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Summary

This thesis presents work in the area of electromagnetic modeling of through silicon vias
(TSVs). TSVs are vertical interconnects in silicon wafers and an important component for
the three-dimensional integration that is required for the further increase in performance
of integrated circuits and integrated systems.

Major parts of this thesis discuss the adaptation of the physics-based modeling approach
from the original application for the modeling of vias in printed circuit boards to the ap-
plication in interposers with a sufficient amount of metallizations of the substrate. Adap-
tations are necessary because the substrate can show significant conductivity and has to
be regarded as a layered medium. The latter is due to the required dielectric insulators
and due to oxide layers that results from the TSV fabrication process. Further layers need
to be included in the analysis if the depletion layer effects due to the metal-oxide-insulator
interface are to be considered.

The adaptations consist in the adaptation of a far field model for which an effective wave
number of radial wave propagation in the layered medium is computed. They consist also
in the computation of a near field model for the mode conversion at the junction between
coaxial ports at the top and bottom of the interposer and the inner radial ports that
connect to the far field model. In conjunction, the adaptations lead to an efficient and
exact modeling over a large parameter range.

The efficient modeling is further applied to large scale crosstalk analysis. A measure for
the effective total crosstalk of uncorrelated signal alongs the channels for single-ended
links is defined and analyzed for several parameter variations. This measure allows for the
investigation of the influence of several important design parameters of silicon interposers
on the crosstalk.

Several test structures with TSVs have been fabricated and measured. Using full-wave
simulations, the measurement results have been validated.
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Chapter 1

Introduction

1.1 Motivation and Context of this Work

The development of integrated circuits (ICs) is one of the main driving forces behind
the performance of today’s systems in terms of computing power. The miniaturization
leads to faster switching of these circuits and allows for a reduction of consumed electrical
power. One of the difficulties that arises with the miniaturization is the proper electrical
interconnection of system parts. For one, the power has to be supplied to all consuming
devices of an electrical circuit. Also, the number of required interconnections increases with
the number of interconnected systems parts. Certain signal paths can become relatively
long and a scaling of interconnecting lines including a reduction of their cross-sections leads
to increasing losses in the interconnect.

The packaging of integrated circuits has the following principal aims: Establishing a me-
chanical and electrical connection between an integrated system and the remainder of the
system, e.g., other components that are located on a printed circuit boards (PCB). The
electrical connection is in general used for both exchange of information with the inte-
grated circuit in form of electrical signals and provision of electrical power to the circuit.
Ensuring the quality of the signaling as well as the quality of the supplied electrical power
is commonly referred to as signal integrity (SI) and power integrity (PI), respectively.

Two important established technologies that are used in the packaging of ICs are illustrated
in Fig. 1.1. Figs. 1.1a and 1.1b depict the perspective and side view, respectively, of an
illustration of the wire bond interconnect. The integrated circuit is placed on a package
substrate or printed circuit board (shown in green) with the active chip area on the top,
i.e. pointing away from the substrate. The electrical connection to the active chip area is
established through metallic wires (e.g. made of gold, or aluminum [2, Ch. 19], [3]). These
wires are known to introduce an inductance which reduces the interconnect performance of
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Chapter 1 Introduction

(a)

Active chip area

(b)

(c)

Active chip area

(d)

Active chip areas

Chip 2

Chip 1

Interposer

Chip level
TSV

Interposer
level TSV

(e)

Figure 1.1: Established and emerging technologies used in packaging of integrated circuits
to establish the electrical and mechanical interconnection with other system parts: (a) per-
spective view and (b) side view of an example for wire bonding. (c) perspective view and
(d) side view of an example for flip-chip technology. (e) side view an example stackup of two
stacked chips on an interposer.
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1.1 Motivation and Context of this Work

wire bonds at high frequencies [4, Ch. 4.5], [5,6]. An illustration of the flip-chip technology
is depicted in Figs. 1.1c and 1.1d. The active chips are flipped towards the package substrate
or printed circuit board and connected through metallic bumps. These bumps represent a
much smaller inductance and therefore a smaller discontinuity in the signal path than the
wire bonds. Another important advantage is that the complete chip area can potentially
be used for the interconnection with the flip chip, while a connection is only possible from
one of the four sides with wire-bonds.

The term 3D integration describes technologies which allow for the interconnection of com-
ponents in integrated systems using all three spatial directions. Traditionally, integrated
devices are fabricated in processes where the contacts are planar and the connection be-
tween sub-components is also established horizontally with respect to devices, e.g., by the
wire-bonding described before. This has several disadvantages including the limitation of
the number of connections, long interconnection paths and potentially many discontinuities
if many sub-circuits need to be connected.

The 3D approach mainly aims at decreasing the interconnect lengths and, at the same
time, enabling larger numbers of connections between sub-circuits. One long-term goal in
3D integration is to use all three spatial dimension for the fabrication of active devices.
The connections between the devices is implemented along these dimensions during the
process of device fabrication. An already more established way to fabricate cost-effective
integrated systems consists in connecting the planar chips vertically by stacking chips
and establishing electrical connections among them. When using dies manufactured with
silicon technology the through connection called vertical interconnect access (via), which
electrically connects the top and bottom side of a chip, is called through silicon via (TSV).
TSVs and their applications are illustrated in Figs. 1.1e and 1.2a.

The TSV establishes short interconnections compared to connected chips placed next to
each other in the same plane. Also, the theoretical interconnect density is higher for con-
nections through chips. When stacking multiple chips to obtain very compact systems, one
major limitation, if compared to the placement side by side, is the cooling of active devices
which becomes more challenging [7]. Fig. 1.2a gives an example for the environment in
which TSVs are applied. They can be part of a silicon interposer to connect a package
and several chips. The vertical interconnects in the silicon have a similar structures as
those found in printed circuit boards. Differences in their electrical properties are briefly
discussed in Sec. 2.5.

Apart from the also very challenging fabrication of such systems consisting of stacked chips,
the interconnects have to be designed with care. The starting point of the investigations
is the single via and its electrical properties in the typical interposer environment. This
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Chip 3
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Interposer

Chip 2
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Figure 1.2: (a) Example for the environment of a silicon interposer. (b) Microsection of
a silicon interposer. (Photos embedded in both figures courtesy of Fraunhofer Institute for
Reliability and Microintegration (IZM), Berlin.)
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1.2 Organization of this Work

environment includes the silicon substrate through which the TSVs establish the connec-
tion. Further structures contribute to the overall electromagnetic properties such as other
signal TSVs, TSVs connected to ground, conducting redistribution structures on the top
and bottom sides of the silicon substrate, and neighboring system components. The inves-
tigation of the properties is complicated by the layered nature of the substrates. Especially
the thin oxide layers, which electrically isolate all metal components (via barrels, redis-
tribution metallizations) from the conducting silicon, have to be taken into account when
modeling interposer structures for a large frequency range.

Fig. 1.2b shows a cross-section photo with typical dimensions of a silicon interposer. Two
vias with nearly circular cross-sections connect the upper and lower side of the silicon layer.
On both sides of the silicon layer, the routing of signals is enabled by metallic redistribution
layers which are embedded in benzocyclobutene (BCB).

1.2 Organization of this Work

The presented work is organized as follows:

• Chapter 2 presents application areas of TSVs, the principal fabrication steps, some
fundamental material properties, and the most important physical effects that oc-
cur in structures with TSVs. Further, it gives an overview over some of the most
important modeling approaches.

• Chapter 3 is an introduction to the main modeling approach of this work, namely
the physics-based modeling: After discussing the boundary conditions for the appli-
cability, the interconnection of the constituents and the fundamental properties of
the constituents are discussed.

• Chapter 4 discusses one of the most important parts of the physics-based model-
ing which is the modeling of the propagation inside a parallel-plate structure. This
propagation is governed by an effective wave number that can be obtained from a
technique known as transverse resonance method (TRM) and by the multiple scatter-
ing of radial waves between parallel metallic plates that is computed from a contour
integral method (CIM) for planar microwave circuits.

• Chapter 5 discusses the second constituent which is the near field modeling of TSVs.
It describes the transitions between the ports towards the structures connected to
the interposer cavity and the ports that connect to the propagating field models.
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Chapter 1 Introduction

The main approach that is presented is based on a local full-wave modeling using a
finite-difference frequency domain method.

• Chapter 6 presents an application of the proposed physics-based modeling approach
to the modeling of large via arrays. Based on investigations of a total uncorrelated
crosstalk, design guidelines are derived for a certain parameter range.

• Chapter 7 shows how the proposed modeling approach compares to a complemen-
tary modeling approach based on multi-conductor transmission line theory and con-
cludes the applicability of both modeling approaches. It further presents correlations
of full-wave simulations with measurements that aim at the electrical characterization
of TSVs from the measurement of structures with only a few TSVs.

• Chapter 8 discusses conclusions from the investigations of TSV properties and
numerical techniques and gives an outlook on possible extensions of the modeling
approach to cover a larger parameter space.

1.3 Conference and Journal Contributions

Major parts of the presented work have already been published in several conference
papers [8–12] and journal publications [13, 14]. In the related fields of modeling of vias
and striplines in (multilayer) printed circuit boards further contributions have been pub-
lished [15–17]. Several Bachelor’s theses and one Master’s thesis have been supervised on
related subjects [18–21].

Most of the work has been part of a project funded by the German Research Founda-
tion (Deutsche Forschungsgemeinschaft, DFG) entitled “Electrical Modeling and Design of
Through Silicon Vias for Integrated Systems”. It was carried out as a collaboration be-
tween the Hamburg University of Technology (TUHH), the Technical University of Berlin
(TUB), and the Fraunhofer Institute for Reliability and Microintegration (IZM), Berlin.
Complementary modeling approaches for TSVs have been published during this project
in [22,23] and investigations on material characterization have been presented in [24,25].
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Chapter 2

Application and Modeling of Through Silicon Vias

2.1 Application in 2.5D- and 3D-Integration

Much of the functionality of today’s electronic systems is related to the use of integrated
circuits (ICs). In purely electronic systems, devices such as transistors, capacitors, in-
ductors, and resistors are integrated. The scaling has been governed in the past by the
empirical law known as Moore’s law [26]. In micro-electro-mechanical system (MEMS),
additional devices such as mechanical switches and sensors are used. Adding functionality
in various ways that are not related to the scaling of the traditional IC components (CPUs,
RAM, logical circuitry) is often named more-than-Moore (MtM). MtM is defined by ITRS
as “Incorporation into devices of functionalities that do not necessarily scale according
to ’Moore’s Law’, but provide additional value in different ways. The ’More-than-Moore’
approach allows for the non-digital functionalities to migrate from the system board-level
into the package (SiP) or onto the chip (SoC).”, cf. Appendix A of [27].

The main advantages of these new systems are the reduced size which is relevant, e.g.,
in numerous mobile devices for communication and medical applications, the potential of
cost reductions, and the potential of increased energy efficiency. Drawbacks are thermal
challenges due to the narrower spacing of dissipating components and a potentially reduced
yield (which is then comparable to the monolithic circuit) if tests for proper functioning
of the single die are omitted. The latter problem is further discussed in [28, Sec. 2.2], [29,
Sec. 3.3.4].

From an electrical point of view, the closer spacing of system parts could reduce the average
path length of the interconnects and thereby also reduce signal loss and crosstalk. On the
other hand, the routing requires the extended use of the third dimension which potentially
introduces (additional) discontinuities in the signal path.
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Chapter 2 Application and Modeling of Through Silicon Vias

2.2 Fabrication and Process Technologies

The fabrication of TSVs requires advanced process technologies that differ in a few ways
from the process steps that are used for the ICs. TSVs can be part of dies with or without
active devices. The principal steps of an exemplary fabrication process are depicted in
Fig. 2.1 for a silicon wafer on which active devices have alread been fabricated (via last
approach), cf. [30].

The first step is the etching of the TSV holes. The result is typically not a cylindrical hole.
The diameter decreases with depth and a hole with the form of a truncated cone is formed.
This hole does not traverse the complete silicon layer which can still be comparatively thick.
After etching the holes for the TSVs, isolation layers are grown. In most cases, a silicon
dioxide layer is used which has a more or less constant thickness on the TSV holes. In the
next step the remaining holes are filled with a conductive material, e.g., copper. The TSVs
can then be electrically connected to the existing redistribution layers and components on
the top side. For the subsequent steps an auxiliary handling wafer is temporarily bonded
to the top side of the silicon wafer. This allows for a processing of the bottom side of the
wafer which consists in a thinning of the wafer by which the ends of the vias are exposed.
Then, isolation layers can also be applied on the bottom side and contacts can be formed
on this side. After the bottom side processing, the auxiliary wafer can finally be removed.
The fabrication methods mentioned above lead to specific characteristic geometries that
are discussed in section 2.3.

Alternatively, the vias can be formed before the active layers on an integrated circuit are
processed (via first approach). Active devices are not part of an interposer whose purpose
is to establish the mechanical and electrical connection between several chips (with active
components, MEMS-components etc.) and another integration level, e.g. a package or a
printed circuit board. An interposer can include redistribution layers for the signal routing
that are necessary for the electrical connection. It also establishes the size transformation
that is required in many cases between the different pitches at different system levels.

Further discussion of fabrication technologies can be found, e.g., in [31,32].
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2.2 Fabrication and Process Technologies

Silicon wafer

T
S
V

Oxide liner

Auxiliary wafer

Adhesive

7) Thinning of the silicon layer.

8) Isolation layers on the bottom side.

9) Redistribution and contact layer on
the bottom side.

10) Removal of the auxiliary wafer.

6) Temporary bonding on a auxiliary
wafer for improved handling.

2) Etching of TSV holes.

3) Isolation layer for TSV holes.

4) Filling of TSV holes with conducting
material.

5) Redistribution and contact layer on
the top side.

1) Initial state of wafer including IC
components.

Figure 2.1: Principle TSV fabrication steps as carried out by Fraunhofer IZM–ASSID (All-
Silicon System Integration Dresden). Figure adapted from [30].
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Chapter 2 Application and Modeling of Through Silicon Vias

2.3 Idealizations of TSVs for Efficient Modeling

In the following, the main differences with regard to the geometry between real TSVs as
found in silicon interposers and the structures for which modeling approaches are presented
in this thesis are pointed out. The most important differences with regard to the included
physical effects will be pointed out in section 2.4. Figure 2.2a shows many of the features
that can be found in real TSVs, while Figs. 2.2b and 2.2c illustrate the simplified structures
that are actually modeled in this work.

As illustrated in Figure 2.2a, real TSV barrels have approximately the geometry of a
diffracted cone which relates to a dominantly trapezoidal cross-section as sketched in the
figure by the dashed lines. The surface is not even but shows different kinds of surface
waviness and roughness which depend on the used fabrication process. In contrast, the
barrels of the idealized TSVs have the shape of a circular cylinder with a perfectly smooth
surface. Its geometry can therefore be characterized by only a radius.

The exact configuration of the structure that surrounds the via can be diverse. In the
example given in Figure 2.2a, the environment in the horizontal directions of the via
barrels is composed of a substrate and electrically insulating oxide layers. On the top side,
there is an electric insulation, either silicon oxide or a polymer dielectric. Above that, there
are redistribution layers (RDLs) for rerouting and size transformation for the connected
chips embedded in a dielectric. On the bottom side of the substrate there can also be
metallic structures in a dielectric layer for a rerouting of signals. Below the substrate,
the interposer can be connected to a printed circuit board using metallic bumps. These
connections through an array of solder joint interconnects is often embedded in an underfill
dielectric for an improved mechanical connection. It is required because differing coefficients
of thermal expansion (CTEs) lead to mechanical stress in case of temperature cycling [33].
The need for an underfill material for the connection to ICs is discussed, e.g., in [34].

The idealized TSVs in Fig. 2.2b are in a stackup with more metallic components than the
example given in Figure 2.2a. These metallizations extend over the complete substrate area
except for the locations where TSVs connect to the adjacent structures. There, a circular
coaxial cutout allows for a connection. The customary naming from the printed circuit
board context is adopted by referring to these clearances as “antipads”. The shape of the
antipad hints at the type of field distribution that will dominate in this area, i.e., depending
on the connected structures outside the cavity that is constituted by the metallizations,
the fundamental coaxial mode will dominate the field behavior. The metallizations are
again electrically insulated, e.g., with silicon dioxide layers. TSVs can also be connected
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2.4 Classification and Overview over Modeling Approaches

(a) (b) (c)

Figure 2.2: (a) Realistic geometry and electromagnetic environment (stackup) of a silicon
interposer. (b) Simplified, ideal structure with metal layers (c) Simplified, ideal structure
without metal layers.

to the metallizations, thereby enforcing the same electric potential at their location. As
customary in the PCB context, the latter type of TSV is named ground via.

The idealized TSVs in Fig. 2.2c are in a stackup with fewer metal components than the
example given in Figure 2.2a. As will be discussed in the course of this thesis, this leads to
a fundamentally different field behavior for high-frequency signals. The modeling in this
case assumes a dominant behavior with wave propagation along the via barrels and the
electric and magnetic field components mostly transverse to the via axis, which can thus
be described as a multi-conductor transmission line.

2.4 Classification and Overview over Modeling Approaches

The electromagnetic modeling and simulation of microwave components has numerous
aims, some of which are as follows:

• Designing components for specific needs, e.g., to fulfill given specifications.

• Optimizing components with respect to defined figures of merit through variation of
all geometrical and material parameters that can be varied in reality.

• Developing simpler equivalent models that represent the actual behavior of compo-
nents over a large parameter range.
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Chapter 2 Application and Modeling of Through Silicon Vias

• Developing an understanding of the underlying physics and determining the dominant
effects.

Different applications of electromagnetic modeling and simulation have different needs re-
garding accuracy and efficient simulation, i.e. comparatively low memory and computation
time requirements. The required accuracy also depends on the investigated quantities and
the system boundaries. For example, modal network parameters represent an integral quan-
tity with respect to the corresponding fields and therefore often have lower relative errors
than the maximum field errors that can be observed throughout the considered volume.
The system boundaries can be relevant since not every part of a structure contributes in the
same way to the total error that is observed for the complete structure after concatenation
of the system parts.

2.4.1 Physical Effects to Account for by Modeling Approaches

This section lists several aspects that should potentially be taken into account by modeling
approaches when dealing with the simulation of TSVs. It is discussed in this section and
the following ones, which of the aspects are considered by modeling approaches that are
available in the form of computer software or that have been published in the past.

Inclusion of Full-Wave Effects

The principal classification judges to which extend the wave behavior of signal propagation
in the structures under investigation is taken into account. If no assumptions are made or
can be made regarding the nature of the problem that describes the EM properties of these
structures, the most general solution methods are applied that solve Maxwell’s equations
for electromagnetic fields for all three spatial dimensions in the time or frequency domain.
They are called full-wave solutions and are obtained through full-wave methods. Non full-
wave methods are usually based on assumptions regarding the size of the geometries along
all spatial dimensions relative to the wavelength along these dimensions.
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2.4 Classification and Overview over Modeling Approaches

Inclusion of Slow-Wave and Skin-Effect Modes of Propagation

Due to physical effects discussed in section 4.6.1, the consideration of a large parameter
range of the layered structure with silicon and comparatively thin oxide layers reveals that,
apart from a quasi-TEM mode, two other modes of propagation can be observed which are
qualitatively different. One mode is characterized by a low phase velocity and consequently
named slow-wave mode, the other one shows a strong skin-effect in the silicon layer and
is therefore named skin-effect mode. Due to these phenomena, the consideration of these
structures is in general more complex than in the case of other materials because for the
latter only a quasi-TEM mode has to be considered, cf. section 4.2.

Inclusion of Surface Roughness

High levels of surface roughness of metallic conductors are known to have an impact on
the signal propagation. In this work, it is assumed that the surface roughness has a minor
effect and therefore is not considered in any of the methods considered in this thesis.

Inclusion of MOS-Effects

It has to be noted that a modeling is dependent on the substrate voltage if the MOS-effect
needs to be taken into account. In this sense, the modeling is nonlinear if the substrate
voltage is regarded as applied through one or multiple port(s). In contrast, neglecting the
MOS-effect results in a fully linear and voltage independent description, e.g., using network
parameters.

Inclusion of Carrier Dynamics and Thermal Effects

The interactions between physical effects of semiconductors such as silicon can be very
intricate. In general, the dynamics of carrier generation and combination have to be con-
sidered and also the dissipated energy in the form of ohmic heating has effects on the
semiconductor behavior. It is clear that configurations where these effects are relevant lead
to multi-physical problems that are relatively complicated to solve. Only by limitation to
configurations where these effects can be neglected is it possible to study structures of re-
alistic sizes and realistic geometrical complexity and to gain insight into dominant physical
effects.
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Chapter 2 Application and Modeling of Through Silicon Vias

2.4.2 General Purpose Full-Wave Simulations

The constraints of full-wave simulations are typically with regard to the grid resolution and
size, the resulting sizes of the matrices that contain the data for the system of equations,
the required memory, and the required time for the solution including setup times and
post-processing times. This results in limitations with regard to the geometrical size of the
structures, the resolution of structure details (especially those portions that do not align
with the mesh/grid), and the frequency bandwidth for which simulations can be carried
out. Most general purpose full-wave simulators can be classified as employing either volume
or surface meshing methods [35]. The most important approximation is due to the meshing
of the volumes, interfaces, and surfaces, i.e., to what degree the actual geometry can be
represented by the mesh. It depends on the actual problem under investigation how much
impact these approximations have on the overall results [35, Sec. 5.1].

2.4.3 Methods That Focus on Propagation Along Barrels

The first part of modeling approaches is characterized by the fact that the dominant wave
propagation is assumed to be along the via barrels. This is the assumption made by the
majority of publications.

Multi-Conductor Transmission Line Models

In the following, methods are classified as multi-conductor transmission line (MTL) tech-
niques which are based on the computation of per-unit-length parameters for capacitance,
conductance, inductance, and resistance. Scalar values are sufficient for pairs of vias, and
matrices for the description of more than two TSVs. Due to the inhomogeneous medium
— in this case the inhomogeneity in the horizontal directions orthogonal to the via axes
is relevant — the parameters are in general frequency-dependent. It is conventionally ac-
knowledged that the TSV is short in comparison to the guided wavelength (along the via
barrel) and a lumped element representation is therefore constructed from elements that
are obtained through multiplication of the per-unit-length parameters with the length.
This type of modeling has been presented in [36–42].
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2.4 Classification and Overview over Modeling Approaches

Polarization Mode Basis Functions

An alternative formulation, which also accounts for the effects due to close spacing, is
based on polarization mode basis functions. First applications to TSV modeling have been
presented in [43,44]. The MOS-effect has been included in the investigations in [45,46] and
effects due to the finite thickness of the silicon layer in [47]. Results for this modeling have
been combined with FDFD-modeling of signal paths in [48].

2.4.4 Models That Focus on Propagation Along Planes

In printed circuit boards (PCBs), plane metallization are conventionally used as power
and ground planes or, more generally, as reference planes in high-speed layouts. Therefore,
the modeling of this type of structure is already well studied in the PCB context where a
homogeneous medium can be assumed. In the context of multi chip modules with mesh-
shaped planes, the effects due to partially broken reference planes are known to lead to
similar behavior [49]. Two important approaches that aim at the simulation of the dominant
effects of radial wave propagation are known as the multi-scattering methods and the
physics-based methods.

Multi-Scattering

The multi-scattering methods are based on Green’s functions for the cylindrical waves
excited by circular magnetic current frills between the two parallel plates. The antipads
represent apertures with coaxial field excitations. These can be replaced by the current
frills in order to obtain an equivalent “interior” problem. The multi-scattering which is also
known as Foldy-Lax approach has been applied to the case of homogeneous substrates,
e.g., in [50, 51]. An application to TSV modeling has been proposed in [52, 53] and pre-
sented in [54,55]. The Foldy-Lax computation considers propagating and localized field in
a conforming way and, as pointed out in [56, Sec. 2.2], leads thereby to some redundancy
which is discussed in the following comparison with the PBV approach.
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Physic-Based Modeling of Vias

The physics-based via (PBV) modeling performs a decomposition of the problem into
building blocks for near field and far field. The former models the localized field due to
coupling from the coaxial apertures to the cavity, the latter models the field propagation
and scattering within this cavity. Theory and application in the PCB context can be found
in [57–64]. Further discussions on this method, of which the adaptation to the modeling of
TSV constitutes a major part of the work presented in this thesis, is given in the following
chapters.

Comparison

Compared to the PBV modeling, the multi-scattering approach considers propagating and
localized fields in the same part of the model. Every coaxial aperture is considered as a
separate port, whereas the PBV model uses additional radial ports as interfaces between
the near and far field models. The multi-scattering method therefore results (in general)
in a higher numerical complexity because all interactions, even those with comparatively
small impact on the effective properties, are taken into account. The latter is the case for
coupling with distant ports due to localized fields, which is negligible in most practical
cases. On the other hand, the coupling with directly neighboring vias due to localized field
is of relevance in more practical cases and supported by the multi-scattering theory. An
improvement of the physics-based modeling through extraction of only the relevant terms
from the multi-scattering and inclusion in the PBV for cases with narrow spacing of vias
has been presented in [65].

2.5 Comparison of TSVs with PBC Vias

It can be interesting to compare the metal-clad interposer with TSVs to a printed circuit
board (PCB) structure with the same layout and each structure with its respective typical
dimensions. Such a comparison is shown in Fig. 2.3 together with results for a modified
simulation of the silicon interposer where a depletion layer for the fully depleted case
is included. Using [39, Eq. 6], a layer thickness of 2.2 µm is computed. A layer of non-
conductive silicon is included both around each via barrel (between radial oxide layer
and conductive silicon substrate) and next to every plate metallization (between planar
oxide layer and the conductive silicon substrate). The expected influence on the parallel
plate mode propagation is as follows (skin-effect mode excluded): At lower frequencies, i.e.
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rantipad =6 mil

rbarrel =3 mil
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(a)
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Figure 2.3: Configuration of (a) the PCB structure and (b) the interposer structure. (c)-(f)
Comparison of a TSV-interposer and a printed circuit board structure in terms of magnitudes
of scattering parameters normalized to 50Ω that are obtained from FEM full-wave simulations
[66]. For the interposer, one variant with depletion layers and one without depletion layers is
simulated.
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in the slow-wave regime, the electrically insulating silicon layer represents a capacitance
in series to the oxide capacitance. The overall reduced capacitance translates to a less
pronounced slow-wave effect. At higher frequencies, i.e. in the quasi-TEM regime, the
absence of conductivity for a small layer of the silicon can be expected to be quite small.
The TSV data and cross-section are given in Fig. 2.3b and the perspective view in the
inset of Fig. 2.3d. For the PCB structure, data and cross-section are given in Fig. 2.3a and
the perspective view is shown in the inset of Fig. 2.3e.

The TSV structure and the PCB structure can be observed to exhibit the same qualitative
behavior: A high transmission which decreases slowly up to several Gigahertz which then
decreases faster and a transmission which is dominated by a linear behavior in the log-log
scaling. The quantitative behavior however is different in that this significant drop in trans-
mission occurs for higher frequencies for the Interposer than for the PCB structure. Both
structures show an increase in near end crosstalk (NEXT) and far end crosstalk (FEXT)
with frequency with only very small differences between NEXT and FEXT of any pair
ports on a via. The quantitative differences are in the level which is higher for the PCB
structure than for the interposer over the complete frequency range. Also, the character-
istics of the slight changes of slope in these log–log plots are different for the structures.
Significant influences of the depletion layer cannot be observed. Visible differences in the
used representation can only be observed for the reflection in the lower Gigahertz range.

2.6 Modeling of Coaxial Through Silicon Vias

Another type of TSV that can be of interest due to the benefit of very low coupling
of channels is the coaxial through silicon via. A cylindrical via barrel of circular cross-
section constitutes the inner conductor It is inside a hollow cylinder of annular cross-section
that is the outer conductor. If the inner and outer conductor are exactly concentric, the
overall magnetic fields due to the currents in both conductors are zero outside each coaxial
structure. Even if they are not perfectly concentric, negligible field coupling can be achieved
with a neighboring coaxial TSV if the outer conductor is highly conductive. Depending on
the considered filling material, the properties can be very simple for homogeneous fillings
or more complicated as in the case of layered dielectric. If the layering consists of silicon
and silicon dioxide layers, slow-wave effects can be observed. Coaxial TSVs have been
considered in several publications [37, 67–72] and a patent [73]. A discussion of the exact
analytical computation of the wave number of the fundamental mode along a coaxial TSV
with inhomogeneous, radially layered filling consisting of oxide and silicon dioxide layers
is presented in [10] and Appendix C.1.1.
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2.7 Summary and Outlook

2.7 Summary and Outlook

In this chapter, the relevant properties of TSVs with respect to geometry and material have
been discussed. It has been described which physical effects occur due to the structure and
the typical modes of operation. Several modeling techniques have been classified. In the
following chapters, the physics-based modeling and its adaptation to the modeling of TSVs
is discussed in greater detail. To provide an orientation for the methods discussed in the
following chapters of this thesis, an outlook is given in Fig. 2.4.
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Figure 2.4: Outlook on the modeling approaches used throughout this thesis: (a) physics-
based via (PBV) modeling (b) coaxial via modeling (c) multi-conductor transmission line
(MTL) modeling (d) FEM full-wave simulations.
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Chapter 3

Physics-Based Modeling of TSVs

The physics-based via (PBV) modeling can be motivated by the observation that, for
the electromagnetic behavior of vias in cavities constituted by parallel metallic planes,
dominant physical effects can be determined. The PBV model was originally developed
for the efficient simulation and phenomenological analysis of vias in printed circuit boards
[58,60,63]. As discussed in the previous chapter, the identification of the dominant effects
allows for a more efficient description and computation of the electromagnetic properties if
adapted methods are used compared to the use of general purpose 3D numerical techniques.
Depending on the specific building blocks of the physics-based modeling various degrees
of numerical efficiency and accuracy can be achieved.

The PBV model has been developed for a frequency domain characterization by network
parameters. In the following, admittance parameters are mostly used. As will be discussed
later, they allow for an efficient concatenation of near and far field models if the simplified
near field model is used. By using network parameters, the complex electromagnetic prop-
erties are reduced to the integral parameters of modal currents and voltages defined at
the ports. For many practical applications, these parameters provide sufficient information
for the investigations of structures in which the via is only one of several building blocks,
e.g., via arrays and signal links constituted by multiple vias of different levels and other
connecting components in series.

This chapter gives an introduction to the PBV modeling in the following order: First, the
structures for which it is applicable and the observations regarding the dominant effects of
electromagnetic (EM) signal propagation are detailed. Then, using a description in terms
of waveguide modes, a general model of a junction with coaxial and radial ports defined for
a via is considered. It is used to derive a simplified junction model which is in the following
applied as a near field model. The overall system behavior that is given by a concatenation
of near field models with propagating field models is first described in a general way,
subsequently for the case of a homogeneous substrate, and finally for a layered substrate.
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Chapter 3 Physics-Based Modeling of TSVs

Several options that are relevant for the determination of the near field models and the far
field models for both the homogeneous substrate and the layered substrate are outlined.
The detailed analysis for the layered structures that are relevant for the TSV modeling are
then given in the following chapters.

3.1 Boundary Conditions for Applicability of PBV Modeling

Fig. 3.1 shows three important cases of via modeling. For each case, a perspective view
and a cross-sectional view are given with illustrations of the surface currents on metal
components and the electric field inside the dielectric layers. Both are related to a signal
propagation from a port at the top side of the structure to a port at the bottom of the
structure with a small reflection of the signal, the latter only in case of AC-signals.

Figs. 3.1a and 3.1b illustrate the DC case for a structure with top and bottom metallizations
of the dielectric which is homogeneous. The current return part is established through a so-
called ground via which short circuits the top and bottom metallizations at some distance
from the signal via. The currents on both vias distribute themselves uniformly around the
circumferences. The field lines of current flow on the top and bottom metallizations are
distributed analog to the electric field lines of two parallel circular wires with opposite
charge.

For the same structure, Figs. 3.1c and 3.1d illustrate the behavior for excitations with
alternating currents. A signal applied to the coaxial top port leads to the excitation of
radial waves inside the cavity that is constituted by the top and bottom metallizations.
This can be interpreted as a mode conversion between coaxial and radial modes. The
return current is established partially as a displacement current between the top and
bottom metallizations and partially by conduction currents along the ground via barrels.
The physics of wave propagation inside the parallel plate cavity can be interpreted as
a superposition of radial waves with reflections from cavity edges and other vias. In the
illustrated example, the reflection causes a radial wave front that originates from the single
ground via.

The structure depicted in Figs. 3.1e and 3.1f is different from the structure considered
before in that no plane metallizations are present. Depending on the length of the vias and
the type of excitation, different field patterns are possible but only the fundamental mode
of this structure of parallel conductors is considered here. While, in the case of substrate
metallizations, the wave propagation that is related to the current return path is orthogonal
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3.1 Boundary Conditions for Applicability of PBV Modeling

(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Illustration of three important cases of via modeling with currents entering
and exiting the excited ports shown in light gray. Conduction currents are illustrated with
red arrows, magnetic fields with blue arrows, and displacement currents with purple arrows.
Directions of signal propagation including reflection are indicated with arrows in dark gray.
(a,b) As only conduction current flows in the DC case shown here, the total current flows
each of the planes and on the ground via barrel that connects the two metallic planes. (c,d)
Wave propagation inside a parallel plate environment for a high-frequency signal: The far-field
interaction is dominated by radially propagating parallel plate modes. Parts of the wave fronts
of an isotropic fundamental mode emanating from the leftmost via are illustrated between
the parallel plates. (e,f) Signal propagation in case of the absence of plane metallizations: The
structure can be modeled as a multi-conductor transmission line problem.
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Chapter 3 Physics-Based Modeling of TSVs

to the via axes, the signal and wave propagation is only parallel to the via axes in this
case.

From comparison of the electric fields it can be seen that these two structures exhibit signal
propagation-, reflection- and scattering- physics which have fundamental differences. Both
types of structures are considered for the AC case in this thesis, the first one with the
PBV model in this and the following chapters, and the second one with a multi-conductor
transmission line model in Section 7.1.

3.2 Decomposition into Near and Far Fields for PBV Modeling

The signal path along which an electromagnetic wave is guided in the structure of Fig. 3.1c
includes several discontinuities to the wave. These discontinuities lead to partial reflections.
The vertical path starts at the plane at the top end of the barrel with a short coaxial section
and it ends at the plane at the bottom end of the barrel with a short coaxial section. The
following intermediate section of the barrel can be described as an oxide-coated conductor
inside the silicon region. The vertical propagation along the barrel is related to a horizontal
wave propagation along the planes inside the parallel plate structure. The parallel plate
structure is also referred to as a cavity.

Figure 3.2 illustrates the physics of signal and wave propagation inside a metal-clad planar
circuit in terms of electric field lines. The total field can be decomposed into a near field
and a far field which enables, by the identification of symmetries and the use of adapted
methods of reduced dimensionality, a more efficient description. Close to each via, there is
a superposition of the near field which consists of the localized field parts related to the
discontinuity and the far field which relates to the propagating field parts. Under certain
conditions, roughly speaking sufficient distances, coupling between vias only occurs due
to the far field. Then, the near field can be treated independently for each via. For the
near field, the description is often sufficient which assumes azimuthally symmetric fields.
In such cases the number of spatial dimensions to consider in a numerical computation is
reduced to two. For the far field, it can be observed that the field is independent of the
transverse z-coordinate for the homogeneously filled cavity. The effective number of spatial
dimensions of the problem then also reduces to two. The reduction of the effective number
of spatial dimension leads in general to an improved numerical efficiency of simulations. It
can therefore be seen how, by decomposing the overall electromagnetic field into near and
far field parts, the identification of dominant physical effects and symmetries leads to an
efficient modeling.
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3.2 Decomposition into Near and Far Fields for PBV Modeling

(a)

(b) (c)

Figure 3.2: (a) Illustration of the overall electric field with excitation at the left top port. It
can be decomposed into (b) localized fields and (c) propagating fields. Fields in the coaxial
regions and fringing fields at open circuited coaxial ports are also shown. Under certain
simplifying conditions, the near fields are similar to electrostatic fields and can be modeled
using static capacitances. The far field interaction can be considered as a 2D problem for
which the ports are defined at the lateral surfaces of the via barrels. These ports are marked
by hatched areas.

The far field propagation and the reflections from the chip edges, other discontinuities, and
other vias are represented by the parallel plate impedance. The parallel plate impedance
extends the description of a microwave device with a single port for which to describe
magnitude and phase of the reflected signal to multiple ports on a microwave device:
Measurements of the ratio of modal voltage and current at the single port of a single pair
of metal planes will reveal frequency dependent behavior with resonance effects at specific
frequencies. Correspondingly for multiple ports of the same device, voltage to current ratios
with equal or differing index of voltage and current can be defined which entail the same
information as, e.g., the scattering parameters of a corresponding measurement.

In the following, results for the regions are computed independently. Even though near
and far field regions are in general overlapping with respect to the space in which the
corresponding fields are physically located, ports can be defined at which the field models
are connected. On these ports, one or several modes can be defined and the near and far
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(a) (b)

(c) (d)

Figure 3.3: Illustration of the ports of the modeling approaches. The corresponding termi-
nals are marked with black lines and circles. (a,b) Ports of the physics-based modeling with
outer coaxial ports and several inner ports. The ports are marked with patterned areas and
dashed lines in the perspective view and in the side view. The outer ports can be used for
concatenation of models for adjacent structures, the inner ports are used for the concate-
nation of the model building blocks. (c,d) The multi-conductor uses only outer ports. The
multi-conductor ports are marked with hatched areas in the perspective view and with dashed
line in the side view.

field region results are obtained as the concatenation in terms of the network parameters
for these modes. Due to the overlapping of near and far field regions, a de-embedding step
is required in some cases.
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3.3 Port Definitions

3.3 Port Definitions

The port and terminal definitions for the case with metallizations (PBV modeling) and
the case without metallizations (MTL modeling) are illustrated in Fig. 3.3.

For the PBV modeling, the ports are illustrated in Figs. 3.3a and 3.3b. The outer coaxial
ports are defined at the coaxial clearances (antipads) at the outermost plane of each metal-
lic plate (purple dashed line). An inner coaxial port can be defined at the respective inner
plane of each metallization (red dashed line). Inner radial ports are defined at different
positions within the cavity. As illustrated, they are defined concentrically to the TSVs and
either on the lateral barrel surface of the cylindrical barrel (marked in yellow) or with a
larger radius, i.e. at some distance from the TSV (marked in green).

For the MTL model, several terminals that are assigned to the conductors on one side
of the substrate share a port area, as illustrated in Figs. 3.3c and 3.3d. In the idealized
models, each multi-conductor port extends over an infinite area. In contrast, in reality and
in many numerical methods, the port area is finite which results in no significant differences
as long as it is large compared to the distances between the TSVs.

3.4 Composition of Model Parts

The way in which the corresponding model parts of a PBV model structure as the one
depicted in Fig. 3.4a can be composed or decomposed is illustrated in Figs. 3.4b and
3.4c. As depicted in Fig. 3.4b, the near field models that relate to the via junctions have
two coaxial ports and one radial port. The near field models are connected to models for
the coaxial sections through coaxial ports with several modes defined each. They are also
connected to the far field model through a radial port with several modes defined on it.
Every mode on a port is illustrated here as a port within this port, i.e., one modal port is
illustrated with its two terminals. Each terminal is visualized by a straight line and a circle.
The modes on one port are drawn in this figure behind each other foster the understanding
that they belong to the same port and hence are defined for the same physical location.

The far field model is also labeled as parallel plate impedance Zpp. Even though other types
of network parameter descriptions of the EM properties of planar structures are in general
equally suited for the description1, the impedance type description is the most common one
in discussions of these structures. For a single port, this impedance describes the effective

1E.g., the admittance proves to be advantageous for the low-frequency model, see Section 3.7
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(a)

(Far field model)

Via junction
model (near
field model)

Coaxial Section
Model Coaxial port (all modes)

Via junction
model (near
field model)

Radial port (arbitrary
location1)

Coaxial port
(fundamental mode)

Zpp

(b)

Cantipad

Cnearfield
(Far field model)

Radial port (on via
barrel)

Cnearfield
Cnearfield

CnearfieldZpp

(c)

Figure 3.4: Network representations of the PBV Model. (a) Illustration of the corresponding
cross-section. (b) General model for a pair of signal vias. In general, all modes on the respective
port have to be included. (c) Simplified model that is applicable for cases without losses and
homogeneous filling at relatively low frequencies.

1The arbitrary location must have the same axis as the via barrel for a simple de-embedding.
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3.5 Near Field Modeling

impedance measured at the radial port due to signal propagation and reflection within the
cavity. For several ports, it describes also the transfer impedances between different ports.
In many practical situations, only one mode is required on each radial port of the parallel
plate impedance. This is illustrated in Fig. 3.4c. As will be discussed later in more detail,
at relatively low frequencies, the anisotropic modes on radial ports that account for the
azimuthal anisotropy, i.e. non-uniformity, of the fields along the ports can be neglected.

The near field model describes the properties of the junction with corresponding electro-
magnetic fields and can be relatively complicated for the most general cases. An efficient
simulation of these case is therefore difficult. In most practical situations however, the
dominant properties can be described with limited effort. The near field can, e.g., be ap-
proximated as being azimuthally symmetric. At relatively low frequencies and for cavities
filled with a homogeneous, low-loss dielectric, the near field can be described with good ac-
curacy by capacitances between the via barrel and each of the parallel plates. Therefore, it
is modeled by admittances parallel to the coaxial ports in a topology depicted in Fig. 3.4c.

3.5 Near Field Modeling

In this section, the applicable simplifications are derived and an overview of the most
relevant model options is given.

3.5.1 Discussion of Applicable Simplifications

In the following it is discussed how the general description of the junction with two coaxial
ports and one radial port constituted by the via and its parallel plate environment can
be simplified. The most general model regarding the network parameter block and the
considered modal ports is depicted in Fig. 3.5a. On both coaxial ports (one at the top
and one at the bottom) several modes are in general required to fully describe the fields
present close to and at the port surfaces. By definition, all modes of a port are orthogonal
meaning that each corresponds to a solution with a distinct eigenvalue of the corresponding
eigenvalue problem. In terms of the fields which relate to the eigen-vectors, no modal field
can be represented by linear combinations of other modal fields.

As a first step, it can be made use of the property that not every mode can couple with
any other mode if the structure itself is azimuthally symmetric. In the symmetric case only
modes with the same azimuthal variation can couple. Therefore, the junction model is split
into models for each type of orthogonal azimuthal variation and the coaxial ports for each
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Figure 3.5: Derivation of a physics-based near field model for vias (a) Most general descrip-
tion of the coaxial line–radial line junction with ordering by physical ports and marking of
modes as either propagating (with blue color) or non-propagating (in red color) for the typical
configurations considered throughout this work. (b) As before but with ordering according to
the azimuthal anisotropy. (c) As before but with port for non-propagation modes terminated
with appropriate impedances. (d) As before but with neglected anisotropic modes on coaxial
ports and approximation of the mode termination for the anisotropic modes on radial ports
for frequencies well below the cutoff of the higher order modes on the coaxial ports.
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variation are grouped. The types of azimuthal variation are isotropy, i.e. uniformity with
no angular variation, or sinusoidal variations with different periodicities which correspond
to anisotropic modes of different order. It can further be taken into account as a relevant
simplification that modes on the coaxial ports with field nodes along the radial direction
(such as the TM01-mode [74, Fig. 2.8]) can be neglected because these are well below cutoff.
Both these simplifications are summarized in Fig. 3.5b.

Next, the remaining modes which are below cutoff, but not as far below cutoff as the pre-
viously mentioned ones, should be suitably terminated. Each termination must represent
the type of field in which the reactive energy is stored in this part of the localized field. The
relevant cutoff modes on the coaxial ports are TE-modes which, below cutoff, store the
reactive energy in the magnetic field [75, Sec. V.B]. The impedance seen by the junction
connected to the coaxial line section is therefore of inductive type and an inductance is,
in general, used to model the appropriate termination. For the radial port, the relevant
modes are TM-modes. Below cutoff there is an electric reactive field storage that can be
modeled by a capacitance. These discussed terminations are used in Fig. 3.5c.

Finally, the following further simplifications are used: For the isotropic mode, all capac-
itances of the localized fields are combined to one. For the anisotropic modes, no model
for the junction is available in the theory used for this thesis. It is anticipated that the
model should be similar to the one for the isotropic modes. Because the inductive termi-
nation at the coaxial port can be approximated as short-circuits well below the cutoff of
the corresponding modes, the near field model is approximated by a short-circuit of the
corresponding radial port. It can be seen that the capacitances on the radial ports are
thereby also short-circuited in this approximation.

