between LA
and CAdd, but this approach would have increased the
longest path and would have reduced the overall operating
frequency.

The drawback of the memory organization in lines com-
prising three segments is a complicated address generation,
that is, the need of a division by three. An alternative
solution with four blocks per line leads to an easier address
calculation but also requires larger multiplexers for operand
shift operations. Fortunately, the complicated division by
three can be accomplished by applying an embedded binary
multiplier, as described in the following.

The address generator (AGen) shown in Figure 9 trans-
forms the input exponents into three addresses (column,
block, and line address) to access the LA and to control the
shift register. The line and block addresses define a segment
s = line · 3 + block, and the column address locates the
position inside this segment. Thus, each digit in the LA can
be characterized by its exponent E that relates to the three
addresses as follows: E = line · 48 + block · 16 + column. The
central adder can only sum up block-aligned operands. For
that reason, the multiplier’s result has to be shifted cyclically.
The shift left amount (SLA) arises from the column and



8 International Journal of Reconfigurable Computing

signA

signB

A

B

expB

expA

DecMul

AGen TBR

CSR

LA

LACC LAOP

CAdd

FCPA ResST
signMAC

expMAC

MAC

Line
Block
Column

Ps
Pw

Ys
Yw

AGen: Address generator
TBR: Touched blocks register
DecMul: Decimal multiplier
CSR: Cyclic shift register
LA: Long accumulator
LACC: LA for carry cache
LAO: LA for operands
CAdd: Central adder
FCPA: Final carry propagation adder
ResSt: Reset stack

Figure 9: Accurate scalar product unit.

MUL

(1) multiplication

(a)

Block address = “10”
Column address = “0111”

LSD MSD

CSR Ys,Yw

(2) cyclic shift operation (for exemplary addresses)

(b)

CC3(i+1) OP3(i+1) CC2(i+1) OP2(i+1) CC1(i+1) OP1(i+1)
Zs,Zw

Xs,Xw

Ys,Yw

CC3(i) OP3(i) CC2(i) OP2(i) CC1(i) OP1(i)

(3) carry save addition (CC2 adsorbs overflows, CC1 and CC3 remain unchanged)

(c)

Figure 10: Block alignment of LA and CSR.

block addresses, whereas the block and line addresses are
used to address the LA,

SLA = block addr · 16 + column addr. (12)

Unfortunately, the memory partitioning applies a division
by 3 · 16 = 48 to determine the line address. That division
is accomplished by inverse multiplication considering the
maximum digit’s exponent of Emax = 1550. This approach
requires besides logical, shift, and add operations one
additional binary fixed-value multiplication which can be
performed by the dedicated multiplier of the FPGA’s DSP48E
slices, see Algorithm 1 .

Once the result has been computed from the decimal
multiplier it enters the shift register before it is accumulated
by the central adder and is stored in the LA, as already
described above. The shift register extends the decimal
multiplier’s outputs from 2p to 3p length and shifts the

E = exp(A) + exp(B)
line = �E/(3∗16)� = (E∗1366)�216
res = E − line∗48 = E − (line�2 5 + line�2 4)
block = res�2 4
column = res & 0b1111

Algorithm 1: Address generation.

operands according to the column address. Because the
decimal multiplier internally uses digit recoding combined
with 10’s complement representation, there might arise a
carry signal (whenever at least one multiplier’s digit is greater
than or equal to five) which is discarded by the subsequent
CPA but is still present as a hidden carry in the output of
carry-save format. In such cases, the most significant digits



International Journal of Reconfigurable Computing 9

Table 1: Shift register post-place & poute results.

