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Abstract

The description of ship motion dynamics is typically divided into two separate categories of
inquiry: maneuvering in calm water and seakeeping at straight course. Combining both fields
of investigation is not a trivial process because the hydrodynamic forces function differently.
This thesis reports on the development of two numerical models to simulate the maneuvering
motion of ships in waves. In order to simulate the motions, a precise description of the
forces is necessary. In both approaches, the rudder forces are calculated with state-of-the-art
procedures. For the propulsion, a numerical model is developed based on the propeller open-
water diagram. An engine model is developed to determine the propeller rate of rotation for
diesel-electric engines. A comparison with sea trial measurements reveals a very satisfactory
representation of the propulsion and engine characteristics with the numerical model. The
hydrodynamic forces acting on the hull are generally dependent on the motion frequency.
Hence, the seakeeping motion is often solved in frequency domain. For the maneuvering case,
the zero-frequency hydrodynamic forces are of interest. A two-time scale model is introduced
that divides the basic motion equations into two groups - the zero-frequency maneuvering
motion and the high-frequency wave-induced motion. Each group is solved separately and
certain parameters are exchanged. Additionally, a unified theory is presented. This approach
unifies both theories by extending the seakeeping theory. It is based on the impulse-response
function, in which the retardation functions are built up for the entire motion frequency range
and integrated during the time simulation over the elapsed time. The zero-frequency damping
forces are incorporated into the retardation functions or added directly to the motion equations
during time domain. They are calculated either with the slender-body theory or taken from
the literature. A validation with experimental data from the literature is conducted with
both methods. The simulated turning circles of the S-175 container ship and the KVLCC2
tanker in regular waves show satisfactory agreement with the measurements for both theories.
Both methods capture the maneuvering motion in waves as well as the wave-induced motion
during turning. Slight differences between the two models occur in the average track due
to additional nonlinear effects in the unified theory. The simulated oscillatory wave-induced
motion is very comparable between the two theories and shows reasonably well agreement
with the measurements.
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Nomenclature

The following notation is adopted throughout the thesis, unless otherwise explicitly stated.
It is not exhaustive. Any other notation introduced will be defined when required.

General

• Vectors are denoted as boldface, lower-case letters

• Matrices are denoted as boldface, capital letters

• Time derivatives are marked by a dot, e.g. ˙f

• The dimensionless form is marked by a prime, e.g. Y 0

Latin symbols

a Frequency-dependent sectional added mass matrix
a

0 Sectional added mass matrix for zero-frequency
AD Advance of turning circle
AR Rudder area
A Frequency-dependent added mass matrix
A

0 Added mass matrix for zero-frequency
A Added mass matrix in time domain
B Ship breadth
B Frequency-dependent damping matrix
c Rudder chord length
CB Block coefficient of ship hull
CD Drag coefficient
cF0 Skin friction resistance coefficient
CM Block coefficient of main frame
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cR Residual resistance coefficient
cTh Propeller thrust loading coefficient
C Restoring matrix
C

⇤
A Linearized Coriolis and centripetal force matrix due to added mass

d Sectional ship draft
DP Propeller diameter
dt Time step size
DT Tactical diameter of turning circle
e Mean distance between the leading edge of the rudder and the aft and of the hull
fx Longitudinal mean wave drift force
fy Transverse mean wave drift force
Fn Froude number
f Force vector
f e Wave excitation force vector
f e,A Wave excitation force amplitude vector
g Gravity
GM Transverse metacentric height
hR Rudder helm rate
HD Drifting distance
HR Rudder height
I Moment of inertia
ixx Inertia radius around the x-axis
iyy Inertia radius around the y-axis
izz Inertia radius around the z-axis
I Rigid-body inertia tensor
J Propeller advance coefficient
k Wave number
kT Thrust coefficient
K Matrix of retardation functions
LOA Ship length over all
LPP Ship length between perpendiculars
m Rigid-body mass
mz Mean wave drift yaw moment
m Moment vector
M Rigid-body mass matrix
n Propeller rate of rotation
N Hydrodynamic yaw moment in maneuvering
RF0 Skin friction resistance
Rn Reynolds number



| xi

RR Residual resistance
SW Wetted hull surface
S Rotation matrix
t Thrust deduction factor
T Ship draft
TP Propeller thrust
u Ship velocity in longitudinal direction
U Absolute ship velocity
uA Propeller speed of advance
u Absolute ship velocity vector
v Ship velocity in transverse direction
wp Wake fraction
X x-component of hydrodynamic force in maneuvering
xG x-component of the rigid body’s center of gravity
xm x-component of the position where the flow presumably separates
Y y-component of hydrodynamic force in maneuvering
yG y-component of the rigid body’s center of gravity
zD z-component of the point of attack of the drag force
zG z-component of the rigid body’s center of gravity