3.5.2 Near Field Modeling Approaches

In the following, several near field modeling approaches for waveguides filled with a ho-
mogeneous medium are presented and an outlook on possible adaptations for modeling of
more general cases is given. The near field domain is illustrated again in Fig. 3.6a.
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Figure 3.6: (a) Illustration of the physical near field domain. (b) Equivalent element repre-
sentation of a model for the approximate analytical description of the coaxial to radial line
junction by Williamson [76] inside the area marked with the dotted line. Drawing for the case
with two coaxial ports adapted from [76]. (c) Equivalent circuit applied in the second, mostly
analytical model as described in last paragraph of Section 5.3.2. The near field is modeled
by Yeff parallel to each coaxial port. (d) Corresponding representation of the FDFD model.
Figures and text adapted from [13].
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Relevant Modeling Approaches for Homogeneous Fillings

The first type of near field model uses a quasi-static modeling. For comparatively low
frequencies, the field parts in the junction that are in general identified as cut-off modes are
in this case identified as the (static) capacitances between the via barrel and the reference
planes. The static definition results in a frequency independent value for all cases where
it represents a sufficient approximation. For this approximation, the static capacitance
definitions require the barrel and the reference planes to have each a uniform potential.
This type of approximation has been studied for PCB vias with various techniques [77–83].

The second type of near field model takes into account the wave properties. The models
neglect fields with azimuthal variations but include the effects of reactive field of the cutoff
modes and an impedance transformation at the junction. The model of this type that is
considered in the following is the model first proposed in this form byWilliamson [76,84,85].
An equivalent circuit is depicted in Fig. 3.6b. The admittances jBa, jBb, jBc, and jBd

model parts of the capacitive near field, while the transformer models the impedance
transformation between radial port and coaxial ports. For many practical applications in
PCBs, it has been found that several simplifications are possible, e.g., the transformer ratio
is relatively close to 1. A related near field model is known as the intrinsic via model and
has been discussed in [63,86]

3.5.3 Outlook on Adaptations for Layered Fillings

For the case with layered fillings, the detailed discussion of all adaptations is given in
Chapter 5. A short outlook is given in the following.

The first type of model assumes that an admittance parallel to each port provides a near
field model for the quasi-static case. In the model depicted in Fig. 3.6c, the admittances Yeff

represent effective values of via barrel to plate conductance and capacitance. Due to the
frequency-dependent complex permittivity of the silicon ε = ε0εr − jσsi/ω, the values are
not constant with frequency as is the case for a medium without conductivity. A relatively
simple approximation based on static field computations is presented in Section 5.3.2. More
accurate results could be obtained by adapting a contour integral method for quasi-static
capacitance calculation as in [16, 87]. This has not been done but instead development of
the full-wave approach has been pursued.

The full-wave approach used in this work performs a local full-wave modeling of the area
around a via barrel using a finite-difference frequency domain (FDFD) method in cylinder
coordinates. This is the main subject of Chapter 5. As labeled in Fig. 3.6d, this local full-
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wave model gives results for both the localized near field and the propagating far field in
a modeled region around the via barrel. In order to enable the comparison of all near field
modeling approaches, one option is to add radial line segments to the modeling approaches
which model only the localized field as is depicted in Figs. 3.6b and 3.6c.

3.6 Far-Field Modeling

As already discussed, the far field model considers a 2D problem of wave propagation in
the cavity. Either through the concatenation of the near field models or directly, it also
describes the scattering, i.e. the overall field, due to incident fields from every signal via and
reflected fields from all vias (signal vias and ground vias) and other terminated ports such
as the plane contours. The “direct” description of scattering refers to the property that the
reflection at ground vias and plane contours can typically be simplified to simple boundary
conditions of the planar problem and therefore mostly have simpler near field models. Some
important modeling approaches that are mostly applied for homogeneously filled cavities
are discussed in the following. Adaptation to the inhomogeneously filled cavity are outlined
in the following and presented in detail in Chapter 4.

3.6.1 Radial Waveguide Method

In the radial waveguide method, the radial wave propagation is considered without reflec-
tions from scatterers such as ground vias and plane edges, see [88, 89]. The formulation
considers a finite size of the radial port for which a field is evaluated but neglects the size
of the source port [61, Sec. 4.3.2]. Using image theory the case of finite planes with open
boundary condition can also be computed [88].

3.6.2 Cavity Resonator Method

The cavity resonator method is applicable to planar circuits with simple shapes and in-
cludes the reflection from either open-circuited boundaries [90], [91, Sec. 2.4.1]. The origi-
nal formulation defines rectangular ports but adaptations to circular ports are also avail-
able [92, Sec. III], [56, Appendix B]. The accuracy of the method can be controlled by
the number of modes that are used. The method can be implemented relatively easily and
provides a good accuracy if a large enough number of modes is ensured by observing the
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convergence behavior. The cavity resonator method has proven itself to be a good reference
for the validation of techniques for arbitrarily shaped contours such as the contour integral
method discussed in the following.

3.6.3 Contour Integral Method for Planar Circuits

The method of choice for this thesis is the contour integral method (CIM) for planar cir-
cuits because it provides a good trade-off between the generality of its application and the
achievable numerical efficiency. This numerical technique includes both the scattering from
arbitrarily shaped contours with arbitrary terminations and finite port sizes of both source
and observation ports. The CIM is a frequency-domain method for microwave and optical
frequencies for the computation of the N -port network parameters and field information
of planar circuits [91,93]. Circuits are considered planar if only two spatial dimensions are
larger than the guided wavelength in these structures while the third dimension, which is
referred to as the height, is significantly shorter. This leads to the assumption for homoge-
neous fillings that the transverse field components are constant across the height. Thus, the
electromagnetic fields propagating in this structure can be described by a 2D Helmholtz
equation.

The method has numerous possible applications and extensions. The typical general field
is the application for signal and power integrity analysis. Coupling of the method with
descriptions for connected devices (e.g. decoupling capacitors) is possible and can be used
for the optimal placement of decoupling capacitors for reduction of simultaneous switching
noise [93]. The method can further be used to investigate the resonant frequencies of planar
circuits [91]. Also, as an advanced application, the numerical efficiency allows application
in optimal circuit pattern synthesis [91, Ch. 7].

Because the CIM is a frequency domain method, the properties of the circuit at discrete
frequencies are determined. Continuous wave problems where the structure is excited with
a time-harmonic signal can directly be investigated. Therefore, time domain analysis can
in general only be performed after Fourier transformation of the frequency domain infor-
mation. Nonlinearities in form of the dependence of the electromagnetic properties on the
amplitudes of the fields are not included. This would need to be considered in the most
general case of modeling of the silicon properties but is not further considered here.

A single computational domain of the CIM consists of a planar structure of which the
stackup is invariant with respect to the directions which span the plane. In the most
simple case, a planar stackup consists of only a dielectric of a certain thickness and real
permittivity which is bounded by perfect electric conductor (PEC) layers. Thus no dielec-
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tric losses and conductivity are considered for the dielectric and no losses through limited
conductivity of the conducting layers. The fundamental mode which can propagate in this
parallel plate structure is TEM.

For the application with realistic structures, such as silicon interposers, PCBs, and package
substrates, a finite conductivity of the bounding metal layers and dielectric and conductive
losses in the dielectrics need to be considered. As is discussed further in the following
chapter, the fundamental mode which can propagate in these structures is not a true TEM
mode because the electric field does not vanish at the interfaces of bounding layers and
dielectric layers and also has a component in propagation direction. If the these effects
are relatively small, this component in propagation direction is still small and the mode
is qualified as “quasi-TEM”. In contrast to the parallel plate structure with homogeneous
filling, even the fundamental mode of the layered lossless structure has longidudinal field
components. In the presented work it is aimed at extending the CIM to the treatment of
structures with a larger variety of stackups with a focus on those found in TSV structures.

The “classical” CIM considers piecewise linear contours which are segmented into linear
ports. This is illustrated in Fig. D.1a of Appendix D. The planar circuit is treated as an
N -port where N is the number of segments: the ports at the outer contour are typically
considered to be open circuited which corresponds to a perfect magnetic conductor (PMC)
boundary condition of the corresponding electromagnetic problem and models the typically
small radiation resistance. The CIM interrelates the electric and magnetic fields, i.e., their
tangential components, of all boundary ports. By assuming the fields to be constant on
each port, the fields can be replaced with modal currents and voltages which are defined
as integral quantities of the fields. Self impedance is defined as the ratio of voltage and
current at one port and transfer impedances for voltages and currents at different ports.

The extended CIM is based on both line ports from which waves emanate that are decom-
posed and approximated by one or more isotropic radial waves and circular ports on which
both isotropic modes with azimuthal symmetry and anisotropic modes with azimuthally
varying fields are defined:

• The fundamental isotropic mode features constant fields along the port perimeter.
This mode is dominant in many practical applications and its sole consideration is
justified in many cases where ports are sufficiently distant from each other. The
sufficient distance depends on the geometrical and material properties.

• The higher-order anisotropic modes feature an azimuthal variation, i.e. a functional
dependence on angle, of the fields on the circular port. Their application is significant
for cases of closely spaced vias or vias close the plane edges. They can also be relevant
due to specific excitations of the fields at the ports, e.g., the excitation of a via by
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a micro-strip line [94]. Very closely spaced ground vias can lead to a significant
alteration of the local field of a via along which a signal is guided and may invalidate
the assumptions of the PBV modeling.

More details on the CIM and a collection of the most relevant formulas are given in
Appendix D.

3.6.4 Outlook on Adaptations for Layered Fillings

The adaptation required for the discussed 2D methods consist in the use of an effective
wave number of propagation or the radial parallel plate waveguide modes in the layered
structure. This is presented in the following chapter. In the context of via modeling only
the properties of TEM- and TM-modes are of interest, so only these will be discussed. For
layered dielectric this leads to the requirement of the definition of an effective characteristic
impedance which is discussed further in Section 4.7.3. For the proposed methods, the
permeability must be constant for all parts of the structure (µr = 1) which is the case for
all considered and practical cases.

3.7 Embedding of the Physics-Based Via Model

For the embedding, two methods can be distinguished, one general technique, and one that
is adapted to the case where the structure is symmetric with respect to a central plane.
Based on the latter case, the near field can be represented by a lumped parallel element
for relatively low frequencies.

The general technique consists in the concatenation of a three-port for the radial-line–
coaxial-lines junction to every radial line port of the network parameter matrix Zpp for the
parallel plate propagation. Assuming that the ports which correspond to ground vias are
already terminated in terms of the network parameters for the planar circuit, the number
of ports is thereby doubled as a top and a bottom port is assigned to every via. The general
concatenation procedure for this case is described in Appendix G.

The adapted method for the low-frequency case consists in the construction of an expanded
admittance matrix from the parallel plate admittance or impedance matrix. This expansion
reflects the property that the coaxial ports are in series and due to the symmetry must,
except for a sign, have the same “connection” in the thereby constructed multi-port. The
difference in sign is due to the terminal voltage and current definitions with the voltages
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Chapter 3 Physics-Based Modeling of TSVs

being defined from outer to inner antipad rim (plane to via barrel) and the current entering
at the outer antipad rim (plane) and exiting at the inner antipad rim (via barrel). The
overall admittance matrix is then obtained by addition of the impedance Y (vp) of the
respective lumped elements that represent the near field effects to the diagonal of the
expanded (parallel plate) admittance matrix as [60,61]:

Y (PBV) =

[
Ypp −Ypp

−Ypp Ypp

]
︸ ︷︷ ︸

Y (pp,exp)

+


Y (vp) 0 · · · 0
0 Y (vp) · · · 0
...

... . . . 0
0 0 0 Y (vp)

 =

[
Ypp+1·Y (vp) −Ypp

−Ypp Ypp+1·Y (vp)

]

(3.1)
where 1 is an identity matrix and an identical near field model for the identical vias is
assumed. The port ordering of (3.1) is block-wise with the ports on one side of the cavity
(e.g., on the top side) followed by the ports for the same vias on the other side of the cavity
(e.g., on the bottom side). It should be noted that the near field model contained in Y (vp)

only influences the diagonal elements of the admittance matrix which relate modal current
and voltage at the same respective port.

3.8 De-embedding of the Physics-Based Via Model

A de-embeeding procedure is also possible. The general case requires the knowledge of the
near field model and a general de-concatenation procedure which is given, e.g., in [95]. In
the simplified case, near and far field models can be separated due to the specific structures
of the admittance matrix which can be seen in (3.1). Thus, with the assumption of this
case to apply for the modeling, the far field model Ypp can be extracted from the overall
network parameters of the structure as the negative of the off-diagonal blocks of Y (PBV).
Then the near field Y (vp) can be computed by subtraction of Ypp from the diagonal blocks.

3.9 Summary of the Physics-Based Modeling

The adopted PBV model can be summarized as illustrated in Fig. 3.7 and described as
follows: The overall network parameter description at the top and bottom via ports , e.g.,
in terms of admittance parameters, is obtained by concatenation of a near field to each port
of the admittance matrix Ypp which corresponds to the isotropic mode. The termination
of the anisotropic modal ports with short-circuits represents an approximation of the true
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Figure 3.7: Geometrical topology and equivalent network connection of model components
in the PBV model for the two types of vias: coaxial top and bottom signal via ports (dashed
lines) are created by concatenation of a near field model to the ports of the isotropic modes
of the parallel-plate admittance (port surfaces are the hatched area around the via barrel).
Text taken and figure adapted from [14].

admittances that correspond to the reactive fields of cut-off modes at these frequencies.
To show the relevance of the latter terminations, the open circuit terminations will be
shown in some of the validations to follow. As further discussed and validated later, a near
field model is not required for ground vias, as they can be included in the form or short
circuiting terminations for the 2D parallel plate results.

3.10 Modeling of Coaxial TSVs

As will be seen later in this thesis, conventional TSVs have to be operated in specific ways
in order to limit the coupling between vias and to minimize the crosstalk between channels
assigned to vias. This includes the use of differential signaling and a sufficiently large
number of ground vias in metal clad interposers or reference vias in interposers without
metallizations. An alternative to the conventional TSVs are coaxial TSVs. In these, every
via barrel of circular cross-section is surrounded by a hollow concentric metallic cylinder.
The electromagnetic field that is excited, e.g. at either of the ends, is completely contained
between these metallic structures. Therefore, no coupling between individual coaxial TSVs
needs to be considered. The theory and the discussion of several examples results are
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Chapter 3 Physics-Based Modeling of TSVs

presented in Appendix C. It is shown how an efficient matrix method can be applied,
similar to the transverse resonance method presented in the following chapter. Further
an approximation is given which is applicable in the quasi-TEM and slow-wave regimes
of wave propagation. With respect to the signal integrity the results show that due to
slow-wave effects and the transition regions a significant frequency dispersion of the phase
velocity can occur for signals with large bandwidth. Operation of the coaxial TSV can be
of interest because, as seen in Appendix C.1, the attenuation is relatively low.
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Chapter 4

Far Field TSV Modeling

In this chapter, the modeling of the far-field part of the physics-based modeling is dis-
cussed. It is based on parallel plate propagation for which a wave number is computed
that accounts for the presence of a layered substrate consisting of electrically isolating
and conducting layers. Based on that, the corresponding network parameters are obtained
using 2D-methods. In this thesis, the contour integral method (CIM) for planar circuits is
applied.

In the first part of this chapter, the parallel plate modes for single layer and layered
dielectrics are discussed. Next, the transverse resonance method (TRM) is discussed and
wave numbers for several example stackups are presented. The solutions are applicable for
both plane waves in the parallel plate structure and for the cylindrical waveguides which
are of interest for the PBV modeling. Conclusively, the adaptations in the 2D-methods to
the modeling of layered structures are explained.

4.1 Parallel Plate Waveguide Modes

A parallel plate waveguide consists of two planar, parallel, and conducting plates. This
type of structure can be found in those interposers which have a sufficiently high coverage
of the top and bottom surfaces with metallizations. If present, these metallizations sup-
port propagation of parallel plate modes governing the far-field coupling that occurs in the
directions along the planes. The parallel plate structure supports both planar and radial
waves. A formulation in terms of radial waves has advantages for the application with pla-
nar circuits if line sources or radial ports are used. The fomulation used for determination
of effective wave numbers which are eigenvalues of the corresponding eigenvalue problem
are independent of the choice of mode basis (plane or radial waves) [96, Ch. 5]. In the
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Chapter 4 Far Field TSV Modeling

following, the derivations are presented for the plane wave case; analogous derivations for
radial waves are given in Appendix B.3.

4.2 Classification of Wave Solutions

The types of waves supported by the structures under investigation can be classified as
follows [89,96]:

• Waves having magnetic and electric field components only in the transverse direc-
tion(s) with respect to the direction of propagation are called transverse electromag-
netic (TEM) waves. They are only supported by structures with at least two disjoint
perfectly conducting bodies embedded in a homogeneous medium. TEM waves in a
parallel plate guide or those guided between two wires have the same propagation
velocity (phase velocity) as an unguided wave in the medium (filling or background
material, respectively). Moreover, there is no dispersion caused by the waveguide in
this case.

• Waves with only small electric or magnetic field components in the longitudinal
direction (direction of propagation) are often characterized as quasi-TEM, as they
show properties very similar to the TEM modes, e.g., phase velocities close to those
of the medium in which they propagate.

• For most of the modes that are supported by (homogeneously filled) parallel plate
waveguides, the wave has either magnetic or electric field components in the lon-
gitudinal direction. These modes are called transverse electric (TE) or transverse
magnetic (TM), respectively, specifying which component is orthogonal to the direc-
tion of propagation. In general the phase velocity is frequency dependent.

• For parallel plate waveguides with layered fillings, the modes have in general both
electric and magnetic field components along the direction of propagation. A classifi-
cation as TM or TE is possible in many cases if it refers to the transverse coordinate
instead of the direction of propagation. Multilayer-dielectrics, including the cases
which also take into account losses, can be calculated using the transverse resonance
method (TRM) presented in the following.
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4.2 Classification of Wave Solutions

4.2.1 Classifications of Parallel Plate Structures

The most simple parallel plate structure is the one of a homogeneous, isotropic and lossless
dielectric with perfect electric conductor (PEC) boundary conditions that is depicted in
Fig. 4.1a. This structure supports a true transverse electromagnetic wave and the guided
wave number is equal to the wave number of the dielectric filling.

The structure depicted in Fig. 4.1b is only different from the previous one in that the
dielectric is assumed to have polarization or conduction losses. This structure also supports
a TEM-mode [97, Sec. 4.1], [98, Sec. 1.4], and can therefore also be analyzed analytically
without approximations.

Next, the PEC boundaries are replaced by half spaces of finite conductivity, see Fig. 4.1c.
The conductivity must still be sufficiently high in order to support a guided mode. Inde-
pendent of the properties of the dielectric, a TEM-mode is not supported. This structure
supports no TEM-mode, but (among others) a TM-mode. If the losses in the conducting
half-spaces are relatively small, i.e., the conductivity is high, the TM-mode shows proper-
ties similar to a TEM-mode and can then be classified as a quasi-TEM mode.

The case depicted in Fig. 4.1d already represents the situation encountered in PCBs. The
difference from the before case is that the half spaces have been replaced by layers of finite
thickness. A guided wave exists if the conductivity of the bounding layers is sufficiently
high. A quasi-TEM classification is justified if the losses are small The corresponding wave
number for the case in which the skin-depth in the conductor r is at most about as high
as the thickness of the bounding layers d is given by [91, Appendix A2.1]

k = ω
√
ε0εrµ [1− j(tan δ + r/d)/2] , (4.1)

where ω is the angular frequency, εr is the relative permittivity, and tan δ is the loss tangent
of the medium (combining conductive and polarization losses). It is clear that, using the
above approximation, this case is effectively treated as the case in Fig. 4.1c.

Next, layered substrates are introduced, see Figs. 4.1e and 4.1f, consisting of layers with
equal permeability and different (complex) permittivity. All interfaces are planar and par-
allel to the parallel bounding layers. Even in the lossless case and with bounding PEC
conditions, no true TEM-mode exist. A quasi-TEM mode exists if losses are small and the
contrasts of material properties of the layers is not too high.

Structures of the types depicted in Figs. 4.1e and 4.1f are mainly of interest in the following
as they are constituted by the layering of a metal-clad silicon interposer.
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Figure 4.1: Cases of parallel plate structures to consider, sorted approximately in ascending
order of complexity of the theoretical treatment. Depending on the real structure, these
cases can be appropriate models. (a)-(b) Parallel plate structures with losses only in the
homogeneous dielectric support a TEM-mode in addition to TE- and TM-modes. (c)-(d)
Parallel plate guides with losses due to the finite conductivity of the bounding layers do not
support a TEM mode but a quasi-TEM mode with similar properties as a TEM-mode if
losses are low. (e)-(f) Parallel plate waveguides with layered/stratified dielectric also support
a quasi-TEM-mode if the overall losses are relatively low.
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4.3 Characteristic TRM-Equations for TM-modes and N Layers

In the following, the parallel plate structures depicted in Fig. 4.2 are considered. The
direction of the stack-ups (layerings) along which the properties change in sections is
the transverse z-direction. The propagation is chosen to be along the x-direction. Due to
the symmetries, the computed wave number applies to all horizontal directions of wave
propagation parallel to the plates. The following derivations are based on theory presented
in [96, Ch. 4], [99, Sec. 2.3.3], [100, Ch. 11]. The method is often referred to as TRM because
the formulation is analog to the resonance condition in a circuit which is a concatenation
of transmission line sections, cf. Fig. 4.2.

4.3.1 Derivation of the Transfer Matrix

With the definitions in Fig. 4.2, a scalar potential can be given for the modes which
propagate along the x-direction and which only have magnetic components along the y- and
x-directions. They are therefore transverse magnetic (TM) with respect to the transverse
direction of layering which is the z-direction. For the nth layer this scalar potential can be
expressed in cosinusoidal form to express the standing wave property as

Ψn = Cn cos (kz,n(z − z0,n)) e−jkxx, (4.2)

where Cn is an arbitrary (in general complex) constant and z0,n is the z-coordinate of the
lower boundary of the nth layer. For the further derivation it is more convenient to use
exponential functions. The following scalar potential is used

Ψn = Cn

(
Ãe−jkz,nz + B̃ejkz,nz

)
e−jkxx, (4.3)

where Ã and B̃ are constants which are in general complex. The wave number of the
medium k, the transverse wave number kz,n, and the longitudinal wave number of guided
wave propagation kx which all partial waves in the layers have in common are interrelated
for each layer by

k2 = ω2µnεn = k2
z,n + k2

x. (4.4)

Here, µ and ε∗ are, respectively, the permittivity and the in general complex permittivity
of the layer with index n.
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Figure 4.2: (a) Illustration of the case with N layers with PEC boundary conditions at the
top and the bottom of the stackup and (b) the corresponding TRM circuit. (c) Illustration
of the case with infinite bounding layers and (d) the corresponding TRM circuit. In the used
coordinate system, the layering is in the z-direction and the planar layers extend along the x-
and y-directions. The propagation is along the x-direction. The structure and the fields are
invariant with respect to the y-direction.
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The electric field components are given by [96, Eq. 3-86]

E(x, z)x =
1

ŷ

∂2Ψn

∂x∂z
(4.5a)

E(x, z)y =
1

ŷ

∂2Ψn

∂y∂z
(4.5b)

E(x, z)z =
1

ŷ

(
∂2

∂z2
+ k2

)
Ψn (4.5c)

and the components of the magnetic fields are given by

H(x, z)x =
∂Ψn

∂y
(4.5d)

H(x, z)y = −∂Ψn

∂x
(4.5e)

H(x, z)z = 0 (4.5f)

where ŷ = jωε∗ = jω(ε0εr − jσ/ω) = σ + jωε0εr for nonmagnetic dielectrics. Using (4.3),
the corresponding field components can be derived as

E(x, z)x =
1

ŷ

∂2Ψn

∂x∂z
=

1

ŷ
(−jkz,n)Cn

(
Ãe−jkz,nz − B̃ejkz,nz

)
(−jkx)e−jkxx, (4.6a)

E(x, z)y =
1

ŷ

∂2Ψn

∂y∂z
= 0, (4.6b)

E(x, z)z =
1

ŷ

(
∂2

∂z2
+ k2

)
Ψn =

1

ŷ

(
−k2

z,n + k2
)︸ ︷︷ ︸

k2x

Cn

(
Ãe−jkz,nz + B̃ejkz,nz

)
e−jkxx, (4.6c)

and the components of the magnetic fields are

H(x, z)x =
∂Ψn

∂y
= 0, (4.6d)

H(x, z)y = −∂Ψn

∂x
= −Cn

(
Ãe−jkz,nz + B̃ejkz,nz

)
(−jkx)e−jkxx, (4.6e)

H(x, z)z = 0. (4.6f)

For the field components that are tangential to the layer interfaces one can write

E(x, z)x =
jkz,n
ŷ

(
Ae−jkz,nz −Bejkz,nz

)
, (4.7a)

H(x, z)y = Ae−jkz,nz +Bejkz,nz, (4.7b)
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in which A and B include the longitudinal dependence which these field components have
in common. This can be evaluated for z = 0 and gives

ŷ

jkz,n
E(z = 0)x = (A−B) , (4.8a)

H(z = 0)y = (A+B) . (4.8b)

From the sum and difference of (4.8) one infers that

A =
1

2

(
ŷ

jkz,n
E(z = 0)x +H(z = 0)y

)
, (4.9a)

B =
1

2

(
H(z = 0)y −

ŷ

jkz,n
E(z = 0)x

)
. (4.9b)

Inserting this into (4.7b) with an upper index (0) for the values at z = 0 gives

E(x, z)x =
jkz,n
ŷ

(
Ae−jkz,nz −Bejkz,nz

)
=
jkz,n
ŷ

(
1

2

(
ŷ

jkz,n
E(0)
x +H(0)

y

)
e−jkz,nz − 1

2

(
H(0)
y −

ŷ

jkz,n
E(0)
x

)
ejkz,nz

)
= cos(kz,nz)E(0)

x +
jkz,n
ŷ

(−j) sin(kz,nz)H(0)
y

= cos(kz,nz)E(0)
x +

kz,n
ŷ

sin(kz,nz)H(0)
y .

(4.10)

Insertion into (4.7a) gives

H(x, z)y = Ae−jkz,nz +Bejkz,nz

=
1

2

(
ŷ

jkz,n
E(0)
x +H(0)

y

)
e−jkz,nz +

1

2

(
H(0)
y −

ŷ

jkz,n
E(0)
x

)
ejkz,nz

=
ŷ

jkz,n
(−j) sin(kz,nz)E(0)

x + cos(kz,nz)H(0)
y

= − ŷ

kz,n
sin(kz,nz)E(0)

x + cos(kz,nz)H(0)
y .

(4.11)

Using the impedance definition

η(TM)
n =

kz,n
ωεn

, (4.12)

the following matrix notation can be used that is analog to the well-known transmission
line transformation matrix that relates the voltages and currents at the beginning of the
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line (left hand side) to those at the end of the line (right hand side):(
E(x)x
H(x)y

)
=

[
cos(kx,ntn) −jη(TM)

n sin(kx,ntn)

−j sin(kx,ntn)/η
(TM)
n cos(kx,ntn)

]
︸ ︷︷ ︸

Tn

(
E

(0)
x

H
(0)
y

)
. (4.13)

This gives the relation between the tangential field components at the lower end of a
layer to those at the upper end of this layer. The latter must equal the tangential field
components at the lower end of the subsequent layer:(

E(tn, y)z,n+1

H(tn, y)x,n+1

)
= Tn

(
E(0, y)z,n
H(0, y)x,n

)
. (4.14)

For a total number of N layers, the relation between the fields at the outermost layer
interfaces is therefore given by(

E(tN , y)z,N
H(tN , y)x,N

)
= TN · TN−1 · . . . · T2 · T1︸ ︷︷ ︸

T=

T1,1 T1,2

T2,1 T2,2



(
E(0, y)z,1
H(0, y)x,1

)
, (4.15)

where the dot refers to the conventional matrix multiplication.

Note that (4.4) only implicitly gives kx,n as a function of kz and k. Taking the (complex)
square root of (4.4) one obtains

kx,n = ±
√
ω2µεn − k2

z . (4.16)

Both signs in (4.16) are admitted. This can be seen, e.g., from the even symmetry of both
the cosine function and the function x · sin(x) applied to (4.13).

4.3.2 Characteristic Equation for Perfect Electric Conductor Boundaries

Consider first the case where the outermost layers are bounded by perfectly conducting
(e.g. idealized metal) layers, see Fig. 4.2a. This imposes the following boundary conditions

E(tN , y)x,N = 0, (4.17)

E(0, y)x,1 = 0. (4.18)
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Then it follows from (4.15) that one needs to solve for the (in general complex) roots of a
characteristic function F given by

0 = F (kz) = T1,2. (4.19)

The first step in the solution for a TM-mode is now carried out by solving (4.19) in conjunc-
tion with (4.16). The equal longitudinal wave number kz of all layers can be interpreted
(for propagating modes) as ensuring that all field parts propagate in the same manner
along the propagation direction.

4.3.3 Characteristic Equation for Bounding Half-Spaces of Finite Conductivity

Next, consider the case where the wave is guided due to decaying field amplitudes in
the outermost layers in z-direction. In the topmost layer extends from the topmost layer
interface towards infinity. The potential from which the fields are derived is given by

Ψu = Cue
−γz,uze−jkxx (4.20)

with
γz,u = ±

√
ω2µε∗ − k2

x. (4.21)

In (4.21) only the sign is admitted which leads to a positive real part of γz,u such that the
fields decay in the respective directions away from the waveguide.

Then, the electric field components are

E(x, z)x =
1

ŷ

∂2Ψn

∂x∂z
=

1

ŷ
(−γz,u)Cue−γz,uz(−jkx)e−jkxx, (4.22a)

E(x, z)y =
1

ŷ

∂2Ψn

∂y∂z
= 0, (4.22b)

E(x, z)z =
1

ŷ

(
∂2

∂z2
+ k2

)
Ψn =

1

ŷ

(
γ2
z,u + k2

)
Cue

−γz,uze−jkxx, (4.22c)

and the components of the magnetic field are

H(x, z)x =
∂Ψn

∂y
= 0, (4.22d)

H(x, z)y = −∂Ψn

∂x
= −Cue−γz,uz(−jkx)e−jkxx, (4.22e)

H(x, z)z = 0 (4.22f)
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The ratio of the field components parallel to the layer interfaces is given by

Ex,u
Hy,u

=
γz,u
ŷ

=
−jγz,u
ωε∗u

. (4.23)

In the same manner, one can obtain the relation for the field components in the lowest
layer at the lowest layer interface which is given by

Ex,l
Hy,l

=
−γz,l
ŷ

=
jγz,l
ωε∗l

. (4.24)

To obtain the overall relation for the wave number, we divide the first by the second row
of (4.15), rearrange and equate with the field rations of the bounding layers given in (4.23)
and (4.24):

E(tN , y)x,N
H(tN , y)y,N

=
T1,1E(0, y)x,1 + T1,2H(0, y)y,1
T2,1E(0, y)x,1 + T2,2H(0, y)y,1

=
T1,1E(0, y)x,1/H(0, y)y,1 + T1,2

T2,1E(0, y)x,1/H(0, y)y,1 + T2,2

,

−jγz,u
ωε∗u

=
T1,1

jγz,l
ωε∗l

+ T1,2

T2,1
jγz,l
ωε∗l

+ T2,2

.

(4.25)

This can finally be rewritten as a function F for which the roots need to be determined in
order to find the guided wave number:

0
!

= F (kz) = jT1,1
γz,l
ωε∗l
− T2,1

γz,l
ωε∗l

γz,u
ωε∗u

+ jT2,2
γz,u
ωε∗u

+ T1,2 (4.26)

The result in (4.26) in conjunction with (4.13) and (4.15) is in consistency with [101, Ch. 2
(TM case)] and [99, Sec. (2.3.3, TMModes)]. Note that the signs in some intermediate steps
differ, but the overall results are equivalent. From comparison with these references, it can
be seen that a representation without ω is possible. When applied to stackups that include
layers with non-zero conductivity such as silicon, there is still a frequency dependence
due to the frequency dependent complex permittivity. For a single intermediate layer with
index n the characteristic equation becomes

F (kz) = cos(kx,ntn)
γz,l
ε∗l

+ sin(kx,ntn)
εn
kz,n

γz,l
ε∗l

γz,u
ε∗u

+ cos(kx,ntn)
γz,u
ε∗u
− sin(kx,ntn)

kz,n
εn

. (4.27)
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4.3.4 Approximations for Cases with PEC boundaries

An electrical length θi is defined as the product for layer i of layer thickness ∆zi and the
transverse wave number in the respective layer kz,i. If θi is small, then approximations
for the transfer matrix in (B.42) can be used. This condition is fulfilled in the following
situations:

• For lossless layers: For cases in which the layer is thin compared to the free space
wavelength in the material.

• For layers with losses: For cases in which the layer is thin compared to the skin-depth.

Using the series expansions of the harmonic functions, the transfer matrix is given by(
Eρ(ze,i)

Hφ(ze,i)

)
=

( (
1− 1

2!
θ2
i + · · ·

) kz,i
ŷ

(
θi − 1

3!
θ3
i + · · ·

)
− ŷ
kz,i

(
θi − 1

3!
θ3
i + · · ·

) (
1− 1

2!
θ2
i + · · ·

) )(
Eρ(z0,i)

Hφ(z0,i)

)
. (4.28)

Using only the respective first terms, the relation is given by(
Eρ(ze,i)

Hφ(ze,i)

)
=

(
1 k2

z,i∆zi/ŷi
−ŷi∆zi 1

)
︸ ︷︷ ︸

Ti

(
Eρ(z0,i)

Hφ(z0,i)

)
. (4.29)

The transfer matrix of two adjacent layer with indices 1 and 2 is then given by

T{1,2} = T2T1 =

(
1 k2

z,2∆z2/ŷ2

−ŷ2∆z2 1

)(
1 k2

z,1∆z1/ŷ1

−ŷ1∆z1 1

)

=

(
1− k2

z,2∆z2ŷ1∆z1/ŷ2 k2
z,2∆z2/ŷ2 + k2

z,1∆z1/ŷ1

−ŷ2∆z2 − ŷ1∆z1 1− k2
z,1∆z1ŷ2∆z2/ŷ1

)

≈

(
1 k2

z,2∆z2/ŷ2 + k2
z,1∆z1/ŷ1

−ŷ2∆z2 − ŷ1∆z1 1

)
.

(4.30)

In an analogous way, one obtains the entry T1,2 of the overall transfer matrix that is of
interest for the case with PEC boundaries at the outermost layers as

T1,2 =
{
T{1,2,··· ,N}

}
1,2

=
N∑
n=1

k2
z,n∆zn

ŷn
=

N∑
n=1

(k2
n − k2

ρ)∆zn

jωεn
, (4.31)
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where T{1,2,··· ,N} is the overall transfer matrix for all layers and εn = ε0εr,n − jσω. For the
PEC bounded case, T1,2 must equal zero. Enforcing this condition and inserting k2

n = ω2µεn,
(4.31) can be rearranged to

kρ = ω

√
µ

∑N
n=1 ∆zn∑N

n=1 (∆zn/εn)
= βρ − jαρ. (4.32)

This approximation has been found to give a good accuracy in [9, 102].

4.4 Solution of Characteristic Equations

While the problem form of a characteristic equation for which the complex roots have to be
determined is relatively simple, finding the solution numerically can in general be a complex
task. Mostly, iterative, gradient-based numerical techniques are used to solve this problem,
see e.g. [101]. One of the principal reasons for this problem to be complex in general is that
one typically wants to obtain one specific solution (i.e. the wave number for a specific mode)
out of the multitude of solutions. Using start values for the iterative techniques which are
close to the exact solution increases in most practical cases the probability to obtain the
desired solution but does not guarantee it. Also, good approximations may be difficult
to obtain. In other situations, it may also be of interest to obtain all solutions within
a specific range, e.g., all modes with attenuation below a certain limit. An introduction
to some techniques that are available to partly overcome these limitations is given in
Appendix A.1.

4.5 Determination of the Fields

The matrix formulation can be used not only to compute the characteristic function which
determines the longitudinal wave number. As soon as the wave number has been computed,
the magnitudes of the field components can also be determined. The magnitudes are nor-
malized to one of the field components. Here, only the case of perfectly conducting outer
boundaries is considered. In this case the electric field component tangential to this per-
fectly conducting plane is zero while the magnetic field can be set to a normalization value
of one. The value inside the adjacent dielectric layer are then determined with the help
of the transfer matrix where the coefficients are now known: The transverse propagation
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constant of every layer is given by the condition of separability

kx,n = ±
√
ω2εnµn − kz, (4.33)

where the signs can again be chosen arbitrarily because of the discussed symmetries,
cf. (4.16). To determine the field values at a distance xi from an interface, this distance is
used instead of the di in the transfer matrices.

4.6 Application of the TRM to Silicon Interposer Stackups

In this section, the expected modes of propagation in the structures consisting of a silicon
layer between metallic plates and intermediate oxide layers are briefly discussed. Then, the
methods for computation of the dispersion relation discussed in the previous sections are
carried out for several silicon interposer stackups with silicon and silicon dioxide layers,
including one stackup with a large number of layers. Major parts of the data have been
presented already in [8]. The results are validated through correlation with results from a
finite-element (FEM) based full-wave solver [103]. A good agreement with reference results
is obtained while significantly shorter calculation times are feasible. The approximation
that is applicable for the fundamental mode presented in Section 4.3.4 is also applied and
validated.

4.6.1 Modes of Propagation in Si–SiO2-Structures

The considered structure consists of silicon and oxide layers between metallic plates. Three
principal modes can be distinguished and are commonly named as slow-wave, quasi-TEM,
and skin-effect mode [104]. The three modes are three different manifestations of the funda-
mental TM-mode that propagates in the layered substrate between the parallel plates and
are differentiated because of their differences in the dominant physical effects and resulting
phenomena, especially regarding phase velocity and attenuation. In [104] domains for each
of these modes are defined which are separated by transition regions between the modes.
With all other parameters fixed, the transition regions can be given for certain ranges of
frequency and conductivity of the silicon layer and represented in a frequency–resistivity-
chart as the one depicted in Fig. 4.6. Even though a structure with a single oxide layer was
studied in [104], the principal findings also apply to the cases with (different) oxide layers
to both sides of the silicon layer and to other insulation materials. The discussions in [104]
are based on a analytic derivation including several approximations. In the following, some
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4.6 Application of the TRM to Silicon Interposer Stackups

of the findings are validated using the exact numerical solutions, but for the subsequent
applications in this thesis, similar approximations as in [104] are used.

Slow-wave Mode

A mode which is of high practical relevance is the slow-wave mode because it appears at
low frequencies for all practical silicon conductivities [104, Eq. 8]. An equivalent circuit
from [104] for the propagation along the parallel plate structure is illustrated in Fig. 4.3a.
The slow-wave mode is characterized by a magnetic field that is, for lower conductivities,
very similar to the magnetic field of an empty waveguide. This is reflected in the inductance
L. For higher conductivities, a frequency-dependent resistance Rd accounts for the losses.
The silicon layer mainly acts as a conductor which is represented by the conductance
Gs. This leads to an electric field that is concentrated in the oxide layers and can be
modeled by a relatively large capacitance C1. This large capacitance leads to a phase
velocity which is lower than the one of a waveguide filled with either conductive silicon
or electrically insulating silicon dioxide. As pointed out in [104, Sec. II.C], the power is
mainly transmitted in the thin oxide layer with an exchange of reactive power between
the layers. This leads to a very low attenuation in this mode compared to the other two
modes.

Quasi-TEM Mode

For relatively low conductivities of the silicon layer and high frequencies, the displacement
currents in the silicon layer are more important than they are in the slow-wave mode. An
equivalent circuit from [104] for this mode is shown in Fig. 4.3b. The magnetic field is again
almost the same as in the empty waveguide. Dominated by the displacement currents, the
electric field concentrates in the areas with higher permittivity, here the silicon layer. The
waveguide then shows a phase velocity that is between those of waveguides with one of the
involved materials. As will be seen in the following and ash also been stated in [104, Fig. 4c],
the attenuation is this mode is constant with frequency.
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Figure 4.3: Equivalent circuits for the three principal modes of propagation in the structures
with layering of silicon and thin oxide layers: (a) slow-wave mode, (b) quasi-TEM mode,
and (c) skin-effect mode. Figures adapted from [104] where explicit formulas for the circuit
elements can be found.

Skin-Effect Mode

For high conductivities and elevated frequencies, the skin-effect mode occurs. An equivalent
circuit from [104] is depicted in Fig. 4.3c. In this mode, the magnetic field cannot fully
penetrate the silicon layer due to the skin-effect which increases with both frequency and
conductivity. The inductance of the model that is attributed to the silicon layer Ls is a
function of the skin-depth and therefore of frequency. The silicon dioxide layer can then be
regarded as a dielectric layer between one good conductor (metallic plate) and one lossy
conductor due to the still significantly lower conductivity of the silicon layer. This leads
to the dominance of the capacitance of the oxide layer. As can be seen in the equivalent
circuit, the losses can are modeled by a series resistance which is related to the skin-effect
and also frequency-dependent.

4.6.2 Application Details of the TRM Methods

The equation in (4.19) is applied in the following and the options to solve this equation need
to be discussed. The following investigations are limited to frequencies below 100 GHz. For
typical interposer dimensions it is then sufficient to consider only the fundamental mode
for the propagating field model. By fundamental mode it is referred to the mode (plane or
radial waves) which has no field nodes along the transverse direction.
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4.6.3 Validation with Full-Wave Simulation Results

Configuration

A finite-element (FEM) based full-wave simulator [103] is applied for validation of the
presented methods. An example setup is shown in Fig. 4.4. The software provides both 2D
port solutions in terms of modal propagation constants and 3D results in terms of modal
scattering parameters. The 2D port solutions can be directly used for the comparison.
Certain characteristics are checked for the mode results, i.e., the transverse field distribu-
tions should show the expected behavior of invariance with respect to the coordinate along
the width of the port. An appropriate boundary condition is the PMC boundary for the
faces next to the port areas, as TEz-modes and modes of the corresponding rectangular
waveguide (obtained through a PEC boundary condition) are thereby excluded. A PEC
boundary condition is used at the top and bottom layers for the considered cases. For the
3D simulation, the structure is excited from the two wave ports at the opposite sides which
extend over the all faces of the stackup between the bounding PEC-layers. The structure
can in theory be chosen arbitrarily short, but a length of the structure which is approxi-
mately twice the height is used here. This prevents the coupling through any fields which
do not correspond to the investigated mode. A limiting to the size reduces the required 3D
simulation time and therefore seems appropriate if simulation times should be compared.
Effects of the width of the port have also been investigated by variation in the range from
100 µm to 20 mm. As expected no significant influence could be observed. From the 3D
results in terms of the scattering parameters, the wave number can be obtained with the
known geometrical length of the waveguide section as given in Appendix E.1.2.

Correlation

For reference, structure A from Table 4.1 with a silicon conductivity of 10Ω cm (10 S/m)
is used which corresponds to the example from the publication by Hasegawa et al. [104].
This structure serves here as a reference of the implemented TRM including the used
root search algorithm. The results obtained for the normalized phase velocity and for the
attenuation constant are shown in Figs. 4.5a and 4.5b, respectively. For comparison, the
constant normalized phase velocity in bulk silicon is shown. Two configurations have been
simulated which differ in their length and in the solution frequency for which the adaptive
mesh is created. The shorter structure with a higher solution frequency (config. 1) shows
a good agreement with the port solutions except for frequencies below 10−4 GHz. Using
the results for the longer structure with a lower solution frequency (config. 2), the range
of agreement is extended down to near 10−6 GHz.
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Figure 4.4: Considered layout for full-wave simulation [10]: Width and length are set to
200 µm (approximately twice the structure thickness) to obtain reliable results for the prop-
agation constant. Figure and text adapted from [8].

Structure A Structure B Structure C
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SiO2 layers 1st 1st; 3rd -
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Table 4.1: Configurations of the considered structures. Perfect conductor boundary con-
ditions are assumed. Therefore the thickness of the modeled metal layers is not relevant.
Embedded figures and data adapted from [8].