T [ns] freqmax [MHz] # LUTs

mul-based, 48 bit 5.072 197 193

mul-based, 2× 48 digits 5.177 193 1201

mux-based, 48 bit 2.565 389 960

mux-based, 2× 48 digits 2.993 334 7512

(MSDs) of the extended 3p word must be padded with 9’s,
and the overflow has to be cleared by a subtraction of 1 in
the carry cache adder, see Algorithm 2 . However, the main
challenge is the vast shift depth up to 47 digits along with a
large number of operands to be shifted, that is two operands
each with four bits per digit. These are 2 · 4 = 8 48-bit cyclic
shift register. Since serial shift register with low resource
consumption cannot be pipelined, only parallel solutions are
applicable. Two solutions for parallel cyclic shift registers are
analyzed, the first one is a shift register using multiplexers
and the second one applies the hard-wired multiplier of the
DSP48E slices. The latter one is possible because an Lk-
shift operation complies with a multiplication by 2k. Virtex-5
devices support the design of large multiplexers by using the
dedicated F7AMUX, F7BMUX, and F8MUX multiplexers.
Hence, four LUTs can be combined into a 16 : 1 multiplexer.

A 48-bit shift register can be implemented by three 16-bit
shift register stages wired consecutively. These shift registers
are composed of 16-bit multiplexers or multipliers. Each
stage can be pipelined to obtain a low latency as shown in
Figure 11. Table 1 summarizes the maximum delay and the
number of LUTs used for both cyclic shift register solutions.
The multiplexer-based solution is faster but requires much
more LUTs, up to 6.25 times more. Since the longest path
in the accurate scalar product unit is bounded by the central
adder (approximately 10 ns), the multiplier-based cyclic shift
register is preferred because of its far less resource usage.

The central adder is a (4 : 2) CSA to keep latency low. The
four inputs are two cyclically shifted words from the decimal
multiplier and two operands from the long accumulator.
The central adder is composed of two sequentially arranged
(3 : 2) CSA stages. Furthermore, negative numbers are
applied by their 10’s complement that requires an additional
correction of +1. Since the multiplier’s output is of redun-
dant carry-save type, two correction factors of +1 are needed.
For this purpose, the carry inputs of the (3 : 2) CSA stages
are used. Each CSA stage also produces a carry signal that
has to be absorbed by the Carry Cache described below. One
(3 : 2) CSA stage comprises of three 16-digit (3 : 2) CSAs
that are interconnected depending on the block address, see
Figure 12.

To handle overflow during accumulation without inter-
fering the pipeline and to allow the storage of negative num-
bers in 10’s complement format without carry propagation,
we introduced the CC. It temporarily adds and stores carry
and sign signals. The CC uses the carry-save format, too.
To each LAs operand block is assigned a CC block which
consists of 16 digits and adsorbs the two carry signals of the
LA (cout1, cout2) and the two negative sign signals due to
10s complement (sign). Because of its size, the CC blocks are

not supposed to overflow. Finally, the CCAs neutralize the
hidden carry signal, too, that is weighted negative in case of
positive numbers but positive in case of negative numbers.
Summarizing all factors yields to the pseudocode depicted in
Algorithm 2.

The final result is computed by successively reading out
the LA, starting with the least significant digit (LSD) and
reducing the CC’s entries as well as the LA’s operands by
means of the CAdd. Finally, this redundant result is summed
up by the final carry propagate adder and stored on the
result stack (ResSt). Hence, the FCPA produces a series
of positive and negative floating-point numbers with the
precision of 3 · 16 = 48 digits and ascending block aligned
exponents. The carry out signal of the FCPA is fed back to the
FCPA’s carry input. The ResSt is composed of a dual ported
memory. On the one port, the result of the FCPA is written
into the memory, whereby zero entries are omitted. On the
other port, the result is accessible for external components
with either greatest or smallest number first, depending on
requirements of the further data processing. For example,
when a final rounding is required to fit the result into IEEE
754-2008 data format, then it is advantageous to read out the
greatest number first.