Greek symbols

� Drift angle
� Rudder angle
✏ Wave excitation force phase angle
⇣A Wave amplitude
⌘ Wave angle relative to the Earth-fixed frame
⌘ Position and rotational orientation vector in spatial frame
� Wave length
⇤ Rudder aspect ratio
µD Drifting direction
⌫ Linear and angular velocity vector in body-fixed frame
⇠ Position vector in seakeeping frame
⇢ Mass density of fluid (water)
� Wave encounter angle
 Ship heading angle
 OS1 First overshoot angle
 OS2 Second overshoot angle



xii | Nomenclature

! Motion frequency
!0 Wave frequency
!e Frequency of encounter
! Angular velocity vector

Abbreviations

3DOF Three degrees of freedom
4DOF Four degrees of freedom
6DOF Six degrees of freedom
CFD Computational fluid dynamics
CPP Controllable-pitch propeller
EEDI Energy Efficiency Design Index
FFT Fast Fourier transform
HSVA The Hamburg Ship Model Basin
IACS International Association of Classification Societies
IMO International Maritime Organization
ITTC International Towing Tank Conference
LF Low-frequency
MEPC Marine Environment Protection Committee
MMG Maneuvering Modeling Group
MOERI Maritime & Ocean Engineering Research Institute, South Korea
PMM Planar-Motion Mechanism
RANS Reynolds-averaged Navier-Stokes
RAO Response amplitude operator
WF Wave-frequency
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Introduction and State of the Art

Figure 1.1.: Illustration of maneuvering in waves; source: www.crships.org and www.sintef.no

1.1 Background and motivation

Ship motion dynamics are typically divided into two fields of study: maneuvering in calm
water and seakeeping at straight course. This division appears reasonable. The classical
maneuvering regards course changes, turning, stopping, etc. These operations are generally
performed in calm water environments. Seakeeping, in contrast, is associated with straight
motion in a seaway. During voyages overseas the ship keeps its course and its speed mainly
constant. Both fields are well developed and accurate models exist to simulate the motion of
the ship in each.

In regards to ship safety, however, the maneuvering behavior of a ship in waves takes on
special meaning. Waves may substantially influence the hydrodynamic forces and thereby
change the maneuvering behavior, and vice versa.
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Since the Energy Efficiency Design Index (EEDI) has come into effect, serious concerns re-
garding the maneuverability of ships in waves have been brought to the forefront. In 2012
the Marine Environment Protection Committee (MEPC) of the International Maritime Or-
ganization (IMO) passed the EEDI, which stipulates a limit for the specific CO2-emissions of
ships. If the ship marginally passes the relevant EEDI criterion, it is questionable whether
the propulsion power and the steering devices are sufficient to maintain the maneuverability
of the ship in adverse conditions and, subsequently, the safety of the ship.

To avoid negative effects on safety, such as under-powered ships, the International Associa-
tion of Classification Societies (IACS) has proposed to add a provision to regulation 21 in
chapter 4 of the MARPOL Annex VI text: “For each ship to which this regulation applies,
the installed propulsion power shall not be less than the propulsion power needed to maintain
the maneuverability of the ship under adverse conditions as defined in the guidelines to be
developed by the Organization.” However, standard maneuvers that demonstrate the capabil-
ity of maneuvering in adverse conditions are not existent; adverse conditions are not defined;
model tests are possible but not practical for routine ship design purposes; and the existing
numerical simulation tools are not sophisticated enough for routine ship design purposes as
reported by the Manoeuvring Committee at the 25th International Towing Tank Conference
(ITTC) [52]. This clearly demonstrates the need for extensive research in this field.

Investigations on ship safety in waves are mainly based on statistical evaluations. To conduct
statistical analyses a large amount of calculations is needed, so that short computational times
for the individual computations are inherent. This, in turn, yields the necessity for developing
bespoke mathematical models for the description of maneuvering motion in waves.