A good agreement of the port results of the FEM solutions with the results obtained
from the TRM is observed for both the normalized phase velocity and for the attenuation
constant. The behavior with frequency that is expected from theory [104] can be observed:
for low frequencies, a slow-wave propagation occurs, with increasing frequency it transitions
towards the quasi-TEM mode which is found above about 100 GHz. As the oxide layer is
very thin, the normalized phase constant is almost the same as the one of the bulk silicon
in the quasi-TEM mode.
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Figure 4.5: (a) Phase velocities normalized to the free space phase velocity and (b) attenu-
ation constants for comparison of results for structure A with a silicon resistivity of 10Ω cm
(10 S/m). FEM results have been obtained with [103]. The FEM configurations differ in the
length of the simulated waveguide and the frequency of adaptive solution and meshing. Over
most of the frequency range, all curves are on top of each other. Figures adapted from [8].

59



Chapter 4 Far Field TSV Modeling

Fr
eq
ue
nc
y
in

M
H
z

P
hase

V
elocity/Free

Space
P
hase

V
elocity

Resistivity in Ω cm

slow-wave mode

skin-effect mode

quasi-TEM mode

Figure 4.6: Frequency-Resistivity-chart for phase velocity of example structure A. All 900
points are calculated by the TRM in 5.8 seconds. Figure and text adapted from [8].

Comparison of Simulation Times

The TRM results can be obtained in relatively short time depending on the efficient com-
putation of the characteristic function of the TRM and fast root search algorithms. An
implementation of the characteristic function in MATLAB [105] and root search algorithms
provided by MATLAB have been used. The results for frequencies up to 30 GHz have been
obtained in less than 8 ms, those for frequencies in the range 30 GHz–100 GHz in less than
23 ms. The computation time differences can be attributed to a sensitivity of the solvers
to the exact configuration of convergence criteria and to the start value. A frequency–
resistivity-chart for structure A has also been computed with this implementation and is
presented in Fig. 4.6. The total number of 900 values have been obtained in less than 5.8 s.
A FEM full-wave simulation is estimated to take at least 30 minutes.
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4.6.4 Application to Arbitrary Layered Structures

In many practical cases, the transverse propagation constant is small. In these cases, the
approximation from Section 4.3.4 can be applied. As pointed out in [24], it is applicable
over a large parameter range. This parameter range is given by the configurations and
frequencies which lead to only quasi-TEM and slow-wave propagation.

Next, structure B which has two oxide layers and dimensions similar to a typical interposer
is investigated. The results are shown in Fig. 4.7. They are very similar to the results for
structure A when using the same silicon conductivity which is to be expected from the
approximate formula. When using a very large resistivity of 500Ω cm (0.02 S/m), the
transition region is shifted towards lower frequencies by about two decades. The effect of a
oxide layer of only 10 nm for structure B is also shown. The main effect is an even stronger
slow-wave effect and an increased width (frequency range) of the transition region.

As a further demonstration of the applicability of the TRM, a structure with a larger num-
ber of layers is investigated. Structure C has a sinusoidal resistivity profile with 25 complete
periods of variation of the resistivity between 1Ω cm and 100Ω cm. A discretization of the
100 µm thick substrate into 500 layers, each with constant resistivity, is used. An average
of about 143 ms per frequency point is needed for the computation of the wave number
in this case. As can be observed in Fig. 4.7a, slow-wave and quasi-TEM mode can also
be observed but the transition region is significantly larger than in the cases considered
before. The results in Fig. 4.7b show that the attenuation at low frequencies is significantly
higher. In all considered examples it can be observed that the proposed methods, i.e., the
TRM and the simplified calculation of the wave number/propagation constant are in good
agreement.

4.7 Application to Computation of Planar Microwave Circuits

4.7.1 Application with the CIM

The CIM is the adopted approach for the determination of network parameters of the paral-
lel plate structures. As already mentioned, the wave number computed with the transverse
resonance method can be used to adapt the CIM to compute the properties of planar cir-
cuits with either infinite planes or finite planes and with arbitrarily shaped contours. Some
details of the CIM are given in Appendix D. Instructions on where the adaptations need
to be applied are discussed in Section 4.7.3
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Figure 4.7: (a) Results for phase velocity of structures B and C. (b) Results for attenuation
of structures B and C. Figure and text taken from [8].
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4.7.2 Application with Radial Line Segment

Another propagating field model that is of interest in the following is the radial line. In
the near field modeling technique presented in the following chapter that is based on a
finite-difference frequency domain method, the superposition of localized and propagating
field is computed. In order to separate the near and far field models, a de-embedding is
required which uses a radial line segment and the network parameter description in terms
of the fundamental isotropic mode.

Solution for Homogeneous Filling

The following two-port description of a homogeneously filled waveguide from [13] can be
derived with the help of [96, Ch. 5]. For two radial ports with index 1 of the inner port
at the smaller radius and with index 2 at the outer radial port with the larger radius, an
admittance parameter matrix that relates the fundamental isotropic modes can be given
as

Y (R) =
2π

hηD

[
r1 −r1

−r2 r2

]
◦

([
H

(2)
1 (a)

H
(2)
1 (b)

] [
H

(1)
0 (b) H

(1)
0 (a)

]
−

[
H

(1)
1 (a)

H
(1)
1 (b)

] [
H

(2)
0 (b) H

(2)
0 (a)

])
,

(4.34)
where ◦ denotes the Hadamard product, i.e. an element-wise multiplication of matrices,
and

D = H
(2)
0 (b)H

(1)
0 (a)−H(2)

0 (a)H
(1)
0 (b) (4.35a)

a = kTMr1, (4.35b)

b = kTMr2, (4.35c)

kTM = 2πf
√
µ0ε, (4.35d)

η =
kTM
2πfε

. (4.35e)

h is the thickness of the substrate that is equal to the plane separation, kTM is the wave
number of the (transverse magnetic) mode, r1 and r2 are the inner and outer radius,
respectively, of the waveguide.
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4.7.3 Adaptation of Wave Impedances and Characteristic Impedances to Inho-
mogeneous Fillings

As has is shown in Appendix B.3, the wave number of propagation in the radial direction is
equal to that of the planar waveguide with plane wave propagation and the same stackup.
An effective wave impedance is defined in the following which allows the application of the
CIM and (4.35e) with inhomogeneously filled waveguides. It is defined analogously to the
approximation of the wave number in Section 4.3.4 as

ηeff =
kx
ωεeff

. (4.36)

where

εeff =

∑3
i=1 ti∑3

i=1 (ti/εi)
, (4.37)

The derivation is presented in Appendix B.5.2.

It is known that the values of the wave impedances and characteristic impedances in the
case of inhomogeneous media depend on the definition [106]. In the applications that follow,
waveguides with the same stackup are concatenated in terms of their network parameters
and completely equivalent definitions are applied in all cases. Therefore, the concatenation
corresponds to enforcing the continuity of the tangential field components at the interfaces.
Any influence of the definition vanishes because the overall results of the characterizations
are given at the coaxial via ports on homogeneously filled antipads for which the usualy
definitions of characteristic impedance can be applied.

4.8 Summary and Conclusions

Two methods have been presented and validated for the computation of the wave number
of fundamental mode propagation in the parallel plate structure that is identified as rel-
evant for the wave propagation in metal clad silicon interposers, an exact method based
on the TRM and an approximation that is valid in the typical parameter ranges of inter-
est. Further, the adaptations of the 2D techniques for planar wave propagation and the
limitations thereof have been briefly introduced.
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Near Field TSV Modeling

In this chapter, the modeling of the near fields of TSVs in metal-clad interposers is dis-
cussed. The techniques for modeling of the homogeneous structures have already been
shortly discussed in Section 3.5.2. Here, a few simple adaptations of some of these methods
are considered. The main subject of this chapter is a local full-wave model using a finite-
difference frequency domain (FDFD) method which represents a good tradeoff between
numerical efficiency, generality, and ease of implementation. It is used because analytical
techniques can only be found in the literature for homogeneously filled junctions for which
the near field is to be computed.

5.1 Finite-Difference Frequency Domain Method (FDFD)

5.1.1 Motivation

The numerical method presented in the following is an FDFD method for rotationally
symmetric geometries. The latter property is sometimes referred as body of revolution
(BOR). Due to the rotational symmetry, the number of effective dimensions of the problem
to compute is two instead of the general three spatial dimensions. It will be shown that
this method is applicable and leads to results of good accuracy for the considered TSV
structures with lossy silicon and thin oxide layers. Even though the presented method
achieves a good numerical efficiency, the near field model results should be re-used for
every via with the same geometry of a via array.

Fig. 5.1 shows again the cross-section of the modeled structure. The modeled near field
region is bounded by the “FDFD Domain Boundary” in the direction of the planes, and
by the planes and the inner coaxial ports (marked as A2 and B2) in the z-direction.

65



Chapter 5 Near Field TSV Modeling

15 µm

A1 A1
A2 A2

B1 B1
B2 B2

C

C D

DC

C D

D

F
D
F
D

D
om

ai
n

B
ou

nd
ar
y

F
D
F
D

D
om

ai
n

B
ou

nd
ar
y

z

V
ia

B
ar
re
l

V
ia

B
ar
re
l

metal

silicon silicon
dioxide

Top Port

Bottom Port

Top Plate

Bottom Plate

100 µm

30 µm

1 µm

Figure 5.1: Schematical drawing of the considered types of TSVs in interposers with the
considered dimensions. A signal via (left side) and a ground via (right side) are embedded
in a structure consisting of parallel metallic plates on a silicon substrate which is electrically
isolated. A1, A2, B1, and B2 denote coaxial ports of the modeling. C and D denote the
desired radial ports in terms of which the near field models can be connected to the far field
interaction to compute the overall electromagnetic properties. Figure and text taken from [13].

5.2 Adaptation of a BOR FDFD Method for Near Field Modeling

Because the FDFD methods are discussed in little detail compared to the related finite-
difference time domain methods (the latter for example in [107]), the proposed method
is discussed in greater detail in the following section, thereby replicating the derivations
from [13]. The theory is based on the methods presented in [108] and extends the technique
to the case with inhomogeneous substrates and also considers the case of non-equidistant
grid-spacings. The latter is of interest, as the oxide layers are typically very thin compared
to the silicon layers. The non-equidistant grid can be adapted exactly to the interfaces
between layers without increasing the grid in the silicon layers to an equal extent.

For the FDFD with rotational symmetry, only the following three field components are
relevant: the magnetic field component in azimuthal direction, the electric field component
in axial direction, and the electric field component in radial direction. The 2D computa-
tional domain is depicted in Fig. 5.2. It corresponds to a modeled 3D domain which has
the shape of a circular cylindrical ring.

An approximation is made by assuming the metal components of the structures, i.e. the
vias and the bounding metal layers, to correspond to a PEC boundary condition. This
assumption has been validated in [13], where it has been found from FEM full-wave sim-
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Figure 5.2: Cut view of the considered structure with FDFD grid for near field modeling.
The radial port (port 3) must be placed sufficiently far from the via barrel such that almost
all localized fields of this via are inside the computational domain. Reasonable distances are
in the order of the substrate thickness. Figure taken and text adapted from [13].

ulations using [66] that results differ little from the PEC case if, e.g., aluminum with a
specific conductivity σ = 3.4× 107 S/m is used at frequencies above 100 MHz.

In the proposed FDFD, several interrelated grids are defined as depicted in Fig. 5.3. A
primary and a secondary grid are defined for both the radial and the axial direction. The
different field components are located on nodes defined at different intersections of these
four grids. In case of the non-equidistant grid, the distances between grid points on the
primary and secondary grid differ. The azimuthal magnetic field grid points are located on
the nodes of the secondary grids of both the axial and radial direction. The radial electric
field points are on the nodes of the secondary grid of the radial direction and the primary
grid of the axial direction. The axial electric field points are on the nodes of the primary
grid of the radial direction and the secondary grid of the axial direction.

The computational domain coincides with primary grid points. Therefore, only tangential
electric field components are located on its boundaries. For dielectric interfaces which are
along the axial direction, the primary radial grid is configured such that it coincides with
the interfaces. For dielectric interfaces which are along the radial direction, the primary
axial grid is configured such that it coincides with the interfaces. In both cases, this leads
to a configuration with only tangential electric field grid points on the dielectric interface
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Figure 5.3: Definition of the grid coordinates: a primary and a secondary grid are defined for
the radial direction with indices i and i′, respectively. For the axial direction they are named
k and k′, respectively. Figure taken from [13].

5.2.1 Finite Difference Equations

In the following, it is discussed how the relations presented in [108, Eqs. 7–9] have been
adapted to varying grid distances. The curl equations (Gauss’s law and Ampère’s circuital
law, both in differential form) govern the interdependence of the electric and magnetic field
components in the source free regions and are given by

∇×E = − ∂

∂t
µ0H , (5.1a)

∇×H =
∂

∂t
εE, (5.1b)

where ε is the complex relative permittivity of the (homogeneous) medium given by ε =

ε0εr − jσ/ω. The curl of a vector field A in cylindrical coordinates is given by
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∇×A = eρ

(
1

ρ

∂Az
k∂φ

− ∂Aφ
∂z

)
+ eφ

(
∂Aρ
∂z
− ∂Az

∂ρ

)
+ ez

1

ρ

(
∂

∂ρ
(ρAφ)− ∂Aρ

∂φ

)
, (5.2)

where eρ, eφ, and ez are the unit vectors of radial, azimuthal, and axial directions, respec-
tively. Due to the symmatries, only components Eρ, Eφ, and Hφ exist. For the rotationally
symmetric case (∂/∂φ = 0) and a harmonic time dependence (∂/∂t = jω), the equations
in (5.1) reduce to

eφ

(
∂Ez
∂ρ
− ∂Eρ

∂z

)
= jωµ0H , (5.3a)

−eρ
∂Hφ

∂z
+ ez

(
Hφ

ρ
+
∂Hφ

∂ρ

)
= jωεE. (5.3b)

For the implementation of the finite differences, the first derivative expressions in (5.3)
are replaced by their first order approximations. In (5.3b), the coordinate ρ refers to the
location of the axial electric field component. Therefore, for the finite difference relation,
a linear interpolation is used with the azimuthal magnetic field at neighboring grid points
for this location. The latter modification is the only one required for the non-equidistant
grids compared to the equidistant grids if first order finite differences are used.

The grid indexing as defined in Fig. 5.3 is applied in the following. The discretized repre-
sentations of the relevant equations are then given by

jωµ0H
i′,k′

φ =
Ei+1,k′
z − Ei,k′

z

∆ρ1,i

−
Ei′,k+1
ρ − Ei′,k

ρ

∆z1,k

, (5.4a)

jωεEi′,k+1
ρ =−

H i′,k′+1
φ −H i′,k′

φ

∆z2,k

, (5.4b)

jωεEi+1,k′

z =

(
∆ρ21,i

ρ1,i+1∆ρ2,i

+
1

∆ρ2,i

)
H i′+1,k′

φ +

(
∆ρ12,i

ρ1,i+1∆ρ2,i

− 1

∆ρ2,i

)
H i′,k′

φ , (5.4c)

where Hφ is the magnetic field in the angular direction, Ez is the axial component of
the electric field, and the radial electric field component Eρ as shown in Fig. 5.3. The
superscript used with the field components are discussed below.
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The equations in (5.4) can be written for the complete grid in matrix equations form as

Hφ = AEρ +BEz +CEboundary, (5.5a)

Eρ = DHφ, (5.5b)

Ez = EHφ. (5.5c)

Here, A, B, C, D, and E are all sparsely populated matrices with at most 2 entries per
row. The non-zero elements of the matrices A, B, and D are given as

A{i′,k′},{i′,k} =
+1

jωµ0∆z1,k

, (5.6a)

A{i′,k′},{i′,k+1} =
−1

jωµ0∆z1,k

, (5.6b)

B{i′,k′},{i,k′} =
−1

jωµ0∆ρ1,i

, (5.6c)

B{i′,k′},{i+1,k′} =
+1

jωµ0∆ρ1,i

, (5.6d)

D{i′,k},{i′,k′} =
−1

jωε∆z2,k

, (5.6e)

D{i′,k},{i′,k′−1} =
+1

jωε∆z2,k

. (5.6f)

The non-zero elements of matrix E are given as

E{i,k′},{i′,k′} =
1

jωε

(
∆ρ21,i−1

ρ1,i∆ρ2,i−1

+
1

∆ρ2,i−1

)
, (5.7a)

E{i,k′},{i′−1,k′} =
1

jωε

(
∆ρ12,i−1

ρ1,i∆ρ2,i−1

− 1

∆ρ2,i−1

)
. (5.7b)

In the above equations, the notations for A, B, D, and E use an indexing with a subscript
of the form {ρ̃1, z̃1}, {ρ̃2, z̃2}. This denotes a first and second part of the index, each of the
form {ρ̃, z̃}. The latter denotes a linear index computed from radial index ρ̃ and the index
for the axial direction z̃. The relation between the subscript indices ρ̃ and z̃ and the linear
index {ρ̃, z̃} depends on the shape of the computational domain and the ordering of grid
points inside it.

The above equation (5.6) and (5.7) can readily be applied for homogeneous regions with
complex permittivity ε. The modifications required for electric field grid points on dielectric
contours are discussed in Section 5.2.2.

The matrix C establishes the relation between the non-zero electric field values on the
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boundary of the computational domain and the respective neighboring magnetic field
points. The only non-zero electric field values are those of the excitations on the ports.
Therefore, the non-zero entries of C are of the same form as the non-zero entries of either
A or B. For a radial port parallel to the z-coordinate, the entries are of same form as the
entries of B. For a coaxial port parallel to the ρ-coordinate, the entries are of the same
form as the entries of A.

One can insert (5.5b) and (5.5c) into (5.5a) and rearrange for the vector Hφ to obtain as
an intermediate results the magnetic field related to the tangential electric field values on
the ports

Hφ = (1 −AD −BE︸ ︷︷ ︸
S

)−1CEboundary, (5.8)

where 1 is an identity matrix of a size given by the squared total number of secondary
grid points. The system matrix named S and defined in (5.8) is a relatively sparse matrix
with dominating diagonals.

5.2.2 Relations at Dielectric Interfaces

In the following, dielectric interfaces are considered which are aligned with either the radial
or the axial coordinate axis. Because non-equidistant grids are used, it is possible for the
structures of interest, to align the interfaces such that only electric field components are on
the interfaces which are tangential to it. The finite-difference relations from the previous
section need to be adapted, accordingly.

Interfaces Parallel to the z-Axis

This interface is parallel to the z-axis and shows a difference in material properties for
different radial coordinates and indices. The integral form of Ampere’s law, which is applied
in the following, can be stated as

jω

∫∫
A

εE dA =

∮
∂A

H dl. (5.9)

It is applied to a region that has the shape of a circular ring. A part of this ring is the
area between the dotted lines that is illustrated in Fig. 5.4. The electric field component is
tangential at the interface and therefore continuous across it. Due to the fine discretization
near the dielectric interfaces, it can further be assumed to be constant in the considered
domain. Therefore, the integration in polar coordinates over the areas gives a weighting
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Figure 5.4: Illustration of the relevant field components of dielectric interfaces parallel to
the z-axis. Magnetic field components are shown in blue and the electric field components in
purple. (a) Side view in positive azimuthal direction. (b) Top view in negative axial direction.

with the areas of circular rings. The integration along the contours gives a weighting with
the corresponding circumferences. Therefore, one obtains

jω
((

(ρ1 + ∆ρ21)2 − ρ2
1

)
εo +

(
ρ2

1 − (ρ1 −∆ρ12)2) εi) πEz
= H

(i)
φ 2π(ρ1 −∆ρ12)−H(o)

φ 2π(ρ1 + ∆ρ21).
(5.10)

Here, ρ1 is the radial coordinate of the interface, ∆ρ2 is the distance between the magnetic
field grid points, ∆ρ12 is the distance between the secondary grid of the second region
and the primary grid on the interface, ∆ρ21 is the distance between the secondary grid
of the first region and the primary grid on the interface. εi is the permittivity in the first
region (inner) and εo is the permittivity in the second (outer) region. Division of (5.10) by
−2πρ1∆ρ2 gives

jω
−1

2ρ1∆ρ2

((
(ρ1 + ∆ρ21)2 − ρ2

1

)
εo +

(
ρ2

1 − (ρ1 −∆ρ12)2) εi)Ez
= −H(i)

φ

1

ρ1∆ρ2

(ρ1 −∆ρ12) +H
(o)
φ

1

ρ1∆ρ2

(ρ1 + ∆ρ21),
(5.11)

which can be rewritten as

−jωEz
((

∆ρ2
21

2ρ1

+ ∆ρ21

)
εo

∆ρ2

−
(

∆ρ2
12

2ρ1

−∆ρ12

)
εi

∆ρ2

)
= H

(i)
φ

(
∆ρ12

ρ1∆ρ2

− 1

∆ρ2

)
+H

(o)
φ

(
∆ρ21

ρ1∆ρ2

+
1

∆ρ2

)
.

(5.12)

From comparison of (5.12) with (5.4c) it can be concluded that an effective permittivity
can be used for the electric field point on the dielectric interface. This effective permittivity
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is used in (5.4c) only for the grid points on dielectric interfaces and is given by [13]

ε12 =
ε1

∆ρ2

(
(∆ρ12)2

2ρ1

−∆ρ12

)
− ε2

∆ρ2

(
(∆ρ21)2

2ρ1

+ ∆ρ21

)
, (5.13)

where the naming has been modified to ε1 for the permittivity in the first region (inner)
and ε2 for the permittivity in the second (outer) region.

Interfaces Parallel to the ρ-Axis

This interface is parallel to the ρ-axis and shows a difference in material properties for
different axial coordinates and indices. In this case, a simple average have been found to
enable accurate results for typical grids. The following relative permittivity is therefore
inserted into (5.4b) for all radial electric field grid points on dielectric interfaces:

ε12 =
ε1 + ε2

2
. (5.14)

where ε1 and ε2 are the complex permittivities to both sides of the interface.

5.2.3 Port Excitations and Port Responses

The final goal of the presented FDFD method is to obtain network parameters for the
three-port structure with two coaxial and one radial port. On these three ports the respec-
tive fundamental mode on each port is excited by imposing the corresponding tangential
electric field on the corresponding boundary grid points. The port response is evaluated by
correlation of the tangential magnetic fields on the port with the modal fields. As discussed
in the following, the magnetic field is only available on grid points close to the port and
therefore needs to be extrapolated.

Organization of Port Excitations

The electric field values on the port areas of the of excitation are assembled in vectors and
inserted as columns of an overall excitation matrix Eboundary as

Eboundary
m,n =


Eboundary
ρ , if m ∈ q1,

Eboundary
z , if m ∈ q2,

0, else,

(5.15)
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where q1 and q2 are the index sets for tangential electric field grid points on coaxial and
radial ports, respectively, of port n ∈ {1, 2, 3}.

Port Excitations on Coaxial Ports

The coaxial ports are assigned on the homogeneous antipad regions. There, the fundamen-
tal mode is a TEM-mode of which the electrical field is given as

Eρ(ρ) =
1

ρ

V0

log(rantipad/rbarrel)
, (5.16)

where rantipad and rbarrel are the radius of antipad and via barrel, respectively, and V0 is a
normalization voltage of, e.g., 1 V.

Port Excitations on Radial Ports

The proposed methods aims at modeling the parameter ranges of quasi-TEM mode and
the slow-wave mode. For these two modes of propagation, the transverse electric field
components of the respective fundamental mode are given with good accuracy by [13]

Ez(z) =

{
V0Y

′
total/ (toxideY

′
oxide) , in the oxide,

V0Y
′

total/ (tsiliconY
′

silicon) , in the silicon,
(5.17)

where

Y ′total = jω

(
2
toxide

εoxide

+
tsilicon

εsilicon

)−1

, (5.18a)

Y ′oxide = jωεoxide/toxide, (5.18b)

Y ′silicon = jωεsilicon/tsilicon. (5.18c)

Here, toxide and tsilicon are the thickness of oxide and silicon layer, respectively, and εoxide

and εsilicon are the corresponding (complex) relative permittivities.
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Evaluation of Port Responses

With the proposed grid structure, the choice was made to have the electric field grid points
on the boundaries of the computational domain. The magnetic field values are then not
available exactly on the port but only at grid point near the ports. The values on the
contour are extrapolated using a 1D extrapolation step which is formulated as a matrix
multiplication presented in the following. The presented relations assume a constant grid
spacing for the three rows of the grid which are closest to the respective port. The evaluation
matrix J for the port responses is formulated as

Jm,n = ±


(7/4) · 2πρ/N, n ∈ p1,
(−1) · 2πρ/N, n ∈ p2,
(1/4) · 2πρ/N, n ∈ p3,
0, else,

(5.19)

where the plus sign has to be chosen for outer radial ports (at largest ρ-coordinates) and
top coaxial ports, and the minus sign for bottom coaxial ports and inner radial ports (at
smallest ρ-coordinates). N is the number of grid points on the respective port, and ρ is the
radial coordinate of the respective grid point. p1, p2, and p3 are the index sets of the first,
second and third row or column, respectively, inside of the computational domain and next
to the port m. The operation carried out by the multiplication of the magnetic field vector
with the evaluation matrix J can be interpreted as an averaging or as a correlation with
the modal field distribution.

Admittance Matrix Formulation

A three-port admittance matrix description of the structure under consideration can be
obtained by combining (5.8), (5.15) and (5.19) as

Y = J(1−AD −BE)−1CEboundary/V0. (5.20)
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Interpretation in Terms of Relevant Waveguide Modes

The proposed evaluation of admittance parameters as summarized in (5.20) requires no
absorbing boundary. On all ports, there are, in general, higher order modes both with
and without azimuthal variations of the fields. As illustrated in Fig. 5.5, only the modes
without azimuthal variation are considered in this method. The remaining modes are the
fundamental TEM modes and all higher order modes without azimuthal variation of the
fields. In the proposed formulation, the admittance parameters are evaluated by implicit
computation of the fundamental mode currents if on one port the fundamental mode is
excited and all other ports are short-circuited.

5.3 Approximate Methods for Near Field Modeling

For validation and comparison with the proposed FDFD-method, two approximate tech-
niques are used in the following. The schematic models of these techniques are depicted in
Figs. 3.6b and 3.6c. A model of the same structure as the one simulated with the FDFD-
method can be obtained by concatenation of a model for a radial line segement, e.g., in
term of Y-parameters.

5.3.1 Coaxial-to-Radial Junction Model by Williamson

In [76], Williamson proposed an analytical model for radial line to coaxial line junctions
with lossless and homogeneously filling) for application in an antenna context. This model
has since been also applied for via modeling by several authors, e.g. in [63,83]. An equivalent
circuit modeling the junction has been presented in [76] as well and is replicated inside the
region that is marked with a dotted line in Fig. 3.6b.

Basic Formulation

In the following, the symmetric case is considered meaning the coaxial ports are identical.
Then, with the port definitions given in Fig. 3.6b and the admittance matrix description
of the radial line segment Y (R) from (4.34), the admittance matrix for the junction can be
written as

Y =

jBa + Yr −Yr −Y (R)
1,2 /R

−Yr jBa + Yr Y
(R)

1,2 /R

−Y (R)
2,1 /R Y

(R)
2,1 /R Y

(R)
2,2

 , (5.21)
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Figure 5.5: Interpretation of the the presented FDFD method in terms of mode termination:
(a) All relevant modes which show no azimuthal variation. (b) Example for the interpretation
of the implicitly executed evaluation: The modal currents are evaluated for excitation of one
coaxial port and short-circuiting of all other ports.

where

Yr = jBb +
jB3 + Y

(R)
1,1

R2
. (5.22)

The values of Ba(= Bc), Bb, B3, and R are given in [76]. Note that [76, Eq. 28] gives R2,
not R, and that the value of R is very close to 1 for many practical cases. Note also that,
due to symmetry of the geometry and reciprocity, only 4 independent entries have to be
computed for (5.21).

Adaptations for Comparison with the FDFD

The admittance matrix Y (R) is an analytical description of the radial line given in (4.34).
For the following, comparison the complex silicon permittivity will be used with this model.
Thereby, the silicon dioxide layers are replaced by silicon and the relevance of the layers
for the physics that dominate the junction behavior is assumed to be low. By using this
approximation, it is investigated if a homogeneous substrate can be used to model the
layered substrate.
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5.3.2 Quasi-static Near Field Modeling Using an Effective Admittance

The via-to-plane capacitance is a partial capacitance between a via barrel and one of the
planes in a single cavity. The case with homogeneous filling can be evaluated using several
methods, e.g. analytical solutions for the capacitances in multi-cavity PCBs [77, 81], or
by using analytical descriptions of the coaxial to radial line junction [63, 76]. For the case
without scattering from other vias and plane edges an analytic formula from [77] can be
simplified to yield

Cvp =
8πε

t ln
(
rAntipad

rBarrel

) ∑
n=1,3,5,...

H
(2)
0 (θa)−H(2)

0 (θb)

k2
nH

(2)
0 (θb)

, (5.23)

where kn = −
√
ω2µε− (nπ/t)2, θb = knrBarrel, and θa = knrAntipad. The barrel and antipad

radius are denoted by rBarrel and rAntipad, respectively. The thickness of the substrate is
given by t. The negative sign is chosen for all kn because only the fundamental parallel-plate
mode is assumed to be able to propagate in the parallel-plate structure.

For the silicon interposer, a parallel and series connection of five elements as depicted in
Fig. 5.6 is suggested to model the effective admittance. One capacitance is attributed to
each of the silicon dioxide layers, the coaxial one around the via barrel COx,barrel and the one
next to the plane metallizations COx,plate. Capacitance CSubstr and conductance GSubstr in
parallel are used to model the properties of the localized field parts inside the silicon layer.
An overall admittance for the silicon substrate case is computed and related to effective
resistance and conductance as

Yeff = jωCAntipad + Yinner = jωCeff + 1/Reff , (5.24)

where

1

Yinner

=
1

jωCOx,barrel

+
1

jωCSubstr +GSubstr

+
1

jωCOx,plate

. (5.25)

The capacitance COx,plate can be estimated using a method similar to the one presented
in [102, Appendix I]: From an extraction with a quasi-static 3D electromagnetic field
solver [109] by simulating the structure with and without the oxide layer, it is estimated
to range from 1 pF (50 µm silicon layer thickness) to 3 pF (100 µm silicon layer thickness)
for the parameter values given in the caption of Fig. 5.6 and a silicon conductivity of up
to 10 S/m.

To compute CSubstr, (5.23) is used with the real part of the considered silicon permittivity.
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Figure 5.6: (a) Considered cross-section and (b) the corresponding equivalent circuit for
modeling of the near-fields of the coaxially excited via with element values which are functions
of the frequency. Typical dimensions are: via barrel radius a = 15 µm, antipad radius b =
30 µm, pitch dvias = 200 µm, silicon substrate thickness tsi = 100 µm, plate thickness tmetal =
5 µm, and silicon dioxide thickness tox = 1 µm. Typical material properties are: εr,oxide = 4
and εr,silicon = 11.9.

To compute the conductance, the relation

C/G = εsilicon/σsilicon (5.26)

is applied, which relates the already computed capacitance to the parallel conductivity
[110, Ch. 5-7]. Reference results are obtained with a quasi-static 3D electromagnetic field
solver [109]. Using these results, the capacitance parts corresponding to the outer regions
must be determined in separate simulations and subtracted from the complete admittance.
Fig. 5.7 shows the results obtained for the case where a silicon conductivity is introduced. A
good agreement with the reference results is obtained for the 1 S/m-case, a fair agreement
for the 10 S/m-case. As will be seen in the overall results, this agreement is sufficient for
the crosstalk analysis of many relevant cases.
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Figure 5.7: Validation of the proposed method for the computation of equivalent capaci-
tance and conductance with three examples: (I) silicon thickness 100 µm and conductivity
1 S/m, (II) silicon thickness 100 µm and conductivity 10 S/m, (III) silicon thickness 50 µm
and conductivity 1 S/m. All other parameter values are defined in the caption of Fig. 5.6.

5.4 Comparison and Validation

In the following, several comparisons of the proposed FDFD-method with FEM full-wave
results and with results from the proposed approximate methods are performed for valida-
tion. These are carried out in a frequency range from 100 MHz to 100 GHz and for typical
parameter values. In the frequency range from 100 GHz to 500 GHz which will also be
considered in the application section, the silicon conductivity has a lower influence on the
properties than at lower frequencies. Therefore, the validation focuses on the first frequency
range in order to highlight the effects that occur due to the silicon conductivity at lower
frequencies.

Most general-purpose full-wave solvers are restricted with respect to the shapes that wave
ports can have, as they have to be planar in most case. The used FEM full-wave simulator
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Figure 5.8: Validation results for barrel radius of 15 µm, antipad radius of 30 µm, silicon
layer thickness of 50 µm, oxide layer thickness of 1 µm, radial waveguide radius of 100 µm,
and a silicon conductivity of 10 S/m. The silicon permittivity is 11.9 · ε0 and the silicon
dioxide permittivity is 4 · ε0. The reference plane is at the inner plane of the metallizations
with the result that the coaxial antipad section is excluded. The legend refers to the models
given in Fig. 3.6. (a) shows the complete frequency range, (b) the detail for the upper part
of the frequency range with labeling of the parameters. Phases of all parameters are close to
±90◦. Results from FEM [66] are only available for Y1,1, Y1,2, Y2,1, and Y2,2. Figure and text
adapted from [13].

[66] supports no radial ports. Therefore, the comparisons are carried out in terms of the
coaxial via ports of which two are assigned at the top and the bottom of each via. This
comparison is carried out with the different simulations to compare as follows: In the
FDFD-method, the procedure presented before computes an admittance matrix with the
first two indices corresponding to the top and bottom coaxial ports. The admittance matrix
for the case the the radial line port is short-circuited (at some distance from the via barrel)
is given by the upper left block Y[1,2],[1,2]. These admittance parameters can be compared
to FEM simulations because a PEC boundary conditions can be applied on the radial line
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Figure 5.9: The configuration described in the caption of Fig. 5.8 applies, except for the
following modifications: (a)–(b) The silicon layer thickness of 100 µm is used. (c)–(d) The
barrel radius and antipad radii are 5 µm and 10 µm, respectively. Figure taken from [13].

port surface. Results for the other parameters cannot be compared with any FEM results
but with result from the two approximate, analytical methods from Section 5.3.

In the following, the analytical description of a radial line segment with layered dielectric
given in Section 4.7.2 is concatenated with the approximate near field models. The mag-
nitudes of selected independent admittance parameters are shown in Figs. 5.8 and 5.9. At
low frequencies, the structure is electrically short (partly due to the slow-wave effect) and
all admittance parameters go to infinity. At higher frequencies, the structure is electrically
longer and the effect of the localized near fields on the admittance parameters becomes
more significant.

Several variations fo parameters have been performed. Results for variations of the silicon
layer thickness and of the barrel and antipad radii are shown in Fig. 5.9. With these and
other variations including those of oxide thickness and silicon conductivity good agreement
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is observed. Parameters Y1,3 and Y3,3 can only be compared with the approximate ana-
lytical methods and, again, a good agreement is observed. Parameters Y1,1 and Y1,2 can
can be compared for all mentioned methods and an excellent agreement of FDFD results
with the FEM results is observed. Comparing the approximate analytical methods, the
Williamson method, which ignores existence of the oxide layers, shows the better agree-
ment with the reference results, especially for the higher frequencies. It is concluded that
the FDFD method provides a high accuracy and, depending on the frequency range, the
Williamson model can be used to obtain a good to fair accuracy.

5.4.1 Convergence Behavior and Conclusions

As has already been discussed, a high numerical efficiency is not required because in typical
application scenarios of the near field model many identical vias of an array are simulated
the near field needs to be computed only once. Most full-wave solvers could also compute
this problem in acceptable times but lack the required radial port. The near field could only
be obtained through a de-embedding procedure. In order to limit the computation time
of the proposed FDFD method, the dependence of the accuracy of the results in terms of
network parameters on the grid resolution are of interest. With increasing grid resolution,
a convergence is expected. For a required accuracy of the network parameters, a necessary
grid resolution can then be estimated and be used as the starting point for an iterative grid
refinement. The expected convergence behavior can be observed in the example presented
in Fig. 5.10: starting with a total number of 238 grid points of the primary grid, the grid
resolution is increased up to 15232 grid points. Except for the self admittance parameter
at the radial port Y3,3, even the results for the lowest resolution are already close to those
fort the highest resolution. For the highest resolution with a total of 15232 grid primary
points a computation time of approximately 0.55 s per frequency step has been measured.
From experience, this is fast enough for most of the applications in the simulation of TSV
arrays. Therefore, the FDFD-model is used exclusively in the following applications with
the PBV.
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Figure 5.10: Analysis of convergence with increasing number of grid points: starting with
a small number of grid points, e.g. only two grid points assigned to the oxide layers, the
radial and axial number of grid points are doubled. The legend gives the total number N of
primary grid points of the computational domain. The analysis uses a barrel radius of 15 µm,
antipad radius of 30 µm, silicon layer thickness of 100 µm, oxide layer thickness of 1 µm, radial
waveguide radius of 80 µm, and a silicon conductivity of 10 S/m. Silicon permittivity is 11.9·ε0

and silicon dioxide permittivity is 4 · ε0. Figure and text adapted from [13].

5.5 Application in Physics-Based Via Modeling

In this section, near field models are used in the PBV model in conjunction with the far
field models presented in the previous chapter to obtain network parameter descriptions
of silicon interposers. A description is thereby obtained for via links assigned to single vias
and referenced to their coaxial ports. These ports are illustrated as A2 and B2 in Fig. 5.1.

Three different variants are considered for the PBV modeling and listed in Table 5.1.
For the first variant, it is assumed that the near field model can be represented as in
Fig. 3.6c, i.e., with only admittances which are parallel to each (coaxial) via port, and thus
analogous to the Yeff in Fig. 3.6c. Qualitatively, it can be expected that this is valid for
low frequencies. From the FDFD-admittance matrix Y , such an admittance Yap can be
obtained. By identification of the entries Y1,1 = Yap +Y

(R)
1,1 and Y1,2 = −Y (R)

1,1 one concludes

84



5.5 Application in Physics-Based Via Modeling

Variant Description/Comment
1 Only parallel admittances Yap (cf. (5.27)) to model the near fields.
2 Segmentation of near fields as three-port at inner (barrel) radii.
3 As Variant 2, but with first anisotropic modes [56,94].

Table 5.1: Physics-Based Via Model variants in Figs. 5.11 to 5.15. Table adapted from [13].

that
Yap = Y1,1 + Y1,2. (5.27)

The propagating field model uses only the isotropic mode for variants 1 and 2 and addi-
tionally the first anisotropic modes for variant 3. As it is discussed in Section 3.5.1 and
validated in Section 6.2, anisotropic modes are short-circuited for the propagating field
model. A radial line description as presented in (4.34) is used for de-embeeding/extraction
of a near field model from the FDFD results. This near field model is used in variants
2 and 3 for concatenation at the radial ports (ports C in Fig. 5.1). It has to be noted
that a de-embedding is not strictly necessary as the radial ports of the CIM could also be
adapted. Even if an FDFD domain size is chosen such that the corresponding CIM radial
ports overlap, this would still be supported by the CIM method.

The geometry and results of the first application example are depicted in Fig. 5.11 in
terms of magnitudes of scattering parameter results normalized to 50Ω. The structure
has two signal and four ground vias. Due to the symmetry of the structure, only four of
the overall 16 network parameters are of interest. As can be seen, the agreement of the
proposed PBV methods show a good agreement with the FEM reference simulations [66].
FEM simulation have been carried out both with metal component of perfect conductivity
and with metal component with the conductivity of aluminum of σ = 3.4× 107 S/m. No
significant differences can be observed between these two result sets. Larger deviations
between the different PBV model variants can be observed only for variant 1 compared to
the other variants. The inclusions of anisotropic modes has a small impact as is apparent
from the good agreement of variants 1 and 2.

As has been discussed before, the consideration of complete plane metallizations is one of
the limiting cases that enables an efficient physics-base modeling. In order to give in insight
into the applicability range two cases with plane perforations have been simulated using
FEM full-wave simulations and the results have been compared to the PBV results without
plane perforations. The two cases of plane perforations are named “Mod.1” and “Mod.2”
in Fig. 5.12 and can be described as follow: The first structure is named “Mod.1” and has
comparatively large circular cutouts of only the top metallizations. The remainder of the
structure (configuration of signal and ground vias) is the same as the as in Fig. 5.11. The
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Figure 5.11: First application example with a pair of signal vias accompanied by four ground
vias in an infinite parallel plate structure. In the reference FEM simulations both PEC and
aluminum are considered as material for the via barrels and metallic plates. Dimensions are
given in the insets, the silicon conductivity is 10 S/m. The silicon permittivity is 11.9 · ε0 and
the silicon dioxide permittivity is 4 · ε0. A typical simulation time per frequency point for the
FEM is 30 s; a typical time for the proposed method is 0.3 s. Figure taken and text adapted
from [13].
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Figure 5.12: Second application example with a pair of signal vias accompanied by four
ground vias as in Fig. 5.11 circular perforations. Via dimensions are the same as in Fig. 5.11,
the silicon conductivity is 0 S/m, silicon permittivity is 11.9·ε0 and silicon dioxide permittivity
is 4 · ε0. The geometry of the plane perforations is given in the insets. Variant “Mod.1” has
circular cutouts in the top plane, variant “Mod.2” has circular cutouts in both planes. Typical
simulation times per frequency point for the FEM are 15 minutes (Mod.1) and 10 minutes
(Mod.2); a typical time for the proposed method is 0.3 s. Figure and text adapted from [13].
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Figure 5.13: Third application example with a pair of signal vias accompanied by four
ground vias. The difference of the configuration compared to Fig. 5.11 is the closer spacing
of the vias. The silicon conductivity is 10 S/m, the silicon permittivity is 11.9 · ε0, and silicon
dioxide permittivity is 4 · ε0. Figure and text taken from [13].
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Figure 5.14: Fourth application example with an additional, central ground via compared
to Fig. 5.11. Dimensions are given in the insets, the silicon conductivity is 10 S/m. Figure and
text taken from [13].
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Figure 5.15: Fifth application example: two signal vias with ports at both ends and two
rows of ground vias (via fences). Dimensions are given in the insets, the silicon conductivity
is 10 S/m. Figure and text taken from [13].
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second structure is named “Mod.2” and has comparatively small cutouts. These cutouts
are around and between the vias (which again have the same configuration as in Fig. 5.11)
and have sizes comparable to the via dimensions. In this case, the cutouts are applied
to both the top and the bottom metallizations. Because models for the cutouts are not
available for the PBV, they are not considered in it. The agreement of the results is still
good up to 150 GHz for variant “Mod.1” and to about 400 GHz for variant “Mod.2”. In
the FEM simulations empty air boxes with absorbing boundary conditions are attached
to the areas of the perforated planes to model the environment. The influence in practical
environments consisting of, e.g., redistribution layers of an interposer is thereby ignored.

A prerequisite for the applicability of the PBV model as presented in the previous chapter
is the coupling of vias only through a propagating field. This condition is met if the via
pitch is large enough in comparison to the distance at which a coupling through cut-off
higher order parallel plate modes occurs. This distance in lateral directions is dependent
on several parameters. It is, e.g., proportional to the height of the cavity between the
plane metallizations. For the PCB application of the PBV, it has already been observed
in [65] that an additional near-field coupling should be included in order to accurately
model cases of very close via spacing. Using FEM full-wave results, it is investigated in
the example shown in Fig. 5.13 which influence reduced distances between vias have. In
comparison to the structure in Fig. 5.11 only the distances between signal vias and to
ground vias are reduced, all other parameters are the same. It can be observed that there
is still a good agreement with the reference full-wave results for the transmission S1,1 and
the reflection S1,2. In contrast, the crosstalk parameters S1,3 and S1,4 show larger deviations.
These deviations are most pronounced towards lower frequencies.

The next example is shown in Fig. 5.14 and allows to investigate the effect of an interme-
diate ground via between two signal vias. Variant 1 of the PBV model shows again the
strongest deviations for frequencies above 150 GHz. Variant 2 also shows stronger devi-
ations from the reference results Variant 3. Therefore, in this case, a clear advantage of
including the first anisotropic modes in the far field model can be observed.

In the last example, which is shown in Fig. 5.15, a structure that has some similarity with
a substrate integrated waveguide is considered. The structure consists of two signal vias
and several ground vias constituting two ground via fences. Using the PVB in Variants 2
and 3, a good agreement can be observed up to about 400 GHz

In summary, it can be conluded that this section proves that with the proposed adaptation
of the PBV, i.e., by using a local FDFD-based full-wave modeling and the CIM with
wave number for the layered structure, an accurate modeling technique is available. The
accuracy has been validated using several relevant example structure. The best accuracy
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can be obtained by using the complete near field model which is obtained through a de-
embedding procedure and by using also the first anirostropic mode in the CIM for the far
field model.