As application is usually subject to locality only a small
percentage of the LA is filled with nonzero entries. Thus, it
would be very inefficient to traverse the complete LA during
final readout. Due to performance issues, we introduced the
so-called touched blocks register (TBR). Each time the MAC
unit accesses a block in the LA, an according flag in the
TBR is set to indicate highly probable nonzero data. Only
these previously touched blocks in the LA are regarded to
compute the final result. In order to reduce the complexity
for final result computation, four consecutive blocks are
marked as touched instead of three as might be expected.
This method simplifies the final result computation because
possible overflows are already considered and no further
exceptions must be regarded.

The parallel fixed-point multiplier as well as the accurate
scalar product unit are designed to support pipelining. As
already described, the fixed-point multiplier with redundant
carry-save output has 11 configurable pipeline registers that
can be switched on and off by VHDL generic switches. The
accurate scalar product unit further adds three stages for the
cyclic shift register and also three stages for the final carry
propagate adder. Especially the latter ones are important to
reduce the longest asynchronous path and to achieve high
operating frequencies.

4. Working Spaces

The introduction of so-called working spaces (WS) allows
the quasiparallel use of the MAC unit, that is, there can be
several users concurrently accessing the MAC unit without
interfering each other. The users can be different processors
or different processes on one processor. There can even
be a single process that handles more than one accurate
scalar product unit, for example, to compute complex scalar
products, interval scalar products, and so forth. Working



10 International Journal of Reconfigurable Computing

OR OR OR

16 bit
shift reg.

16 bit
shift reg.

16 bit
shift reg.

OR OR OR

16 bit
shift reg.

16 bit
shift reg.

16 bit
shift reg.

OR OR OR

16 bit
shift reg.

16 bit
shift reg.

16 bit
shift reg.

shifted X(47 : 32) shifted X(31 : 16) shifted X(15 : 0)

16 16 16 16 16 16

16 16 16 16 16 16

16 16 16 16 16 16

bit0· · ·bit3 bit0· · ·bit3bit0· · ·bit3

bit0· · ·bit3 bit0· · ·bit3bit0· · ·bit3

bit0· · ·bit3 bit0· · ·bit3bit0· · ·bit3

shift value3 shift value3 shift value3

shift value2 shift value2 shift value2

shift value1 shift value1 shift value1

X(47 : 32) X(31 : 16) X(15 : 0)

16 4 16 4 16 4

16 4 16 4 16 4

16 4 16 4 16 4

Figure 11: 48-digit cyclic shift register.

Zw(47 : 32)
Zs(47 : 32)

Zw(31 : 16)
Zs(31 : 16)

Zw(15 : 0)
Zs(15 : 0)

cout2
00
01
10

10
else

16 digit
CSA

01
else

00
else

16 digit
CSA

16 digit
CSA

Sign Sign Sign

cout1

Y
w

(4
7

:3
2)

Si
gn

Y
w

(3
1

:1
6)

Si
gn

Y
w

(1
5

:0
)

Si
gn

00
01
10

10
else

16 digit
CSA

01
else

00
else

16 digit
CSA

16 digit
CSA

Sign Sign Sign

Y
s(

47
:3

2)
X
w

(4
7

:3
2)

Si
gn

X
w

(3
1

:1
6)

X
s(

31
:1

6)

X
(1

5
:0

)
X
s(

15
:0

)

Y
s(

31
:1

6)
Si

gn

Y
s(

15
:0

)
Si

gn

X
s(

47
:3

2)

Sign Sign Sign

Block address

Figure 12: Central (4 : 2) CSA for operands.

CC[line + block] += cout1 + cout2
−2 · sign
−hidden carry · (−1)sign

Algorithm 2: Pseudocode for CCA calculation.

spaces are realized by duplications of all memory elements
together with some additional multiplexers. These are the
long accumulator with operand storage and carry cache, the
touched blocks register, and the reset stack. The assignment
and access to the working spaces has to be managed by a
central control unit, for example, an operating system. The
number of working spaces can be set by VHDL generics, too.
Actually, it is only limited by available resources.