Combining the mathematical models for maneuvering and for seakeeping is not a trivial
process due to the very different nature of the hydrodynamic forces. The forces due to ma-
neuvering motion are dominated by viscosity. The fluid actions in maneuvering are expressed
in terms of slow motion derivatives. Viscous forces, on the other hand, play only a minor role
in seakeeping. Seakeeping performance can be sufficiently calculated with potential theory.
The fluid actions during seakeeping are expressed in terms of frequency-dependent hydro-
dynamic coefficients. A unifying theory that describes the maneuvering of a ship in waves
must combine the traditional theory of seakeeping associated with a vessel travelling along a
prescribed course in waves and the theory of ship maneuvering in calm water. Such a model
needs to describe the ship motions accurately for different speeds, sea states and operations.

A further application of the mathematical models can be the use in real-time training simula-
tors. These simulators are often used to facilitate the training of ship masters and navigation
officers. The mathematical models need to simulate in real-time or even faster while retaining
a high accuracy.

Developing a numerical model for simulating the maneuvering in waves incorporates multiple
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disciplines within ship hydrodynamics, including resistance, propulsion, calm water maneu-
vering, and seakeeping. It is necessary to find a balance between the accuracy of each module
in the analysis and the computational effort.

1.2 Review on previous work

Before giving a review on the combined maneuvering and seakeeping methods, an overview
on each field is given separately. In this work, the maneuvering motion is regarded in more
detail than the seakeeping motion. Also, the review on previous work in maneuvering is more
extensive, while the section on seakeeping is given in a brief and succinct overview.

1.2.1 Maneuvering simulation models

According to the Manoeuvring Committee of the ITTC [1], a maneuvering simulation model
can be used for different purposes. They distinguish between:

• Models to predict ship maneuverability; needed at the design stage to ensure that a ship
has acceptable maneuvering behavior.

• Models to use in simulators; used for the training of navigation officers or for the inves-
tigation of specific ships operating in specific harbors or channels.

The acceptable ship maneuvering characteristics are stated in the IMO maneuvering regu-
lations [50] and possibly in specific contract requirements between a ship yard and a ship
owner. They are mostly quantified by global parameters such as the overshoot angles in
zig-zag maneuvers or the tactical diameter in a turning circle maneuver.

In order to develop ship maneuvering simulators, it is necessary to use mathematical models
capable of calculating ship motion with a high degree of accuracy and in real-time. Most of
the mathematical models need to be adjusted by human experience to obtain the required
accuracy.

Simulation models for maneuvering motion are typically based on Newton’s second law, i.e. the
rate of change of the momentum of a body is equal to the resultant force acting on the body
and is in the same direction. The mass properties of the vessel are generally well known. It
is therefore important to have a correct description of the forces to accurately determine the
motion. The forces are mainly due to hydrodynamics and include effects of the flow on the
hull, the steering devices and the propulsors. The accuracy of the various forces and moments
greatly influences the accuracy of the simulations.

The Manoeuvring Committee of the ITTC [1] distinguishes between various sources for esti-
mating the hydrodynamic forces and moments:
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• databases,

• regression equations from database,

• captive model tests,

• free model tests with system identification,

• full scale trials with system identification,

• calculation of forces resulting from prescribed kinematics within computational fluid
dynamics (CFD),

• on-line application of CFD during simulation.

The hydrodynamic forces acting on the ship can be represented mathematically in many
forms. Typically, the forces are described with hydrodynamic derivatives, look-up tables for
the forces, algebraic equations or direct simulation [1]. Each mathematical model must be
able to reproduce the original data with sufficient accuracy.

The first workshop on verification and validation of ship maneuvering simulation methods
(SIMMAN) was held in 2008 [99]. Its purpose was to benchmark prediction capabilities of
different ship maneuvering simulation methods and to clarify the accuracy of each method.
However, Stern et al. [100] have summarized that the workshop highlighted many questions
regarding the reliability of the procedures and the experimental data. There are a large
number and variety of methods capable of predicting standard maneuvers, but their results
were surprisingly scattered, as the workshop made apparent. For models based on captive
model test data, it is essential that there is consistency between the model test program and
the applied mathematical model. Extrapolation outside the range of the model test data
should be avoided. Methods to predict maneuvers are not applicable outside the combination
of motion parameters where the mathematical model is created. Furthermore, it is clearly
demonstrated that e.g. a database consisting only of full form tankers cannot be used to
predict forces on a container ship. The adequacy of a database for a given vessel can be
assessed by comparing appropriate parameters such as T/L, B/T , cB, approach speed, etc.