5.6 Conclusions

An FDFD method has been presented for the near field modeling of TSV with the physic-
based approach. Due to the compatible radial port definitions and its numerical efficiency
it is well suited for the indented purpose. An FDFD method might also be a viable option
for the computation of the coupling between vias through localized fields which is not
covered by the PBV as presented in this thesis.
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Chapter 6

Application to Large Scale Crosstalk Analysis of TSV
Arrays

Up to this point, all relevant adaptations for the physics-based modeling of TSVs in silicon
interposers have been discussed and validated for small structures. In the following, the
PBV is also validated for mid-size TSV arrays and the mode terminations proposed in Sec-
tion 3.5.1 are validated. Further, adaptations of the computational procedure are discussed
that allow for a higher computational efficiency when computing the far field results. This
enables the simulation of large TSV arrays and the investigation of all relevant interactions
in terms of crosstalk. The definition of a power sum of uncorrelated crosstalk is motivated
and subsequently used to investigate the crosstalk properties in larger via arrays. Finally,
the effects of variations of several design parameters, such as silicon conductivity and pitch,
on the defined total crosstalk are investigated. This enables an optimization of parameters
within the bounds imposed by fabrication processes to reduce the crosstalk.

6.1 Adaptations and Optimizations for Large Scale Analysis

As discussed in Section 3.6.3, the CIM that is used for computation of the far field proper-
ties relates several modes on circular ports and single modes on linear ports. For the results
in terms of scattering parameters that are referenced to the fundamental modes on coaxial
via ports, the description in terms of the isotropic modes on radial1 ports is required. The
latter is concatenated with the near field models to obtain the desired result. It is obtained
by enforcing specific boundary conditions on the anisotropic ports, i.e., these modes are
terminated with impedances that correspond to these boundary conditions.

Conventionally, the network parameters are first computed for of all considered modes on
1In the corresponding discussion in [14, Sec. II.C], it is erroneously referred to the coaxial ports instead

of the radial ports.
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all ports. The mode terminations are then enforced, e.g., by using sub-matrices of admit-
tance or impedance parameter matrices to apply short circuit or open circuit terminations,
respectively. The numerical efficiency of the computation of network parameters using
the CIM can be improved by including port/mode terminations in the matrix setup and
solution steps of CIM computation. For reduction of ground vias, this has already been
presented, e.g., in [111]. In the following both short-circuit and open-circuit boundary
conditions are included in the CIM solution step.

6.1.1 Derivation of Optimized Solution

The CIM as formulated and denoted in Appendix D is assumed with a matrix equation
that relates vectors of modal voltages and currents V and I, respectively, by matrices U
and H as

UV = HI. (6.1)

The conventional evaluation then starts from the (parallel plate) admittance matrix given
by Ypp = H−1U or the impedance matrix given by Zpp = U−1H .

For the proposed approach, the CIM matrices U and H are ordered or set up with blocks
which relate the modal voltages and currents of fundamental modes on signal vias (index f),
open-circuited ports (index o), and short-circuited ports (index s). The assignment of
modes to the last two categories will be discussed later in this section. The block-wise
representation can be written asUff Ufo Ufs

Uof Uoo Uos

Usf Uso Uss


Vf

Vo

Vs

 =

Hff Hfo Hfs

Hof Hoo Hos

Hsf Hso Hss


IfIo
Is

 . (6.2)

The two terminations Vs = 0 and Io = 0 for short- and open-circuited port, respectively,
are now enforced in (6.2). The second and third row of (6.2) then relate voltages Vf

and Vo, and currents If , and Is. Of these quantities, Vo (modal voltages of open-circuited
modes) and Is (modal currents of short-circuited modes) are not relevant for the subsequent
computations and can therefore be eliminated. By permutation and insertion into the first
row

ŨVf = H̃If (6.3a)
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is obtained [14], where

Ũ = Uff −HfsA
−1B +UfoU

−1
oo (HosA

−1B −Uof ), (6.3b)

H̃ = Hff +HfsA
−1C −UfoU

−1
oo (HosA

−1C +Hof ), (6.3c)

with

A = 1ss −H−1
ss UsoU

−1
oo Hos, (6.3d)

B = H−1
ss Usf −H−1

ss UsoU
−1
oo Uof , (6.3e)

C = −H−1
ss Hsf +H−1

ss UsoU
−1
oo Hof , (6.3f)

and the identity matrix 1ss of the size equal to the number of short-circuited modes.
In (6.3b–f) several parts can be identified which appear repeatedly and should hence be
computed only once to obtain a higher numerical efficiency. The parallel plate admittance
and impedance in terms of the fundamental modes on circular ports are obtained as Y (f)

pp =

H̃−1Ũ and Zpp = Ũ−1H̃ , respectively

6.1.2 Discussion of Savings

It should be emphasized that the method proposed above does not introduce any simpli-
fying assumptions. Instead, it leads to a reduction in the number of required calculation
steps by directly computing results for specific boundary conditions instead of computing
results for arbitrary boundary conditions in an intermediate step.

Saving in Setup Step

Fewer elements have to be computed and stored in memory in the matrices Ũ and H̃
compared to the full/general CIM matrices U and H . Specifically, the elements in the
sub-matrices/matrix blocks Ufs, Uos, Uss,Hfo,Hoo, andHso do not need to be computed.
The improvement in efficiency of matrix setups is significant if one or more of the following
is true:

• A large number of modes on circular ports is used to accurately model the anisotropy
in radial wave propagation.

• The layout features many ground vias in comparison to the total number of vias.
This can be the case, e.g., for substrate integrated waveguides in silicon interposers.
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• There are many linear ports compared to the number of circular ports which are
terminated with an open circuit. This can be, e.g., the case for evaluation at higher
frequencies where a finer discretization of contours is needed.

The three conditions refer to three ratios which should be large in order obtain a gain
in efficiency. In the limit of all these ratios being large it can be seen that, at most, a
reduction of memory and matrix setup time of 50 % is possible.

Saving in Solution Step

While for small arrays, the setup times typically dominate the overall computation time,
the situation is different for large arrays where the solution step dominates. This can
be attributed to the fact that the two parts scale differently. Further, small systems of
equations can often be stored in the CPU cache memory which leads to faster computations
for the same algorithmic efficiency. For large TSV arrays, the PBV computation time is
dominated by the solution of the matrix equations for the computation of the parallel plate
impedance/admittance. For the matrix equations in (6.1) and (6.3), the overall worst-case
numerical complexity is O(n3) [14]. For the conventional use of the CIM, n = nf +no +ns
where nf , no, and ns are the numbers of fundamental, open-circuited, and short-circuited
ports, respectively. For the method described by (6.3), the numerical complexity is governed
by the port type with the highest number of ports, i.e. in this case n = max{nf , no, ns}.
Consider, e.g., the case in which a large number of anisotropic modes on circular ports is
used that gives a number of short-circuited ports that is larger than the number of open-
circuited ports on the discretized plane contour. In this case, the number of open-circuited
ports governs the n of the above numerical complexity.

6.2 Validation of the PBV Model for Mid-Scale TSV Arrays

In the following, several TSV arrays in metal-clad interposer of medium sizes are simulated.
The simulations aim at the validation of the proposed PBV approaches by comparison with
FEM full-wave simulation results [112]. The magnitudes of scattering parameters presented
in the following show the crosstalk from one coaxial via port located on the top of the struc-
ture to ports of other vias on the bottom side, i.e. the far-end crosstalk (FEXT) is shown
exclusively. The scattering parameter are normalized to 50Ω. The following investigations
are limited to the FEXT because reflection and transmission have already been validated
in Section 5.5 and far- and near-end crosstalk differ mainly in phase. The layout of the
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Figure 6.1: Validation structures with port numbering for the signal via ports. The first
numbers above each via refers to for the (coaxial) top ports, the second number to the
(coaxial) bottom port. Ground vias are shown as simple circles. The default pitch between all
neighboring vias is dpitch = 200 µm. (a) case with infinite planes (b) case with finite planes
with, if not stated otherwise, ∆ρx = ∆ρy = dpitch. Figure and text taken from [14].

considered structures including the assignment of signal and ground vias is illustrated in
Fig. 6.1. Table 6.1 gives the the default parameter values. Further, the respective parameter
variations are given in the figure captions.

The termination of the appropriate termination of the (azimuthally) anisotropic modes
has been summarized in Sec. 3.9. It has been stated that the short-circuit should be the
termination of choice for most practical cases. To gain more insight into the relevance of
the type of mode termination, results for mode terminations with open circuits are also
shown in several of the following cases.

The validation results are presented in Figures 6.2 through 6.4. These cover variations of
the silicon conductivity, of the via pitch, and of the substrate metallization plane sizes.
In general a good agreement of results can be observed in Figs. 6.2a and 6.2b. In some
cases larger deviations are found at lower frequencies. There, a simple (inductive) behavior
is expected [113]. Therefore, the variations of the reference results in these regions are
unphysical.

As can be seen in the inset of Fig. 6.2a, below 600 MHz the reference simulation results
show a more complex behavior than the PBV results. The latter are more reasonable since
the crosstalk should show a simple inductive behavior at low frequency, cf. Appendix D.3.
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Figure 6.2: Far-end crosstalk from port 1 to ports 4, 6, 8, 22, and 32 (order of decreasing level
at 50 GHz) for the layout in Fig. 6.1a with default parameter values and a pitch of 200 µm.
Both PBV variations with either short-circuited or open-circuited ports of the anisotropic
modes are shown. (a) With a silicon conductivity of 10 S/m. (b) With a silicon conductivity
of 100 S/m. Figure and text adapted from [14].
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Figure 6.3: Far-end crosstalk for the layout in Fig. 6.1a with the following port ordering
corresponding to decreasing levels at 50 GHz. (a) From port 1 to ports 3, 4, 6, 8, 22, and
32 with reduced pitch of 100 µm and silicon conductivity of 1 S/m. Inset: Detail of FEM
reference results for S1,3 and S1,4 and the PBV results for both S1,3 and S1,4. (b) From port
1 to ports 4, 8, and 32 with default pitch and a silicon conductivity of 10 S/m. A maximum
deviation of 4.8 dB and a mean deviation of 0.42 dB are obtained for S1,4 with the PBV using
short-circuit terminations. Figure and text adapted from [14].
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Description Name Default Value
Radius of the via barrel rvia 15 µm

Radius of the clearance/antipad rantipad 30 µm
Pitch dpitch 200 µm

Minimal distance between via antipads dmin dpitch − 2rantipad

Thickness of the oxide toxide 1 µm
Thickness of the silicon tsilicon 100 µm
Height of the cavity tcavity tsilicon + 2toxide

Thickness of the plane metallizations tmetal 5 µm
Relative permittivity of silicon εr,Si 11.9

Relative permittivity of oxide (SiO2) εr,oxide 4

Table 6.1: Default Parameter Values for the Validation Setups. Table adapted from [14].

Above 5 GHz a maximum deviation of 0.28 dB and a mean deviation of 0.084 dB are ob-
tained for S1,4 with the PBV using short-circuit terminations.

In the inset of Fig. 6.2b it can be observed that below 4 GHz the reference simulation results
show again unphysical behavior. Above 5 GHz a maximum deviation of 1.5 dB and a mean
deviation of 0.24 dB are obtained for S1,4 with the PBV using short-circuit terminations.

Good agreement with reference results is also obtained for most of the results from about
5 GHz to 100 GHz. The only major exceptions are those cases where a close spacing of
vias in comparison to the cavity height is used. As discussed before, the PBV results
are inaccurate in these cases because a near field coupling in addition to the coupling
through parallel plate modes occurs. The existence of this mechanism can be concluded
from the difference in near- and far-end crosstalk (S1,3 and S1,4 , respectively) as observed
in Fig. 6.3a. The relevant parameters that should be compared are the cavity height tcavity

and the minimal distance between vias dmin. In case of signal vias the latter is the minimal
distance between the antipad regions. The order of the errors of the PBV that can be
expected for different values of the ratio minimal distance to cavity height dmin/tcavity

should be discussed here: For a ratio dmin/tcavity = 1, a PBV error of about 0.5 dB and for
a ratio dmin/tcavity = 0.5 a PBV error of about 3 dB are obtained in Fig. 6.3a. For a minimal
distance between antipads of 40 µm in Fig. 6.3a, a ratio of dmin/tcavity = 0.4 results in an
error of about 4.6 dB starting at a few GHz.

The investigation of higher frequencies in Fig. 6.3b shows very good agreement up to
200 GHz and good agreement up to 500 GHz. Also for the results with finite planes in
Fig. 6.4, where both the PBV and the FEM simulation use open circuited boundaries at
the plane edges, good agreement is obtained.

In conclusion, there is a good general agreement of the proposed PBV method with the
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Figure 6.4: Far-end crosstalk from port 1 to ports 4, 8, 6, 32, and 22 (order of decreasing
level at 50 GHz) for the layout in Fig. 6.1b with silicon conductivity of 10 S/m. Inset: For the
case with finite planes a very good agreement with reference results can also be obtained for
low frequencies. Figure taken and text adapted from [14].

FEM reference results in the results presented in Fig. 6.2a–6.4. In the cases of close spacing
there are larger deviations with the FEXT being consistently overestimated.

6.2.1 Numerical Performance

The PBV simulations have been executed using implementations in MATLAB [114]. The
computer system has an Intel Core i7-960 8-core 3.2 GHz CPU and 24GB of RAM. For a
TSV array that is significantly larger than the examples shown before, the magnitudes of
scattering parameters are presented in Fig. 6.5. A 3×3 pattern is used with ground vias at
two opposite corners and signal vias elsewhere. From this pattern, several arrays of different
sizes are constructed and the admittance parameters are simulated with the isotropic and
four anisotropic modes (modes with indices 0,±1,±2, cf. Appendix D). The simulation
times per frequency point are given in Table 6.2. On the used computer system, only the
smaller arrays in Table 6.2 can be simulated due to limitations in RAM. For the FEM
results in Table 6.2, both the simulation time for the “adaptive process” at the solution
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frequency (iterative mesh refinement until a convergence measure is below a certain limit)
and the per-frequency-point simulation time during the consecutive sweep are presented.

6.3 Time and Frequency Domain Superposition Techniques for
Total Uncorrelated Crosstalk

In this section it is investigated if an upper bound to the total uncorrelated crosstalk
can be computed for TSVs which are part of large arrays. It is important to quantify the
crosstalk in via arrays, because it is known to contribute a substantial part to the overall
crosstalk characteristics between channels of an interconnect regardless of whether each
channel is assigned to a single via, i.e. using single-ended signaling, or to a pair of vias,
i.e. using differential signaling. For a design that ensures signal integrity, the crosstalk a
channel receives from all other channels must be quantified and the contributions must
be superposed in an appropriate way. Further, if the characterization is carried out in
frequency domain and the signal integrity characterization should be carried out for digital
signals, several spectral contributions must be taken into account. In the following, a
statistical superposition of crosstalk contributions in the frequency domain is proposed.
It is computationally efficient and requires no conversion to the time domain. The result
from the statistical superposition provides a measure of total crosstalk by assuming that
the different crosstalk contributions from all channels are uncorrelated. For this type of
crosstalk it can be demonstrated that an upper bound probably exists. This leads to the
conclusion that, for very large TSV arrays, smaller arrays sizes can be determined that
exhibit almost the same total crosstalk. Examples for sub-arrays that show approximately
the same crosstalk as a larger full array are also given in this section.

The situation considered in this section is illustrated in the following: The vias in inter-
posers are typically used in arrays of up to thousands. A small segment of such an array is

Array Size PBV Model FEM (sweep)

8× 8 = 64 0.3 s 7 min
11× 11 = 121 0.5 s 18 min
36× 36 = 1296 48 s not available
45× 45 = 2025 140 s not available
63× 63 = 3969 873 s not available

Table 6.2: Approximate Simulation Times per Frequency Point. Table adapted from [14].
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Figure 6.5: For an array with 36 × 36 (1296) vias, magnitudes of crosstalk (scattering
parameters) from a port at the array corner to several far-end ports of the array and the
corresponding normalized distances (multiples of pitch of the center to center distances of
corresponding vias). The 3 × 3 pattern from which the array is created has ground vias at
two opposite corners and signal vias elsewhere. Only values above −140 dB are shown. The
average computation time per frequency step of the network parameters is 48 s. Figure and
text taken from [14].

drawn in Fig. 6.6. Consider digital signals as the one illustrated in Fig. 6.7a. In this case a
simple train of pulses is used which could represent, e.g., a clock signal. For high data rates
the spectral content of these digital signal includes high frequencies for which more often
than not a stronger coupling occurs between vias and the corresponding channels than at
low frequencies. In larger arrays, it might not be sufficient to consider only the crosstalk
from directly neighboring vias and channels for the estimation of the overall crosstalk.
Instead, it can be necessary to include also the crosstalk over large distances, i.e., from
more distant vias. At the time these investigations are carried out, the typical array sizes
which are of interest cannot be computed with FEM full-wave simulations on a personal
computer. Therefore, the validated physics-based methods are exclusively applied in the
following.
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Figure 6.6: Considered type of through silicon via (TSV) structure with many parallel
channels assigned to signal vias of a larger array. The investigated property is the total
uncorrelated (far-end) crosstalk in large via arrays which is in the presented cases (mainly)
due to parallel plate mode propagation. Figure and text taken from [11].

6.3.1 Computation of Total Uncorrelated Crosstalk

The starting point of signal integrity investigations can be the simulation of the structures
of interest, here large TSV arrays. The large scale results are, e.g., obtained as network
parameters. The individual contributions to crosstalk at individual frequencies can already
be estimated from the scattering parameters which are normalized to a meaningful reference
impedance (here 50Ω). The effective impact of crosstalk in digital system is typically
evaluated in the time domain. An effective tool for this task is the eye diagram. An eye
diagram provides a means of visualizing all relevant signal degradations such as effects of
inter-symbol interference (ISI) and different transitions, and the remaining margin for a
digital signal to be decoded correctly. A simplified eye diagram for the clock signal which
mainly shows the effects rounded signal edges and of a superposed uncorrelated crosstalk
is illustrated in Fig. 6.7b. In comparison to the input signal from Fig. 6.7a, the total
uncorrelated crosstalk causes a widening of the lines in the eye diagram which is the same
for all time instances.

The following investigations focus on the far-end crosstalk (FEXT). This situation is also
visualized in Fig. 6.6. The FEXT is the crosstalk contributions on a victim channel (here
assumed in the center of a large array) from all surrounding aggressor channels which only
transmit signals in one direction, here from the top to the bottom ports.

The assumption of uncorrelated aggressor signals which allows for a computation of the
total crosstalk still needs to be motivated. It can, e.g., be justified for cases where the
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Figure 6.7: (a) Illustration of the type of trapezoidal, digital input signals that are consid-
ered. (b) The proposed crosstalk measure can be interpreted as a measure of the line widening
in an eye diagram due to the uncorrelated crosstalk contributions. (c) Top and cross-sectional
view of the considered TSV array. The via with the victim channel is in the center of any
considered sub-array and marked with a red arrow. The planes extend infinitely, all ports are
coaxial ports at the inner edges of the plane metallizations. The pitch is 200 µm. (d) Magni-
tudes of far-end crosstalk (FEXT) of several channels of the 9×9 (81 vias) array. The drawing
to the right marks the locations of the victim channel/via using an arrow and the aggressor
channels/vias using the corresponding line colors. Figures adapted and text taken from [11].
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relative timings or assignments of channels are not yet determined as can be the case in
early design phases. A worst-case scenario would be simulated by superposition in time
domain of the maximum amplitudes of every crosstalk contribution but this could lead to
too strict constraints. Therefore a “typical” total crosstalk as offered in the following will
in many cases be preferred. The proposed measure might also be applicable in later design
phases, e.g., if the channels are asynchronous.

Crosstalk Power Sum for Varied Array Size

In the following, the crosstalk is first considered for single frequencies. As an example,
the scattering parameters in Fig. 6.7d illustrate the behavior from 1 GHz to 100 GHz for
a setup depicted in Fig. 6.7c. At lower frequencies, the frequency-dependence is simple
and almost linear (with dB magnitude scaling and logarithmic frequency scaling) but it
becomes more complex with increasing frequency. For the investigation of the question
which vias should be included, the behavior as a function of the distance from the victim
via is of interest. The crosstalk level mainly decreases with increasing distance due to
conduction losses, polarization losses of the materials, and due to the broadening of the
cylindrical wave fronts. On the other hand, the number of aggressors within a circumference
is proportional to the maximum distance that is considered [115]. With both these effects
in mind, the question arises if the uncorrelated crosstalk of large arrays is bounded and
how the dependence on the array size can be characterized.

The central limit theorem is applied in the following for the analysis and can be stated
in the present context as follows: If a large number of contribution are added up, i.e. the
superposition is linear, and all contributions are comparatively small, then the resulting
probability function is approximately a normal distribution. This effect is qualitatively
independent of the probability functions of the contributions. In the present context of
crosstalk modeling, all contributions of inter-via crosstalk should be of similar orders of
magnitude. This can be intuitively seen to apply for those aggressor vias which have the
same distance from the victim via. The total uncorrelated crosstalk is known in the liter-
ature as the power sum of crosstalk (PSXT) [116, 117]. It can be formulated in terms of
the scattering parameters for the (output) port of a victim via/channel with index i and
for the (single) frequency with index k as

PSXTi,k =

√√√√ Np∑
j=1;j 6=i

|FEXTi,j(fk)|2 (6.4)

where FEXTi,j is the far-end crosstalk (scattering parameter) from port j to port i. The
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indices j = 1, 2, ..., i − 1, i + 1, ..., Np refer to selected ports, i.e., in the present case all
far-end ports of the considered complete array (or sub-array), with respect to a considered
port i of the victim channel except for the opposing port on the same via (which would
refer to the transmission in the considered single-ended case). Np is the highest index of
the far-end ports.

As has been seen in the previous chapter, the far-end crosstalk differs from the near-end
crosstalk mainly in phase and should therefore lead to magnitudes of crosstalk very similar
to those presented in the following. As already discussed, there are exceptions to this.
E.g., cases of very close spacing of vias where the physics-based modeling as presented in
this thesis mostly leads to an underestimation of near end crosstalk and overestimation of
far-end crosstalk.

An example how the total far-end crosstalk as defined in (6.4) evolves with the number of
included vias is given in Fig. 6.8a. Different sub-arrays from the array in Fig. 6.7 are used
and the simulation is repeated for all considered arrays sizes. It can be observed in Fig. 6.8a
that at higher frequencies the PSXT increases monotonically with the array size. For lower
frequencies, here below 50 GHz, the behavior is not monotonic but with a tendency of
decreasing PSXT. It is important to note that not only signal vias but also ground vias
are added to the array from one sub-array to the next larger one. The impact differs for
different frequencies, i.e. the improved control of return currents due to attentional ground
vias has a larger influence at lower frequencies and leads to the observed smaller PSXT for
the larger arrays.

While the convergence can be observed in Fig. 6.8a, it is also interesting to examine the
difference to a significantly larger array. Fig. 6.8b shows the deviations of the results for
sub-arrays from those for the largest of all simulated arrays. The deviations (as defined in
the caption of Fig. 6.8) for all frequencies are below 1 % if the array has 121 or more vias.
In addition to the presented results, arrays have been simulated which have a lower silicon
conductivity or a larger pitch. Either of these modifications leads to a slower development
of the PSXT of the sub-array to the PSXT of the full array with increasing size but the
general behavior is identical.
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Figure 6.8: Comparison of power sum of crosstalk (PSXT) for different array sizes and
thus different numbers of included crosstalk sources. (a) For the array given in Fig. 6.7(a),
for several single frequencies as a function of several separately simulated sub-array sizes.
(b) For the array given in Fig. 6.7(a), PSXT difference in percent for comparison of the sub-
array results with results for a full 21 × 21 = 441 vias array defined as PSXT-difference =
|PSXTsubarray − PSXTfull|/|PSXTfull|. Figure and text taken from [11].

108



6.3 Time and Frequency Domain Superposition Techniques for Total Uncorrelated Crosstalk

Time Domain Approaches for Digital Signals

In the following, two statistical time domain approaches that are based on methods from
[118–121] are briefly discussed and subsequently used to validate the proposed frequency
domain approach. As the channels that are considered here are characterized in frequency
domain by the PBV, the time domain signals have to be computed first. These are obtained
using the channel properties in terms of complex scattering parameters of the crosstalk
contributions, the complex spectra of the pulse trains or a pseudo random bit sequence
(PRBS), a multiplication in frequency domain, and a Fourier transform to the time domain.
Examples for the used spectra are depicted in Fig. 6.9a.

An example for a synthetic eye diagram based on the proposed approach is given in Fig. 6.9b
and generated as follows: At any time instant the transmitted signal is computed (red solid
line), here only for the transitions high–low–high and low–high–low (e.g. a clock signal).
The crosstalk is characterized here independent of the time within the unit interval by the
normal distribution with the standard deviation computed from the superposition in terms
of power as in (6.4). The synthetic eye diagram can then be used to estimate quantities
such as the vertical eye opening Veye.

For the first time domain approach, the probability density functions (PDFs) of all time
domain signals of crosstalk contributions are computed. These PDFs can be interpreted for
each signal as giving the probabilities of a certain voltage levels to occur independent of the
time instant. An input signal in time domain is illustrated together with a corresponding
crosstalk signal in Fig. 6.10a. For signals composed of single frequencies, the PDFs can
be directly given. Using the results from [122, Example 16.8], the PDF of a sine or cosine
function f(x) = a sin(x) can be given analytically as

p(x) =


a

π
√

1− x2
, if − 1 < x < 1,

0, otherwise,
(6.5)

and is illustrated in Fig. 6.10b. The probability of a certain voltage range to occur is given
by the integral of this density over the voltage range. The consideration of digital signals
requires a numerical evaluation with discrete frequencies, time instances, and voltage levels.
For the numerical application, a discretization needs to be used. This discretization can,
e.g., be interpreted in one of two following ways: It can be interpreted as allowing only
certain discrete voltage levels and using a probability mass (PMF) function as the one also
shown in Fig. 6.10b and derived from the PDF. The discretization can also be interpreted
as approximating the PDF with a PMF. In any case, the PMF can be computed, e.g.,
from the PDF by using intervals of equal sizes and assigning the integral of the PDF
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Figure 6.9: (a) Example for the line spectrum of a periodic single pulse and a pseudo-random
bit sequence (PRBS) with the corresponding asymptotes and the envelope. (b) Eye diagram
for a repeated single pulse (e.g. clock signal) in the form of contour lines (solid black lines) for
the probabilities above and below the signal without crosstalk (solid red line). Statistically, no
voltages from the innermost areas (eye opening) are observed during the time of 1012 pulses.
Figures and text taken from [11].

over each interval to the center value of every interval. In the following these integrals are
approximated by evaluating the PDF at the center values of the intervals and enforcing the
sum of PMF values to equal 1. This implicitly amounts to application of a mid-point rule
for the integrations over the intervals. A probability density corresponding to the crosstalk
signal in Fig. 6.10a is depicted in Fig. 6.10c.

After obtaining the PDFs, the probability density of the superposition of all signals (as su-
perposed in time domain) is given by the convolution of the individual PDFs. As predicted
by the central limit theorem, for large numbers of superposed sources and relatively similar
properties of the individual PDFs, the PDF that results from this convolution approaches
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Figure 6.10: Illustration of the statistical evaluation techniques. a.u. means arbitrary unit.
(a) Considered time domain input signal and example output signal. (b) PDF and PMF of
a sine signal. (c) PDF of an example crosstalk signal. (d) 2D map of probabilities of voltage
levels for a recording of a large number of time domain crosstalk signals. (e) Evaluation of the
standard deviation for all times of the unit interval and its average. (f) Normal distributions
approached by the PDFs at any time of the UI. Figures adapted from the corresponding
presentation of [11].
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a normal distribution. The most interesting characteristic of this normal distribution is
the standard deviation as will be seen in the following. This is because an average close
to zero is obtained if there is almost no DC coupling as in these structures. The results
from this method are labeled as “PDF convolution” in the following validation section and
Fig. 6.11a.

The second time domain approach can be interpreted as imitating the behavior of the
traditional eye generation setup in which a pattern generator is used as a signal source
and an oscilloscope superposes the time domain signal triggered/synchronized to a clock
signal. Because only the crosstalk itself without the transmitted signal is investigated, no
eye openings etc. can be observed but instead a probability of crosstalk levels at certain time
instances. For the discrete time instances of the unit interval and discrete voltage levels,
a 2D histogram as the one illustrated in Fig. 6.10d is obtained. For each time instance, a
standard deviation can be computed which is depicted in Fig. 6.10e. With an increasing
number of shifted crosstalk contributions the standard deviation at any time instant of the
unit interval can be recorded and gives the graph σSD(t) in the figure. The mean of the
standard deviation σSD is assumed to be a good approximation of the value towards which
the standard deviation for all samples converges if the averaging is performed over more
samples. The results from this method (using the average of the standard deviations) are
labeled as “time domain” in the following validation section and Fig. 6.11a.

For all time instances, the probability distributions are found to converge towards normal
distributions. For these, both the PDF and the PMF are illustrated in Fig. 6.10f. The
power of the crosstalk can therefore be characterized by a single quantity. In the following
the standard deviation σSD is used for this purpose, i.e. the crosstalk measure in dBV for
this case is given by 20 · log(σSD/1 V).

Frequency Domain Approach for Digital Signals

By construction of the time domain signals, the phases of the spectral components of the
crosstalk signals are taken into account. In the frequency domain approach it is assumed
that this phase relation has no relevance for the superposition of uncorrelated signals
and can therefore be ignored. The empirical justification of this assumption follows the
following reasoning: consider the case in which all channels of the setup carry the same
type of signal, i.e., the same discrete spectral contributions are relevant for all signals.
This allows to determine the superposed spectral components first, i.e., for each spectral
component the contributions from the individual channels are added up as powers as in
(6.4). Next, the spectrum of total crosstalk is weighted with the spectrum of the signal
which is identical for all channels considered here. This is possible because the phases of
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6.3 Time and Frequency Domain Superposition Techniques for Total Uncorrelated Crosstalk

both signals have been assumed to be uncorrelated, i.e., the phases due to the electrical
lengths of the individual crosstalk paths are irrelevant.

This procedure of weighted superposition of powers has been proposed and named weighted
power sum of crosstalk (WPSXT) in [11]. It can be summarized using the following formula
as

WPSXTi =

√√√√ Nf∑
k=1

(
Np∑

j=1;j 6=i

|FEXTi,j(fk)|2
)
· |w(fk)|2, (6.6)

where the inner part in braces is the summation of power for a discrete frequency fk as in
(6.4). j = 1, 2, . . . , i− 1, i+ 1, . . . , Np are the indices of the includeds ports corresponding
to crosstalk onto channel i as in (6.4). The outer part is the weighting of the included,
discrete frequencies with indices k = 1, 2, . . . , Nf using the corresponding weights w.

When computing time domain crosstalk signals through multiplication of the spectrum
of the input signal and transfer function in frequency domain, the complex two-sided
spectra have to be used. Analogously, a two-sided spectrum has to be used in (6.6) for
the scattering parameters FEXTi,j(fk) and the weights w(fk) that characterize the digital
signal spectrum. In comparison to the time domain signal computation, the phases of
the spectrum can be neglected. The indices k = 1, . . . , Nf refer to the components of the
discrete spectrum of the signals and the w(fk) are computed by a discrete Fourier transform
of the time domain signal with a normalized (e.g. 1 V) amplitude. From inspection of
the crosstalk characteristics in Fig. 6.7d and the typical signal spectrum in Fig. 6.9a, a
frequency range that dominates the overall properties in the examples investigated here can
already be predicted: At low frequencies the crosstalk is comparatively low and at higher
frequencies the contributions of power to the overall signal power are low. An intermediate
frequency range should therefore dominate the overall crosstalk power.

Validation of the Frequency Domain Method

The proposed frequency domain approach which is summarized in (6.6) is validated in the
following. The TSV array from Fig. 6.7a with 81 vias is investigated for (i) the pulse train
(repeated single pulse that could represent a clock signal) and for (ii) two different pseudo
random bit sequences (PRBS). The results are depicted in Fig. 6.11a. As can be seen,
a good agreement is obtained for the proposed weighted PSXT from (6.6) and the two
time domain approaches for the single pulse train. Only the time domain method which
evaluates the results for a large number of time-shifted signals is used to also evaluate the
total crosstalk for the sequences known as PRBS-4 and PRBS-5. A total crosstalk that is
2 dB to 3 dB lower than for the single pulse train results can be observed. An interpretation
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Figure 6.11: Validation and application of the frequency domain method. The signals on all
channels have the same amplitude of 1 V. The crosstalk refers to the ±σSD-voltage levels of
the corresponding probability distributions. (a) Comparison of the total crosstalk obtained
with the discussed methods. The single pulses have a trapezoidal shape with a rise time from
minimum to maximum value given on the x-axis of the plot and with respective widths at
half maximum which are five times as large. (b) Comparison of weighted PSXT for different
array sizes. Each data point results from a separate simulation with the specified array size
instead of using the results for the sub-array from the simulation of the largest used array
size. Figure and text taken from [11].
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is feasible in frequency domain and in time domain: Qualitatively, the pseudo-random bit
sequences have, for a given amplitude and the same rise times, a larger spectrum proportion
at lower frequencies compared to the single pulse train. As the links under consideration
have a low-pass behavior, the lower total crosstalk is therefore expected. Also, in time
domain, the pseudo-random bit sequences have varying durations on the states of the
lower or higher voltage level. The average number of transitions is half the number of
transitions of the single pulse train. If intersymbol interference (ISI) of the crosstalk signal
(per channel) is negligible, this corresponds to a 3 dB difference in the crosstalk power
contributed. For the shorter rise time in Fig. 6.11a, the smaller difference in PSXT can be
attributed to an ISI of the crosstalk signals.

Investigation of Sub-Array Approximation

Next, the results for the digital signals for different sub-array sizes can be compared; the
results are presented in Fig. 6.11b. It can be seen that small sub-arrays, in the present
case 25 vias, cannot represent the full array properties accurately in that the WPSXT
is significantly different. The difference if larger for longer rise times which corresponds
to lower frequency components. As has already been observed from the results shown in
Fig. 6.8, the contributions from a smaller number of neighboring channels dominates the
superposed crosstalk for lower frequencies. There are several intersections of the curves
for different numbers of vias in Fig. 6.11b which indicates a non-monotonic convergence
towards an upper limit. A convergence towards the upper limit can be observed in this
example for all rise times but the intersections indicate different convergence behavior. This
can again be attributed to the different convergence behavior of the spectral components
that is already shown in Fig. 6.8 and the inclusion of not only additional aggressor channels
but also additional ground vias.

Conclusions Regarding the WPSXT

The WPSXT proposed in this section has been shown to be a helpful and meaningful
measure in evaluating a typical overall crosstalk if certain assumptions can be made. It
is therefore more relevant for signal integrity analysis than single scattering parameter
values, e.g., the crosstalk from the nearest channel. Therefore this measure is applied
in the subsequent sections for all vias or larger arrays to give insight into the effects of
variations of several relevant design parameters.
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6.4 Total Uncorrelated Crosstalk in Large Arrays

In the following, several “crosstalk maps” [115] are presented that given an overview over
the magnitudes of single and summed crosstalk terms at many location on a TSV array.
These maps use colored squares where the coordinate in the diagram refers to the location
of a port and the corresponding via in the array. The color of each square corresponds
to the level of a certain crosstalk measure, e.g. the magnitude of far-end crosstalk form a
central via of the array. The rounded level value in dB is also printed on each square. These
crosstalk maps are depicted in Figures 6.13, 6.14, and 6.15. The array for which all these
maps are computed is based on a pattern of 3 × 3 vias. The vias at two opposite corners
of this pattern are assigned as ground vias. By replicating this pattern 4 times along both
coordinates, a total array size of 144 vias (112 signal vias and 32 ground vias) is obtained.

First, in Fig. 6.13a, the individual single-ended crosstalk terms (magnitudes of scattering
paramters) of all vias in the array from a via at one of the central positions in the array
are shown. Due to the symmetry, these are also the levels of (far-end) crosstalk at the via
ports at these locations from the central via. As can be observed in Fig. 6.13a, the levels
depend mainly on the distance between the vias and the number and locations of ground
vias close to the locations of both the emitting and receiving via. In the next step, three
vias near the array center are viewed as aggressor channels. In Fig. 6.13b these channels are
marked with the letter “S”. Fig. 6.13b also shows the PSXT from these three channels at
the other vias in the array. The level of this PSXT is then dependent on a larger number of
different distances to aggressor vias and ground vias than the single crosstalk contribution
in Fig. 6.13a. Next, the PSXT is computed for every via. Each single-ended channel that
is attributed to a signal via is viewed as both an aggressor and victim of crosstalk. This is
depicted in Fig. 6.13c. As can be seen, the PSXT is generally higher when vias have more
signal vias and fewer ground vias close to them. The before crosstalk maps give an insight
of an expected order of magnitude at the frequency of 50 GHz. In the next step, a weighting
as in (6.6) is used to obtain the corresponding results for a digital signal which is a train of
trapezoidal-shape pulses with 5 ps rise time and a full width at half maximum (FWHM) of
25 ps. The results for this WPSXT are depicted in Fig. 6.13d. The lowest crosstalk can be
observed again at locations close to two ground vias. The highest crosstalk is observed at
locations near the array rim. Except at positions near the array rim (here the two rows of
vias closest two it) the PSXT and WPSXT is the same for the same positions in the 3× 3

pattern. Results for the case with a finite size of the substrate and the plane metallizations
are also considered and depicted in Fig. 6.14a. An influence of the finite metallizations,
i.e. a relevant difference to the case with infinite planes, can only be observed at the two
rows of vias nearest to the array rim. In the present example the vias in the upper right
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Figure 6.12: Silicon interposer structure consisting of a metal-clad substrate. The metal
parts of cladding and via barrels are electrically isolated from the silicon substrate by silicon
dioxide layers. The reference planes are at the outer planes of the metallizations. The top left
part of the image shows a top view of the array, the right part shows corresponding levels of
total far-end crosstalk on channels assigned to signal vias. Typical dimensions are: via barrel
radius rb = 15 µm, antipad radius ra = 30 µm, pitch dvias = 200 µm, silicon substrate thickness
tsi = 100 µm, and silicon dioxide thickness tox = 1 µm. Figure and text taken from [14].

and lower left corner have the largest (average) distance to the ground vias and therefore
show the highest PSXT levels.

Next, also an example for differential channels is investigated. These are obtained from the
previously presented single-ended results by the methods discussed in Appendix G.3 and
presented in Figs. 6.15a and 6.15b. As before, the single scattering parameters are mainly
influenced (in magnitude) by the distance of the aggressor channels to the victim channels.
For the WPSXT in 6.15b it can be observed that the levels of this differential crosstalk are
between 13 dB and 25 dB lower than the corresponding single-ended results. The levels are
between about −65 dB for those ports with more ground vias in close vicinity and about
−55 dB for via pairs with another via pair close to them.
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Figure 6.13: Crosstalk results for a setup with infinite planes, a pitch of 200 µm, an oxide
thickness of 1 µm, a silicon layer thickness of 100 µm, and a silicon conductivity of 10 S/m.
Ground Vias are marked with the letter “G”. Numbers indicate the respective levels in dB of
far-end crosstalk. Different color maps are used for encoding the levels in order the magnify
the difference within each map. (a) single-ended far-end crosstalk at 50 GHz to or from the
channel assigned to the central via marked with the letter “S” (b) power summation of 3
aggressors which are each marked with the letter “S” (c) single-ended power sum of crosstalk
(PSXT) at 50 GHz (d) total uncorrelated crosstalk (WPSXT) for the signal with 20 ps rise
time and 100 ps FWHM. Figure and text taken from [14]. (continues in Fig. 6.14)
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Figure 6.14: (continued from Fig. 6.13) (a) single-ended WPSXT as before but with finite
planes with edges at 200 µm distance to array border (centers of outermost vias) (b) labeling
of positions referred to in Fig. 6.16. Figure and text taken from [14].
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Figure 6.15: Setup as in Figs. 6.13/6.14 but single-ended channels combined to differential
channels (a) far-end crosstalk in dB at 50 GHz between the differential channels created
from pairs of adjacent vias to or from the central channel marked with the letter “S” (b)
corresponding differential WPSXT for the signal with 20 ps rise time with finite planes with
edges at 200 µm distance to array border. Figure and text taken from [14].
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Figure 6.16: WPSXT as function of several varied parameters with the default parameter set
being that of Fig. 6.13d. The default parameters are marked with gray vertical dashed lines.
Except for the variation of signal and ground via assignment, the various lines give the values
at the positions marked in Fig. 6.14f and the blue dashed lines give linear or logarithmic
fits for position 1 where the highest crosstalk is observed. Parameter studies of (a) pitch,
(b) silicon substrate thickness, (c) silicon conductivity, (d) oxide thickness, (e) pulse length,
(f) distance of the plane border for the case of finite planes normalized to the pitch of 200 µm.
(continued in Fig. 6.17) Figures adapted and text taken from [14].
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Figure 6.17: (continued from Fig. 6.16) (a) number of ground vias in the 3× 3 pattern with
(b) corresponding assignment variations. The lines in subfigure (a) are touching at several
points because the symmetries of the used patterns lead to positions with almost identical
total crosstalk. Figure and text taken from [14].

6.5 Analysis of Design Parameter Variation using WPSXT

The investigation of a fixed configuration in the previous section illustrated the relation of
WPSXT and single crosstalk contributions. In the following, one out of several parameters
is varied at a time and the WPSXT is evaluated. This is used to estimate dependencies on
these parameters. The WPSXT is evaluated for three selected positions that are depicted
in Fig. 6.14b. Position 1 is the position in the 3×3 pattern with the largest average distance
to the ground vias. This results in a higher crosstalk than at other locations in the pattern
except for locations near the array rim. As the highest WPSXT is consistently observed
for position 1, the linear or logarithmic fits that are also shown are only given for this
position.

In Fig. 6.16a, results for different value of the pitch are presented. In comparison to some
of the other parameters, the influence is relatively high with a logarithmic fit of about
7 dB/decade. Smaller value of pitch lead to a better control of the return current which
is established/accomplished by the ground vias. This effect compensates the effects due
to narrower spacing of the vias and therefore smaller distances to other signal vias. The
influence of the silicon substrate thickness is also relatively large, as can be observed in
Fig. 6.16b. A logarithmic fit with about 18 dB/decade can be applied to this data. As the
far-end crosstalk is investigated, it should again be mentioned that it is underestimated
by the PBV for close spacing in comparison to the cavity height. The effect of a variation
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in silicon conductivity is shown in Fig. 6.16c. It is found to be small with a logarithmic
fit of about −0.4 dB/decade for the higher frequencies and almost constant values for low
frequencies. The effect of the oxide thickness is also low with a linear fit of −0.4 dB/µm

that is shown in Fig. 6.16d. In the quasi-TEM frequency range, the oxide thickness has a
small impact on the wave number and therefore on the crosstalk characteristics.

Next, the pulse train properties are varied with rise times between 5 ps and 30 ps and pulse
lengths (FWHM) which are five times the respective rise time, i.e. with values between
25 ps and 150 ps. The corresponding results are presented in Fig. 6.16e A dependence
can be observed for which a logarithmic fit with −20 dB/decade can be applied. It is
further of interest, which effect the finite-sized plane metallizations can have. The results
for the considered positions and two additional positions at the array border are shown
in Fig. 6.16f. The vias/channels at positions 1, 2, and 3 are hardly influenced by the
variation of the normalized distance of the outermost vias of the array to the plane border
(normalized to the array pitch). An influence for positions 4 and 5 can be observed for
those cases where the plane border is closer than about 6 times the pitch. For a very close
plane border, channel 4 shows one of the largest WPSXT values of the array.

Finally, the assignment of vias as signal or ground vias is also varied. The results for
WPSXT at three unique positions are shown in Fig. 6.17a. The corresponding assignments
in the 3 × 3 pattern are shown in Fig. 6.17b in which letters “S” mark the locations of
signal vias and letters “G” mark the positions of ground vias. The number of ground vias is
increased form one pattern to the next one. In the pattern the number of unique positions
differs, e.g. in the case with three ground vias in the 3×3 pattern, every signal via has two
other signal vias to two sides and two ground vias to the other two sides. The crosstalk
is therefore only different at the unique positions if effects from the array border can be
neglected. A fit is in this case determined for the highest unique value, i.e. it estimates
the upper limit. Except for the value for 3 ground vias, a linear fit with −3 dB per added
ground via describes the behavior quite well.