5. Synthesis Results

All circuits are modeled using VHDL. For synthesis and
implementation Xilinx ISE 10.1 [26] has been used. The
fixed-point multiplier and the accurate scalar product unit
have been implemented for Xilinx Virtex-5 speed grade -2
devices. Firstly, only the fixed-point multiplier with unique
carry propagate output has been implemented for several
pipeline configurations, see Table 2 and Figure 13.

The results show that the minimum overall latency of
about 18 ns can be achieved with no pipeline registers, and



International Journal of Reconfigurable Computing 11

0 1 2 3 4 5 6 7 8 9 10 11 12

T
im

e
(n

s)

13

Number of pipeline registers

Lonest path delay
Overall latency

18

23.9
21.1

23.9
27.4

28.730.7

36.2
39.3

44.8 47.1

53.6
58.1

62.7
17.96

10.56

7.98
5.97

5.48
4.79

4.38 4.52 4.374.48 4.28 4.47 4.47 4.48

Figure 13: Latency and delay (Post-Place & Route Results) for
decimal multiplier, p = 16 digits,

Table 2: Post-place & route results for decimal fixed-point
multiplier with CPA output.

No. of
pipeline
stages

longest
path delay

[ns]

max. freq.
[MHz]

No. of
LUT [ns]

latency

0 17.96 57 6557 17.96

1 10.56 95 5916 21.12

2 7.98 125 5385 23.94

3 5.97 167 6074 23.88

4 5.48 183 6237 27.40

5 4.79 209 6402 28.74

6 4.38 229 5576 30.66

7 4.52 221 5574 36.16

8 4.37 229 5576 39.33

9 4.48 224 5610 44.80

10 4.28 234 6139 47.08

11 4.47 224 6283 53.64

12 4.47 224 6318 58.11

13 4.48 224 6520 62.72

the best operating frequency of 234 MHz can be obtained
with 10 pipeline registers. However, using 6 or more pipeline
registers does not reduce the longest path delay significantly
and increases the overall latency instead. The LUT usage
varies only slightly for different pipeline configurations. In
[18], combinational and sequential memory-based digit-by-
digit multipliers are analyzed for Xilinx Virtex-4 platforms.
A combinational 16 × 16 multiplier uses 22,033 LUTs and
has an overall latency of 26.9 ns. A sequential 16 × 16
multiplier uses 1,054 LUTs, 8 BRAMs, and has an overall
latency of 110.5 ns. A fair speed comparison with the design
proposed in this work is difficult because of different FPGA
devices. Nevertheless, the unpipelined design proposed in
this work is 50% faster than the combinational multiplier
proposed in [18]. The sequential multiplier uses rather few

Table 3: Comparison of decimal fixed-point and binary multiplier
results.

Multiplier Tlatency [ns] No. of LUTs No. of DSP48E

Decimal multiplier
17.964 6557 0

0 pipeline registers

CoreGen LUT-based
11.965 2945 0

0 pipeline registers

CoreGen DSP48E-based
25.712 0 10

0 pipeline registers

Decimal multiplier
4.377 5576 0

6 pipeline registers

CoreGen LUT-based
3.475 2982 0

6 pipeline registers

CoreGen DSP48E-based
4.958 123 10

6 pipeline registers

Table 4: Post-place & route results.

T[ns]
No. of
LUTs

No. of
RAMB36

No. of
DSP48E

MAC1, 1–8 WS 9.964 10,032 18 73

MAC1, 8–16 WS 9.971 11,891 36 73

MAC1, 16–24 WS 9.976 13,302 54 73
1
Decimal fixed-point multipliers in accurate MAC use two pipeline registers.

LUTs. But contrary to the combinational multiplier, it has
a poor latency and cannot be pipelined. Thus, only the
combinational multiplier might be suitable for an accurate
scalar product unit. However, it uses a considerable amount
of LUTs more than the multiplier proposed in this work.