The SIMMAN 2008 workshop clearly demonstrates the large differences in performance be-
tween models with four degrees of freedom (4DOF) and three degrees of freedom (3DOF) for
ships with low GM and higher speeds, implying that it is important to include roll into the
simulations.

The most important differences between ship and model with respect to the scale effect are:

• The larger wake at the rudder in model scale reduces rudder effectivity.

• The larger propeller load in model scale increases slip stream velocity and thereby rudder
effectivity.
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• The resistance forces due to separation in an oblique flow depend on the Reynolds
number, which is smaller in model scale than in real scale.

The forces can be divided into forces acting on the hull, the rudder and the propeller. However,
interaction effects play an important role. The following sections discuss each point separately
while keeping the interactions in mind.

Hull forces

There are many publications on experimental or theoretical work for determining the hy-
drodynamic forces and moments on the hull due to sway and yaw motions, which are the
predominant motions in maneuvering.

Chislett and Strøm-Tejsen [18] have shown that it is possible to determine the hydrodynamic
derivatives with captive model tests using a Planar-Motion Mechanism (PMM). The PMM
device is mounted to the towing carriage and oscillates the ship model in transverse direction
while it is towed with a constant speed in longitudinal direction. The measured forces can
subsequently be fitted to polynomials to be available for maneuvering simulations. Maneu-
vering simulations based on these model test results confirm a satisfactory agreement with
full scale measurements. The PMM has since become the standard in ship model testing.

In 1981 Wolff [118] used the computerized planar motion carriage (CPMC) (Oltmann [80]) at
the Hamburg Ship Model Basin (HSVA) to investigate the maneuvering behavior of five ship
models representing various ship types. The hydrodynamic derivatives are determined using
force measurements on captive models. Maneuvering simulations with the gained derivatives
show satisfactory agreement with free running models.

Computations of hull forces have been largely based on slender-body theories. Söding has
shown the possibility of simulating maneuvering motion based on the slender-body theory
([104] and [105]). According to the slender-body theory, the water accelerated by a drifting
or yawing ship induces a force per length acting on the hull. The cross-force per unit length
is equal to the substantial time derivative of the cross-momentum, which is due to the added
mass per unit length times the relative velocity in cross-direction. Söding has introduced
some correction factors to account for the finite slenderness and for three-dimensional effects.
Furthermore, viscosity is considered in the form of empirical corrections. Krüger [62] has
used the body force model developed by Söding to simulate different standard maneuvers and
compares these with sea trial measurements. His simulations show the principle validity of the
force model. When the input parameters are properly known, simulation of the maneuvers
is possible with acceptable accuracy for practical application. However, the calculations need
a lot of assumptions, and according to Krüger [62], it is likely that good results are only
achieved because many errors cancel each other. Subsequently, Krüger [62] suggests different



6 | Introduction and State of the Art

expansions of his work: for a satisfactory determination of the hull forces, potential theory
might not be feasible and viscous methods or model tests should be conducted; the control
mode of the main engine significantly influences the maneuvers and has to be respected by
dynamic simulations; the actual thrust during sea trials is not known but has a major influence
on the maneuvering behavior. Further investigations of the flow phenomena behind the ship
are necessary. A recent publication by Krüger [63] shows that the results of maneuvering
prediction based on the slender-body theory can be satisfactory when these deficiencies are
considered in more detail.

Lin et al. [70] use the so-called blocking theory to calculate the hydrodynamic forces acting
on a ship hull and rudder which is based on potential theory. The pressure loss due to flow
separation is obtained in this theory by integrating the pressure only over the effect area.
The pressure on the ship’s surface can in a real fluid be written as p0s. In a potential flow the
pressure increases due to the absence of viscosity and turbulence to ps so that p0s < ps. This
is due to the separation. The total pressure force on the ship can be calculated with the area
of the surface Ar: Z
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np0sds . (1.1)

When using potential theory, ps is calculated instead of p0s. Then the object surface area can
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where ci are constants and K is the truncation order as defined by Lin and Kuang [71]. The
method is applied to simulate ship steering maneuvers. The results of the steering and the
associated roll motions agree reasonably well with experimental data.