6.6 Summary and Conclusions

In this chapter, the PBV has been validated for medium sized arrays. The PBV proves to
be a numerically efficient method enabling the simulation of large vias arrays not feasible
with general-purpose 3D solvers. With the proposed modifications of the computation of
the parallel plane impedance the efficiency can be further improved. The proposed crosstalk
measure based on power sums for uncorrelated crosstalk provides a reduction to a single
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figure of merit for every channel assigned to single vias or pairs thereof. This enables the
investigation of the influence of several important design parameters. It could for example
be observed that the influence of the silicon conductivity on the total uncorrelated crosstalk
is relatively low whereas the influence of the value of the silicon layer thickness is large.
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Chapter 7

Validation of Modeling Approaches

In this chapter, several correlations of modeling approaches and simulation results are pre-
sented. In the first part, the complementary modeling approach based on multi-conductor
transmission line (MTL) theory is introduced. This approach and the PBV approach are
compared for some simple structures and to FEM full-wave results for several stackups
with TSV interposers. The latter enables a judgment of the applicability in a real-life
environment.

In the second part of this chapter, measurement results are presented for several struc-
tures with TSVs. Because these structures must be tailored to the conditions imposed by
the measurements, they include parts for which no electromagnetic models are available.
Correlations are therefore only carried out with FEM full-wave simulation results.

7.1 Modeling Techniques for Wave Propagation Along the Via
barrels

In this section, the complementary modeling approaches to the physics-based modeling
are presented. These methods are based on the assumption that propagation occurs domi-
nantly along the circular TSV conductors and can therefore be described by modes of the
cross-section that are orthogonal to the TSV axes. As discussed before, these assumptions
correspond to specific boundary conditions and excitations. In most practical cases (slow-
wave and quasi-TEM regimes, as discussed in the following) this leads to a numerically
efficient description as a multi-conductor transmission line. The following discussion starts
with a brief look at the rigorous modeling which is only feasible for a TSV pair. The quasi-
static modeling approaches which are still general enough for most practical applications
and which can be used for the simulation of large arrays are introduced subsequently.
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7.1.1 Rigorous Modeling of Two-Wire Lines Using the Multipole Expansion Method

One of the most rigorous and therefore most general methods of the modeling of wave
propagation along the via barrels in the regard of the parameter range where it is ap-
plicable is the multi-pole expansion method (MEM) for through silicon via pairs that is
presented in [25]. In the most general case, the modes that propagate along the pair of
vias in the inhomogeneous structure (as the one illustrated in Fig. 7.1) are hybrid mode.
This means that these modes have both electric and magnetic field components along
the longitudinal direction, and therefore cannot be classified as either transverse electric,
magnetic, or electromagnetic. The hybrid property is required because continuity of the
tangential field components amounts to continuity of all four tangential field components
(both longitudinal and azimuthal components of electric and magnetic field strength) at
the Si–SiO2-interfaces. The advantage of this method is its high accuracy. It can model the
skin-effect mode in which a significant part of the conduction currents occurs in the silicon
layer. For very high conductivities of the silicon and high frequencies, the field concentrates
in the oxide layers. The skin-effect leads to fields of the propagation along each via barrel
which are similar to those of a coaxial waveguide, i.e., a surface wave is guided along each
Si–SiO2-interface. In this case, the same numerical problems are expected as for the TRM
for parallel plate waveguides, but these have not been further investigated in [25]. Because
of the limitation to via pairs, this method is not applicable for via arrays in which there
is typically a significant coupling to more than one neighboring via. The method can be
use to validate the quasi-static models and to determine their validity range by comparing
results for TSV pairs in silicon with, e.g., elevated conductivity levels.

7.1.2 Modeling Based on Quasi-Static Analysis

In many practical cases a quasi-static analysis is possible, namely for the cases where the
relevant modes are either quasi-TEM modes or slow-wave modes. Even though it is based
on the assumption that the modeled mode fields are transverse electromagnetic, it is found
to be applicable for the quasi-TEM mode and for the slow-wave mode. This is because
the longitudinal field components are also comparatively small in these modes. In case of
the skin-effect mode, the longitudinal field components become significant and invalidates
the assumption of an (almost) transverse electromagnetic field. As has already been seen
during the discussion of the parallel plate modes, the silicon conductivity may at most
have moderate values such that the skin-effect plays no role at any of the frequencies of
interest.
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Silicon

Conductors

Oxide Layers

Figure 7.1: Illustration of the geometry of the two-wire line of oxide-coated parallel con-
ductors in the silicon medium (not to scale, especially the thickness of the oxide layers is
exaggerated). The arrow on the top illustrates the signal propagation direction. The arrow
on the conductors mark directions of current flow.

The methods presented in the following have in common that for the multi-conductor
modeling per-unit-length (PUL) parameters are computed of capacitance, conductance,
inductance, and resistance (the latter only if conductor losses are included). Using the
MTL theory, network parameters can be computed from these PUL parameters. In the
conventional definition these are defined for terminals at both ends of the TSV conductors
which refer to the same, single reference conductor. In order to make these results com-
parable to the physics based modeling (especially for the single-ended signaling where a
significant number of ground vias is usually required) the assignment of several reference
conductors is also discussed in sections 7.1.5 and E.7.3.

If two conductors carry currents of opposite directions, then, induction causes an accumu-
lation of current and charge in the areas closest to the respective other conductor. If the
conductors carry currents of equal direction, the accumulation occurs in the areas furthest
from the respective other conductor. For the TEM mode it can be seen that the surface
charge related to the transverse electric field and the surface current related to the trans-
verse magnetic field must have an identical distribution. This is because the electric and
magnetic field are related by the same intrinsic impedance everywhere inside the medium.
The determination of one distribution is a dual problem to the determination of the other
distribution which is discussed for the two-wire line in [98, Sec. 3.2.2.1] Current and charge
density are functions of the position on the respective circumference. These function can
be efficiently approximated by harmonics, i.e. orthogonal sinusoidal functions of the angle
of the positions with respect to the center of the circular cross-section. This is performed
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in the method presented in section 7.1.3. The method in Section 7.1.4 assumes uniform
currents on each conductor circumference which is a sufficient approximation for most
practical applications.

7.1.3 Per Unit Length Parameter Computation Based on a Fourier Method

The first quasi-static method is based on the Fourier expansion of charge densities. It is
only discussed briefly here but in more detail in Appendix E.5 because it has not yet been
published elsewhere. This method provides very accurate results in the cases where the
quasi-static modeling is applicable, i.e. in cases where the silicon conductivity is compar-
atively low and the TSV metal conductivity is comparably high. The former enables an
independent computation of the transverse electric and magnetic fields and the related
per-unit-length admittance and impedance matrices. The latter allows to neglect the con-
tributions to the effective properties from internal resistance and inductance of the metallic
via barrels. The method is based on a Fourier expansion of the charge distributions on the
TSV circumferences. With a sufficient number of Fourier coefficients, the effects of non-
uniform charge distributions due to the proximity effect in cases with small via pitches
(compared to the cross-sectional dimensions) can be accounted for with high accuracy. By
allowing complex charges in the computation, the static analysis gives matrices for both
an effective capacitance and (transverse) conductance.

7.1.4 Per Unit Length Parameter Computation Based on Thin-Wire Approxima-
tion

A method that introduces a further assumption regarding the geometry but leads to good
accuracy for many practical cases [39] is the thin-wire approximation (TWA). The ad-
ditional assumption of the thin-wire approximations is that the circular conductors of
the multi-conductor transmission line are thin compared to all distances between conduc-
tors, which corresponds to a small radius for circular conductors. This approximation is
also known as wide-separation approximation [98]. In the quasi-static analysis of this ap-
proach, the contour of each equipotential conductor has a uniform surface current and
surface charge distribution whereas, as already discussed, is should be non-uniform due to
the proximity effect. As shown in Appendix E.5.5, the Fourier method is equivalent to the
thin-wire approximation for homogeneous dielectrics if only the 0th Fourier coefficient is
used.
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Homogeneous case

In case of a homogeneous substrate, the per-unit-length inductance terms can be obtained
as [98]

lii =
µ0

2π
ln

(
di0
rw0

)
ln

(
di0
rwi

)
=
µ0

2π
ln

(
d2
i0

rw0rwi

)
=
µ0

2π
(2 ln di0 − ln rw0 − ln rwi)

(7.1a)

and

lij =
µ0

2π
ln

(
dj0
dij

)
ln

(
di0
rw0

)
=
µ0

2π
ln

(
dj0di0
dijrw0

)
=
µ0

2π
(ln dj0 + ln di0 − ln dij − ln rw0)

(i 6= j) (7.1b)

where dij is the distance between conductors i and j, rwi is the radius of conductor i,
and indices 0 refer to the corresponding distances to and radii of the reference conductor.
Which of the above representations is more suitable for the algorithmic implementation
depends on the symmetries. If symmetries occur, the radii and several distances are the
same. With the respective last line in (7.1a) and (7.1a), the logarithm should be evaluated
only once for every unique value.

For the homogeneous case with a complex permittivity ε = ε + jσ/ω, the corresponding
per-unit-length capacitance and conductance matrices are given by

C + jG/ω = µεL−1

= µ(ε+ jσ/ω)L−1
(7.2a)

C = µεL−1 (7.2b)

G = µσL−1 =
σ

ε
C (7.2c)

The per-unit-length impedance matrix, Ẑ, and the per-unit-length admittance matrix, Ŷ ,
are combined from R, L, G, and C as [98, Eq. 4.6]

Ẑ = R+ jωL, (7.3a)

Ŷ = G+ jωC. (7.3b)

In the following R = 0 is assumed and only the external inductance is considered. As
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proposed for TSV modeling in [39], internal inductance and resistance of the via barrels
can be accounted for with an analytic relation that is further discussed in Appendix E.2.

Inhomogeneous case

As proposed in [39, Sec. III], the homogeneous case is extended to the inhomogeneous
case with concentric dielectric layers that is depicted in Fig. 7.2. On the circumference of
these layers, a uniform charge distribution follows from the assumption of uniform charge
distribution on the conducting cylinders if they share the same axis. Only this case is
considered in the following and it is also the most relevant one for practical applications.
With uniform charge distributions, the capacitance contributions of the dielectric layers
can be obtained form the (per-unit-length) coaxial capacitor formula given by [98, Eq. 3.58]

c =
2πε

ln(rs/rw)
(7.4)

where rs and rw are the outer and inner radii of the coaxial structure, respectively, and ε
is the permittivity of the dielectric layer.

The results for the coaxial layers have to be concatenated to every port of the admittance
matrix from (7.3b) for the silicon region. This can be carried out, e.g., with the impedance
parameters concatenation from Appendix G.2.4 with an impedance for the oxide layer
using (7.4) concatenated to each terminal and the common reference conductor of the
impedance matrix Ŷ −1 from (7.3b) for the silicon region. Alternatively, a concatenation
using admittances from Appendix G.1.1 can be applied.

For the inductance, no modifications compared to the homogeneous case are required due
to the MTL assumptions and exclusively non-magnetic materials.

7.1.5 Computation of Network Parameters from Per Unit Length Parameters

After the per-unit-length parameters have been computed, it is of interest to determine
the network parameters of the structure with one multi-conductor port at the top of the
interposer and one at the bottom. Each of these multi-conductor ports has N terminals if
there are N + 1 conducting vias in the simulated structure. In general, several techniques
are available for this task. Often, the excitations on terminals are explicitly or implicitly
converted from terminal voltages and currents to modal voltages and currents. Examples
for modes of multi-conductor lines are the even and odd mode of a symmetric three-
conductor line. The transformation is achieved in general through a transformation matrix
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Figure 7.2: Definitions for TWA modeling: (a) Geometry of the cross-section (not to scale)
(b) Corresponding equivalent circuit for the transverse admittance matrix.

which diagonalized the product of per-unit-length parameter matrices Ŷ Ẑ [98, Sec. 4.4].
The methods based on diagonalization are not applicable if the medium is homogeneous in
which case all modes have equal wave numbers. At the same time, a diagonalization is not
required in case of a homogeneous medium [98, Sec. 4.41]. The medium is inhomogeneous
for TSV applications and the above technique is applicable. A short discussion is given in
Appendix E.7.1. For the comparisons in Appendix 7.2, an implementation based on the
identities in [123] is used. In practice, TSVs are electrically short and therefore, lumped
element representations as those discussed in Appendix E.7.2 can be used with good ac-
curacy. The lumped element representation has the advantage of being applicable to both
the homogeneous and inhomogeneous case. It can be accurate enough and lead to a higher
numerical efficiency if large TSV arrays are simulated.

7.2 Comparison of Modeling Approaches

As pointed out before, there are several assumptions when applying one of the modeling
approaches so far. Some of these assumptions are summarized in Fig. 7.4. If the assumptions
are correct, certain boundary conditions, port definitions and simplifications regarding
geometry and material properties are possible and efficient modeling techniques can be
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used. The assumptions are also made to enable an independent modeling of different system
levels. An example for these levels is illustrated in Fig. 7.3. It should be investigated here if
assumptions regarding an independent modeling of a silicon interposer can be justified. In
the following sections, simulation results for silicon interposer inside several different stack-
up environments for frequencies up to 100 GHz are presented. These simulation are carried
out in the following using FEM full-wave-, PBV-, and TWA-simulation. The comparison
are referenced to well-defined coaxial ports in the FEM full-wave and PBV-simulations.

This section aims at showcasing to which extent the modeling approaches give similar or
fundamentally different results. The investigation is limited here to single-ended scattering
parameters at the respective ports, i.e. coaxial ports for the FEM and PBV and multi-
conductor ports for the TWA. As both proposed modeling approaches are based on the
concatenation of model parts, the applicability of the segmented analysis is thereby also
assessed.

7.2.1 Modeling using FEM Full-Wave Simulations

The complete models that are considered in this section are shown in Fig. 7.5 and can
only be simulated in all details by the reference simulations. These are again based on
finite-element 3D full-wave simulations. The complete models include underfill areas with
metallic bumps that connect the interposer to a PCB below. It includes also a redistribution
layer near the top of the interposer and underfill areas on top of the interposer and below an
IC connected to it. With one exception, the following investigations focus on the cases with
metallizations at the outermost interfaces of the model. This way, coaxial ports can be used
for an unambiguous definitions of the ports. Only in one case which is named “V5” and part
of the investigations for which results are shown in Fig. 7.7, a multi-conductor/-terminal
port is used. This type of port extends over the complete top and bottom surface of the
structure and requires the definitions of a single reference conductor per port. In order to
permit a comparisons with the cases of plane metallization further reference conductors
should be defined; a post-processing step is required in this case.
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Figure 7.3: Interposer with an example for its electromagnetic environment: Below, it con-
nects to a printed circuit board (PCB) through conducting bumps. Often, an underfill is used.
High speed PCBs mostly feature plane metallizations. At the top of the interposer, redistri-
bution layers constitute a (partially) conducting boundary. Through Silicon Vias (TSVs) can
be part of an interposer or of integrated circuits ICs) which are stacked on top of each other.
The reference planes of the segmented modeling are defined at the positions marked with
dash-dotted lines and letters a−d. Figure and text taken from [12].

7.2.2 Simulation of Several Stackups

The following analysis is based on the investigation of magnitudes of selected scattering
parameters of silicon interposers which are embedded in several different stackups. The
interposer properties are also varied. The varied interposer properties include the geometry
of the redistribution layer (RDL) and the pitch of the 4 × 4 TSV array. The default
configuration of the following investigations is given in Table 7.1 and further details are
also mentioned in the captions of the figures with the respective simulation results.

Simulation of a Single and of Stacked Interposers

In the first part of the analysis, a single metal clad interposer, as well as stacks with 2 and 3
interposer are considered. Cross-sections of all 3 cases can be seen in Fig. 7.5a. In the stacks,
the interposers are interconnects by conductive bumps. These have a radius of 13 µm radius
and are embedded in a lossless dielectric with a relative permittivity of four. The separation
of the neighboring metallizations is chosen as 20 µm, the bumps are therefore oblate at the
locations where they touch the TSVs. The structure with all details can be simulated in
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individual coaxial ports

finite or infinite extension
(a)

multi-conductor/-terminal port
reference conductors

infinite extension
(b)

Figure 7.4: Illustration of the port definitions (blue dashed lines) and the electric near fields
(green arrows). (a) For the physics-based via (PBV) modeling approach: On the top and
bottom antipads of the signal vias, coaxial ports are defined. The outer vias connects the
top and bottom metallizations and are referred to ground vias. (b) For the multi-conductor
transmission line (MTL) theory based approach: One the same surface, several terminals and
at least one reference conductor are defined. Figure taken from and text adapted from [12].

Parameter Description Symbol Default Value
Thickness of the silicon substrate t 100 µm
Relative permittivity of silicon εr,Si 11.9
Thickness of the oxide toxide 1 µm
Relative permittivity of the oxide (SiO2) εr,oxide 4
Pitch of the TSVs d1 200 µm
Pitch of the RDL via barrels d2 100 µm
Radius of the interposer antipads rantipad 20 µm
Radius of the TSV barrels rvia 10 µm

Table 7.1: Default Parameter Values for the Silicon Interposers. Table adapted from [12].

the FEM full-wave simulations, whereas some further simplifications are required for other
the proposed methods. In both the PBV- and the TWA-method, the arrays of bumps
(embedded in the underfill) are approximated as arrays of cylindrical barrels with radii
equal to the TSV radius and the overall results are obtained by concatenation of the
network parameter of the models, i.e., for the stack of three interposers, five models are
concatenated. In the TWA-method, the planar metallizations are ignored. For an assumed
propagation along a vertical signal path, the discontinuities along this path are constituted
by both these metallizations and by the changes of permittivity of the dielectric medium.
The former effect is therefore excluded whereas the latter effect is included. In the PBV
model the short coaxial sections constituted by the antipad regions are neglected.

The magnitudes of the scattering parameters are given in Fig. 7.6. An additional FEM-
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Figure 7.5: (a) Illustration of the single interposer with top and bottom metallizations, a
stack of two interposers connected through PEC bumps and an underfill dielectric, and a stack
of three interposers. (b) Perspective view of the structure used for the full-wave simulation
in which the ground/reference conductors are highlighted. PMC boundary conditions are
used to include the effect of reflections from the finite planes sizes (2 mm× 2 mm except for
variation V5 in Fig. 7.7). (c) Cross-sectional view of a part of the stack-up with the considered
variations of the redistribution layer and the interposer bottom metallization, and some of the
default parameter values. The metal components are drawn in orange color. (d) Top view of
the fan-out used in the redistribution layer (RDL) with the two used variations and with the
port indices. The first number in the braces gives the index of the top port at the IC-plane,
the second one the index of the bottom port at the PCB plane. The four inner vias of the
4×4 layout are assigned as ground vias/reference conductors. Figure and text taken/adapted
from [12].
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Figure 7.6: Magnitudes of selected scattering parameters (normalized to 50Ω) of the struc-
tures given in Fig. 7.5a. Further configuration can be found in Table 7.1, the silicon conduc-
tivity is 10 S/m. The PBV- and TWA-results for the different stacks are also given. In the
legend, the number of stacked interposers is given in braces. Figure and text taken from [12].
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result is given for the stack of two interposers: The structure is modified by replacing the
topmost metallization of the lower interposer and the bottom metallization of the upper
interposer with a dielectric layer with identical properties as the adjacent underfill area.
This results in plane metallizations only at the outermost faces of the overall structure. This
variation is named “FEM,Var.B(2x)” in Fig. 7.6. As can be expected due to very similar
assumptions, the FEM and the PBV results show a good agreement for all shown scattering
parameters. The TWA results show similar behavior with frequency but the following
differences: Overall, there is mainly a higher transmission predicted by the TWA for all
stackups. The far-end crosstalk computed by the TWA is very similar for low frequencies
but significantly lower at higher frequencies. The near-end crosstalk computed by the TWA
is significantly higher over the complete frequency range. The variation of the stack of two
interposers named “FEM,Var.B(2x)” shows results that differ from both the PBV and the
TWA results. Regarding the comparison of the results for different numbers of stacked
interposer, the behavior is different for lower and higher frequencies. At low frequencies
the crosstalk is proportional and the transmission is anti-proportional to the number of
stacked interposer. At higher frequencies the behavior is more complex, e.g., the NEXT is
lowest for the stack of three interposer at 100 GHz (FEM- and PBV-results).

Simulation of Interposers with Different Redistribution Layers and Adjacent
Structures

In the following, the setups depicted in Figs. 7.5b–7.5d are considered. The setups are
labeled as V1 to V4 and differ in the configuration of the boundaries at the top and at
the bottom of the (single) interposer. Only the variations V2 and V4 have metallizations
(reference planes) at the outermost faces of the interposer. Only the variations V3 and
V4 have a metallic plane with cutouts in the same planes as the line patterns (fan-out).
In the latter cases a structure similar to a (grounded) coplanar line is constituted. In the
PBV- and the TWA-model several simplifications due to unavailability of the respective
electromagnetic models for the fan-out pattern and the discontinuities to and from them
are made. Only the models that have been explained before for the via arrays and arrays
of bumps are concatenated. The default configuration from Table 7.1 applies again.

For the first configuration with the default pitch the magnitudes of scattering parameters
are presented in Fig. 7.7. Results for the second configuration for which the pitch is reduced
to 100 µm in the TSV array are shown in Fig. 7.8. Excluding the reflections, the general
behavior with frequency is similar for all reconsidered variants. As can be seen for both
cases, the results for variants V1 and V3 (both without interposer metallizations) are very
similar. Except for the reflections, variants V2 and V4 (both with interposer metallizations)
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Figure 7.7: Scattering parameters (normalized to 50Ω) for comparison of variations of the
stackup for 1 S/m silicon conductivity. Variant V5 is a full-wave simulation with FEM with a
stackup identical to variant V1 for the inner parts but without the outermost metallizations,
and with single multi-conductor/-terminals on top and bottom of the stackup. For V5, the
simulation only converges down to about 10 GHz. In the legend, for PBV and TWA, the “+”
refers to the case where simplified models for the adjacent structures are concatenated (with
all metal planes as in variant V4). Figure and text taken from [12].
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Figure 7.8: Scattering parameters (normalized to 50Ω) for comparison of variations of the
stackup for 1 S/m silicon conductivity and a reduced pitch (100 µm in the interposer and
50 µm in the RDL). Figure and text taken from [12].
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also show very similar behavior. The PBV model which accounts for all arrays (“PBV+”)
of the stackup shows a good agreements except for the reflection and for the near end
crosstalk, especially for the case with the narrower spacing of the vias. The TWA model
show larger average deviations from the FEM full-wave results for V1–V4. The FEXT
is still adequately modeled over most of the frequency range. It is interesting to note
that for the case of narrow spacing where the PBV underestimates the NEXT, the TWA
overestimates it.

7.2.3 Conclusions Regarding Model Comparisons

It could be observed in the previous section, that up to 100 GHz, the considered stack-
ups show qualitatively the same behavior. The link between top and bottom is almost
transparent with high transmission and low reflection of the largest part of the frequency
range. Furthermore, the crosstalk is inductively dominated in the via and bump arrays
leading to a simple behavior over most the frequency range. The inductive coupling can be
concluded from the phase and from the almost linear behavior in log-log scale which can
be observed best at low frequencies. It could also be shown that the general behavior with
frequency and the order of the results are in agreement with the FEM reference results.
This is despite the fact that the underlying physics and boundary conditions are different
for PBV and the MTL/TWA modeling. The fact that different boundary conditions lead
to similar results puts into perspective the importance of exact modeling. Within certain
limits that have not been determined in this thesis both modeling approaches therefore
seem applicable for the simulation of practical TSV structures. This enables the analysis
of large via arrays that cannot be (efficiently) simulated by general-purpose 3D full-wave
solvers in the ways discussed in Sec. 6.5.

7.3 Correlation of Measurements and Full-Wave Simulations

Several test structures have been designed and measured at the Institute of Electromag-
netic Theory (TET), Hamburg University of Technology, and at the Fraunhofer Institute
for Reliability and Microintegration (IZM), Berlin. The structures have been fabricated at
Fraunhofer IZM–ASSID (All-Silicon System Integration Dresden). The results from mea-
surement of several of these structures are presented in this section together with several
full-wave simulation results for correlation and thereby a partial validation of the gen-
eral modeling assumptions. The fabricated structures are designed in such a manner that
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they can be fabricated with the available processes and that they can be measured with
the available techniques. They therefore include parts which cannot be modeled by the
proposed approaches of this thesis. Hence, a validation is only carried out with full-wave
simulations.

The remainder of this section is organized as follows: First, the justification, motivation,
and aims of the TSV test structure designs are discussed. Then, the most relevant data
for these structures is presented. Further, the the measurement setups are shown. As the
simulation setups are not fully analog to the measurement setups, their configurations also
requires some discussion. Finally, several results are shown and interpreted in terms of
applicability of signal links and in terms of agreement of measurement and simulation.

7.3.1 Motivation and Challenges

A major part of the project from which this thesis is reporting has been the electromagnetic
characterizations by means of frequency domain measurements. Meaningful designs require
a good knowledge of the marginal conditions, i.e., material properties, the stackup/buildup,
via shape, allowed shapes of the planar metal structures etc. Especially the first two prop-
erties have not been known exactly at the beginning of this project. The materials are often
only specified for a limited low frequency range or even only as a DC-value. Therefore, it
has also been part of the project to characterize materials, especially the silicon substrate,
over a large frequency range, i.e. up to 110 GHz [22, 23]. Stackup layer thicknesses and
via shape are to some degree known from the fabrication process configuration. Values
can be obtained from micrographs as the one shown in Fig. 7.9a, though there remains
some uncertainty. It would be of advantage to design structures after all relevant process
parameters have been determined. Unfortunately this second iteration could not be carried
out within this project and constitutes a task for future research projects.

7.3.2 Designed and Fabricated Structures for TSV Characterization

Metal Geometries

Several TSV test structures were implemented both with and without metallizations at the
top and bottom (only with neither or both) to investigate the influence and quantify the
difference by measurements. A stacking of multiple chips could not be realized. Most of the
implemented test structures consist of a transition from top to bottom and a connected
transition back to the top side. Variations include the length of the lines at top and bottom
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Figure 7.9: (a) Photo of the cross-section of the fabricated TSV-structures (microsection). All
dimensions in µm. Photo courtesy of Fraunhofer Institute for Reliability and Microintegration
(IZM), Berlin. (b) Schematical drawing (not to scale) showing the stackup configuration. Refer
also to the description of measured structures in [23]. There, an oxide layer thickness of 500 nm
and a 4.6 µm thick CVD polymer (WPR1) are specified/used.

1WPR is a trade name for photo-resists used by companies JSR Micro NV and DuPont, e.g.,
see [124, Table 15.7]
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Figure 7.10: General layouts of the measured structures (a) with planes and (b) without
planes and (c) the corresponding legend. Signal vias are shown in green. The ground vias are
shown in purple and red. The number of ground vias is varied. Values of the parameters for
the measured structures are given in Table H.1
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(a) (b)

(c) (d)

Figure 7.11: Views of one of the measured and simulated structures: (a) Top view (b) bottom
view (c) perspective view (d) front view. The electrical connection is established by several
coplanar lines in metallized areas on top and bottom of the silicon substrate connected by two
via transitions. Each via transition consists of two to three vias of which the ones assigned as
ground vias are connected to the metallizations. Lumped ports are used for the simulation of
this type of test structure.
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sides and (if present) the size of the plane metallizations. Schematic drawings of the two
types of structures considered in the following are depicted in Fig. 7.10. For the structure
with plane metallizations, several views in the modeler of the FEM software [66] are given
in Fig. 7.11. The fabricated wafers have been cut into coupons for easier handling. Photos
of such a coupon are presented in Fig. 7.12.

If plane metallizations are present, the lines on top and bottom sides behave similar to
grounded coplanar lines. Without plane metallizations the GSG assignment of the three
parallel strip conductors leads to coplanar mode fields. The same metal geometries are
used for all stackups, some of which are presented in the following. As the properties of
the involved materials were mostly unknown during the design phase, the designs were not
optimized to specific characteristic impedances. Instead, the focus was on creating a large
number of variations to choose from later.

Fabricated Stackups

The same structures have been fabricated with stackups that differ (apart from unknown
differences due to fabrication tolerances) in the silicon properties and the used insulator
at the via barrels and towards the top RDL. The variations that are considered in the
following are listed in Table 7.2 with the assigned wafer-IDs. Fig. 7.9 shows the exemplary
cross-sectional photo and the corresponding schematic drawing including the cross-section
of two TSVs. The measurement results presented in the following have been selected by
choosing structures with different technologies as long as the properties (i.e. mainly the
losses due to the silicon substrate) permit a comparatively easy differentiation between
good and insufficient calibrations. This excludes the low resistivity silicon substrate. The
substrates with thermal oxide layers also show significantly lower losses than those with
the SAVCD insulators. Therefore, of the fabricated stackup variations, only W23B, W21A,
and W10A are selected for the correlation with FEM simulation results.

Wafer-ID Silicon Substrate Properties Insulator Properties
W23B high resistivity (σ ≈ 1 S/m) thermal oxide (εr = 4, t ≈ 200 nm)
W10A standard resistivity thermal oxide (εr = 4, t ≈ 200 nm)
W09 standard resistivity thermal oxide (εr = 4, t ≈ 500 nm)

Table 7.2: Overview of all test wafer configurations which are considered in the following.
Several additional test wafers with SACVD (sub-atmospheric chemical vapor deposition) ox-
ide, with silicon substrates of lower conductivity, and with other oxide layer thicknesses have
been fabricated by Fraunhofer IZM–ASSID (All-Silicon System Integration Dresden) but
those are not considered in the following.
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7.3.3 Measurement Setups

It has been the objective of the measurements to verify repeatability and ensure that
the measurement process has minor influence. The electromagnetic environment may also
influence the measured results. In Section 7.3.5 it is discussed how this has been considered
in the full-wave simulations for correlation. Different setups have been used in order to
increase the confidence in the results and in order to also include measurements up to
110 GHz which was not possible at the laboratory where the majority of the measurement
work was carried out. The following sections give details about all measurement setups for
which results are presented in the subsequent sections.

Measurements at the Institute of Electromagnetic Theory (TET), Hamburg
University of Technology

The main setup of the measurements carried out at the Institute of Electromagnetic Theory
(TET), Hamburg University of Technology is depicted in Fig. 7.13 and several details are
listed in Table H.4. The mechanical part of the setup consists of a customized probing
station. It has been customized by mounting micro-positioners with higher precision than
the original positioners, replacing the metal chuck by one made of plastic material, and
installation of a vacuum system. The electrical part consists of a vector network analyzer
(VNA) connected to a personal computer from which the calibration measurements, error
coefficient computation, and the effective measurements are controlled out using [125].

Measurements at the Fraunhofer Institute for Reliability and Microintegration
(IZM), Berlin

The main setup of the measurements carried out at the Fraunhofer Institute for Reliability
and Microintegration (IZM), Berlin is depicted in Fig. 7.14 and several details are listed
in Table H.4. The mechanical part uses a custom probing station which also carries the
frequency extension devices attached to the VNA. This station also features a vacuum sys-
tem for suction towards the chuck. As this chuck is of metal, the measurements required
a perforated plastic card of which the exact material properties are not known. The elec-
trical part consists of a vector network analyzer with frequency extension devices which
accomplish the up- and down-conversion in frequency of the applied and measured signal in
order to extend the frequency range up to 110 GHz (if supported by the probe bandwidth).
As listed in Table H.4, two types of micro-probes have been used, the ones also used in
setups 1a/b which support frequencies up to 65 GHz and a second type that supports the
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frequencies up to 110 GHz. Each micro-probe type is calibrated with the corresponding
calibration substrate from the respective probe manufacturer.

7.3.4 Practical Challenges of the Measurement Execution

Several practical challenges occurred during the execution of the measurements which
are mostly related to the proper mechanical and thereby electrical contacting of probing
pads and areas with the micro-probes. With the first, mostly customized measurement
setups (1a/b), it was difficult to implement a very high planarity/alignment such that the
three probe tips of each micro-probes contact the test structure in a very similar way, i.e.
with almost the same force on each probe tip, elastic deformation, and “skating” (forward
movement) when lowering the micro-probes. Due to the elasticity the probes have some
margin regarding the planarity but application of too much force to compensate for the
limit planarity leads to the observed wear of the probe tips. With increasing number of
contacts, it appeared to be more difficult to establish a reliable contact from which a
probe tip wear is concluded. The reliable contact could only be verified indirectly. Probing
problems have been approached as follows: During the calibration they were investigated by
measuring a coplanar line on the calibration substrate and comparing with a larger number
of measurements with different calibrations for this line. In case of too large deviations, the
calibrations were discarded. Probing problems during the measurements were indicated by
significant deviations from the results for similar structures and other unexpected behavior
with frequency, e.g., fast variations of the magnitude where a smooth curve is expected. It
proved to be helpful that the probing pads were all designed relatively long which enables
a longer forward traveling of the micro-probe tips when contacting. However, of the variety
of used probing pad sizes, the smallest ones with a width of 50 µm and a length of 100 µm

have been found to be of sufficient size for reliable probing with all setups.

7.3.5 Measurement and Simulation Results

In the following, selected measurement results are presented. The parameter values (except
for the stackup) of all presented structures are given in Table H.2 which refers to the
definitions in Fig. 7.10a. All considered combinations of structures and wafer types are
listed in Table H.3. In some cases two or three measurements of the same structure are
available. As some of the repeated measurements differ in the corresponding setup, the
confidence in the measurements is increased if the results show a good agreement.
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Figure 7.12: (a) Photograph of a coupon from one of the fabricated wafers (b) detailed view
of the part with the DUTs of the following measurements (c) The two port measurements
have port 1 at the respective higher coordinate as illustrated here. All scales/coordinates are
in mm. Refer also to the drawing given in Figs. H.2 and H.3.
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Figure 7.13: Measurement setup 1b (→ Table H.4): illustration of (a) the complete me-
chanical and electrical setup with all connections and (b) details of the setup 1b used for the
electrical characterizations presented in this chapter.
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Figure 7.14: Illustration of measurement setup 2b (→ Table H.4).
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(a) (b)

(c)

conductor
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Figure 7.15: Comparison of the excitations in the real measurement and the approximations
in the simulations. The illustrations show the field lines of the estimated electric field with
red arrows. (a) Probing in the measurement in the case of plane metallizations and (b) cor-
responding signal launch of the simulation using a modified pad and a lumped port (marked
with purple color). (c) Probing in the measurement in the case without plane metallizations
and (d) corresponding excitation of the simulation using a wave port (marked with purple
color and with checkerboard pattern) and de-embedding. Measurement drawings refer to the
micro-probes used in measurement setups 1a/b and 2a but the probes used in setup 2b should
show very similar behavior. Simulation drawings refer to the simulations for correlation carried
out with [66]
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Differentiation of the Used Parameter Values

For all measurements of this section, at least one simulation result set based on FEM
full-wave simulations is given. As there is some uncertainty regarding the exact values of
the layer thicknesses, some of these values have been varied in order to achieve a better
agreement with the measurement results. A comparison of the nominal values that have
been designed for, the estimated values that are based on the cross-sectional values, and
the range of simulated values that has been used in order to fit simulation results to the
measurement results are given in Table H.3. The focus of the fitting to the measurement
results is to obtain both a similar general frequency behavior and the same orders of
magnitude as the measurement results. The iterative fitting is based on educated guess
rather than a complete investigation of the parameter space. The presented fit might
therefore not be the optimal one within the realistic parameter ranges.

Modeling of the Signal Launch

An additional uncertainty is in effect due to the difficulty in appropriately modeling the
signal launch. Firstly, the calibration for the (physical) measurement is expected to be
slightly more inaccurate than for measurements on many other substrates, such a PCB
laminates. This is mainly because the silicon substrate properties differ significantly from
the properties of the calibration substrates which are typically ceramic materials. For
the FEM simulations with [66], the optimal signal launch (exciting port with auxiliary
structures) that corresponds to the micro-probe launch is also not obvious. A model for
the micro-probe tip with a de-embedding to the probe tips might lead to a higher accuracy.
Here, simpler excitations are used and explained in the following.

For structures of the type that is illustrated in Fig. 7.10a (with plane metallizations),
a lumped port is placed between the outermost edge of the pad and the metallization.
This excites the coplanar mode with good efficiency. In order to take into account the
average probe position which is near the center of the pad, the pad is made slightly shorter
(by about one third), such that the port coplanar mode field should be present at this
position. The comparison of these signal launch setups of measurement and simulation is
also illustrated in Figs. 7.15a and 7.15b, respectively.

For structures of the type illustrated in Fig. 7.10b (without plane metallizations), a wave-
guide port is used at the outermost ends of the pads. The waveguide port is assigned to
an area above the bottom side metallization of the structure and shaped in a way that
the port contour touches the outermost edges of the outer ground conductors. This way
the coplanar mode of this structure is excited. Because the ground vias are at some dis-
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tance plane from the probing position, the bottom metallization should have no significant
influence on the mode field. A de-embedding is used to shift the reference plane half the
length to the center of the probing pads. The comparison for this case is illustrated for
measurement and simulation in Figs. 7.15c and 7.15d, respectively.

Modeling of the Electromagnetic Environment in the Simulation

The electromagnetic environment can in general not be ignored when carrying out mea-
surements and corresponding simulations. For the measured structures this environment
consists mainly of the neighboring structures on the silicon wafer coupon, the probe tips
above the wafer coupon, and the plastic chuck or card (for the mounting) below the wafer
coupon. The neighboring structures are ignored in the following simulations. The simulated
area is equal to that of the plane metallizations if present and perfect magnetic conduc-
tor boundary conditions are used for the faces of the stackup between these planes. If no
metallizations are present, a wave port is used. Therefore, the length of the simulated area
is equal to the length of the structure and the width is chosen to be about 5 times the pitch.
The presence of the probe tips is also neglected and signal launches are used as described
before. The area above the wafer is extended with an air-box with absorbing boundary
conditions except at the wave port areas. For the plastic mounting, a lossless dielectric
with a relative permittivity of 4.3 is used with absorbing boundaries. From comparison
with simulations where this is replaced by vacuum, it can be seen that the influence is
small compared to the variation of uncertain parameter values.

Discussion of Correlation Between Measurement and Simulation Results

Figures 7.18–7.20 shows several measurement and simulation results. Due to the mentioned
uncertainties, i.e. because the simulated structures could deviate in the relevant dimensions
and material properties from the measured structures, some adaptations of dimensions and
material properties have been tested by variation of several parameters within a plausi-
ble range. The electromagnetic environment has been taken into account in the manner
discussed in the previous section.

The measurement results show several spikes that cannot be explained at this point and
can most likely be attributed to the measurement devices. The measurements up to 50 GHz

show spikes near 20 GHz in Fig. 7.20a (S1,1) and in Fig. 7.18c (S2,1). The measurements up
to 65 GHz show spikes near 61 GHz in Fig. 7.16. While the overall behavior with frequency
is the same for different measurements of the same structure, some larger deviations can
also be observed.
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It must be mentioned that no effort has been made during these measurements to inves-
tigate the effects due to depletion layers. As seen in section 2.5, this effect is relatively
small and therefore out of the scope of the investigations presented here. For more rigor-
ous investigations the power of the measurements could be calibrated and varied or the
full-depletion case could be enforced by substrate biasing [126,127]. The latter requires an
ohmic contact attached to the silicon layer.

Discussion of Test Structure Properties

Figures 7.16, 7.17, and 7.18 show structures on the same wafer, W23B. Due to the high
resistivity, a good transmission is obtained, e.g., below 30 GHz the transmission is above
−2 dB for all three structures. As seen for structures V10 and V13 with the low-loss
silicon wafer W23B in Figs. 7.16 and 7.17, respectively, the planes introduce significant
resonances which deteriorate the transmission at higher frequencies. Figures 7.19 and 7.20
show results for structure V13 on wafers with silicon of lower electrical resistivity. Except
at the resonance frequencies of structure V13 on the high resistivity wafer W23B, the
transmission is about one order of magnitude lower for these wafers of lower resistivity
compared to the high resistivity wafer.

7.3.6 Summary and Conclusions Regarding Measurements

After a comprehensive discussion of the design of the test structures, the simulation setups,
and the most relevant aspects of the configuration of the simulations, several results for
measurements have been presented. It could be observed that despite several uncertainties
regarding exact parameter values, overall, a good to fair agreement could be obtained in
the reference simulations. Using silicon substrates of relatively high resistivity (here about
1 S/m), links can be established which should be transparent enough for the application
in an interposer.

For future test structure designs and measurements, a vertical probing similar to the one
presented in [128] could be evaluated. Implementation of stackups similar to the ones used
in the model approach comparison of Section 7.2 could be implemented as physical test
structures to further justify the assumptions made and validate the modeling approaches.
The application of a substrate bias voltage could be used to further investigate the depletion
layer influence.
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(a) (b)

(c) (d)

Figure 7.16: Measurement and simulation results for structure V10 (→ Fig. 7.10a, Table H.1)
on wafer W23B (→ Fig. 7.2). Measurement 1 uses setup 1b, Measurement 2 uses setup 1a
(→ Table H.4). All simulations use a silicon conductivity of 1 S/m, a silicon layer thickness of
80 µm, and a thickness of the WPR layer of 3.5 µm. The thickness of the oxide layer is 200 nm
in Simulation 1, 150 nm in Simulation 2, and 250 nm in Simulation 3.
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(a) (b)

(c) (d)

Figure 7.17: Measurement and simulation results for structure V13 (→ Fig. 7.10a, Table H.1)
on wafer W23B (→ Fig. 7.2). Measurement 1 uses setup 2b, Measurement 2 uses setup 2a,
and Measurement 3 uses setup 1b (→ Table H.4). All simulations use a silicon conductivity
of 1 S/m and a silicon dioxide layer thickness of 500 nm. Simulation 1 uses a thickness of
the WPR layer of 3.5 µm and a thickness of the silicon layer of 80 µm. Simulation 2 uses a
thickness of the WPR layer of 4.5 µm and a thickness of the silicon layer of 100 µm.
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(a) (b)

(c) (d)

Figure 7.18: Measurement and simulation results for structure V5 (→ Fig. 7.10a, Table H.1)
on wafer W23B (→ Fig. 7.2). Measurement 1 uses setup 2b, Measurements 2 and 3 use setup
1b (→ Table H.4). All simulations use a silicon conductivity of 1 S/m and a silicon dioxide
layer thickness of 500 nm. Simulation 1 uses a thickness of the WPR layer of 3.5 µm and a
thickness of the silicon layer of 80 µm. Simulation 2 uses a thickness of the WPR layer of
4.5 µm and a thickness of the silicon layer of 100 µm.
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(a) (b)

(c) (d)

Figure 7.19: Measurement and simulation results for structure V13 (→ Fig. 7.10a, Table H.1)
on wafer W09 (→ Fig. 7.2). Measurement 1 uses setup 1a(→ Table H.4). All simulations use a
thickness of the WPR layer of 4.5 µm, a thickness of the silicon layer of 100 µm , and a silicon
dioxide layer thickness of 500 nm. Simulation 1 uses a silicon conductivity of 2× 103 S/m and
Simulation 2 uses a silicon conductivity of 1× 105 S/m.
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(a) (b)

(c) (d)

Figure 7.20: Measurement and simulation results for structure V13 (→ Fig. 7.10a, Table H.1)
on wafer W10A (→ Fig. 7.2). Measurement 1 uses setup 2b, Measurements 2 and 3 use setup
1b (→ Table H.4). Simulation 1 uses a silicon conductivity of 2× 103 S/m, a thickness of the
WPR layer of 4.5 µm, a thickness of the silicon layer of 100 µm , and a silicon dioxide layer
thickness of 180 nm.
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Chapter 8

Conclusion and Outlook

This thesis has presented contributions to the electromagnetic modeling of through silicon
vias (TSVs) for application in silicon interposers. It has been shown that by adaptations
of both the near field and the far field parts of the model, a physics-based via model that
was originally conceived for vias in multilayer printed circuit boards achieves a very good
accuracy up to several hundreds of Gigahertz in a large parameter range. In addition, the
already high numerical efficiency of the method could be increased further.

The method has proven itself to be applicable even with metals of lower conductivity such
as aluminum and with incomplete metallizations. Major limitations have only been found in
cases with very narrow spacing of the TSVs. The relevant dimensions have been determined
to be the minimal distances between antipad clearances and the cavity height. For the
near field modeling, a finite-difference frequency-domain method has been developed and
shown to lead to results of high accuracy. The rotational symmetry that is exploited during
the computation of the near field leads to a high numerical efficiency. It is therefore the
recommended method for near field computation at all frequencies.