To compare our design with multiplier designs imple-
mented for the same FPGA chip, we have analyzed a binary
53 × 53 multiplier on a Virtex-5 provided by the Xilinx
Core Generator, see Table 3. Our architecture is faster than
the DSP48E-based binary multiplier. On the other hand,
our fixed-point multiplier consumes approximately twice as
much LUTs as the binary LUT-based multiplier and is slower,
but it has to be considered that decimal multiplication is
much more complex than binary multiplication.

The accurate MAC unit has been implemented with
two pipeline registers for the decimal fixed-point multiplier.
Together with the three pipeline registers of the cyclic shift
register, this amounts to a 5-cycle latency to calculate and
store the product of two operands on the long accumulator.
The accurate MAC unit can be clocked with up to 100 MHz.
Compared to a previously published paper [10], this is
an improvement by a factor of five. In comparison, a
software implementation of a single 16 digits floating-point
multiplication without any long accumulator on a high-
performance processor already uses 233 cycles, on lower
performance architectures even more [27].

The resource consumption of the accurate MAC unit
depends on the number of implemented working spaces.
Table 4 summarizes the resource consumption for different
configurations.



12 International Journal of Reconfigurable Computing

6. Conclusion

In this paper, we presented a decimal fixed-point multi-
plier that maps onto FPGA architectures and can help to
implement a fully IEEE 754-2008 compliant coprocessor.
We analyzed the performance with respect to the number
of pipeline registers. Moreover, we integrated the decimal
multiplier into an MAC unit which can compute scalar
products without loss of accuracy and thus can prevent
numerical cancellation. Using the MAC unit on multitasking
machines is supported by the concept of working spaces.
Compared to a previously published paper [10], we ported
our former architecture that was designed to map on
(4 : 1) LUT-based Xilinx Virtex-II Pro devices to up to date
(6 : 2) LUT-based Xilinx Virtex-5 devices. Furthermore, we
improved the algorithm of the accurate scalar product unit.
For the fixed-point multiplier, we could achieve a speedup of
two, and for the entire accurate scalar product unit we could
even achieve a speedup of five. Even though the migration
from Virtex-II to Virtex-5 devices has improved the speed
of the accurate scalar product unit, the greater part of the
speedup is attributable to the improved algorithm.

Appendix

Proofs

Theorem 1 (B’s complement). Let B ∈ N denote a radix, p

the precision, X = ∑p−1
i=0 xi · Bi a positive integer with digits

xi =
∑n−1

k=0 xik · rk, xik ∈ {0, 1}, and rk ∈ Z.
If
∑n−1

k=0 rk = B − 1, then the B’s complement of X can be
easily computed by

−X = −Bp + 1 +
p−1∑

i=0

xi · Bi,

with xi =
n−1∑

k=0

xik · rk, xik =
⎧
⎨
⎩

0 when xik = 1,

1 when xik = 0.

(A.1)

Proof. Firstly, we prove the B’s complement for one digit

xi =
n−1∑

k=0

xik · rk ∈ {0, 1, . . . ,B − 1},

=⇒ xi =
n−1∑

k=0

xik · rk =
n−1∑

k=0

− (xik − 1) · rk,

=
n−1∑

k=0

rk −
n−1∑

k=0

xik · rk = B − 1− xi

=⇒ −xi = −B + xi + 1.

(A.2)

Then, we calculate the complement −X of a number X

−X =
p−1∑

i=0

(−xi) · Bi

=
p−1∑

i=0

(−B + xi + 1) · Bi

=
p−1∑

i=0

(
−Bi+1 + xi · Bi + Bi

)

= −Bp + 1 +
p−1∑

i=0

xi · Bi.

(A.3)

Theorem 2 (Sum of leading nines). The sum of words
composed of leading 9’s and following 0’s

s =
p∑

i=1

Xi with Xi = σi ·
p∑

k=i
9 · 10k , σi ∈ {0, 1} (A.4)

is a decimal word for which the p + 1 least significant digits
consist of zero or more leading 9’s followed only by 0’s, 8’s, and
9’s, that is,

s = cp · 10p+1 +
p∑

i= j
9 · 10i +

j−1∑

i=1

yi · 10i, (A.5)

with p ≥ j ≥ 1, yi ∈ {0, 8, 9} and cp ∈ N.