For the simulation of resistance tests, i.e. a ship moving with constant speed in calm wa-
ter, CFD has become standard (e.g. Greve et al. [36]). Significant progress has been made
by applying Reynolds-averaged Navier-Stokes (RANS)-based CFD codes. Recently, RANS
based methods have also shown to be promising for computing complex hydrodynamic forces
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for steady and unsteady maneuvers. The CFD simulations provide an insight into the entire
flow structure around the hull, and the simulation results can be used to compute the forces
and moments acting on the hull and to determine hydrodynamic derivatives. El Moctar [26]
applies a RANS method to compute a cargo ship and a tanker in steady drift and steady
turning. It focuses on the influence of draft and heel on hull forces. The ruder is modelled ge-
ometrically and the propeller by body forces, while free-surface and dynamic trim and sinkage
are neglected. The acting forces can be determined with high accuracy and the simulations
provide a profound insight into the flow details. Cura Hochbaum [21], [22] shows the possibil-
ity of replacing entire captive towing tank tests with simulations using a viscous RANS solver.
Common maneuvering derivatives can be determined from virtual CPMC tests simulated with
RANS with enough accuracy to get the required information about the maneuverability of a
vessel. Similar investigations are conducted by Manzke et al. [72] and by Schoop-Zipfel and
Abdel-Maksoud [93], who also apply RANS to determine the hydrodynamic derivatives. The
hydrodynamic derivatives are then used to simulate standard maneuvers. A comparison of
the simulated maneuvers with free-running model tests shows a satisfactory agreement. The
computational effort is, however, still extremely high and determining all necessary deriva-
tives requires an enormous amount of computational time. In these simulations the propeller
can either be modelled directly, or its effect is regarded with a propeller model, modelling the
body forces as source term in the impulse equation (Berger et al. [11], Wöckner et al. [119]).
The results in the literature show that the interactions between hull, propeller and rudder
have an important influence on the ship’s track.

CFD methods were investigated and compared at the SIMMAN 2008 workshop [99], and
as an outcome, finer grids, more advanced propeller and turbulence models, and additional
verification and validation were suggested for the improvement of CFD-based methods (Stern
et al. [100]). Finer grids should especially be used at the rudder, the appendages and at large
vorticity regions, and verification and validation should follow the procedures proposed by
Stern et al. [101]. Moreover, free surface capturing methods can be helpful to improve the
accuracy of the results. To obtain the maneuvering derivatives from the force trajectories,
multiple-run CFD/EFD curve fitting methods generally provide better results than single-run
methods. It is stated that the best test of applicability is a comparison of actual maneuvers
against free running model test data.
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Rudder forces

The rudder, as one of the main steering devices, has a strong impact on the maneuvering
behavior. Determining the rudder forces precisely is therefore of great importance.

Söding [106] has derived formulae from experiments and potential flow theory. These formulae
are only valid below stall angle and do not consider specific rudder shape, profile thickness
or Reynolds number. However, El Moctar [25] has confirmed with viscous flow computations
that these formulae give a good agreement in the valid regimes for NACA 0015 profiles.

The propeller slipstream exerts considerable influence on the rudder forces. A panel method
developed by Söding [108] computes rudder lift and drag with good accuracy. However, all
potential flow methods are incapable of determining stall and thus the maximum lift. This
is of special importance for yaw-checking when the angle of attack at the rudder becomes
maximal [108].

Rudder flows feature high Reynolds numbers and are fully turbulent. Therefore, RANS com-
putations should give better estimates than potential flow codes. El Moctar [26] has presented
RANS simulations for a rudder and propeller interacting. The effect of the ship hull is not
included. The numerical simulations show that the rudder lift forces increase by a factor of
2.3 in the propeller slipstream.

In most CFD simulations the propeller effect is simply modelled by body forces in RANS
codes. The propeller forces are circumferentially averaged. El Moctar [26] has investigated
the effect of simplified propeller modelling on rudder forces. In general, the computed rudder
forces are increased by 10% when using body forces. This mainly results from the neglected
hub. If considering the hub in the body force model, the deviation can be decreased to 4%.

Propeller

To determine the propeller forces, numerical methods based on potential theory can be used.
These have much shorter computational times compared with RANS methods (see e.g. Lan
[66] and Abdel-Maksoud et al. [3]).

However, the popularity of using viscous RANS methods to determine propeller flows is due
to its increased computational power (Berchiche [10]). This can be especially beneficial when
regarding all four quadrants of the propeller motion. Potential theory cannot capture the
separation effects occuring for large angles of attack. The empirical models used in potential
theory are mainly valid in the standard operating condition.