The overall reduced computational effort of the modeling has enabled the analysis of the
crosstalk of large via arrays. The power sum of total uncorrelated crosstalk has been
justified as a parameter for the efficient estimation of effective crosstalk levels in first
design phases of large TSV arrays. The summation in terms of power has been extended to
periodic digital signals and enables the reduction to a single figure of merit for each via to
quantify a typical crosstalk value. Overall, the presented methods constitute a numerically
very efficient procedure for the analysis and design of large and therefore realistic arrays.

Complementary modeling approaches have been motivated, discussed and correlated with
the PBV models for the modeling of TSVs in several stackup environments. Even though an
influence of the stackup environments could be observed, it has been found that the general
frequency behavior and the orders of magnitude of transmission and crosstalk are similar.
In the last part of this thesis, measurement and FEM full-wave simulation results have been
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correlated for several structures that aim to characterize electromagnetic characterization
of TSVs. A good agreement could be observed which validates the applicability of both
the FEM-simulations and the FEM-models.

In future research on the modeling of TSVs, the PBV model could be extended in order
to achieve an even large parameter range where it is applicable. Especially a model for the
near field coupling between TSVs is of interest. At several hundreds of Gigahertz, it might
also be required to take into account other effects that have been neglected so far such as
the surface roughness of conductors. Regarding the simulation of interposers with partial
metallizations, criteria could be developed to decide which of the modeling approaches,
the physics-based model or the multi-conductor model, is better suited for an interposer
inside a specific electromagnetic environment. The measurements have shown that a good
transmission over TSV transitions is possible if silicon substrates of high resistivity are
used. Therefore, the application of an interposer in a demonstrator for signal transmission
at several tens of gigabit could be feasible.
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Numerical Methods

A.1 Root Search Techniques for the Complex Domain

The analytical methods for the determination of the wave number of modes in several
guiding structures presented in this thesis can be formulated as the mathematical problem
of finding locations with function values of zero in the complex plane of a single valued
complex function. The chosen methods to solve this task are typically a tradeoff between
several factors such as the generality of application, the overall numerical efficiency, and
the ease of implementation.

First in this chapter, the Newton-Method and related techniques are discussed. These
method are based on a good initial guess of the root value and under certain conditions
enable an iterative approximation towards the true value. As the functions encountered
with the presented waveguide problems have an infinite number of complex roots and
guessing the initial values that lead to a converging series of iterations towards the desired
root is difficult, additional techniques are in many cases helpful. The argument principle
method for the generation of these start values from the evaluation of contours of areas in
the complex domain is therefore also presented in this chapter.

A.1.1 Newton’s Method

Starting from a initial value x(0) the iteration formula is given by [129, Sec. 9.4.1]

x(k+1) = x(k) − f(x(k))

f ′(x(k))
(A.1)

where f ′(x) is the first derivative with respect to the variable x for which the condition
f ′(x(k)) 6= 0 for any k must hold.
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f ′(x) is either computed numerically or analytically. If f(x) is a real function, the numerical
computation can use finite differences. The choice of interval has to consider the numerical
effects that arise from the finite computational accuracy of the computer system. If f(x) is
a complex function, the numerical computation can be based on the numerical evaluation
of a contour integral that is given in [101, Eq. 9]. Often, analytical derivative can be
computed. For the TRM, this is discussed in Sec. B.4.

A.1.2 Halley’s method

Analog to the Newton’s Method, an iterative approach can be formulated that also uses
the second derivative f ′′(x) and is known as Halley’s Method:

x(k+1) = x(k) − 2f(x(k))f ′(x(k))

2 (f ′(x(k)))
2 − f(x(k))f ′′(x(k))

(A.2)

For the cost of computing the second derivative, a cubic convergence (instead of a quadratic
convergence with Newton’s Method) is achieved [130].

A.1.3 Argument Principle Method

Theory and application of the Argument Principle Method (APM) are given in great
detail in [101]. For the sake of completeness the most important parts of the theory are
replicated here. The Argument Principle Method is based on the generalized argument
principle theorem which can be formulated as [101]

σP =
1

j2π

∮
C

xP
f ′(x)

f(x)
dx =

n∑
i=1

ζPi (A.3)

where f(x) is an analytic/holomorphic complex function inside the complex domain of and
on the simple and closed contour C and f ′(x) is its derivative. Further, no zeros of the
function f(x) may be located on the contour. These conditions are met for all considered
problems if the integration paths are appropriately chosen. ζPi is the ith of the n roots
of the function inside contour C raised to the P th power. σP is then the result of the
summation for each value of P = {0, 1, 2, · · · }. For P = 0 (A.3) gives the number of
complex roots inside the region bounded by the contour C. For P > 0 it gives summations
from which coefficients of a polynomial with the same roots as the investigated function
can be computed [101, Sec. III].

In many cases the derivative f ′(x) can be given analytically. In the transverse resonance
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method for arbitrary numbers of layers a recursive formula can be given in order to compute
the first derivatives of the function that involves matrix multiplications. If the derivative
f ′(x) cannot be given analytically, the (complex) derivative can be obtained numerically
through Cauchy’s theorem that is given by [101]

f ′(x0) =
∂f(x)

∂x

∣∣∣∣
x=x0

=
1

j2π

∮
D

f(x)

(x− x0)2
dx. (A.4)

D is a simple, e.g., circular contour around the point x0. Further f(x) is analytic/holomorphic
on and inside the contour D.

Unless an interpolation procedure is used (e.g. the Lagragian Interpolation [129, Sec. 7.3.2]),
to improve the accuracy and robustness of the computation of the derivative by finite dif-
ferences, the application of finite differences leads to the numerical problems discussed in
A.1.1. In contrast to finite differences, the contour integral in (A.4) facilitates the imple-
mentation of a robust method. This is because the numerical integration can be carried
out with a fine discretization of the contour. A good approximation of the derivative can
be assumed if derivatives computed with sufficiently different discretizations show a good
agreement, i.e., a convergence is observed.

A.2 Numerical Integration using Gauss Quadrature

The Gauss Quadrature is a method for the numerical integration of functions that, under
certain conditions, leads to optimal results for many practical functions that feature a
certain degree of smoothness. The method is optimal in the sense that, if the the points of
function evaluation can be chosen, the numerical error is minimized with this method. In
the following, only the Gauss-Legendre Quadrature is considered which is based on Leg-
endre polynomials [129, Sec. 7.3.3.3]: Conventionally, the interval is normalized to [−1, 1]

which can be achieved for an original interval [a, b] through the following mapping func-
tion [129, Sec. 7.3.3.3]

f(x) = 2
x− a
b− a

− 1 =
2x− a− b
b− a

(A.5)

Selected values for Gauss-Legendre abscissae and weights can be found in Table A.1. In
order to increase the numerical efficiency and achieve a better control of the numerical
error of the integration, a Gauss-Kronrod integration can also be used [101, Sec. III.A].
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n=2
{

Abscissa ≥ 0 Weight
0.57735026918963 1.00000000000000

n=3


Abscissa ≥ 0 Weight

0 0.88888888888889
0.77459666924148 0.55555555555555

n=4


Abscissa ≥ 0 Weight

0.33998104358486 0.65214515486255
0.86113631159405 0.34785484513745

n=5


Abscissa ≥ 0 Weight

0 0.56888888888889
0.53846931010568 0.47862867049937
0.90617984593866 0.23692688505619

n=6


Abscissa ≥ 0 Weight

0.23861918608320 0.46791393457269
0.66120938646626 0.36076157304814
0.93246951420315 0.17132449237917

n=7


Abscissa ≥ 0 Weight

0 0.41795918367347
0.40584515137740 0.38183005050512
0.74153118559939 0.27970539148928
0.94910791234276 0.12948496616887

n=8


Abscissa ≥ 0 Weight

0.18343464249565 0.36268378337836
0.52553240991633 0.31370664587789
0.79666647741363 0.22238103445337
0.96028985649754 0.10122853629038

n=9



Abscissa ≥ 0 Weight
0 0.33023935500126

0.32425342340381 0.31234707704000
0.61337143270059 0.26061069640294
0.83603110732664 0.18064816069486
0.96816023950763 0.08127438836157

Table A.1: Gauss abscissae and weights for numbers of integration points n in rage 2 ≤ n ≤ 9.
Tabulated are only abscissae ≥ 0; for every abscissa > 0 there exists also an abscissa with
the respective negative value and the same weight.
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Parallel-Plate Waveguides

B.1 Parallel Plate Waveguide With Homogeneous, Isotropic, Loss-
less Dielectric and Perfect Conductor Plates

The parallel plate waveguide with homogeneous, isotropic, lossless dielectric and perfect
conductor plates supports a TEM mode and depending on the geometry, materials and
frequency of operation several TE- and TM-modes. This structure lends itself to an intuitive
understanding because waves are reflected at the conducting planes without phase change.

B.2 Characteristic Equation for a Single Intermediate Layer

For a single intermediate layer i (e.g. for application with the dielectric slab waveguide)
the resulting characteristic equation can be arranged as(

γx,l
ε∗l

+
γx,u
ε∗u

)
cos(kx,iti) +

(
ε∗i
kx,i

γx,l
ε∗l

γx,u
ε∗u
− kx,i

ε∗i

)
sin(kx,iti) = 0 (B.1)

or as
γx,l
ε∗l

+
γx,u
ε∗u

+

(
ε∗i
kx,i

γx,l
ε∗l

γx,u
ε∗u
− kx,i

ε∗i

)
tan(kx,iti) = 0 (B.2)
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Symmetric Case

If the structure is also the symmetric, two cases can be distinguished, namely the even
and odd symmetry cases. In case of odd symmetry, which is the case for the lowest order
TM-mode, the electric field component that is parallel to the plane interfaces follows a sine
function and is zero in the center of the dielectric slab. If the lower half of the structure is
considered, then it follows from the first row of (4.25) and by application of (4.24) that

E(tN/2, y)z,N = 0 = cos(kx,iti/2)E(0, y)z,1 + j
kx,i
ωε∗i

sin(kx,iti/2)H(0, y)x,1

= E(0, y)z,1 + j
kx,i
ωε∗i

tan(kx,iti/2)
ωε∗l
−jγx,l

E(0, y)z,1

(B.3)

and

0 = 1− kx,i
ε∗i

ε∗l
γx,l

tan(kx,iti/2) (B.4)

γx,l
kx,i

=
ε∗l
ε∗i

tan(kx,iti/2) (B.5)

B.3 Application to Radial Waveguides

As can be seen from the derivation in [96, Sec. 5-5] for two layers, the wave numbers of the
TM0n radial waveguide modes are equal to those of the TM0 parallel plate waveguide modes
with the same layering. As discussed in [96, Sec. 5-5] this is expected because the radial
waves become similar to plane waves at large distances. In the following, the characteristic
equations for computation of wave numbers of a PEC-bounded radial waveguide with an
arbitrary number of layers is derived. It is shown that the characteristic equation is identical
to the corresponding plane wave and independent from azimuthal variations.

B.3.1 Derivation of the General Transfer Matrix

The (scalar) Helmholtz equation for the cylindrical coordinate system is given by [96, Eq. 5-
1]

1

ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1

ρ2

∂2ψ

∂ρ2
+
∂2ψ

∂z2
+ k2ψ = 0. (B.6)

As discussed in [96, Sec. 5-1], for a separation if variables, solutions of the form

ψ = R(ρ) Φ(φ) Z(z) (B.7)
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are assumed and the separated equations are given by [96, Eq. 5-7]

ρ
d

dρ

(
ρ

dR

dρ

)
+ [(kρρ)2 − n2]R = 0, (B.8a)

d2Φ

dφ2
+ n2Φ = 0, (B.8b)

d2Z

dk2
z

+ k2
zZ = 0. (B.8c)

for which the following separation parameter condition holds:

k2
ρ + k2

z = k2. (B.9)

It should be noted that (B.9) is completely analogous to the separation parameter condition
for the plane wave solutions.

It follows that the Φ- and Z-functions are harmonic functions which are notated as in [96,
Sec. 5-1] as h(nφ) and h(kzz), respectively. As noted in [96, Sec. 5-1], the functions h(nφ)

are either sin(nφ) or cos(nφ) with integer n in order to have non single-valued ψ. They can
further be represented by complex exponentials ejnφ and e−jnφ which is advantageous in
many analytic derivations. This form is, e.g., used in the CIM with anisotropic ports. Each
term can (by itself) be interpreted as describing a modulated phase along the azimuthal
coordinate. A single term could in fact be used to describe azimuthally “circulating” waves.
Here, we are interested in the radially propagating waves which are standing waves with
respect to the azimuthal directions. Therefore the harmonic representations sin(nφ) or
cos(nφ) are more descriptive.

The R-functions are solutions to Bessel’s differential equation. Different solution sets are
possible; any two functions chosen from the following set are linearly independent solutions
and thus an applicable solution set:{

Jn(kρρ), Yn(kρρ), H(1)
n (kρρ), H(2)

n (kρρ)
}

(B.10)

where Jn(kρρ) and Yn(kρρ) are the Bessel functions of first and second kind, respectively,
and order n, and H(1)

n (kρρ) and H(2)
n (kρρ) are the Hankel functions of first and second kind,

respectively, and order n.

For the radial waveguides with equiphase surfaces that are cylinders the following wave
functions are used [96, Sec. 5-3]

ψ = h(kzz)h(nφ)

{
H

(1)
n (kρρ)

H
(2)
n (kρρ)

}
. (B.11)

For TM-waves between two PEC-planes at z-coordinates 0 and a, the following wave
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function satisfies the boundary conditions [96, Eq. 5-33]

ψ(TM)
m,n = cos

(mπ
a
z
)

cos(nφ)

{
H

(1)
n (kρρ)

H
(2)
n (kρρ)

}
, (B.12)

where m and n are integers equal to or larger than 0 and

kρ =

√
k2 −

(mπ
a

)2

. (B.13)

The electric and magnetic field for this mode that is TM to z are given by [96, Eq. 5-18]

Eρ =
1

ŷ

∂2ψ

∂ρ ∂z
, (B.14a)

Eφ =
1

ŷρ

∂2ψ

∂φ ∂z
, (B.14b)

Ez =
1

ŷ

(
∂2

∂z2
+ k2

)
ψ, (B.14c)

and

Hρ =
1

ρ

∂ψ

∂φ
, (B.15a)

Hφ = −∂ψ
∂ρ
, (B.15b)

Hz = 0, (B.15c)

where
ŷ = σ̂(f) + jωε̂(f) = jωε∗ (B.16)

which has the dimensions of an admittance per unit length [96, Eq. 1-47].

Derivation Using Exponential Functions for z-Dependence

For the layered radial waveguide, the wave functions for the diverging wave with cosinu-
soidal azimuthal dependence in the ith layer that extends from 0 to di in its local coordinate
system can be given with exponential functions for the z-dependence as

ψi = Cie
±kz,iz cos(nφ)H(2)

n (kρρ) (B.17)

where
k2
ρ + k2

z,i = k2
i = ωεiµi (B.18)

and n is an integer equal to or larger than 0.

The continuity of the tangential fields at the layer interfaces needs to be enforced. There-
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fore, the electric and magnetic fields at the two interfaces of each layer are related. For
n = 0, these field components are Hφ and Eρ, of n > 0, there are additional field com-
ponents Hρ and Eφ. The former case is considered first, the latter case is discussed in
Appendix B.3.3.

The wave function ψi can be written as

ψi = Ci R(ρ) Φ(φ) Z(z) (B.19)

where

Z(z) = Ãe−jkz,iz + B̃ejkz,iz (B.20a)

Φ(φ) = cos(nφ) (B.20b)

R(ρ) = H(2)
n (kρρ) (B.20c)

Then, using (B.14a), the electric field component is given by

Eρ =
1

ŷ

∂2ψ

∂ρ ∂z
=

1

ŷ
CiΦ(φ)

∂R(ρ)

∂ρ

∂Z(z)

∂z

=
1

ŷ
CiΦ(φ)

∂R(ρ)

∂ρ

∂

∂z

(
Ãe−jkz,iz + B̃e+jkz,iz

)
=
−jkz,i
ŷ

(Ae−jkz,iz −Be+jkz,iz)

(B.21)

and using (B.15a) the magnetic field component is given by

Hφ = −∂ψ
∂ρ

= −CiΦ(φ)
∂R(ρ)

∂ρ
Z(z)

= −CiΦ(φ)
∂R(ρ)

∂ρ

(
Ãe−jkz,iz + B̃e+jkz,iz

)
= −(Ae−jkz,iz +Be+jkz,iz)

(B.22)

where A and B include the azimuthal and radial dependencies which the electric and
magnetic field components Eρ and Hφ share. At the origin of the local coordinates with
z = 0, the evaluation of (B.21) and (B.22) can be expressed as

−Eρ(0)
ŷ

jkz,i
= (A−B) (B.23a)

−Hφ(0) = (A+B) (B.23b)
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From the sum and the difference of (B.23a) and (B.23b) it follows that

A = −1

2

(
ŷ

jkz,i
Eρ(0) +Hφ(0)

)
(B.24a)

B =
1

2

(
−Hφ(0) +

ŷ

jkz,i
Eρ(0)

)
(B.24b)

Insertion of (B.24) into the general expressions for the electric field (B.21) gives

Eρ =
−jkz,i
ŷ

(
−1

2

(
ŷ

jkz,i
Eρ(0) +Hφ(0)

))
e−jkz,iz − 1

2

(
−Hφ(0) +

ŷ

jkz,i
Eρ(0)

)
e+jkz,iz

=
1

2

(
e−jkz,iz + e+jkz,iz

)
Eρ(0) +

−jkz,i
ŷ

1

2

(
e+jkz,iz − e−jkz,iz

)
Hφ(0)

= cos(kz,iz)Eρ(0) +
−jkz,i
ŷ

j sin(kz,iz)Hφ(0)

= cos(kz,iz)Eρ(0) +
kz,i
ŷ

sin(kz,iz)Hφ(0)

(B.25)

and for the magnetic field, the insertion into (B.22) gives

Hφ = −
(
−1

2

(
ŷ

jkz,i
Eρ(0) +Hφ(0)

))
e−jkz,iz − 1

2

(
−Hφ(0) +

ŷ

jkz,i
Eρ(0)

)
e+jkz,iz

=
1

2

ŷ

jkz,i

(
e−jkz,iz − e+jkz,iz

)
Eρ(0) +

1

2

(
e−jkz,iz + e+jkz,iz

)
Hφ(0)

=
ŷ

jkz,i
(−j) sin(kz,iz)Eρ(0) + cos(kz,iz)Hφ(0)

= − ŷ

kz,i
sin(kz,iz)Eρ(0) + cos(kz,iz)Hφ(0)

(B.26)

Combining (B.25) and (B.26) in matrix notation for the evaluation of the field at the upper
end of the layer z = di, one obtains[

Eρ(di)

Hφ(di)

]
=

[
cos(kz,idi)

kz,i
ŷ

sin(kz,idi)

− ŷ
kz,i

sin(kz,idi) cos(kz,idi)

][
Eρ(0)

Hφ(0)

]
(B.27)

which in the written out form using (B.16) is given by[
Eρ(di)

Hφ(di)

]
=

[
cos(kz,idi)

kz,i
jωε∗i

sin(kz,idi)
ωε∗i
jkz,i

sin(kz,idi) cos(kz,idi)

][
Eρ(0)

Hφ(0)

]
(B.28)

which is in agreement with [99, Eq. 2.3.111]. Using (B.16) and (B.67) one can obtain the
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identity kz,i/ŷ = −jηi which allows to express (B.27) as[
Eρ(di)

Hφ(di)

]
=

[
cos(kz,idi) −jηi sin(kz,idi)

−j sin(kz,idi)/ηi cos(kz,idi)

][
Eρ(0)

Hφ(0)

]
(B.29)

Derivation Using Sinusoidal Function for z-Dependence

Analogous to the derivation which use the exponential functions we wave function is given
in this case as

ψi = Ci cos(kz,iz) cos(nφ)H(2)
n (kρρ) (B.30)

where again
k2
ρ + k2

z,i = k2
i = ωεiµi (B.31)

and n is an integer equal to or larger than 0.

The ψi can be in this case written as

ψi = Ci R(ρ) Φ(φ) Z(z) (B.32)

where

Z(z) = cos(kz,iz) (B.33a)

Φ(φ) = cos(nφ) (B.33b)

R(ρ) = H(2)
n (kρρ) (B.33c)

Then

Eρ =
1

ŷ

∂2ψ

∂ρ ∂z
=

1

ŷ
CiΦ(φ)

∂R(ρ)

∂ρ

∂Z(z)

∂z

= −1

ŷ
CiΦ(φ)

∂R(ρ)

∂ρ
sin(kz,iz)kz,i

(B.34)

and

Hφ = −∂ψ
∂ρ

= −CiΦ(φ)
∂R(ρ)

∂ρ
Z(z)

= −CiΦ(φ)
∂R(ρ)

∂ρ
cos(kz,iz)

(B.35)

Also the following relations between the Z(z) and ∂Z(z)
∂z

referenced to the beginning of
the respective layer at z0,i can be established using the well-known addition theorems for
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harmonic functions

cos(kz,iz) = cos(kz,i(z − z0,i)) cos(kz,iz0,i)− sin(kz,i(z − z0,i)) sin(kz,iz0,i), (B.36)

sin(kz,iz) = sin(kz,i(z − z0,i)) cos(kz,iz0,i) + cos(kz,i(z − z0,i)) sin(kz,iz0,i). (B.37)

Then for the electric field

Eρ(z) =− 1

ŷ
CiΦ(φ)

∂R(ρ)

∂ρ
sin(kz,iz)kz,i

=− 1

ŷ
CiΦ(φ)

∂R(ρ)

∂ρ
kz,i (sin(kz,i(z − z0,i)) cos(kz,iz0,i) + cos(kz,i(z − z0,i)) sin(kz,iz0,i))

= sin(kz,i(z − z0,i))

(
−1

ŷ
CiΦ(φ)

∂R(ρ)

∂ρ
cos(kz,iz0,i)kz,i

)
+ cos(kz,i(z − z0,i))

(
−1

ŷ
CiΦ(φ)

∂R(ρ)

∂ρ
sin(kz,iz0,i)kz,i

)
= sin(kz,i(z − z0,i))

kz,i
ŷ
Hφ(z0,i) + cos(kz,i(z − z0,i))Eρ(z0,i)

Analogously for the magnetic field

Hφ(z) =− CiΦ(φ)
∂R(ρ)

∂ρ
cos(kz,iz)

=− CiΦ(φ)
∂R(ρ)

∂ρ
(cos(kz,i(z − z0,i)) cos(kz,iz0,i)− sin(kz,i(z − z0,i)) sin(kz,iz0,i))

= cos(kz,i(z − z0,i))

(
−CiΦ(φ)

∂R(ρ)

∂ρ
cos(kz,iz0,i)

)
+ sin(kz,i(z − z0,i))

(
CiΦ(φ)

∂R(ρ)

∂ρ
sin(kz,iz0,i)

)
= cos(kz,i(z − z0,i))Hφ(z0,i) + sin(kz,i(z − z0,i))

(
− ŷ

kz,i
Eρ(z0,i)

)
Combined in matrix notation this can be written as[

Eρ(z)

Hφ(z)

]
=

[
cos(kz,i(z − z0,i))

kz,i
ŷ

sin(kz,i(z − z0,i))

− ŷ
kz,i

sin(kz,i(z − z0,i)) cos(kz,i(z − z0,i))

][
Eρ(z0,i)

Hφ(z0,i)

]
(B.38)

which in the written out form using (B.16) is given by[
Eρ(z)

Hφ(z)

]
=

[
cos(kz,i(z − z0,i))

kz,i
jωε∗i

sin(kz,i(z − z0,i))
ωε∗i
jkz,i

sin(kz,i(z − z0,i)) cos(kz,i(z − z0,i))

][
Eρ(z0,i)

Hφ(z0,i)

]
(B.39)

The relation between the lower and upper end of the layer is established by inserting
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z = z0,i + di to obtain[
Eρ(z0,i + di)

Hφ(z0,i + di)

]
=

[
cos(kz,idi)

kz,i
jωε∗i

sin(kz,idi)
ωε∗i
jkz,i

sin(kz,idi) cos(kz,idi)

][
Eρ(z0,i)

Hφ(z0,i)

]
(B.40)

which is also in agreement with [99, Eq. 2.3.111].

Definitions of Transverse Impedances

Transverse impedances can also be defined to establish a characteristic equation. By divi-
sion of the first row by the second row of (B.40) and using upper indices (l) and (u) to
mark evaluation of the fields and impedances the lower and upper end, respectively, of the
layer one obtains

E
(u)
ρ

H
(u)
φ

= η
(u)
tranv.(z) =

cos(kz,idi)E
(l)
ρ +

kz,i
ŷ

sin(kz,idi)H
(l)
φ

− ŷ
kz,i

sin(kz,idi)E
(l)
ρ + cos(kz,idi)H

(l)
φ

=
η

(l)
tranv. +

kz,i
ŷ

tan(kz,idi)

− ŷ
kz,i

tan(kz,idi)η
(l)
tranv. + 1

=
η

(l)
tranv. + jηi tan(kz,idi)
j
ηi

tan(kz,idi)η
(l)
tranv. + 1

= ηi
η

(l)
tranv. + jηi tan(kz,idi)

ηi + jη
(l)
tranv. tan(kz,idi)

,

(B.41)

where E(l)
ρ /H

(l)
φ = η

(l)
tranv. and kz,i/ŷ = jηi have been defined in the first and the second

step, respectively, of the manipulation in (B.41). With the last manipulation of (B.41) the
well-known form of the impedance transformation formula is obtained.

B.3.2 Characteristic Equation for Two Layers

The two interfaces at positions ze,i and z0,i are then related as(
Eρ(ze,i)

Hφ(ze,i)

)
=

(
cos(θi)

kz,i
ŷ

sin(θi)

− ŷ
kz,i

sin(θi) cos(θi)

)(
Eρ(z0,i)

Hφ(z0,i)

)
(B.42)

where θi = kz,i(ze,i − z0,i) = kz,idi.

For the two-layer guide one obtains

Eρ(ze,2) = 0 =
(

cos(θ2) kz,2
ŷ2

sin(θ2)
)(kz,1

ŷ1
sin(θ1)

cos(θ1)

)
Hφ(z0,1). (B.43)
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As in general Hφ(z0,1) 6= 0, (B.43) leads to the condition
kz,2
ŷ2

tan(θ2) = −kz,1
ŷ1

tan(θ1) (B.44)

which is equivalent to [96, Eq. 5-63].

B.3.3 Adaptations for Modes with Azimuthal Variations

For n > 0, the procedure is the same as for Eρ and Hφ. For the other components one
obtains

Eφ =
1

ŷρ

∂2ψ

∂φ ∂z
=

1

ŷρ
CiR(ρ)

∂Φ(φ)

∂φ

∂Z(z)

∂z

= − 1

ŷρ
CiR(ρ)

∂Φ(φ)

∂φ
sin(kz,iz)kz,i

(B.45)

and

Hρ =
1

ρ

∂ψ

∂φ
=

1

ρ
CiR(ρ)

∂Φ(φ)

∂φ
Z(z)

=
1

ρ
CiR(ρ)

∂Φ(φ)

∂φ
cos(kz,iz).

(B.46)

It can be observed that, except for a different sign, the ratio of Eφ to Hρ is the same as the
ratio Eρ and Hφ. Therefore, the transfer matrix for these field components can be derived
in an analogous way and can be written as(

−Eφ(ze,i)

Hρ(ze,i)

)
=

(
cos(θi)

kz,i
ŷ

sin(θi)

− ŷ
kz,i

sin(θi) cos(θi)

)(
−Eφ(z0,i)

Hρ(z0,i)

)
(B.47)

where (as before) θi = kz,i(ze,i − z0,i) = kz,idi. From comparison with (B.42), it can be
concluded that the matrices express the same conditions. The difference in sign of the
electric field in (B.47) leads (by construction of the wave solution) to an orientation of the
transverse component of the wave vector which is the same as in (B.42).

For mode order index n = 0 and with PEC boundary conditions at the outermost layer
interfaces it is thereby shown that the same transfer matrix can be used for the determi-
nation of the wave numbers of the radial waveguides. The following cases can be shown in
an analogous way:

• Cases with n > 0 and with the complementary sinusoidal azimuthal dependence.

• Non-PEC boundary conditions with decaying fields away from the waveguide analog
to the method in Section 4.3.3.
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B.3.4 Approximate Solution for a PEC-bounded Single Layer

For the single layer it follows that

kρ = ki = ω
√
εiµi (B.48)

If a loss tangent tan δ of the dielectric medium is defined by εi = ε0εr,i(1 − j tan δ), then
for small loss tangents, using the series expansion of the square root, the wave number can
be given as

kρ = ω
√
ε0εr,i(1− j tan δ)µi

≈ ω
√
ε0εr,iµi

(
1− j tan δ

2

). (B.49)

This is the same result for the attenuation due to dielectric loss (in an unlayered medium)
as the one derived through considerations of power in [91, Eq. A2.8].

B.4 Analytical Derivatives for the TRM

The numerical efficiency and robustness can be improved by making use of analytical
derivatives of the function of which the roots need to be determined when using one of the
root-search techniques that involve derivatives of the characteristic function. Consider the
following form of the transfer matrix for layer i

Ti =

(
cos(θi) −jεr,i sin(θi)/ki

−jki sin(θ)/εr,i cos(θi)

)
(B.50)

where εr,i = εi/ε0 is equal to the (complex) relative permittivity, ki = ±
√
k2

0,i − k2
z , and

θi = kiti. Note that the sign chosen for the ki of the intermediate layers is irrelevant. This
is because cos(kiti), sin(kiti)/ki, and ki sin(kiti) are all even functions for their complex
argument ki (see also Appendix F.2) and therefore invariant to its sign.

The transfer function for two consecutive layer i and j is given by the matrix product

T{i,j} = TiTj (B.51)

and for all N layers analogously by

T = T{1,2,··· ,N} =
N∏
i=1

Ti =

(
T1,1 T1,2

T2,1 T2,2

)
, (B.52)
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where the product is defined recursively by
n∏
i=1

Ti =

(
n−1∏
i=1

Ti

)
Tn. (B.53)

The characteristic function f(kz) for the general case (arbitrary non-magnetic materials at
outermost layers) is then given by

f(kz) = −jksT1,1/εr,s − jkcT2,2/εr,c − T2,1 + kskcT1,2/(εr,sεr,c), (B.54)

where for the space below the first layer (“substrate”) ks = ±
√
k2
z − k2

0,s and εr,s = εs/ε0.

For the space above the uppermost layer (“cladding”) kc = ±
√
k2
z − k2

0,c and εr,c = εc/ε0.
In both cases the sign for the wavenumber has to be chosen such that the real part is
positive which corresponds to a wave that decays in the transverse direction(s) away from
the waveguide.

B.4.1 First Derivative of the Transfer Matrix

The first derivative of the transfer matrix of layer i with respect to the longitudinal wave
number kx can be given as

∂Ti

∂kx
=

∂

∂kx

[
cos(θi) −j sin(θi)ki/(ωε

∗
n)

−jωε∗n sin(θi)/ki cos(θi)

]

=

[
− sin(θi)θ

′
i −j(ki cos(θi)θ

′
i + k′i sin(θi))/(ωε

∗
n)

−jωε∗n(ki cos(θi)θ
′
i − k′i sin(θi))/k

2
i − sin(θi)θ

′
i

] (B.55)

where θ′i = k′iti and k′i = −kx(k2
0,i − k2

x)
−1/2.

The first derivative of the transfer matrix for two consecutive layer i and j is given by the
sum of matrix products involving the transfer matrices and their derivatives:

∂T{i,j}
∂kx

=
∂(TiTj)

∂kx
=
∂Ti
∂kx

Tj + Ti
∂Tj
∂kx

(B.56)

The first derivative of the overall transfer matrix for all N layers can be formulated in a
recursive way as

T ′ =
∂T{1,2··· ,N}

∂kx
=

(
T ′1,1 T ′1,2
T ′2,1 T ′2,2

)
(B.57)

∂T{1,2··· ,n}
∂kx

=
∂T{1,2··· ,n−1}

∂kx
Tn + T{1,2··· ,n−1}

∂Tn
∂kx

(B.58)
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B.4.2 First Derivative of the Characteristic Function

The derivative of the characteristic function is given by differentiation of (4.26) as

∂F (kz)

∂kx
=

∂

∂kx

(
jT1,1

γz,l
ωε∗l
− T2,1

γz,l
ωε∗l

γz,u
ωε∗u

+ jT2,2
γz,u
ωε∗u

+ T1,2

)
=

j

ωε∗l
(T ′1,1γz,l + T1,1γ

′
z,l) +

j

ωε∗u
(T ′2,2γz,u + T2,2γ

′
z,u) + T ′1,2

− 1

ω2ε∗l ε
∗
u

(T ′2,1γz,lγz,u + T2,1γ
′
z,lγz,u + T2,1γz,lγ

′
z,u)

(B.59)

where γ′z,u = ±kx(ω2µε∗u − k2
x)
−1/2 and γ′z,l = ±kx(ω2µε∗l − k2

x)
−1/2. Again, the signs have

to be chosen such that the real parts of both γ′z,u and γ′z,l are positive.

B.5 Characteristic Impedance and Wave Impedances of Parallel
Plate Waveguides

B.5.1 Impedances of the Homogeneously Filled Waveguide

Consider a parallel plate waveguide with perfectly conducting plates, width w and plate
separation d. The homogeneous filling has a permittivity ε and a permeability µ0. The
characteristic impedance can be expressed as a function of the per-unit-length capacitance
and inductance which are easily derived as

L′ = εw/d, (B.60)

C ′ = µ0d/w. (B.61)

The characteristic impedance of the (fundamental) TEM mode is then given as

Z0 =

√
L′

C ′
=

√
εw/d

µ0d/w
= η

w

d
. (B.62)

Equation (B.62) can applied, e.g., when using the characteristic impedance Z0 from port
solutions of FEM full-wave simulations or the network parameter of a transmission line
segment to determine the wave impedance η of the material.
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B.5.2 Impedances of the Layered Waveguide

For the ith layer of the multilayer waveguide, a TM-wave exists for which the longitudinal
impedance can be related to the longitudinal wave number as

ηTMx =
kx
ωεi

. (B.63)

I.e., the wave impedance is related to the permittivity of the respective layer, but the
longitudinal wave number is the same for all layers and is determined with one of the
methods discussed before.

Next, the characteristic impedance of the layered waveguide is considered for the case where
it can be related to capacitances and inductances. For the silicon structures that are of
interest in this thesis this has been found to be applicable for the slow-wave and quasi-TEM
regimes where the (effective) wave number has been with good accuracy approximated as

kx = ω
√
L′C ′ = ω

√
µ0ε∗eff (B.64)

where
ε∗eff =

∑n
i=1 ti∑n
i=1

ti
ε∗i

(B.65)

In (B.64), C ′ = ε∗effw/d has in general assumed to be complex.

Using L′ which is identical to the empty guide and C ′ for the characteristic impedances,
one obtains

Z0 =

√
L′

C ′
=

√
ε∗effw/d

µ0d/w
= ηeff

w

d
. (B.66)

In the last step of (B.66) an effective wave impedance ηeff is defined that is analog to the
one of the homogeneously filled guide and is related to the characteristic impedance by
only geometrical parameters. It is different in that it cannot in general relate the transverse
electric and magnetic field components of the mode. For the effective wave impedance, also
(B.63) can be used together with(B.64) as

ηeff =
kx
ωε∗eff

=
ω
√
µ0ε∗eff

ωε∗eff
=

ωµ0

ω
√
µ0ε∗eff

=
ωµ0

kx
. (B.67)

From the last result in (B.67) it can be seen that with these assumptions, the TM- and
TE-mode impedances coincide.

Note that these results are equivalent to those used in other publications. For the modeling
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of the multi-conductor lines in [25], a characteristic impedance

Zc =
1

√
εeffc0C0

(B.68)

is used where c0 is the speed of light, C0 is the capacitance of the structure with all
dielectrics replaced by vacuum, and

εeff =

(
kzc0

ω

)2

. (B.69)

This formulation can be traced back to [131–133]. It should be noted that, while [132]
relates the characteristic impedance to the (real) phase velocity, it is related to the com-
plex propagation constant by [131]. Applicability of the latter is assumed with the above
formulas.
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Appendix C

Computation of Waveguides Based on Cylindrical
Wave Functions

The electromagnetic theory of many of the structures considered in this work is based on
cylindrical wave functions. Structures and components which fall in this category are

• Coaxial waveguides with homogeneous filling for coaxial apertures of the via antipads
in metal-clad interposers.

• Coaxial waveguides with inhomogeneous filling for coaxial TSVs.

• Radial waveguides with inhomogeneous filling for metal-clad silicon interposer.

C.1 Computation of Wave Numbers of Propagation in Coaxial
TSVs

The section presents a matrix method for the computation of the wave number of the
fundamental mode of propagation along a radial layered coaxial waveguide from [10]. This
modeling is applicable for concentric coaxial TSV for which a PEC boundary is an appro-
priate approximation for the inner and outer conductor. In contrast to lumped element
models, the method is also applicable with layers of elevated conductivity which are larger
(in the transvers direction) than the skin depth. For the case where a layering with silicon
and silicon dioxide is used the physical phenomena of quasi TEM, slow-wave and skin-effect
propagation are again observed.
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C.1.1 Adaptation of a Matrix Method for Radially Layered Coaxial TSVs

The coaxial structure as depicted in Fig. C.1 is considered which consists of a concentric
coaxial waveguide with inner and outer radii ri and rN , respectively, and (in general) N
layers of the radially layered filling. The nth layer is characterized by an outer radius of rn, a
relative permittivity εn, and a conductivity σn. The matrix method that is presented in the
following adapts theory of the radially layered dielectric structure [134, 135]. To account
for the losses in comparison to the mostly discussed lossless structures, the adaptation
consists in the use of a complex permittivity. Similar to the formulation in the transverse
resonance method (TRM), a characteristic function is derived for the which the (in general
complex) roots correspond to the modal wave numbers.

The radial variations of the modal fields are efficiently described by using Bessel functions.
The modes of lowest order of the TM- and TE-type are modes without angular/azimuthal
variation of the fields. In comparison to the higher order modes, a smaller number of
field components is necessary for the description. In the following, the notation from [134]
is adopted and the main findings for the fundamental TM-mode in the purely dielectric
structure are reproduced. Subsequently the adaptations for the modeling of the coaxial
waveguide are discussed.

The general solution of the wave equation for each layer is given by a (weighted) super-
position of Bessel functions to describe the radial dependence and a harmonic function to
describe the azimuthal variation:

Ez = [AJl(kiρ) +BYl(kiρ)] cos(lθ + Φ) (C.1a)

Hz = [CJl(kiρ) +DYl(kiρ)] cos(lθ + Φ) (C.1b)

where Jl(x) and Yl(x) are Bessel functions of the first and the second kind, respectively,
of order l and argument x, and primed cylinder functions J ′l (x) and Y ′l (x) which in the
following denote the derivative with respect to the respective argument x. ρ is the (trans-
verse) radial coordinate and ki the radial component of the wave number in the i-th layer.
The transverse propagation constants (radial components) for non-magnetic materials are
given by 1

ki =
√
k2

0εr,i − k2
z , (C.2)

where k0 is the free space wave number. kz is the yet unknown wave number of guided wave
propagation that is determined by the presented method. The complex relative permittivity

1The negative of the root in (C.2) also fulfills the separation parameter condition. The principal square
root has been used to compute the example presented in the following. It is not proven in this thesis that
this applies to the general case.
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Figure C.1: Structure of the coaxial waveguide embedded in a dielectric (silicon) substrate.
For the transverse magnetic modes of this waveguide the field components are given. Figure
and text taken from [10].

of the ith layer is
εr,i = εr,i − j(σi/ε0ω), (C.3)

where εr,i is the real part of the relative permittivity of the material in the ith layer, σi is
the material conductivity, ε0 is the free space permittivity, and ω is the angular frequency.

The cosine terms in (C.1) describe an azimuthal dependence which is only relevant for the
higher order modes. These are hybrid in that they have both electric and magnetic field
components in propagation direction. For the fundamental TM-mode that is of interest
here the Hz component and the azimuthal dependence cos(lθ + Φ) can be dropped.

The derivation starts by enforcing the continuity of the tangential field components Ez,
Eθ, Hz, and Hθ at the interfaces of each pair of adjacent layers. This gives a 2× 2 matrix
that relates the coefficients of the Bessel functions, A and B, as

M2

[
A2

B2

]
= M1

[
A1

B1

]
. (C.4)

In order to simplify the notation, the two adjacent layer are indexed with 1 for inner one
and 2 for the outer one of the two layers. The reduced matrix for the TM-case is given by
(with index i is either 1 or 2):

Mi(ρn) =

 Jl(kiρn) Yl(kiρn)

ωεiJ
′
l (kiρn)

kzki

ωεiY
′
l (kiρn)

kzki

 , (C.5)
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where εi = ε0εr,i and ρn is the radius of the interfaces.

In order to perform a concatenation for the description in (C.4), a transfer matrix is derived
as [

A2

B2

]
= (M2(ρn))−1 ·M1(ρn)︸ ︷︷ ︸

M1,2

[
A1

B1

]
, (C.6)

for which the elements are given as

M1,2 =
πk2ρn

2

[
ma mb

mc md

]
, (C.7a)

where

ma = Jl(k1ρn)Y ′l (k2ρn)− k2ε1

k1ε2

J ′l (k1ρn)Yl(k2ρn), (C.7b)

mb = Yl(k1ρn)Y ′l (k2ρn)− k2ε1

k1ε2

Y ′l (k1ρn)Yl(k2ρn), (C.7c)

mc =
k2ε1

k1ε2

J ′l (k1ρn)Jl(k2ρn)− Jl(k1ρn)J ′l (k2ρn), (C.7d)

md =
k2ε1

k1ε2

Y ′l (k1ρn)Jl(k2ρn)− Yl(k1ρn)J ′l (k2ρn). (C.7e)

The coefficients for the outermost layers are then related by[
AN

BN

]
= MN−1,N

[
AN−1

BN−1

]

= MN−1,NMN−2,N−1 . . .M2,3M1,2︸ ︷︷ ︸M11 M12

M21 M22



[
A1

B1

]
, (C.8)

where index 1 refers now to the innermost dielectric layer and index N for the outermost
one. Compared to the theory for the Bragg fiber from [134], the boundary conditions are
different and therefore need to be adapted as follows. The PEC boundaries require the
tangential electrical field components Ez and Eρ to disappear at the surfaces of the inner
and outer conductor, i.e. at ρ = r0 and ρ = rN . This can be fulfilled by coefficients for the
Bessel functions in the inner- and outermost layers

A1,N = Yl(k1,Nr0,N), (C.9a)

B1,N = −Jl(k1,Nr0,N) (C.9b)

where r0 is the radius of the inner conductor, rN is the inner radius of the outer conduc-
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tor, and k1,N are the transverse wave numbers (radial components) of the innermost and
outermost layer, respectively.

An equation system can then be written as[
Yl(kNrN)

−Jl(kNrN)

]
=

[
M11 M12

M21 M22

][
Yl(k1r0)

−Jl(k1r0)

]
(C.10)

After multiplication of the first row of (C.10) with −Jl(kNrN) and the second row with
Yl(kNrN), the rows can be equated to obtain 2

0 =Jl(kNrN) [M11Yl(k1r0)−M12Jl(k1r0)]

+ Yl(kNrN) [Yl(k1r0)M21 −M22Jl(k1r0)]
(C.11)

C.1.2 Quasi-static First Order Approximation

As is in the case of planar layering, a quasi-static approximation should be applicable if the
transverse dimensions are electrically small and the skin effect is not significant such that
the products of transverse wave numbers and layer thicknesses are small. For the coaxially
layered case with silicon and silicon dioxide layers, the structure is depicted in Fig. C.2a
and the equivalent circuit is depicted in Fig. C.2b. The per unit length admittance of
this coaxial structures is computed using the series connection of parallel capacitances and
conductances for every layer as

Y ′Total =
jω2π∑N

n=1 (ln(rn)− ln(rn−1))/
(
ε0εr,n

) . (C.12)

Using (C.12), the wave number of guided wave propagation is obtained as

kz = k0εr,eff = k0Y
′

Total/(jωC
′
0) (C.13)

where C ′0 is the per unit length capacitance of the empty coaxial guide with the same
dimensions.

2In contrast to the system of nonlinear equations from [10], the formulation can therefore also be cast
into this scalar equation which is easier to solve.
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(a) (b)

Figure C.2: (a) Detail view of the considered structure for the case of three layers with
a configuration consisting of a silicon layer enclosed by silicon oxide layers. (b) Equivalent
circuit for the fundamental mode used in the approximate analysis. When neglecting losses in
the silicon dioxide the corresponding resistors can be omitted. For the silicon layer, the resistor
does not play a role in the quasi TEM regime. Text taken and figure adapted from [10].