Proof. We prove the assumption by complete induction.

(1) If all σi = 0, for all i = 1, . . . , p, then the assumption
is true because s = 0.

(2) If σk = 1 ∧ σi = 0, i /= k, then the assumption is also
true because the sum s consists of leading 9’s followed
by 0’s.

(3) Let us assume that the hypothesis is true for all j−1 ≥
k ≥ 1 with σk ∈ {0, 1}, that is,

s j−1 =
j−1∑

i=1

Xi = cj−1 · 10p+1 +
p∑

i= j
9 · 10i +

j−1∑

i=1

yi · 10i, (A.6)

with yi ∈ {0, 8, 9} and cj−1 considers the most
significant digits of the sum. Then, for the next
inductive step j, we have to consider σj = 0 and σj =
1. The condition σj = 0 leads to s j = Xj + s j−1 = s j−1,
that is, the assumption is true. For σj = 1 follows

sj = Xj + s j−1

=
p∑

i= j
9 · 10i + cj−110p+1 +

p∑

i= j
9 · 10i +

j−1∑

i=1

yi10i

=
(
cj−1 + 1

)
· 10p+1 +

p∑

i= j+1

9 · 10i + 8 · 10 j +
j−1∑

i=1

yi10i

= cj10p+1 +
p∑

i= j+1

9 · 10i +
j∑

i=1

yi10i,

(A.7)

which finally proves the assertion.



International Journal of Reconfigurable Computing 13

References

[1] M. F. Cowlishaw, “Decimal floating-point: algorism for
computers,” in Proceedings of the 16th IEEE Symposiumon
Computer Arithmetic (ARITH-16 ’03), pp. 104–111, IEEE
Computer Society, Washington, DC, USA, 2003.

[2] IEEE, “IEEE 754-2008 Standard for Floating-Point Arith-
metic,” September 2008.

[3] ANSI/IEEE, “ANSI/IEEE 754-1987 Standard for Radix-
Independent Floating-Point Arithmetic,” October 1987.

[4] L. Eisen, J. W. Ward, H. W. Tast et al., “IBM POWER6
accelerators: VMX and DFU,” IBM Journal of Research and
Development, vol. 51, no. 6, pp. 663–683, 2007.

[5] E. Schwarz and S. Carlough, “Power6 decimal divide,” in
Proceedings of the Application-Specific Systems, Architectures,
and Processors (ASAP ’07), IEEE Computer Society, 2007.

[6] A. Y. Duale, M. H. Decker, H. G. Zipperer, M. Aharoni, and T.
J. Bohizic, “Decimal floating-point in z9: an implementation
and testing perspective,” IBM Journal of Research and Develop-
ment, vol. 51, no. 1-2, pp. 217–227, 2007.

[7] X. Li, J. W. Demmel, D. H. Bailey et al., “Design, implementa-
tion and testing of extended and mixed precision BLAS,” ACM
Transactions on Mathematical Software, vol. 28, no. 2, pp. 152–
205, 2002.

[8] U. Kulisch, Advanced Arithmetic for the Digital Computer,
Design of Arithmetic Units, Springer, Secaucus, NJ, USA, 2002.

[9] G. Bohlender and T. Teufel, “BAPSC: a decimal floating point
processor for optimal arithmetic,” in Computer Arithmetic:
Scientific Computation and Programming Languages, pp. 31–
58, B. G. Teubner, Stuttgart, Germany, 1987.

[10] M. Baesler and T. Teufel, “FPGA implementation of a decimal
floating-point accurate scalar product unit with a parallel
fixed-point multiplier,” in Procedings of the International Con-
ference on ReConFigurable Computing and FPGAs (ReConFig
’09), pp. 6–11, IEEE, December 2009.