To determine the interaction of hull, propeller and rudder, it is still beneficial to simplify the
propeller in order to save computational costs. Phillips et al. [83] couple a propeller model
in the blade element momentum theory (BEMT) with the solution of the RANS equations.
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The maneuvering derivatives of a self-propeller ship at straight ahead motion, at a drift angle
and for different rudder angles can be determined with this approach. The computational
uncertainty is reported to be typically 2-3% for the side force and the yaw moment. The
approach allows for capturing the interaction effects between hull, propeller and rudder.

In reality, propeller blades always operate in oblique flow due to the aftbody shape, ship
motions in maneuvering and seakeeping, etc. El Moctar [26] concludes in his investigations
on oblique flow that the mean thrust and torque coefficients increase with increasing angle of
attack. The Reynolds number effect on thrust and eccentricity is rather small. Similar results
are reported by Vorhölter [116]. He shows that the wake fraction significantly influences the
maneuvering behavior. The flow situation is very complex, so CFD computations are needed
to determine the wake fraction sufficiently.

RANS methods can be applied to determine the interaction of the hull and the propeller. Ex-
amples can be found in Jensen et al. [56] and Xing-Kaeding [120], where steady and unsteady
maneuvers are simulated.

Engine characteristics

Simulating maneuvers requires that the dynamic behaviors of the prime mover and the auto-
matic control of the propulsion system are taken into account (Krüger [62]). When regarding
maneuvering in waves, it is important to note that engine behavior may have a considerable
influence on the motion of the ship.

Mathematical models for simulating the engine, the automation of controllable pitch propellers
(CPP) and the engine control have been presented by different authors. Some focus on the
behavior of the engine and others investigate the interaction of the engine and the maneuvering
behavior of the ship.

Hanouneh [42] simulates crash stop maneuvers for ships with fixed-pitch propellers (FPPs).
He develops a detailed model for the diesel engine, which is based on a cyclic process. Eyberg
[27] concentrates on the automation of CPPs and the engine. Both studies drastically simplify
hydrodynamic aspects. Zheng [128] develops a numerical model to describe the behavior of
CPPs during crash stop maneuvers, but does not use a controller for the propeller pitch.
Benvenuto [9] presents a detailed engine model for maneuver simulation of ships with CPPs
and FPPs. He mainly investigates crash stop and turning circle maneuvers. The simulations
are carried out based on a coefficient model. The propeller-hull interaction parameters are
not taken into account during the simulation of the crash stop maneuvers.

Haack [39] develops an engine model for dynamic simulations during maneuvering motion.
The maneuvering model is based on the work of Krüger [62]. With the models it is possible
to simulate the total system for arbitrary maneuvers and for numerous system configurations.
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Modelling of hydrodynamic forces

One of the most common concepts used to describe the hydrodynamic forces acting on a
maneuvering ship has been proposed by Abkowitz [4]. According to this concept, the forces
acting on a ship depend, at any instant, on the ship velocities and accelerations at that
instant but not on their history, i.e. higher time derivatives. There are a few works that raise
concerns over this assumption of quasi-stationarity; e.g. Newman [74] shows that memory
effects due to separation, free-surface wave motions and the non-analytic dependence of the
nonlinear forces on drift angle require a more complicated mathematical model for the force
and moment. According to his work, history should not be neglected. These history effects
could be taken into account by impulse-response functions. Bishop et al. [13] develop an
unique formulation of the fluid forces and moments acting on a ship in terms of Volterra
series. With this formulation the assumption of quasi-stationarity is relaxed. Burcher [17]
and Nomoto [78] show that the history effects play a minor role in the steered motions of
a ship in calm water. Regarding the practical use of the model test results, the history
effects are rather unimportant for simulating realistic maneuvers. They arise due to the
small motion amplitudes in combination with unrealistic high motion frequencies during the
tests. Nomoto shows with a numerical example that the hydrodynamic derivatives at zero
frequency can be used to get the ship response. Nevertheless, the fluid forces acting on a
ship have significant time history effects. So care has to be taken in experiments and their
analyses to avoid problems arising from the more complex nature of the forces. When doing
so, higher frequency components play only a slight role and can be neglected.

1.2.2 Seakeeping simulation methods

According to the Seakeeping Committee of the ITTC [55], sea trials are believed to provide
the most reliable and realistic data with respect to ship behavior in various environments.
However, there are uncertainties that need to be considered when examining the results. As
an example, the lack of control over the ocean environment creates uncertainties in defining
the sea parameter.