C.1.3 Application to Coaxial TSV Structures

In the following, several example results from [10] are presented with a comparison of wave
number results obtained from the two proposed methods, the exact matrix method and
the approximation from (C.13), and 2D FEM results from [112].

Numerical Implementation and Efficiency

As start values for the root search of the matrix method, the approximate values from
(C.13) are used. The numerical techniques based on the APM as discussed in Appendix A.1.3
would also be applicable. An analytical derivative analog to the one for the planar layering
presented in Section B.4 could also be derived.

Using the FEM simulation, approximately 1 s to 2 s are needed for the FEM simulation on
a personal computer with 3.2 GHz CPU. The proposed methods are implemented in MAT-
LAB and run on the same computer. For the proposed matrix method, two domains must
be differentiated. In regions near and inside the skin-effect mode domain, the approximate
method described above is neither valid nor does is provide reliable start values for a root
search based on the Newton Method. Therefore, a domain subdivision method has been
implemented which evaluated the sign changes of real and imaginary part on the contour
and estimates the the positions of roots from this. While this method has been successfully
applied, the methods such as the APM are recommended for future investigations because
they are based on more rigorous and well-studied techniques. Using the outline domain
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subdivision, a computation time below 1 s is measured if reasonable sub-domain resolutions
are determined in advance. In contrast, a good convergence is observed with the Newton
root search that starts at the approximate values if inside the quasi-TEM and slow-wave
regimes. A fast and reliable convergence then leads to computation times below around
25 ms for the matrix method. If occurrence of the skin-effect mode can be ruled out, the
proposed approximate can be solely used and computes each wave number in less than
1 ms. For the structures and frequencies investigated in the following a fair agreement with
the other methods is observed up to conductivities of the silicon of about 500 S/m.

Discussion of Example Results

The computed results are presented in Figs. C.3 through C.6. The results in Figs. C.3
and C.4 show the behavior that is expected from the results for the planar layers: At low
frequencies a slow-wave propagation occurs with relatively low attenuation because most
of the electrical field is concentrated inside the oxide layer. Due to strong interfacial po-
larizations, the phase velocity is lower than in a waveguide with either silicon or silicon
dioxide [38]. Towards higher frequencies, a transition occurs towards the quasi-TEM mode
where the phase velocity is between the values for the involved dielectrics and the atten-
uation also increases. A good agreement of all methods is observed except for the phase
velocity inside the transition region. Fig. C.5 shows the transition from the slow-wave
regime towards the skin-effect regime. It can be seen that the matrix method also shows
a good agreement with reference results while the effects are not represented/modeled by
the approximate method, especially regarding the attenuation. Further results are given in
the form of a frequency-resistivity-chart in Fig. C.6 for the phase velocity normalized to
the free-space phase velocity.

C.2 TM0n-Modes of the Radial Waveguide

The TM0n-modes play an important role for the description of radial wave propagation in
planar circuits described in this thesis. They are supported by a parallel pair of conducting
planes. In this section the network parameters for the the ideal (lossless and homogeneously
filled) radial waveguide for one of these modes are derived. Radial ports are defined on
surfaces that are the lateral faces of a circular cylinder. The two radial ports are located
at an (inner) radius ra and an (outer) radius rb.

The electric and magnetic fields in the waveguide can be derived from a scalar mode
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Figure C.3: Correlation results for a structure with an inner conductor of radius 5 µm,
an outer conductor of radius 10 µm and a silicon dioxide layer thickness of (a) 0.2 µm and
(b) 0.5 µm, respectively. The silicon conductivity is 1 S/m (100Ω cm). Figure and text taken
from [10].
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Figure C.4: Correlation results for a structure with an inner conductor of radius 10 µm, an
outer conductor of radius 110 µm, and a silicon dioxide layer thickness of 1 µm. The silicon
conductivity is (a) 1 S/m and (b) 100 S/m, respectively. Figure and text taken from [10].
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Figure C.5: Correlation results for a structure with an inner conductor of radius 10 µm, an
outer conductor of radius 110 µm, and a silicon dioxide layer thickness of 1 µm. The silicon
conductivity is 104 S/m (10−2 Ω cm). Figure and text taken from [10].

function [96, Sec. 5-3]

ΨTM
0n = cos(nφ)

{
H

(1)
n (kρ)

H
(2)
n (kρ)

}
, (C.14)

where k = kρ and n = 0, 1, 2, · · · .

For the complete set of modes, also the following scalar mode function must be considered
[96, Sec. 5-3]

ΨTM
0n = sin(nφ)

{
H

(1)
n (kρ)

H
(2)
n (kρ)

}
. (C.15)

From (C.14), the following electric field components are derived:

Eρ = 0 (C.16)

Eφ = 0 (C.17)

Ez =
1

jωε

(
∂2

∂z2
+ k2

)
ΨTM

0n =
k2

jωε
cos(nφ)

{
H

(1)
n (kρ)

H
(2)
n (kρ)

}
(C.18)
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Figure C.6: Normalized phase velocity plotted in resistivity-frequency charts for the struc-
tures with (a) an inner conductor of radius 5 µm, an outer conductor of radius 10 µm and
a silicon dioxide layer thickness of 0.5 µm. (b) with an inner conductor of radius 10 µm, an
outer conductor of radius 110 µm and a silicon dioxide layer thickness of 1 µm. The scaling
was chosen as to facilitate comparison with results in [8] and [104]. To compute the charts 304
parameter sets were evaluated. Absence of skin-effect mode in (a) allows for fast conversion
from approximate values resulting in a total simulation time of only ≈ 7.5 s. Text taken and
figures adapted from [10].

The magnetic field components are given by

Hρ =
1

ρ

∂ΨTM
0n

∂Φ
= −1

ρ
n sin(nφ)

{
H

(1)
n (kρ)

H
(2)
n (kρ)

}
(C.19)

Hφ = −∂ΨTM
0n

∂ρ
= − cos(nφ)k

{
H
′(1)
n (kρ)

H
′(2)
n (kρ)

}
(C.20)

Hz = 0 (C.21)

In (C.20), H ′(1)
n and H ′(2) are the derivatives with respect the complete argument of the

Hankel functions of first and second kind, respectively, and order n. Relations for Bessel
function derivatives can be found in Appendix F.3.
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C.2 TM0n-Modes of the Radial Waveguide

If port 1 is the inner port, then the admittance Y1,1 can be obtained by enforcing V2 = 0

(short-circuit of the outer port) and relating modal voltage and current at the inner port.
The condition of the voltage being zero at the outer port is enforced by setting the overall
field equal to zero

E(0n)
z (ρ = rb) =

k2

jωε
cos(nφ)

(
A ·H(1)

n (krb) +B ·H(2)
n (krb)

)
= 0, (C.22)

where A and B are yet unknown constants. This can be solved for a relation between A
and B:

A = −B · H
(2)
n (krb)

H
(1)
n (krb)

(C.23)

For Y1,1 the magnetic field has to be integrated along the azimuthal circumference of port
1 and the electric field along the vertical cross-section to obtain

Y1,1 =
2πraHφ(ra)

hE
(0n)
z (ra)

∣∣∣∣∣
Ez(rb)=0

=
2πra
h
· jωε
k
· AH

′(1)
n (kra) +BH

′(2)
n (kra)

AH
(1)
n (kra) +BH

(2)
n (kra)

=
2πra
h
· jωε
k
· −H

(2)
n (krb)H

′(1)
n (kra) +H

(1)
n (krb)H

′(2)
n (kra)

−H(2)
n (krb)H

(1)
n (kra) +H

(1)
n (krb)H

(2)
n (kra)

.

(C.24)

See Section B.3 for a discussion of the wave numbers of these TM-modes.
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Appendix D

The Contour Integral Method for Planar Circuits

In this chapter, the theory of the Contour Integral Method (CIM) is discussed. First, the
original formulation and the main results of the adaptation to circular ports are presented.
This discussion assumes a parallel plate structure with homogeneous substrate. Then, the
adaptations for layered substrates are discussed. Finally, some guidance if provided for the
practical implementation of efficient CIM algorithms.

D.1 Theoretical Foundations of the Contour Integral Method

The CIM is a numerical technique for computation of electromagnetic properties of 2D
planar structures by means of a contour integral formulation. The method can hence be
classified as a boundary element method (BEM). The planar circuit is regarded as an
N -port circuit with modal voltages and currents along the contours which are integral
quantities of associated tangential electric and magnetic fields at the contours. In the
original formulation of the CIM for arbitrary shapes, all inner and outer 1D contours of
the computational domain are discretized and constant electric and magnetic field are as-
sumed on the ports assigned to the segments of the discretized contour. Using a sufficiently
fine discretization of the boundary (e.g. 10 segments per wavelength for relatively simple
shapes), the method has been shown to produce good results with reduced numerical ef-
fort when compared to methods with volume or surface discretization. The corresponding
3D geometry of a linear port is a square-shaped area with metallizations at the top and
bottom contour lines. The basis functions on the linear segments are pulse basis functions
and the matching point is chosen at the center of each segment.

Later, the CIM has been extended to circular ports. The corresponding 3D geometry of a
circular port is shaped as the lateral surface of a circular cylinder. This 3D counterpart of
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Appendix D The Contour Integral Method for Planar Circuits

this port type is therefore not planar. Instead of a point matching, a Galerkin matching
is carried out with the functions of a Fourier expansion defined on each port. The finite
number of Fourier functions determines the accuracy related to the circular ports whereas
the accuracy related to the linear port is influenced by both the port size and the type of
numerical integration used for evaluation of fields on it.

The voltages and currents at all ports are related through a linear system of equations for
all ports on the contour. With the characterization in terms of the ports, no assumption is
yet made regarding circuits connected to these ports except that the discretization is fine
enough to represent the field with the required accuracy. The characterization in terms
of network parameters can therefore be used in segmentation approaches to compute the
properties of parts of circuits independently and concatenate them subsequently. Ports can
also be located at positions of the boundary of the computational domain which correspond
to a boundary in the modeled physical structure. These ports may, e.g., represent open
circuited contours, a discontinuity due to the finite plane which reflects the cylindrical
waves that propagate between the parallel plates. The effect of real contours is modeled
by terminations of the corresponding ports.

General Form of the CIM

In the following, modal voltages and currents on linear and circular ports are related by
matrices U and H in the general form

UV = HI. (D.1)

The description in (D.1) can be used to compute more explicit descriptions in form of the
so-called parallel-plate impedance matrix as

Z = U−1H (D.2a)

or in form of the corresponding parallel-plate admittance matrix as

Y = H−1U . (D.2b)

As shown in Section 6.1, it can be numerically beneficial to incorporate fixed port ter-
minations into the solution step instead of terminating the network parameter after the
computation as in (D.2).
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D.1 Theoretical Foundations of the Contour Integral Method

Indices Equations in the references Equations in this chapter

ll [91, Eqs. 3.3, 3.4] (D.5)
lc [93, Eqs. 4.19, 4.20] (D.7)
la [93, Eqs. 4.48, 4.49] (D.14)
cl [93, Eqs. 4.21, 4.22] (D.8)
cc [93, Eqs. 4.11, 4.12] (D.6)

ca, ac, aa [56, Eqs. 4.44, 4.45] (D.12), (D.13)
al [93, Eqs. 4.50, 4.51] (D.15)

Table D.1: Indices of the U- and H-matrix parts as organized in (D.4) with the original
references and the equations numbers used within this chapter.

Structure of the CIM matrices with All Port Types

For the modal voltages and currents in (D.1), the following differentiation and ordering
can be used

V =

VlVc
Va

 , (D.3a) I =

IlIc
Ia

 , (D.3b)

where indices l correspond to the single modes on line ports, indices c to the isotropic
modes on circular ports, and indices a to the anisotropic modes on circular ports.1 The
U -matrix and the H-matrix are accordingly organized blockwise as follows

U =

U (ll) U (lc) U (la)

U (cl) U (cc) U (ca)

U (al) U (ac) U (aa)

 , (D.4a)
H =

H(ll) H(lc) H(la)

H(cl) H(cc) H(ca)

H(al) H(ac) H(aa)

 , (D.4b)

These parts are given in the following and the overview is provided in Table D.1.
1For comparison with the reference: In [93], isotropic and anisotropic circular modes are not distin-

guished with this kind of index. Instead, indices p are used for all modes on circular ports and indices q
are used for the linear ports.
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D.1.1 Original Formulation for Line Ports

The original formulation of the CIM includes only line ports. Using a notation that is close
to the one from [93] the entries of the matrices U (ll) and H(ll) are given in [91] as2

U (ll)
op = δop −

k

2j

∫
Wp

〈
R̂, n̂′

〉
H

(2)
1 (kρop) dsp, (D.5a)

and

H(ll)
op =


ωµd

2Wp

∫
Wp

H
(2)
0 (kρop) dsp for o 6= p,

ωµd

2

[
1− 2j

π

(
ln

(
kWo

4

)
− 1 + γ

)]
for o = p,

(D.5b)

Refer to Fig. D.1 for parts of the following notation. δop is the Kronecker delta (equal to 1
for o = p and 0 else). Wp is the width of the pth port. k is the wave number of propagation
in the parallel plate structure. ρop = ‖ro − rp‖2 is the distance between locations on ports
o and p: For the observation port with index o, this location of the observation point is
typically chosen at the geometrical center of the port. For the source point with index p, this
location corresponds to the points along the port contour that are used for the numerical
integration along the source port. R̂ = (ro − rp)/ρop is the source–observation point unit
vector. n̂′ is the normal vector at the source boundary port. As depicted in Fig. D.1, it
points outward for the outer contour C that is discretized with linear segments and towards
the center of the inner circular contour C ′. µ is the permeability of the dielectric. ω = 2πf

is the angular frequency. d is the plate separation which is equal to the thickness of the
dielectric. γ is the Euler-Mascheroni constant (γ ≈ 0.577 215 665).

D.1.2 Extensions to Isotropic Modes on Circular Ports

An extension of the CIM is presented in [92, 93] which introduces analytical solutions for
the integral over circular ports. By using the extended model the numerical effort can be
reduced, especially if only the fundamental isotropic mode needs to be considered.

2The formulation in [93] for (D.5b) differs by a factor of 1/2 from the one in [91] because the port
currents are defined differently.
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Figure D.1: (a) Port and vector definitions for the CIM with finite planes: All the contours
and the tangential vector are assumed to be oriented in counterclockwise direction for outer
contours and clockwise for inner countours (cutouts). The normal vector on segments are
assumed to points outwards from the planes in both cases. The source-observation vector R
points from the source boundary point center to the center of the observation boundary port.
Figure adapted from [93, Fig. 3.1]. (b) Illustration of the corresponding 3D structure.
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Only Circular Ports

In many of the applications of the CIM in this thesis, the case of infinite planes is consid-
ered which is equivalent to radiation from the boundary without reflected waves or very
large planes from which no significant signal is effectively scattered back because a strong
attenuation of propagation in the horizontal plane occurs. The wave propagating in the
parallel plate structure is in this case only scattered at the vias. Therefore only the radial
ports at which the via near field models are concatenated are required.

If only the fundamental, isotropic mode is considered on circular ports, then the entries of
U (cc) and H(cc) are given by [92]:

U (cc)
oo =

kπap
j

{
J0(kap)H

(2)
1 (kap) (o = p),

J0(kao)J1(kap)H
(2)
0 (kρop) (o 6= p),

(D.6a)

H(cc)
oo =

kηd

2

{
J0(kap)H

(2)
0 (kap) (o = p),

J0(kao)J0(kap)H
(2)
0 (kρop) (o 6= p),

(D.6b)

where k is again the wave number of propagation in horizontal directions in the parallel-
plate structure. η is the wave impedance of this wave propagation which is further discussed
in Appendix D.2. d is the plate separation which is equal to the thickness of the dielectric
filling. ao and ap are the radii of circular ports o and p, respectively. ρop is the distance
between the centers of the circular ports o and p.

Both Linear and Circular Ports

For circular ports as source ports and line ports as observation ports, the matrix entries
are given by [92, Eq. 42]

U (lc)
op =

kπap
j
· J1(kap)H

(2)
0 (kρop), (D.7a)

U (lc)
op =

kηd

2
· J0(kap)H

(2)
0 (kρop). (D.7b)

For line ports as source ports and circular ports as observation ports, the matrix entries
are given by [92, Eq. 42]

U (cl)
op = − k

2j
· J0(kao) ·

∫
Wp

〈
R̂, n̂′

〉
H

(2)
1 (kρop) ds′, (D.8a)

H(cl)
op =

kηd

2
· J0(kao) ·

1

Wp

∫
Wp

H
(2)
0 (kρop) ds′. (D.8b)
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D.1.3 Extensions to Anisotropic Modes on Circular Ports

Port Definitions for Anisotropic Modes

Meaningful port definitions for anisotropic modes on circular ports are required. In [56,
Eq. 4.23], these are given as

Ez(r) =
∞∑

n=−∞

Ẽn exp (jnφ) (D.9a)

Hφ(r) =
∞∑

n=−∞

H̃n exp (jnφ) (D.9b)

where φ is the azimuthal angle along the circular port circumference and the Fourier
coefficients Ẽn and H̃n are given by [56, Eq. 4.24]

Ẽn =
1

2π

∞∑
n=−∞

Ez(r) exp (−jnφ) dφ (D.10a)

H̃n =
1

2π

∞∑
n=−∞

Hφ(r) exp (−jnφ) dφ (D.10b)

As noted in [56, Sec. 4.4], in order to keep consistency with the isotropic mode definitions,
the following modal voltages and currents are defined

Vn = Ẽnd (D.11a)

In = H̃n2πa (D.11b)

where d and a are the port height and radius, respectively, of the circular port.

Relations Between Modes on Circular Ports

In order to simplify the notation, a specific ordering of modes is chosen. In the following
ordering all entries with one combination of the two mode indices are assembled in one
block. If modes in the ranges −M, · · · ,M and −N, · · · , N are used with M = N the
organizations of the blocks for the relation between all modes on circular ports except for
those between the isotropic modes can be given for the U -matrix as

U (ca) =
[
U (0,−N) U (0,−N+1) · · · U (0,−1) U (0,+1) · · · U (0,+N)

]
(D.12a)
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U (ac) =



U (−M,0)

U (−M+1,0)

...
U (−1,0)

U (+1,0)

...
U (+M,0)


(D.12b)

U (aa) =



U (−M,−N) U (−M,−N+1) · · · U (−M,−1) U (−M,+1) · · · U (−M,+N)

U (−M+1,−N) U (−M+1,−N+1) · · · U (−M+1,−1) U (−M+1,+1) · · · U (−M+1,+N)

...
... . . . ...

... . . . ...
U (−1,−N) U (−1,−N+1) · · · U (−1,−1) U (−1,+1) · · · U (−1,+N)

U (+1,−N) U (+1,−N+1) · · · U (+1,−1) U (+1,+1) · · · U (+1,+N)

...
... . . . ...

... . . . ...
U (+M,−N) U (+M,−N+1) · · · U (+M,−1) U (+M,+1) · · · U (+M,+N)


(D.12c)

The organization of the H-matrix is correspondingly. With the definitions in (D.11), the
entire of the blocks of the U -matrix andH-matrix for the interaction between anisotropic
modes on circular ports and between the isotropic and anisotropic modes can be given
as [56, Eqs. 4.44–4.45], [93, Eq. 17a]3

U (m,n)
o,p = −kπap

j
·Jm(kao)·


J ′m(kap)H

(2)
m−n(kρo,p) exp (−j(m− n)φo,p) (o 6= p),

H
′(2)
m (kao) (m = n) ∧ (o = p),

0 else,
(D.13a)

H(m,n)
o,p =

kηd

2
·Jm(kao) ·


Jm(kap)H

(2)
m−n(kρop) exp (−j(m− n)φo,p) (o 6= p),

H
(2)
m (kao) (m = n) ∧ (o = p),

0 else.
(D.13b)

The primes in (D.13a) denote the derivative of the respective Bessel and Hankel func-
tions with respect to their complete argument. φo,p is the angle between the vector from
observation point to source point and the positive x-axis, cf. [56, Figs. 4.2, A.2]

3In [56, Eq. 4.44], the first minus sign is incorrectly missing, while it is present in [93, Eq. 17a]
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Relations Between Modes on Circular Ports and Linear Ports

As given in [56, Eqs. 4.48–4.51]

U (la) =
[
U (−N) U (−N+1) · · · U (−1) U (+1) · · · U (+N)

]
(D.14a)

U (n)
o,p = −kπap

j
· J ′n(kap)H

(2)
n (kρop) exp (−jn(φo,p + π)) (D.14b)

H(n)
o,p =

kηd

2
· Jn(kap)H

(2)
n (kρop) exp (−jn(φo,p + π)) (D.14c)

U (al) =



U (−M)

U (−M+1)

...
U (−1)

U (+1)

...
U (+M)


(D.15a)

U (m)
o,p = − k

2j
· Jm(kao)

∫
Wp

〈
R̂, n̂′

〉
H ′(2)
m (kρo,p) exp (−jmφo,p) ds′ (D.15b)

H(m)
o,p =

kηd

2
· Jm(kao) ·

1

Wp

∫
Wp

H(2)
m (kρo,p) exp (−jmφo,p) ds′ (D.15c)

For n = m = 0 and using (F.6), these equations reduce to the interaction between line ports
and the isotropic mode on circular ports given in [92, Eqs. 42c–d], [56, Eqs. 4.19–4.22]4.

D.2 Adaptation to Layered Substrates

As can be seen in (D.5), the entries of the matricesU andH are functions of the wave num-
ber k and the permeability µ. This is because of the assumption that the transverse wave
numbers are small in which case (B.67) holds. The required adaptation to layered substrates
for (D.5) consists therefore only in the use of the wave number of the layered structure,
computed either from the TRM as in Section 4.3.2 or using the approximate formula as in
Section 4.3.4. In the remaining entries for matrices U and H of Sections D.1.2–D.1.3, the

4In [56, Eqs. 4.19–4.22] the arguments of the Hankel functions should read “kρi,j” and in [56, Eqs. 4.21–
4.22] the upper index should be “pq” instead of “qp”.

203



Appendix D The Contour Integral Method for Planar Circuits

formulation uses an impedance η. With the assumption of small transverse wave numbers,
as discussed in Section B.5.2, one can use the approximation from (B.67) as

ωµ = kη (D.16)

which is also the assumption of the CIM. One can therefore replace the product kη by
the product ωµ in the entries of the H-matrices or use the effective impedance defined in
(B.67). It must be noted that with or without this replacement, the CIM with the proposed
adaptation is only valid for cases where the assumption of small transverse wave numbers
is correct.

D.3 Radial Waveguide Example for Low Frequencies

As a reference for the expected behavior at low frequencies, example results for the parallel
plate impedance for a structure with two ports computed with the radial waveguide method
[136, 137] and the corresponding scattering parameters are shown in Fig. D.2. For the
scattering parameters which are defined for top and bottom ports, the expansion in (3.1)
is used but the near field model is neglected. As can be seen from the linear behavior (in
the log-log scale) over most of the frequency range in Fig. D.2a, a simple inductive behavior
is obtained. Scattering parameters for crosstalk (S1,2 and S1,4) in Fig. D.2b likewise show
a dominantly linear behavior.

D.4 Practical Application of the CIM

D.4.1 Suggestions for Efficient Implementation

This section presents some suggestions regarding the efficient implementation of the CIM.
First, the matrix setup is considered which benefits from parallel computation and from
saving re-computations. Secondly, the solution steps is studied which benefits from the use
of adapted numerical solvers and from the incorporation of boundary conditions into the
solution process.
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Figure D.2: (a) Parallel plate impedance parameters and (b) corresponding magnitudes
of scattering parameters normalized to 50Ω. The following configuration is used: a relative
permeability of 1, a relative permittivity of 11.9, a plate separation of 100 µm, a port radius
of 20 µm, and a port distance of 200 µm.

Matrix Setup

For the computation of the matrix entries, the following aspects could be considered. In
many cases, the optimizations aim at reducing the number of evaluation of Bessel functions
which represents a part that is relatively costly with regard to the numerical complexity.

• Note that for the case for the interaction between linear segments, if these segments
stem from a discretization of straight contour lines,

〈
R̂, n̂′

〉
is zero for many terms

and the evaluation of the remainder of terms such as (D.5a) is not necessary.

• It can be seen that the entries of the U -matrix have expressions with Bessel functions
which are the derivative of the corresponding entry of the H-matrix. Using the
relation given in (F.5), only one additional evaluation of a Bessel function is therefore
necessary if the U -matrix entry has already been computed.

• If many or all port radii are equal, the computation of the corresponding Bessel
functions which have a product of the wave number with the port radius as their
argument should be precomputed.
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• The distances ρop are invariant for an interchange of the indices o and p. The cor-
responding Bessel functions therefore have to be evaluated only once for each (un-
ordered) pair of indices.

Solution Step

• From the structure of the problem one can see that is possible to directly solve for a
single column of the admittance or impedance matrix. In this case, only one column
of either the U -matrix or the H-matrix needs to be stored in memory. Due to the
symmetry of admittance and impedance matrices, this is equal to the solution for a
single row with the same index.

• As mentioned in [56, Sec. 7], solvers that are adapted to the structure of the equa-
tion could be used. In regular via arrays there can be many symmetries, i.e., many
distances and angles can be equal and the involved matrices then have a Toeplitz
form.

• As discussed in Section 6.1, the boundary conditions can be incorporated into the
solution steps to save both memory and computation time.

D.4.2 Principal Steps of the CIM Application

In the following, the principal steps of the practical application of the CIM are summarized:

• If present, arbitrarily shaped contours are discretized into linear segments. A suffi-
ciently fine discretization that leads to a desired accuracy will in general be frequency-
dependent as the tangential electric and magnetic fields are assumed to be constant
on each segment. With the analytical formulations presented in this chapter the
discretization of inner circular ports is not required.

• The accuracy is also influenced by the type of numerical integration that is used.
The mid-point rule is the most simple integration that can be chosen and leads to a
good accuracy in most cases [56, p. 24].

• If circular ports are used, the number of modes to use on each circular contour has to
be chosen. A sufficiently large number will in general be frequency-dependent. The

206



D.4 Practical Application of the CIM

relevance of the higher order anisotropic modes increases with narrow spacings of
circular contours and with small distances to the linear segments.

• The matrices U and H are set up that constitute linear systems of equations.

• The effective solution step is carried out by computing the impedance or admittance
parameters using, e.g., (D.2a), (D.2b), or (6.3).

• In subsequent steps, boundary conditions can be applied on further ports which are
not connected to other network by applying the appropriate terminating impedances.

• Voltage and current excitations can be used to compute the voltages or currents on
all ports. Using the relations from [56, Eq. 3.23], the fields can be computed for any
point inside the 2D circuit.
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Appendix E

Derivations for Multiconductor Transmission Line
Models

E.1 Two-Conductor Transmission Lines

E.1.1 Network Parameters

The general frequency domain solution for a two-conductor transmission line section which
extends along the x-coordinate in terms of voltages and currents of the forward and back-
ward propagation waves, both with a wave number kx, is given by

V (x) = V (+)e−jkxx + V (−)ejkxx, (E.1)

I(x) =
V (+)

Z0

e−jkxx − V (−)

Z0

ejkxx, (E.2)

where upper indices (+) and (−) refer to the forward and backward propagation wave,
respectively, and Z0 is the characteristic impedance of the transmission line. The impedance
matrix for a transmission line segment of length l and a wave number of propagation along
the x-direction kx is then given by(

V1

V2

)
= Z0

(
coth (jkxl) 1/sinh(jkxl)

1/sinh(jkxl) coth (jkxl)

)
︸ ︷︷ ︸

Z(tl)

(
I1

I2

)
(E.3)

and the admittance matrix is given by(
I1

I2

)
=

1

Z0

(
coth (jkxl) −1/sinh(jkxl)

−1/sinh(jkxl) coth (jkxl)

)
︸ ︷︷ ︸

Y (tl)

(
V1

V2

)
(E.4)
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E.1.2 Determination of Wave Number From Network Parameters

Direct Method

From the two-port network parameters of a uniform transmission line section, one can
obtain expressions which are only functions of its geometrical length and the guided wave
number. For impedance and admittance parameters, these are for example given by

Y
(tl)

1,1

Y
(tl)

1,2

= −
Z

(tl)
1,1

Z
(tl)
1,2

= coth (jkxl) sinh(jkxl) = cosh (jkxl) (E.5)

The phase- and attenuation-information of the guided wave number is contained in

arcosh

(
Y

(tl)
1,1

Y
(tl)

1,2

)
= arcosh

(
−
Z

(tl)
1,1

Z
(tl)
1,2

)
= jkxl = j (β − jα) l

def.
= jθ + αl (E.6)

where θ is the phase difference as determined from the two-port parameters. The above
entries of the admittance and impedance matrices are in general complex. The periodicity
of the fields in space is reflected in the periodicity of the hyperbolic functions and equivalent
representations based on trigonometric functions. The former are periodic with respect to
the imaginary part of their argument, the latter with respect to the real part. In all cases
the true phase difference θtrue between the fields at the two ports is mapped to an interval
of size 2π or smaller. The true phase difference θtrue is sometimes also referred to as the
electrical length of a structure. As an example, the branch cut of the inverse hyperbolic
cosine function arcosh−1 is usually chosen along the negative real axis. The phases are
therefore mapped to the interval (−π,+π) whereas the true phase is

θtrue = θ + n · 2π (n ∈ Z) (E.7)

with the unknown integer n. In the most general case, i.e. if no assumptions about the
structure can be made, the actual phase cannot be determined. In practical cases though,
one can usually assume that the structure is electrically short at low frequencies. For de-
creasing frequency the phase constant β and the phases θtrue hence approach 0. If the phase
constant also increases monotonically with frequency, the correct phase can be computed
by a method often referred to as unwrapping. Even if the monotonicity exists theoretically
for the investigated structures, simulation inaccuracies sometimes lead to phase fluctua-
tions that break the monotonicity and thereby complicate the phase unwrapping. Because
of the discussed difficulties, the following approaches can be favorable.
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E.2 Internal Impedance of Circular Cylindrical Conductors

Using De-Embedding with Identical Line Properties

The network parameters of a short waveguide section can be obtained by simulation of at
least two waveguides which differ by a length that is known (or estimated) to be electrically
shorter than the phase value at which the wrap-around occurs. This is achieved through a
de-embedding step with the two network parameter sets. The most general de-embedding
in the sense that all coupling terms are included can be found as de-segmentation for Z-
matrices in [95,138] and for S-parameters in [139]. A summary of these techniques is given
in [140, Ch. 3]. After computing the network parameters of the de-embedded transmission
line segment (E.6) can be used without unwrapping of the phase.

Using De-Embedding with Differing Line Properties

More general methods can be found in the literature which are based on theory from
multi-line calibration techniques. E.g., in [141], a method for determination of the prop-
agation constant using two (uncalibrated) measurements of two waveguides is presented.
The method is based on the extraction of the matrix of a de-embedded waveguide segment
of which the eigenvalues can be related to the propagation constant.

E.2 Internal Impedance of Circular Cylindrical Conductors

E.2.1 Exact Solution for Single Circular Cylindrical Conductor

For a circular cylindrical conductor of radius r, the per-unit-length internal impedance
given in [98, Eq. 3.196] can be written as

ẑint =
j√

2πrσδs

ber(q) + j bei(q)

ber′(q) + j bei′(q)
(E.8)

where ber(x) and bei(x) are the real and imaginary part, respectively, of the Bessel function
of the first kind of a complex argument [98, p. 165]. The prime denotes the derivative with
respect to the complete argument and q =

√
2r/δs. The skin depth is given by

δs =

√
2

ωσµ
=

1√
πfσµ

(E.9)

211



Appendix E Derivations for Multiconductor Transmission Line Models

Using the relations

ber(x) + j bei(x) = I0(
√
jx), (E.10a)

d (ber(x) + j bei(x))

dx
=

dI0(
√
jx)

dx
,

ber′(x) + j bei′(x) =
√
jI1(

√
jx),

(E.10b)

where I0 and I1 are the modified Bessel functions of the first kind and order 0 and 1,
respectively, the impedance in (E.8) can be rewritten as

ẑint =
j√

2πrσδs

I0(
√
j
√

2r/δs)√
jI1(
√
j
√

2r/δs)
=

√
j√

2πrσ

√
ωσµ

2

I0(
√
j
√

2r
√
ωσµ/2)

I1(
√
j
√

2r
√
ωσµ/2)

=

√
jωµ/σ

2πr

I0(r
√
jωσµ)

I1(r
√
jωσµ)

.

(E.11)

The latter formulation is used in [39, Eq. 11] and in [142, Eq. 9]1.

E.2.2 Approximate Solutions for Single Circular Cylindrical Conductor

As discussed in [98, Sec. 3.6.2.2], there is a transition region from weak to strong skin
effect occurring around r = δs. The following approximations lead to a high accuracy only
far away from this transition region. The per-unit-length resistance and inductance can be
given as [98, Eq. 3.202]

r =


1

σπr2
(r < 2δs),

1

2πrσδs
(r > 2δs),

(E.12a)

lint =


µ0

8π
(r < 2δs),

µ

4πrδs
(r > 2δs).

(E.12b)

1with two presumably typographical errors
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E.2.3 Incorporation of Internal Parts Into Resistivity and Inductance Matrices

The overall inductance is given by [98, Eq. 3.13]

L = r0


l11 l12 · · · l1n
l21 l22 · · · l2n
...

... . . . ...
ln1 ln2 · · · lnn

+


lint,1 0 · · · 0

0 lint,2 · · · 0
...

... . . . ...
0 0 · · · lint,n

 (E.13)

The overall resistance matrix is given by

R = r0


1 1 · · · 1

1 1 · · · 1
...

... . . . ...
1 1 · · · 1


︸ ︷︷ ︸

Jn

+


r1 0 · · · 0

0 r2 · · · 0
...

... . . . ...
0 0 · · · rn

 , (E.14)

where r0 is the internal resistance of the reference conductor and ri is the internal resistance
of the ith conductor.

If all internal resistances are equal, i.e. if r = r0 = r1 = r2 = · · · = rn, then (E.14) reduces
to

R = r(Jn + 1n). (E.15)

E.3 Complex Analytical Capacitance and Effective Permittivity of
Two Circular TSVs

This case is approximated using the exact solution for the symmetric case of two circu-
lar conductors of equal radius in a homogeneous medium and the exact solution for the
coaxial capacitor. A separation as wide as in the wide separation approximation is not
required because the non-uniformity of charge along the conductor and dielectric interface
circumferences is better approximated. It represents a good approximation if the oxide
layers are thin and if the dielectric contrast of the involved materials is not too large. The
per-unit-length capacitance is given by

C ′total =

(
2

Cox

+
1

Csi

)−1

=
πεeff

cosh−1
(

d
2ai

) =

cosh−1
(

d
2ao

)
πεsi

+ 2
ln
(
ao
ai

)
2πεox

−1

. (E.16)
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The effective permittivity is then given by

εeff =
cosh−1

(
d

2ai

)
cosh−1

(
d

2ao

)
/εsi + ln

(
ao
ai

)
/εox

. (E.17)

Using cosh−1(x) = ln(x +
√
x2 − 1) this can after a few manipulations also be written in

the form given in [24]

εeff =
cosh−1

(
d

2ai

)
ln

(
d/2+
√

(d/2)2−a2o
ai

)
+

εsi−εox
εox

ln
(
ao
ai

) . (E.18)

E.4 Exact Capacitance for Two Circular Conductors in Homoge-
neous Medium

The exact analytical solution for the per-unit-length capacitance of two cylindrical con-
ductors of circular cross-section in homogeneous medium can serve as a reference for the
methods described in the previous section. As derived in [98, Eq. 3.48]

c =
πε

cosh−1

(
s2 − r2

w1 − r2
w2

2rw1rw2

) , (E.19)

where ε is the permittivity of the infinitely extending medium in which the conductors
are embedeed, s is the center–to–center distance of the conductors (distance between the
axes), and rw1 and rw2 are their radii. Further, cosh−1 is the inverse hyperbolic cosine that
can also be expressed with the natural logarithm as [98, Eq. 3.47]

cosh−1 x = ln
(
x+
√
x2 − 1

)
. (E.20)

E.5 Fourier Method for Exact Capacitance Calculation

The following sections (E.5.1–E.5.3) present a Fourier method developed by Xioamin Duan
(received through personal communication during the year 2015) based on previous work
for the modeling of the DC-resistance of printed circuit board power planes published
in [143]. In the subsequent section (E.5.5), some further derivations by the author of this
thesis concerning this method are provided.
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(a)

(b)

Figure E.1: Illustrations for the comparison of two approaches for modeling the inhomo-
geneous substrates: (a) Domain decomposition approach in which homogeneous regions are
computed individually and related by enforcing continuity of tangential field components.
(b) Equivalent surface charge approach in which the dielectric is replaced with an equivalent
configuration in a homogeneous medium with bound surface charges at the positions of the
original dielectric interfaces and at the interfaces between dielectrics and conductors. The
distributed surfaces charges are illustrated as discrete charges in red and green.

The presented method uses a decomposition of the inhomogeneous substrate material do-
main into homogeneous subdomains. An alternative approach would be the use of equiv-
alent surface charges, which is, e.g., used in [98, Sec. 3.2.4.1]. Both perspectives and ap-
proaches are illustrated and shortly discussed in Fig. E.1.

E.5.1 Basic Formulation of the Quasi-Static Analysis

In absence of charges in a closed 2D-region, the contour integral from [144, Eq. 8.7] reduces
to [143, Eq. 1]

ϕ(r) =
1

π

∮
C

[
∂ ln |r − r′|

∂n̂
ϕ(r′)− ln |r − r′|∂ϕ(r′)

∂n̂

]
ds′ (E.21)

The integral gives the electric potential ϕ at any location r as a function of the potential of
all locations on all contours. The normal vectors on the contour point towards the centers
of the respective circular contour on which the normal vector is evaluated.

The following relation can be applied analogously to [143, Eq. 2] by using (F.2):
∂ϕ(r′)

∂n̂

(F.2)
= 〈∇ϕ(r′), n̂〉 = 〈−∇E(r′), n̂〉 =

〈−∇D(r′), n̂〉
ε

=
λ(r′)

ε
. (E.22)
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The last identity is due to the direction of the normal vector described before. Here, λ(r′)

is the surface charge density at location r′ and ε is the permittivity in the considered
(homogeneous) region. As given in [143, Eq. 3]

∂ ln |r − r′|
∂n̂

=
∂ ln |r − r′|
∂|r − r′|

· ∂|r − r
′|

∂n̂

(F.2)
=

1

|r − r′|
· 〈∇|r − r′|, n̂〉 =

〈ρ̂, n̂〉
|r − r′|

, (E.23)

where ρ̂ is the normalized vector from the location of the observation point to the source
point, i.e. from the location at r to r′. By inserting (E.22) and (E.23) into (E.21), one
obtains analogously to [143, Eq. 4]

ϕ(r) =
1

π

∮
C

[
〈ρ̂, n̂〉
|r − r′|

ϕ(r′)− ln |r − r′|λ(r′)

ε

]
ds′. (E.24)

Based on (E.24), a contour integral with cylindrical expansion is presented in [143]. The
entries of the linear system of equations for this method can be used after replacement
of every occurrence of the product κd by the complex permittivity ε. The results of this
replacement step are given in Tables E.1 and E.2 with the used coefficient tabulated in
Table E.3.

E.5.2 Solution Inside the Silicon Region

In the silicon region, the potentials and surface charge densities are related as(
U11 U12

U21 U22

)(
ϕ0

si

ϕmsi

)
=

(
H11 H12

H21 H22

)(
σ0

si

σmsi

)
, (E.25)

where upper index 0 corresponds to the fundamental and isotropic mode of the Fourier
expansion, and the upper index m corresponds to the vector of anisotropic modes with
their even and odd parts. The expansion can be performed either in terms of exponential
or trigonometric functions. Both are in general complex and both permit a representation
of complex charge distributions which is required to compute capacitance and conductivity
as real and imaginary parts, respectively, of a complex capacitance.

216



E.5 Fourier Method for Exact Capacitance Calculation

Table E.1: Matrix entries for Upp from [143]. Definition and reference values for bmn are
given in table E.3. Further, sn(φij) = sin(nφij) and cn(φij) = cos(nφij).

n=0 n, even part n, odd part

m=0
i = j 1 0 0

i 6= j 0 −(aj/ρij)
n cn(φij) −(aj/ρij)

n sn(φij)

m, even part
i = j 0 δmn 0

i 6= j 0 −
(−ai)m anj bmn cm+n(φij)

ρm+n
ij

−
(−ai)m anj bmn sm+n(φij)

ρm+n
ij

m, odd part
i = j 0 0 δmn

i 6= j 0 −
(−ai)m anj bmn sm+n(φij)

ρm+n
ij

(−ai)m anj bmn cm+n(φij)

ρm+n
ij

Table E.2: Matrix entries forHpp from [143] after replacement κd→ ε. Definition and reference
values for bmn are given in table E.3. Further, sn(φij) = sin(nφij) and cn(φij) = cos(nφij).

n=0 n, even part n, odd part

m=0
i = j − ln ai

2πε
= − ln aj

2πε
0 0

i 6= j − ln ρij
2πε

( aj
ρij

)n · cn(φij)

2nπε

( aj
ρij

)n · sn(φij)

2nπε

m, even part
i = j 0 δmn

2mπε
0

i 6= j
(
−ai
ρij

)m
· cm(φij)

2mπε

†1 (−ai)m anj bmn cm+n(φij)

ρm+n
ij 2nπε

(−ai)m anj bmn sm+n(φij)

ρm+n
ij 2nπε

m, odd part
i = j 0 0 δmn

2mπε

i 6= j
(
−ai
ρij

)m
· sm(φij)

2mπε

†1 (−ai)m anj bmn sm+n(φij)

ρm+n
ij 2nπε

†2
− (−ai)m anj bmn cm+n(φij)

ρm+n
ij 2nπε

†1In [143, Table II], cm and sm are erroneously typeset as cn and sn, respectively, in these formulas.
†2In [143, Table II], the κ to replace is erroneously typeset as k in this formula.

Multipole Expansion in the Oxide Areas

The integral equation is given by

ϕ(r) =
1

π

∑
j=1,2

∮
Cj

∂ ln |r − r′|
n

ϕ(r′) ds′ − 1

πε

∑
j=1,2

∮
Cj

ln |r − r′|λ(r′) ds′

=
1

π

∑
j=1,2

∫ 2π

0

∂ ln |r − r′|
n

ϕ(r′)aj dφ− 1

πε

∑
j=1,2

∫ 2π

0

ln |r − r′|λ(r′)aj dφ

(E.26)

217



Appendix E Derivations for Multiconductor Transmission Line Models

Table E.3: Table with values for bmn for m ≤ 5 and n ≤ 5 used in Tables E.1 and E.2

n=1 n=2 n=3 n=4 n=5
m=1 1 2 3 4 5
m=2 1 3 6 10 15
m=3 1 4 10 20 35
m=4 1 5 15 35 70
m=5 1 6 21 56 126

Based on the recursive formula from [143, Table II]:
bmn = 1

m

∑m
k=1 (kn−m+ k)b(m−k)n with b0n = 1

r′
r

ρij

a
j

a
i

φ′ φij

φ

(a)

r′

r

a
j

a i

φ′
φ

(b)

Figure E.2: Geometry definitions for the used multipole expansions. (a) General case (b)
Concentric case.