[11] M. Erle and M. Schulte, “Decimal multiplication via carry-
save addition,” in Proceedings of the IEEE International
Conference on Application-Specific Systems, Architectures and
Processors, pp. 0–348, 2003.

[12] M. A. Erle, B. J. Hickmann, and M. J. Schulte, “Decimal
floating-point multiplication,” IEEE Transactions on Comput-
ers, vol. 58, no. 7, pp. 902–916, 2009.

[13] T. Lang and A. Nannarelli, “A radix-10 combinational multi-
plier,” in Proceedings of the 40th Asilomar Conference on Signals,
Systems, and Computers (ACSSC ’06), pp. 313–317, October
2006.

[14] A. Vázquez, E. Antelo, and P. Montuschi, “A new family of high
- Performance parallel decimal multipliers,” in Proceedings
of the18th IEEE Symposium on Computer Arithmetic (ARITH
’07), pp. 195–204, June 2007.

[15] A. Vazquez, E. Antelo, and P. Montuschi, “Improved design of
high-performance parallel decimal multipliers,” IEEE Trans-
actions on Computers, vol. 59, no. 5, Article ID 5313798, pp.
679–693, 2010.

[16] E. M. Schwarz, M. A. Erle, and M. J. Schulte, “Decimal
multiplication with efficient partial product generation,”
in Proceedings of the17th IEEE Symposium on Computer
Arithmetic (ARITH ’05), pp. 21–28, IEEE Computer Society,
Washington, DC, USA, 2005.

[17] G. Jaberipur and A. Kaivani, “Binary-coded decimal digit
multipliers,” IET Computers and Digital Techniques, vol. 1, no.
4, pp. 377–381, 2007.

[18] G. Sutter, E. Todorovich, G. Bioul, M. Vazquez, and J.-P.
Deschamps, “FPGA implementations of BCD multipliers,” in

Proceedings of the International Conference on ReConFigurable
Computing and FPGAs (ReConFig ’09), pp. 36–41, IEEE,
December 2009.

[19] M. A. Erle, M. J. Schulte, and B. J. Hickmann, “Decimal
floating-point multiplication via carry-save addition,” in Pro-
ceedings of the 18th IEEE Symposiumon Computer Arithmetic
(ARITH ’07), pp. 46–55, June 2007.

[20] G. Jaberipur and A. Kaivani, “Improving the speed of parallel
decimal multiplication,” IEEE Transactions on Computers, vol.
58, no. 11, Article ID 5184812, pp. 1539–1552, 2009.

[21] H. C. Neto and M. P. Vestias, “Decimal multiplier on
FPGAusing embedded binary multipliers,” in Proceedings of
the International Conference on Field Programmable Logic and
Applications (FPL ’08), pp. 197–202, September 2008.

[22] Xilinx. Virtex-II Pro and Virtex-II Pro X Platform FPGAs-
Complete Data Sheet, November 2007.

[23] Xilinx, “Virtex-5 Family Overview,” February 2009.
[24] M. Vazquez, G. Sutter, G. Bioul, and J. P. Deschamps, “Decimal

adders/subtractors in FPGA: efficient 6-input LUT imple-
mentations,” in Proceedings of the International Conference on
ReConFigurable Computing and FPGAs (ReConFig ’09), pp.
42–47, December 2009.

[25] C. Baumhof, Ein Vektorarithmetik-Koprozessor in VLSATech-
nikzur Unterstuetzung des Wissenschaftlichen Rechnens, 1996.

[26] Xilinx Inc, “Xilinx ISE 10.1 Design Suite Software Manuals
and Help,” 2008, http://www.xilinx.com.

[27] M. Schulte, N. Lindberg, and A. Laxminarain, “Performance
evaluation of decimal floating-point arithmetic,” in Proceed-
ings of the 6th IBM Austin Center for Advanced Studies
Conference, 2005.