For the computational determination of the motion behavior of ships in waves, the fluid
dynamic loads have to be determined. This can be done either in frequency domain or in
time domain.
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Frequency-domain approaches

The Seakeeping Committee of the ITTC [55] states that frequency-domain approaches pro-
vide a quick but accurate solution. Frequency-domain solutions are typically used in the
early stages of ship design. The frequency-based solution is advantageous in evaluating hy-
drodynamic and structural concerns involving natural frequency and modal problems. For
multi-body problems, the frequency domain provides a much less intensive approach to assess
interactions.

Time-domain approaches

Time-domain approaches solve the motions of the ship as a time-evolving process. They can
be extended to the analysis of nonlinear motion and can be coupled with external or internal
forces. Time-domain formulations for seakeeping problems have been introduced by some
pioneering researchers, such as Cummins [20] and Liapsis and Beck [69]. An overview on
different time-domain approaches given by the Seakeeping Committee of the ITTC can be
found in Table 1.1.

Wave drift forces

Wave drift forces are the time-averaged wave forces acting on a body. They are approximately
proportional to the square of the wave amplitude. In contrast with the short-time scale first-
order wave loads, whose mean value over the wave period is zero, the mean second-order wave
loads are able to produce a long-term steady wave effect. It is often believed that these forces
play the major role for maneuvering in waves concerning the wave loads (Artyszuk [5]).

According to Clauss et al. [19], there are basically two methods for determining wave drift
forces. One determines the velocity potential and integrates it over a control surface that is
far away from the body. It is based on the asymptotic behavior of the potential ad infinitum.
The calculations are mainly conducted for a monochromatic wave field, i.e. smooth Airy waves
of constant period. The other method integrates the pressure up to the second order over the
wetted surface of the body. The choice of a method depends on the wave characteristics, the
Froude number and the slenderness of the ship hull.

Early known work on hydrodynamic drift forces and moments on a single body is from Maruo
[73]. He has developed a three-dimensional far-field method that can determine the wave drift
forces on a ship with zero forward speed in the horizontal plane. Newman [75] has used the
fluid momentum conservation and the slender-body theory to derive the mean drift forces and
moment. The work of Newman has been extended by Salvesen [87], whereby he establishes a
hull pressure/integration method. However, Skejic [96] reports that the method seems to give
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Table 1.1.: Time-domain approaches for seakeeping according to the ITTC [55]

Numerical Advantage Disadvantage CPU

method capacity

and time

Impulse-response- Easy to implement Need pre-computed Minimal
function Fast computation hydrodynamic coefficients

Requires small computer Limited applicability
memory

Strip/sectional- 2D BVP Limitation as 2D sectional Minimal
based Fast computation method

Requires small computer Poor accuracy in low
memory frequency

Transient wave Radiation condition Hard to compute Green Moderate
Green function automatically satisfied function for non-zero

Panel distribution only on speed
body surface Limited application

Rankine panel Good practicality Difficulty in 3D geometric Moderate
method Easy extension to modelling and panel

nonlinear analysis generation
Good overall accuracy Needs a numerical method

for radiation condition

CFD method Capability for violent Huge computational time Heavy
solving field ship motion and effort
equations Can include viscous effects Poor accuracy in memory

flow

Hybrid method Taking advantage of No benefits in many (Varying)
combining combined method combinations
two methods Additional effort for

combinations
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inadequate estimates of the mean wave loads when the ship is not slender enough. A three-
dimensional near-field direct pressure integration method is applied by Pinkster [84]. Here the
mean drift loads are obtained by integrating the pressure distribution on the instantaneous
wetted hull surface. A direct pressure integration method for bodies with forward speed is
developed by Faltinsen et al. [30]. Boese [15] proposes a simple method to estimate the added
resistance in waves. First, the pressure is integrated up to the still water line. Under the
assumption that the harmonic pressure variations are known on the hull, the longitudinal
forces and the added resistance can be determined. Furthermore, the wetted water line
oscillates around the still water line. This generates more components that need to be taken
into account. Both components yield an average longitudinal force of second order. Söding
and Bertram [111] extend the work of Boese [15] to also determine drift forces in transverse
direction and the mean yaw moment. Several details are modified and the stationary pressure
term in Bernoulli’s equation is taken into account. When the wave lengths are small compared
to the ship length, all mentioned theories are not applicable since the main contribution to
the mean wave loads comes from the reflection of the incident waves by the ship. Faltinsen et
al. [30] propose the asymptotic theory, which is applicable in cases when the ship experiences
regular waves with short wave lengths.