The Fourier coefficients of the expansion are defined as

ϕ(r′) =
+∞∑

n=−∞

ϕ̃ne
jnφ (E.27a)

ϕ̃n =
1

2π

∫ 2π

0

ϕ(r′)e−jnφ dφ (E.27b)

for the potential and for the surface charge density λ and the per-unit-length surface charge
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density σ (with a radius a of the respective circular contour) as

λi(r
′) =

+∞∑
n=−∞

λ̃n,ie
jnφ (E.28a)

λ̃n,i =
1

2π

∫ 2π

0

λi(r
′)e−jnφ dφ (E.28b)

σ̃n,i = 2πaiλ̃n,i (E.28c)

Multipole expansions are used to split up the functional dependence into parts of products
some of which only depend on the distances and some of which only depend on the relative
angles. Again, (E.24) holds and the following multipole expansions for the cases where
|r| < |r′| or |r| = |r′| are applied

ln |r − r′| = ln |r′| −
∑
n∈A

1

2|n|
ejn(φ′−φ) (|r| = |r′|) (E.29a)

∂ ln |r − r′|
∂n

= − 1

2|r′|
(|r| = |r′|) (E.29b)

ln |r − r′| = ln |r′| −
∑
n∈A

1

2|n|

(
|r|
|r′|

)|n|
ejn(φ−φ′) (|r| < |r′|) (E.29c)

∂ ln |r − r′|
∂n

=
1

|r′|
+

1

|r′|
∑
n∈A

1

2

(
|r|
|r′|

)|n|
ejn(φ−φ′) (|r| < |r′|) (E.29d)

where the sums are performed over the set A of integer indices defined as A = Z \ {0} =

{−∞, · · · ,−1, 1, · · · ,∞}. Using (E.29a) through (E.29d) with (E.26), the integral equation
for the inner contour can be given as a function of the expansion coefficients for potential
and charge at the radii a1 and a2 as

ϕ1(r) =− 1

π

∫ 2π

0

(
1

2a1

)
e−jnφϕ1(r)a1 dφ

+
1

π

∫ 2π

0

(
1

a2

+
1

a2

∑
n∈A

1

2

(
a1

a2

)|n|
e−jnφ

′
e−jnφ

)
ϕ2(r)a2 dφ

− 1

επ

∫ 2π

0

(
ln a1 −

∑
n∈A

1

2|n|
ejnφ

′
e−jnφ

)
λ1(r)a1 dφ

− 1

επ

∫ 2π

0

(
ln a2 −

∑
n∈A

1

2|n|

(
a1

a2

)|n|
ejnφ

′
e−jnφ

)
λ2(r)a2 dφ

(E.30)

Using now the the definitions of the Fourier coefficient in (E.27) and (E.28), and their
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orthogonality, one obtains

ϕ1(r) =− ϕ̃1,0 + 2ϕ̃2,0 +
∑
n∈A

(
a1

a2

)|n|
e−jnφϕ̃2,n

− 1

επ
ln a1σ̃1,0 +

1

επ

∑
n∈A

1

2|n|
e−jnφσ̃1,n

− 1

επ
ln a2σ̃2,0 +

1

επ

∑
n∈A

1

2|n|

(
a1

a2

)|n|
e−jnφσ̃2,n

(E.31)

Application of the testing function leads to a system of equations which is decoupled with
respect to the mode order. These equations are given as

ϕ̃1,0 = −ϕ̃1,0 + 2ϕ̃2,0 −
1

επ
ln a1σ̃1,0 −

1

επ
ln a2σ̃2,0 (n = 0) (E.32)

ϕ̃1,n =

(
a1

a2

)|n|
ϕ̃2,n +

1

επ

1

2|n|
σ̃1,n +

1

επ

1

2|n|

(
a1

a2

)|n|
σ̃2,n (n 6= 0) (E.33)

Analogously, for the outer contour the following two expansion are used

ln |r − r′| = ln |r| −
∑
n∈A

1

2|n|

(
|r′|
|r|

)|n|
ejn(φ′−φ) (|r| > |r′|) (E.34a)

∂ ln |r − r′|
∂n

=
1

|r′|
∑
n∈A

1

2

(
|r′|
|r|

)|n|
ejn(φ′−φ) (|r| > |r′|) (E.34b)

Using (E.29a), (E.29b), (E.34a), and (E.34b) with (E.26) one finds for the outer contour

ϕ2(r) =− 1

π

∫ 2π

0

(
1

2a2

)
e−jnφϕ2(r)a2 dφ

+
1

π

∫ 2π

0

1

a1

∑
n∈A

1

2

(
a1

a2

)|n|
e−jnφ

′
e−jnφϕ1(r)a1 dφ

− 1

επ

∫ 2π

0

(
ln a2 −

∑
n∈A

1

2|n|
ejnφ

′
e−jnφ

)
λ2(r)a2 dφ

− 1

επ

∫ 2π

0

(
ln a2 −

∑
n∈A

1

2|n|

(
a1

a2

)|n|
ejnφ

′
e−jnφ

)
λ1(r)a1 dφ

(E.35)
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and

ϕ2(r) =− ϕ̃2,0 +
∑
n∈A

(
a1

a2

)|n|
e−jnφϕ̃1,n

− 1

επ
ln a2σ̃2,0 +

1

επ

∑
n∈A

1

2|n|
e−jnφσ̃2,n

− 1

επ
ln a2σ̃1,0 +

1

επ

∑
n∈A

1

2|n|

(
a1

a2

)|n|
e−jnφσ̃1,n

(E.36)

Proceeding for the outer contour as for the inner contour one obtains

ϕ̃2,0 = −ϕ̃2,0 −
1

επ
ln a2σ̃2,0 −

1

επ
ln a2σ̃1,0 (n = 0) (E.37)

ϕ̃2,n =

(
a1

a2

)|n|
ϕ̃1,n +

1

επ

1

2|n|
σ̃2,n +

1

επ

1

2|n|

(
a1

a2

)|n|
σ̃1,n (n 6= 0) (E.38)

The difference of (E.32) and (E.37) can be rearranged to

ϕ̃1,0 − ϕ̃2,0 = − 1

2επ
(ln a1σ̃1,0 + ln a2σ̃1,0 + 2 ln a2σ̃2,0) (E.39)

A constant potential on the inner contour is enforced by setting to zero all potential
coefficients with indices different from 0. In term of even and odd coefficients the relation
is given by

{
ϕ̃e2,m
ϕ̃o2,m

}
=

1

2πεm

1−
(
a1

a2

)2m

1 +

(
a1

a2

)2m

{
σ̃e2,m
σ̃o2,m

}
(E.40)

The coefficients of potential which are hereby determined are similar to terminating impedances
of modes of a network.

E.5.3 Assembly of the Descriptions for Oxide and Silicon Areas

In each oxide region, the relation for all anisotropic modes (m > 0) can be given as

ϕmox = Qσmox. (E.41)
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Assuming a block-wise ordering with blocks for all anisotropic modes for one oxide region,
this has a form 

ϕ
(1)
ox

ϕ
(2)
ox

...
ϕ

(N)
ox

 =


Q(1) 0 · · · 0

0 Q(2) · · · 0
...

... . . . ...
0 0 · · · Q(n)



σ

(1)
ox

σ
(2)
ox

...
σ

(N)
ox

 . (E.42)

The entries of each Q(k) are given from (E.40) by

Q(k)
m,n =


1

2πεm
· 1− (ak,inner/ak,outer)

2m

1 + (ak,inner/ak,outer)2m
(m = n)

0 (m 6= n)

(E.43)

The relation for the isotropic mode can be obtained from (E.39) with σ̃2,0 = −σ̃1,0 (as
justified in the following discussion) as

σ0
cond = ϕ0

ox −Rσ0
ox (E.44)

with the entries of R given by

Ri,j =


1

2πε
· ln
(
ai,outer

ai,inner

)
(i = j)

0 (i 6= j)

(E.45)

At the oxide-silicon interface, both the potential and the normal component of the electric
flux density must be continuous. The latter is equivalent to the equality (with adapted
signs) of the surface charge densities of the respective regions. The surface charge den-
sities at the silicon region contours are equal in magnitude and opposite in sign to the
corresponding surface charge densities at the outer oxide layer circumferences.

σmsi = −σmox (m ∈ Z \ 0) (E.46a)

σ0
si = −σ0

ox (E.46b)

This is equivalent to the continuity of dielectric displacement (flux) across the dielectric–
dielectric interfaces. The condition is true for all coefficients of the expansion.

For the isotropic mode of the expansion (0-index coefficients), the surface charge densities
of the oxide are also equal to in magnitude and opposite in sign to the corresponding
surface charge densities on the corresponding conductors.

σ0
ox = −σ0

cond (E.47)

Note that this charge density is already related to the free charge on the conductor not to
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the total charge density. Combining (E.46b) and (E.47) gives

σ0
si = σ0

cond. (E.48)

Further the continuity of the potentials at the interfaces is expressed as

ϕmsi = ϕmox (m ∈ Z \ 0) (E.49a)

ϕ0
si = ϕ0

ox (E.49b)

Using the previously derived relations, one can now establish the following relations for
potential and charge of the anisotropic modes on the silicon interfaces

ϕmsi
(E.49a)

= ϕmox

(E.41)
= Qσmox

(E.46a)
= −Qσmsi (E.50)

The equation system in (E.25) can be solved for the potentials as(
ϕ0

si

ϕmsi

)
= U−1H

(
σ0

si

σmsi

)
=

(
P11 P12

P21 P22

)(
σ0

si

σmsi

)
(E.51)

Using the second row of the equation system in (E.51) with (E.50), the following relation
can be established

ϕmsi = P21σ
0
si + P22σ

m
si

(E.50)
= −Qσmsi (E.52)

Rearranging to this for σmsi gives

σmsi = − (P22 +Q)−1P21σ
0
si (E.53)

Using the first row of the equation system in (E.51) with (E.53) gives

ϕ0
si = P11σ

0
si + P12σ

m
si

(E.53)
=

(
P11 − P12 (P22 +Q)−1P21

)
σ0

si (E.54)

Then

ϕ0

conductor

(E.44)
= ϕ0

ox −Rσ0
ox

(E.49b,E.46b)
= ϕ0

si +Rσ0
si

(E.54,E.48)
=

(
P11 − P12 (P22 +Q)−1P21 +R

)
σ0

cond

(E.55)

The generalized capacitance matrix is then obtained after the computation of an inverse
as

C =
[
P11 − P12 (P22 +Q)−1P21 +R

]−1
. (E.56)

223



Appendix E Derivations for Multiconductor Transmission Line Models

E.5.4 Inclusion of Complex Permittivities

The capacitance matrix given in (E.56) has real entries if only real permittivities are as-
sumed for all involved materials. If complex permittivities are used for any of the materials,
the surface charges of this method and the capacitance matrix becomes complex. In this
case, it describes both the capacitance and the conductance between the conductors and
is denoted by here C. The real quantities of capacitance C and conductance G can be
obtained as

C = < (C) , (E.57a)

G = −= (C) /ω. (E.57b)

E.5.5 Proof of Equivalence With TWA

For Two Conductors in Homogeneous Medium

For two conductors in homogeneous medium, the equation system reduces to[
1 0

0 1

][
φ1

φ2

]
=

1

2πε

[
− ln a1 − ln ρ1,2

− ln ρ2,1 − ln a2

][
λ1

λ2

]
(E.58)

Using −λ1 = λ2 = λ and ρ2,1 = ρ1,2 = ρ, one obtains

φ2 − φ1 =
1

2πε
(ln ρ2,1 − ln a2 − ln a1 + ln ρ1,2)λ =

ln
(

ρ2

a1a2

)
2πε

λ (E.59)

Therefore,

C ′ =
λ

φ2 − φ1

=
2πε

ln
(

ρ2

a1a2

) (E.60)

For equal radii a1 = a2 = a this reduces to

C ′ =
λ

φ2 − φ1

=
πε

ln
(
ρ
a

) (E.61)
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For N Conductors in Homogeneous Medium

In case of only the first mode used in the method of the preceding sections, the equation
system can be written in the block-form(

φn
φ0

)
=

1

2πε

(
P (n,n) P (n,0)

P (0,n) P (0,0)

)(
λn
λ0

)
(E.62)

where the normalized coefficients of potential are given by

P
(n,n)
i,j =

{
− ln(ai) (i = j)

− ln(ρi,j) (i 6= j)
(E.63a)

P
(n,0)
i = − ln(ρi,0) (E.63b)

P
(0,n)
j = − ln(ρ0,j) (E.63c)

P (0,0) = − ln(a0) (E.63d)

The condition that the charge on the reference conductor being of equal magnitude but
opposite sign to the sum of all other charges can be expressed as

λ0 = −
(

1 1 · · · 1
)

︸ ︷︷ ︸
length n

λn = −J1,nλn (E.64)

From the second row of (E.62) and with (E.64)

φ0 =
1

2πε
(P (0,n)λn + P (0,0)λ0) =

1

2πε
(P (0,n) − P (0,0)J1,n)λn (E.65)

Using the first row of (E.62) with (E.64) and (E.65)

φn − φ0 = φn − Jn,1φ0 =
1

2πε

(
P (n,n)λn + P (n,0)λ0 − Jn,1φ0

)
=

1

2πε

(
P (n,n) − P (n,0)J1,n − Jn,1(P (0,n) − P (0,0)J1,n)

)
λn

=
1

2πε

(
P (n,n) − P (n,0)J1,n − Jn,1P

(0,n) + Jn,1P
(0,0)J1,n

)
︸ ︷︷ ︸

P̃

λn

(E.66)

From this it follows

P̃i,j =
1

2πε

{
− ln(ai) + ln(ρi,0) + ln(ρ0,j)− ln(a0) (i = j)

− ln(ρi,j) + ln(ρi,0) + ln(ρ0,j)− ln(a0) (i 6= j)

=
1

2πε

ln
(
ρi,0ρ0,j
a0ai

)
(i = j)

ln
(
ρi,0ρ0,j
a0ρi,j

)
(i 6= j)

, (E.67)
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which is equivalent to (7.1b).

E.6 Generalized Capacitance Matrix

A generalized capacitance matrix can be defined that allows for a choice of the reference
conductor with a comparatively simple computation. The computation of this generalized
capacitance matrix is based on partial capacitances for an arbitrary reference point. The
enforcement of the conditions for the currents and voltage for the reference conductor then
leads to the capacitance matrix for a chosen reference conductor. The relation with the
capacitance matrix for a specific reference conductor can be found e.g. in [98, Sec. 3.1.4].
The following derivation is analog to [98, Sec. 3.1.4], but based on a matrix notation with
implicit sums instead of explicit sums.

Consider a generalized capacitance matrix that can be written with blocks as[
qr
qs

]
=

[
Crr Crs
Csr Css

]
︸ ︷︷ ︸

C

[
φr
φs

]
(E.68)

where qs, Csr, and φs are column vectors, Crs is a row vector, and Css is a (square) matrix.
Index r refers to the (single) reference conductor and index s to the signal (non-reference)
conductors. The conditions of the sum of the charges on the signal conductors to be equal
in magnitude and opposite in sign to the charge on the reference conductor can be written
in matrix notation and applied to the first row of (E.68) as

qr = −
[
1 1 · · · 1

]
︸ ︷︷ ︸

J1,s

qs = Crrφr + Crsφs (E.69)

A similar form can be obtained for the second row of (E.68) if both side are multiplied
(from the left) with J1,s:

J1,sqs = J1,s (Csrφr + Cssφs) (E.70)

Summing up (E.69) and (E.70) one obtains

0 = Crrφr + Crsφs + J1,s (Csrφr + Cssφs) (E.71)

The voltages of the signal conductors are related to the potentials as φs = Vs − φr or in
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size compliant vector notation and rearranged for φs

φs =

1
...
1


︸︷︷︸
Js,1

φr + Vs (E.72)

By inserting (E.72) into (E.71), and rearranging for φr one obtains

φr =
− (Crs + J1,sCss)

Crr + CrsJs,1 + J1,sCsr + J1,sCssJs,1
Vs (E.73)

The denominator of (E.73) can be identified as the sum of all elements of matrix C for
which in the following the shorthand notation

∑
C will be used. By inserting (E.73) and

(E.72) into the second row of (E.68)

qs = Csrφr + Cssφs
= Csrφr + Css(Js,1φr + Vs)

= CssVs + (Csr + CssJs,1)φr

=

(
Css −

(Csr + CssJs,1)(Crs + J1,sCss)∑
C

)
Vs

(E.74)

In the last nominator, the first multiplicand of the product can be identified as the sums
for each of the rows of C(except for the one of the reference conductor). Correspondingly,
the second multiplicand can be identified as the sums of all columns of of C(except for the
one of the reference conductor).

E.7 Network Parameters of Transmission Lines

E.7.1 Chain Parameter Matrix for the General Case

In general, the frequency domain characterization of the transmission line by computation
of network parameters involves an explicit or implicit modal transformation. A transfor-
mation matrix is computed which diagonalized the product of the per-unit-length matrices
Ŷ Ẑ.

From [98, Eq. 4.45b] the following chain parameter matrix that relates voltages and cur-
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rents2 at the ends of the transmission line can be given[
V̂ (L)

Î(L)

]
=

[
Φ̂11(L) Φ̂12(L)

Φ̂21(L) Φ̂22(L)

][
V̂ (0)

Î(0)

]
, (E.75)

with the entries given as [98, Eq. 4.70]

Φ̂11(L) =
1

2
Ŷ −1T̂

(
eγ̂L + e−γ̂L

)
T̂−1Ŷ , (E.76a)

Φ̂12(L) = −1

2
ẐCT̂

(
eγ̂L − e−γ̂L

)
T̂−1, (E.76b)

Φ̂21(L) = −1

2
T̂
(
eγ̂L − e−γ̂L

)
T̂−1Ẑ−1

C , (E.76c)

Φ̂22(L) =
1

2
T̂
(
eγ̂L + e−γ̂L

)
T̂−1, (E.76d)

where the exponential function operates element-wise on the matrix arguments and a
characteristic impedance matrix is defined as [98, Eq. 4.67]

ẐC = ẐT̂ γ̂−1T̂−1. (E.77)

For the computation of the modal transformation matrix T̂ and its inverse T̂−1, several
options exist. The most relevant case for TSV modeling seems to be the one of perfect
conductors in inhomogeneous media discussed in [98, Sec. 4.4.3].

E.7.2 Approximations for Short Transmission Lines

For short sections of transmission lines, lumped-element representations can be applicable.
The symmetric representations are the (lumped) pi-circuit and (lumped) T-circuit which
are illustrated in Fig. E.4. The corresponding chain parameter matrices are computed from
the per-unit-length admittance and impedance matrices Ŷ and Ẑ, respectively, as [98,
Eq. 4.149]

Φπ =

[
1n + 1

2
ẐŶ

( L
N

)2 −Ẑ L
N

−Ŷ L
N
− 1

4
Ŷ ẐŶ

( L
N

)3
1n + 1

2
Ŷ Ẑ

( L
N

)2

]
(E.78)

ΦT =

[
1n + 1

2
ẐŶ

( L
N

)2 −Ẑ L
N
− 1

4
ẐŶ Ẑ

( L
N

)3

−Ŷ L
N

1n + 1
2
Ŷ Ẑ

( L
N

)2

]
(E.79)

2Note that this current definition is conventionally assuming a flow inside each terminal (except for
the reference conductor) at the beginning of the MTL and outside each terminal (except for the reference
conductor) at both end of the MTL, cf. [98, Fig. 4.3]
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Figure E.3: Short transmission line (of length L/N) represented as (a) lumped Γ- and (b)
lumped Γ-circuit. Figure adapted from [98, Fig. 4.12].

where L is the total length of the MTL, N is the number of segments (of equal length),
and 1n is an identity matrix of size n that is equal to the number of terminals (except for
the reference conductor).

The lumped Γ- and lumped Γ-circuit are depicted in Fig. E.3 and can be characterized
correspondingly as [98, Eq. 4.149]

Φπ =

[
1n −Ẑ L

N

−Ŷ L
N

1n + Ŷ Ẑ
( L
N

)2

]
, (E.80)

ΦT =

[
1n + ẐŶ

( L
N

)2 −Ẑ L
N

−Ŷ L
N

1n

]
. (E.81)
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Figure E.4: Short transmission line (of length L/N) represented as (a) lumped pi-circuit
and (b) lumped T-circuit. Figure adapted from [98, Fig. 4.12].

E.7.3 Assignment of Several Reference Conductors

The basic multi-conductor transmission line theory assumes a single reference conductor
which is unambiguously defined by a normalization of all voltages to the reference conductor
voltage and by setting the current along the reference conductor equal in magnitude and
opposite in sign to the sum of currents along all conductors (except for the reference
conductor). It is of interest in various cases to assign several reference conductors. As these
reference conductors are not connected in the plane that is transverse to the conductor
axes and thereby create a single conductor out of the disjoint conductors, the problem
needs further discussion.
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Consideration in Terms of Per-Unit-Length Parameters for Short Transmission
Lines

Short two-conductor transmission lines are characterized by a guided wavelength of the
mode of interest, here the TEM- or quasi-TEM mode, which is significantly shorter than
the geometrical length of the transmission line. Usually a ratio above 10 of guided wave-
length to geometrical length is considered a short line. In an analog manner, short mul-
ticonductor transmission lines are characterized by guided wavelengths of all TEM- or
quasi-TEM-modes which are significantly shorter than the geometrical length of the MTL.
Short MTLs can with good accuracy be modeled by lumped element circuits as those dis-
cussed in Appendix E.7.2. Following the general procedure, a first reference conductor must
be chosen. From these circuit descriptions in Appendix E.7.2, it can be reasoned that a
short-circuiting at the ends of signal conductors with the reference conductors is equivalent
to short circuiting the descriptions in terms of the corresponding longitudinal impedance
matrix and the transverse admittance matrix. Consider the Pi-circuit in Fig. E.4 for the
case where the ith conductor is short-circuited with the reference conductor at both ends
of the line with a total length L and N = 1 segments. The transverse capacitances and
admittances are then short-circuited and the longitudinal inductance and resistances of
all reference conductors (the first, initial one with index 0 and the newly added one with
index i) are in parallel. This can easily also be seen for the lumped Γ- and the lumped
Γ-circuit in Fig. E.3. For the T-circuit (also shown in Fig. E.4), in contrast, a similar sim-
plification is not possible. When short-circuiting conductors i and 0, there remains a series
connection of elements from the longitudinal impedance elements and from the transverse
admittance elements. Nevertheless, the technique should be applicable because, for short
lines, all lumped element representations should give similar results.

Short-circuiting of per-unit-length parameters (in terms of the corresponding longitudinal
impedance and the transverse admittance matrices) is e.g. described in [145, Appendix C].
For the case of actually connected conductors (that constitute a model for a conductor with
skin-effect) a similar approach is given in [98, Sec. 3.6.2.3] and this method is analog to the
one for the generalized capacitance matrix [98, Sec. 3.1.4]. For the longitudinal impedance,
the self inductances and the resistances of all reference conductors are in parallel. The
mutual inductances of the reference conductors to the signal conductors (or “non-reference
conductor”) are in parallel and the original mutual inductances of the reference conductors
to the first reference conductor disappear. For the transverse admittance, the conductances
and resistances to the first reference conductor are short-circuited and disappear while those
to the signal conductors are in parallel.

In the following, the case with R̂ = 0 is considered. Consider first the transverse admittance
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matrix Ŷ = Ĝ + jωĈ where Ĝ and Ĉ are the per-unit-length conductance matrix and
capacitance matrix, respectively. As can be seen from the relation with the generalized
capacitance matrix in Appendix E.6 for the capacitance matrix, the charge on the reference
conductor is given as the sum of charges of one row or column of the matrix. Consequently,
by using a square sub-matrix of the per-unit-length capacitance matrix addressed with an
index set s (for signal conductors), the remaining conductors from the disjoint index set r
are assigned as reference conductors. This can be expressed analogously for the admittance
matrix as [

Is
Ir

][
Ŷss Ŷsr
Ŷrs Ŷrr

][
Vs
Vr

]
, (E.82)

from which by requiring Vr = 0 one obtains simply

Ŷred. = Ŷss (E.83)

as the admittance matrix for the case of additional assigned reference conductors.

For the longitudinal impedance matrix Ẑ = jωL̂, the relation with the capacitance matrix
for the conductors with all dielectrics replaced by vacuum can be used. After computation of
this capacitance matrix and application of the reduction as in (E.82)–(E.83), the inductance
matrix L̂ is obtained from this reduced capacitance matrix for the vacuum case Cvac.

as [98, Eq. 3.4]
L̂ = C−1

vac.ε0µ0. (E.84)

Consideration in Terms of Network Parameters of the MTL for General Trans-
mission Line

For the general transmission line with a geometric length that is no necessarily shorter
than the guided wavelengths, the assignment of several reference conductors can only be
performed in terms of the ports for the network parameters. Physically this corresponds
to relevant currents that are induced due to the loop that the different reference conductor
(short-circuited only at their ends) constitute. For the chain parameters in (E.75) this
computation can be carried out as follows. Consider the following organization of the chain
parameter matrix with indices r for conductors that are subsequently assigned as reference
conductors, indices s for conductors that are subsequently used as signal conductors, and
an equal ordering of all voltage and current vectors for both ends of the MTL:

V̂s(L)

V̂r(L)

Îs(L)

Îr(L)

 =


Φ̂ss

11 Φ̂sr
11 Φ̂ss

12 Φ̂sr
12

Φ̂rs
11 Φ̂rr

11 Φ̂rs
12 Φ̂rr

12

Φ̂ss
21 Φ̂sr

21 Φ̂ss
22 Φ̂sr

22

Φ̂rs
21 Φ̂rr

21 Φ̂rs
22 Φ̂rr

22



V̂s(0)

V̂r(0)

Îs(0)

Îr(0)

 (E.85)
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where for all Φ the evaluation for the length L is assumed. By enforcing V̂r(L) = 0 and
V̂r(0) = 0, the second row of (E.85) gives the relation for the currents on the “new” reference
conductors as

Îr(0) = −
(

Φ̂rr
12

)−1 (
Φ̂rs

11V̂s(0) + Φ̂rs
12Îs(0)

)
(E.86)

Insertion into (E.85) then gives for the remaining signal conductors[
V̂s(L)

Îs(L)

]
=


{

Φ̂ss
11 − Φ̂sr

12

(
Φ̂rr

12

)−1

Φ̂rs
11

} {
Φ̂ss

12 − Φ̂sr
12

(
Φ̂rr

12

)−1

Φ̂rs
12

}
{

Φ̂ss
21 − Φ̂sr

22

(
Φ̂rr

12

)−1

Φ̂rs
11

} {
Φ̂ss

22 − Φ̂sr
22

(
Φ̂rr

12

)−1

Φ̂rs
12

}

[
V̂s(0)

Îs(0)

]
. (E.87)

It can be observed that the elements from the second column and those from the last row of
(E.85) are not required for (E.87). Alternatively, corresponding termination procedures can
be carried out after a conversion to impedance or admittance parameters. The conversions
can be found in [98, Sec. 4.6], the terminations can be derived analog to the derivation
shown here.
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Appendix F

Mathematical Appendix

F.1 Derivatives in 2D Cartesian Coordinates

F.1.1 Directional Derivative of Scalar Field

Given a general scalar field v(ρ), the directional derivative with respect to a direction given
by the normalized vector d can be computed as [146, Sec. 13.2.1.2]

∂v

∂d
= 〈d,∇v〉 = 〈∇v,d〉 (F.1)

F.1.2 Normal Derivative of Euclidean Norm

One applies (F.1) with v(ρ) = |ρ| = ‖xex + yey‖2 and d = n̂ = n to obtain

∂|ρ|
∂n

(F.1)
= 〈∇|ρ|, n̂〉 (F.3)= 〈ρ̂, n̂〉 (F.2)

F.1.3 Gradient of Euclidean Norm

For the case that ρ = (x, y)T = xex + yey:

∇|ρ| = ∇

∥∥∥∥∥
(
x

y

)∥∥∥∥∥
2

=

(
∂/∂x

∂/∂y

)
‖xex + yey‖2 =

(
∂/∂x

∂/∂y

)√
x2 + y2

=
1

2
√
x2 + y2

(
2x

2y

)
=
ρ

|ρ|
= ρ̂

(F.3)
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F.2 Symmetries of Harmonic Functions for Complex Arguments

From the well known addition theorems for harmonic functions and the relation to the
hyperbolic functions one can derive

sin(x+ jy) = sin(x) cosh(y) + j cos(x) sinh(y)

= − sin(−x) cosh(−y)− j cos(−x) sinh(−y) = − sin(−(x+ jy)),
(F.4a)

cos(x+ jy) = cos(x) cosh(y)− j sin(x) sinh(y)

= cos(−x) cosh(−y)− j sin(−x) sinh(−y) = cos(−(x+ jy)).
(F.4b)

As can be seen from the representation as harmonic and hyperbolic functions of the real
and imaginary part, sine and cosine functions of complex arguments are odd and even
functions, respectively.

F.3 Derivatives of Bessel Functions

For any Bessel function of order n, Fn(x), the following relations for its derivative hold [96,
Appendix D]:

F ′n(x) = −Fn+1(x) +
n

x
Fn(x) (F.5a)

F ′n(x) = Fn−1(x)− n

x
Fn(x) (F.5b)

For the special case of n = 0, this reduces to

F ′0(x) = −F1(x) (F.6)

The sum of the two relations in (F.5) leads to the recurrence

F ′n(x) =
1

2
(Fn−1(x)−Fn+1(x)) (F.7)

which can be advantageous in comparison to both (F.5a) or (F.5b) for x→ 0.
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Network Parameters

G.1 Concatenation of Admittance Parameters

G.1.1 General case

Assume the following organization of the matrices of the admittance parameters Y (a) and
Y (b) that are to be concatenated:(

I
(a)
u

I
(a)
c

)
=

(
Y

(a)
uu Y

(a)
uc

Y
(a)
cu Y

(a)
cc

)
︸ ︷︷ ︸

Y (a)

(
V

(a)
u

V
(a)
c

)
,

(G.1a)

(
I

(b)
u

I
(b)
c

)
=

(
Y

(b)
uu Y

(b)
uc

Y
(b)
cu Y

(b)
cc

)
︸ ︷︷ ︸

Y (b)

(
V

(b)
u

V
(b)
c

)
.

(G.1b)

where indices u mark the unconnected ports of each of the network parameter sets and
indices c mark the connected port with the same ordering for a and v inside the respective
matrix blocks. It is desired to obtain a concatenated result Y (ab) with the ordering as(

I
(a)
u

I
(b)
u

)
= Y (ab)

(
V

(a)
u

V
(b)
u

)
. (G.2)

Using the conditions I(a)
c = −I(b)

c and V (a)
c = V

(b)
c one can find in accordance with [140,

Sec. 3.2.3] that

Y (ab) =

(
Y

(a)
uu 0

0 Y
(b)
uu

)
−

(
Y

(a)
uc

Y
(b)
uc

)(
Y (a)
cc + Y (b)

cc

)−1
(
Y

(a)
cu Y

(b)
cu

)
. (G.3)

For many cases, simplifications of special cases lead to similar results but if, e.g., only
network b has only connected ports, network b terminates several ports of network a.
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Concatenation of Per Port and Common Series Admittance

The case of concatenating of a common series impedance Zr to the common reference
conductor path of a multiport is illustrated in Fig. G.1. The matrix Y1 that is concatenated
has a symmetric structure of the following form

Y1 =

(
Yaa −Yaa
−Yaa Yaa

)
. (G.4)

For the matrix Yaa, the diagonal entries are as follows

Yii =
1

Zi + Zi||
, (G.5)

where Zi|| is the impedance of the parallel circuit of all impedances including the common
impedance and except for the impedance Zi given by

Zi|| =

(
Yr +

N∑
k=1,k 6=i

Yk

)−1

=

(
1

Zr
+

N∑
k=1,k 6=i

1

Zk

)−1

(G.6)

The off-diagonal entries (i 6= j) of Yaa are given by

Yij =
−1

Zi

(
Zj

Zj||
+ 1
) (G.7)

where Zj|| is defined analogously to Zi|| in (G.6).

For the case that all N + 1 impedances are equal, i.e. Z = Z1 = Z2 = · · · = ZN = Zr, all
Zi|| are also equal and given by

Zi|| = Z/N. (G.8)

The expressions for the entries of Yaa for this case reduces to

Yii =
1

Z + Z/N
=

1

Z(1 + 1
N

)
, (G.9)

Yij =
−1

Z
(

Z
Z/N

+ 1
) =

−1

Z (N + 1)
(i 6= j). (G.10)

Using (G.3) and (G.4), the concatenation of matrices Y1 and Y2 can be given as

Y12 = Yaa − Yaa(Yaa + Y2)−1Yaa. (G.11)
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Figure G.1: Concatenation of single series impedances and a common impedance.

G.2 Concatenation of Impedance Parameters

G.2.1 General Case

Assume the following organization of the matrices of the impedance parameters Z(a) and
Z(b) that are to be concatenated:(

V
(a)
u

V
(a)
c

)
=

(
Z

(a)
uu Z

(a)
uc

Z
(a)
cu Z

(a)
cc

)
︸ ︷︷ ︸

Z(a)

(
I

(a)
u

I
(a)
c

)
, (G.12a)

(
V

(b)
u

V
(b)
c

)
=

(
Z

(b)
uu Z

(b)
uc

Z
(b)
cu Z

(b)
cc

)
︸ ︷︷ ︸

Z(b)

(
I

(b)
u

I
(b)
c

)
. (G.12b)

where indices u mark the unconnected ports of each of the network parameter sets and
indices c mark the connected port with the same ordering for a and v inside the respective
matrix blocks. It is desired to obtain a concatenated result Z(ab) with the ordering as(

V
(a)
u

V
(b)
u

)
= Z(ab)

(
I

(a)
u

I
(b)
u

)
. (G.13)

Using the conditions I(a)
c = −I(b)

c and V (a)
c = V

(b)
c one can find in accordance with [140,
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Sec. 3.2.2] that

Z(ab) =

(
Z

(a)
uu 0

0 Z
(b)
uu

)
+

(
Z

(a)
uc

−Z(b)
uc

)(
Z(a)
cc +Z(b)

cc

)−1
(
−Z(a)

cu Z
(b)
cu

)
. (G.14)

G.2.2 Concatenation of Single Series Impedances Per Port

The case of appending single series impedances to every port of a multiport is illustrated
in Fig. G.2a. The matrix of the overall impedance can be obtained as

Z1 = Z0 +


Z1 0 · · · 0

0 Z2 · · · 0
...

... . . . 0

0 0 0 ZN

 . (G.15)

In the case where Zseries = Z1 = Z2 = . . . = ZN this reduces to

Z1 = Z0 + Zseries · 1N , (G.16)

where 1N is the identity matrix of size N×N .

G.2.3 Concatenation of a Common Series Impedance

The case of concatenating of a common series impedance Zr to the common reference
conductor path of a multiport is illustrated in Fig. G.2b. In this network parameter repre-
sentation the condition

ireference =
N∑
k=1

ik (G.17)

holds. The matrix of the overall impedance can be obtained as

Z1 = Z0 + Zr ·


1 1 · · · 1

1 1 · · · 1
...

... . . . 1

1 1 1 1

 . (G.18)
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Figure G.2: (a) Concatenation of single series impedances. (b) Concatenation of a common
impedance. (c) Concatenation of single series impedances and a common impedance.

G.2.4 Concatenation of Per Port and Common Series Impedances

The cases from sections G.2.2 and G.2.3 can be combined, leading to the case illustrated
in Fig. G.2c. The matrix of the overall impedance can be obtained as

Z1 = Z0 + Zr ·


1 1 · · · 1

1 1 · · · 1
...

... . . . 1

1 1 1 1

+


Z1 0 · · · 0

0 Z2 · · · 0
...

... . . . 0

0 0 0 ZN

 . (G.19)

For the special case that Zseries = Zr = Z1 = Z2 = . . . = ZN this leads to

Z1 = Z0 + Zseries ·


2 1 · · · 1

1 2 · · · 1
...

... . . . 1

1 1 1 2

 . (G.20)
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G.3 Conversion Between Single-Ended and Mixed-Mode Network
Parameters

In this section, a short motivation and the relevant application of mixed-mode network
parameters are discussed.

In many electronic systems differential signaling is used because it is more robust in terms
of signal integrity. Differential signaling is typically used with multi-conductor systems
where pairs of signal conductors show a symmetry with respect to the reference conductor
and are to some degree coupled, both “physically” and “mathematically”. The reference
conductor is defined as the conductor carrying the total current of all other conductors
with inverted sign, thus leading to a net zero current of the overall multi-conductor system.
Apart from this mixed-mode analysis can also be carried out for non-symmetrical system
and for systems in which no or almost no coupling between signal conductors occurs.

G.3.1 On the Use of Block-Diagonal Matrices

The conversion between single-ended and mixed-mode network parameters consist in weigh-
ted superpositions of scattering parameters. These conversion can be written in compact
form with multiplications using matrices. If sparse matrices are used, operations (i.e. multi-
plications) with these matrices even represent a viable option for the actual implementation
of a numerical code. These matrices are block-diagonal matrices if one certain port order-
ing is used and they consist of four diagonal blocks if another certain port ordering is
used. As the matrices are sparsely populated, the use of algorithms for space matrices
can improve the numerical efficiency during the practical application. Alternatively, the
corresponding/effective operations that amount to a weighted summation of two matrix
rows or columns can be carried out directly using adapted functions.

In the conversion between single-ended and mixed-mode network parameters, block-diagonal
matrices need to be inverted if the following port ordering is chosen: Adjacent indices of
the single-ended ports form a mixed-mode port. The differential and common mode ports
are adjacent in the mixed-mode ordering. For this ordering, the conversion matrices take
the following block-diagonal form

A =


A1 0 · · · 0
0 A2 · · · 0
...

... . . . 0
0 0 0 An

 (G.21)
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where all submatrices Ak (A1,A2, · · · ,An) are identical 2× 2 matrices, i.e.

Ak = A1 = A2 = · · · = An =

(
A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

)
. (G.22)

As det(Ak) = 1 for all conversion matrices (from which follows also det(A) = 1), the
inverse can be given for each block as:

A−1
k =

(
A

(k)
22 −A(k)

12

−A(k)
21 A

(k)
11

)
. (G.23)

The inverse of the block-diagonal matrix is then given as

A−1 =


A−1
k 0 · · · 0
0 A−1

k · · · 0
...

... . . . 0
0 0 0 A−1

k

 . (G.24)

Secondly, the following port ordering is considered: The n-th element for the two blocks of
the single-ended ports form a mixed-mode port. The differential and common mode ports
are organized in two blocks in the mixed-mode ordering. For this ordering, the conversion
matrices take the following form with four diagonal blocks:

A =



A11 0 · · · 0 A12 0 · · · 0
0 A11 · · · 0 0 A12 · · · 0
...

... . . . 0
...

... . . . 0
0 0 0 A11 0 0 0 A12

A21 0 · · · 0 A22 0 · · · 0
0 A21 · · · 0 0 A22 · · · 0
...

... . . . 0
...

... . . . 0
0 0 0 A21 0 0 0 A22


=

(
A111n A121n
A211n A221n

)
(G.25)

where 1n is an identity matrix of size n×n. From reordering of ports of the results for the
previously considered ordering, the following inverse can be obtained

A−1 =

(
A221n −A121n
−A211n A111n

)
(G.26)

The inverse is again a matrix consisting of four diagonal block. Here, the necessary but
not sufficient condition det(A) = 1 can be used for a check of applicability.
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G.3.2 Scattering Parameter Conversion for Uncoupled, Balanced Port Pairs

From the single-ended network parameters Sse, the mixed-mode parameters Smm can be
obtained as [147,148]

Smm = MSseM
−1 (G.27)

where M for the orderings in (G.21) and (G.25) has entries(
A11 A12

A21 A22

)
=

1√
2

(
1 −1

1 1

)
(G.28)

and the inverse M−1 can be obtained using (G.24) and (G.26), respectively.
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Additional Discussions and Data Related to
Measurements

In this appendix an additional discussion regarding the design of test structures, additional
detailed data on both test structures and measurement setups, and an overview of the ge-
ometries of the test structures designed at the Institute of Electromagnetic Theory (TET),
Hamburg University of Technology, are provided.

H.1 Design for Practical Measurability

The main design objective has been to create structures with only a few TSVs and small
interaction with adjacent structures on the wafer coupon that optimally capture the effects
due to the TSVs. Most of the marginal conditions are caused by the way the structures can
be measured. For the practical measurement it must be taken into account which type of
probing/contacting, calibration, and de-embedding is (commercially) available or feasible.
Custom solutions for measurement of this kind of device under test (DUT) exist such as test
fixtures for high frequency substrates [149, Sec. 3.3.3] and specialized interposers for printed
circuit boards [150], but these require adapted calibration standards and are not flexible
with regard to their applicability. Therefore, the most commonly used option in this domain
is the measurement with micro-probes [151,152]. These micro-probes provide the transition
from the coaxial cable connector to a fine-pitched tip with the aim to minimize reflections
and thereby achieve a high remaining sensitivity for the measurement of the DUT. A
three tip coplanar layout with GSG (ground–signal–ground) layout can be advantageous
compared to the two tip layout because it can lead to an even lower discontinuity at the
transition from probe tip to the signal launch of the DUT and has a higher shielding of
the signal path [153, Sec. 2.6.1]. A signal launch with probe tips is illustrated in Fig. 7.15a.
Therefore, every signal launch that is used in the following has three contact pads (cases
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without plane metallizations) or contact areas (case of plane metallizations). Along the
signal path also three TSVs in parallel can be used to route the signal but other layouts
are possible, e.g., the layout of the type depicted in Fig. 7.10a is also used with a lesser
number of ground vias.

The properties of TSVs can isolated to a high degree if contacting of such a TSV triplet is
possible. This type of probing is feasible as shown in [128] but very difficult due to several
reasons: It requires an adapted mechanical setup to hold and support the thin wafer and
permit probing from both side. The alignment of all mechanical parts is more difficult
and requires microscopes both above and below the level at which the wafer coupon is
located. Further, a non-standard calibration is required. A turning of probes between a
planar calibration and a vertical measurement can be used but leads to uncertain effects
on the calibration, e.g, due to cable movement/connector strain. As discussed in [128], a
SOLR calibration could be used with a reciprocal “thru” in form of a very short via.

A de-embedding is also feasible as shown in [154]: By stacking a first interposer with TSVs
on a second interposer with a coplanar line that routes the bottom side connection of the
TSVs to a location where it is not underneath the first interposer, a contacting with micro-
probes from exclusively the top side can be used. A similar effort has not been undertaken
for the presented investigations.
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H.2 Details on the Test Structures and Measurement Setups

Structure IDs:
Parameter V13 V5 V10

wplane(width of plane) 1000 µm – 1300 µm
lplane(length of plane) 800 µm – 800 µm

lpad(length of probing pad) 100 µm 150 µm 100 µm
wpad(width of probing pad) 50 µm 50 µm 50 µm
lstrip1(length of top side line) 100 µm 0 µm 100 µm

wline(width of line, top and bottom) 20 µm 20 µm 20 µm
lstrip2(length of bottom side line) 200 µm 250 µm 500 µm

dgnd(pitch to ground) 200 µm 100 µm 200 µm
wclear(width of clearances) 10 µm – 10 µm

rpad(radius of pad) 15 µm 15 µm 15 µm
number of ground vias 2 4 4

Table H.1: Parameter values of the test structures considered in the following. For geometry
definitions, see Fig. 7.10a. Structure IDs are not be confused with the Variation names V1–V5
from Section 7.2.

Layer description Nominal Value Estimated value Simulated values
Silicon 100 µm 80 µm 80 µm− 100 µm

WPR polymer 4.5 µm 3.5 µm 3 µm− 5 µm

SiO2
200 nm – 180 nm− 300 nm
500 nm – 500 nm

Table H.2: Relevant values of the layers thicknesses. The nominal values are the values
for which the designs were planned. The estimated values are values estimated from the
microsection in Fig. 7.9a. The simulated values specify the range of values used for the fits in
the FEM full-wave simulations for correlation with the measurements.

Structure V5 Structure V10 Structure V13
Wafer W09 - - → Fig. 7.19
Wafer W10A - - → Fig. 7.20
Wafer W23B → Fig. 7.18 → Fig. 7.16 → Fig. 7.17

Table H.3: Overview of the simulated structures (combinations wafer ID–structure ID) with
references to the corresponding figures. Structure IDs are not be confused with the Variation
names V1–V5 from Section 7.2.
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H.3 Fabricated Structures

This chapter presents, in the form of drawings, additional data on the geometries of more of
the fabricated and measured structures. Fig. H.1 depicts the wafer coupon with markings
of the areas for which the detailing drawings are given in Figs. H.2 and H.3.

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

Figure H.1: Photo of the wafer coupon with marking of the structures documented in from
of drawings in Fig. H.2 and Fig. H.3 . Dimensions are given in mm.

249



Appendix H Additional Discussions and Data Related to Measurements

V0 V1 V2 V3 V4 V5 V6
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Bottom layer contour Top layer contour TSV Area for label

Figure H.2: Part 3 of the fabricated structures. All dimensions and coordinates given in mm.
Outermost contours mark metallized areas. The contours inside these alternate between
cutouts and metallized areas from outside to inside. Refer also to the photos (overview and
detail) given in Fig. 7.12. If not stated otherwise, two port measurements have port 1 at the
respective higher coordinate.
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Figure H.3: Part 4 of the fabricated structures. All dimensions and coordinates given in
mm. Outermost contours mark metallized areas. The contours inside these alternate between
cutouts and metallized areas from outside to inside. Refer also to the photo (overview) given
in Fig. 7.12.
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