1.2.3 Combination of maneuvering and seakeeping models

Maneuvering motion in a seaway has been a topic of discussion within the last years. Different
approaches can be found in the literature for combining these two fields of hydrodynamics.
The Maneuvering Committee of the ITTC [54] classifies the different approaches as:

• experimental methods,

• methods based on two-time scale models,

• methods based on unified theory,

• other simulation methods,

• methods using CFD.

The experimental methods use model tests to investigate the maneuvering behavior in waves.
These tests investigate either the acting forces on restrained models or measure the trajectories
of free-running models in different wave states. For the former case, the wave drift forces are
of major interest. For the latter case, arbitrary combinations of wave lengths, heights and
even wave spectra with maneuvering parameters, such as rudder angle control, initial heading,
final heading, etc., can be assumed. Since it is not clear in advance which are the crucial cases,
a very high number of different tests is necessary for a proper investigation.
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Methods based on two-time scale models divide the combined maneuvering and seakeeping
problem into the low-frequency maneuvering motion and the high-frequency motion due to the
wave encounter frequency. Each problem is solved separately and the necessary information
is transferred to the other problem. The drawback of this method is that the linear effects
of the waves are only by means of an oscillatory displacement from the low-frequency ship
motion. Critical situations that arise due to the first-order wave forces are hard to capture
with these kinds of models.

From a physical point-of-view, wave loads should be modelled as forces acting on the ship
through Newton’s second law (Fossen [32]). This is done in unified methods. Unified methods
try to unify both problems in one theory. Mainly, the impulse-response function is used to
transform the frequency-domain coefficients to time domain. The low-frequency maneuvering
parameters are brought into the coefficients by ramp functions. A closed set of equations can
be derived in this way. Accurate retardation functions are needed to obtain reliable results.
Their accuracy very much depends on the asymptotic behavior of the frequency-dependent
added mass and damping coefficients (Skejic and Faltinsen [97]). Forward speed effects further
complicate the evaluation of the retardation functions. Also, a high computational time is
needed to solve the impulse-response functions due to the time integral over all past effects.

CFD can be used to solve the total fluid problem directly and it further provides a deep
insight into complex flow phenomena. Due to the high computational costs, however, it is not
feasible for a high amount of computations, and the same problem for model tests also arises.
Moreover, much experience and a high degree of expert knowledge is needed for modelling
the waves, especially those of short wave lengths. Numerical diffusion might play a significant
role.

Below, the different approaches as classified by the ITTC are recapitulated and a review on
previous work is given.

Experimental methods

Lee et al. [68] measure the forces and moment acting on the KVLCC (a very large crude-oil
carrier designed at Maritime & Ocean Engineering Research Institute, South Korea (MOERI))
at various wave lengths and amplitudes. The experiments are carried out with two different
wave amplitudes, various wave lengths and various wave encounter angles in order to study
the influence of the wave amplitude as well as the influence of the wave length. The tests
show that the first-order wave surge force becomes minimal when the wave incident angle is
90

�, while the sway force is at a maximum. The first-order wave yaw moment is nearly zero
at encounter angles of 0�, 90� and 180

�. The magnitudes of the second-order forces are much
smaller. Its surge force is nearly zero for an incident angle of 90�, while the magnitude of the
sway force is at its maximum. The sway force is nearly zero for incident angles of 0� and 180

�.
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The yaw moment has its maximum at 70

� and 110

�. The results are, however, questionable
for maneuvering ships. The tests are carried out at zero ship speed but this assumption is
violated in real maneuvering motion and forward-speed effects may significantly change the
wave drift forces.

Subsequent simulations by Lee et al. [68], which consider the measured forces and yaw moment,
show that the wave drift forces have a strong effect on the trajectory of the ship. The
simulations are conducted by solving the equations of motion in three degrees of freedom, while
the forces comprise of the hull, propeller, rudder and wave force. In the simulations only the
second-order forces are regarded for the wave effects. The first-order wave forces are supposed
to cause high-frequency oscillations that are imposed upon the maneuvering kinematic data
but keep their original average values for the calm water condition. The simulations show
that the ship drifts towards the direction of the waves. This effect increases with increasing
wave height. Similar results are found for 10

�/10� and 20

�/20� zig-zag maneuvers.

Xu et al. [121] perform towing tests with a PMM in still water and in waves. The model is
towed with a small constant forward speed while a forced sway oscillation at low frequency is
superimposed. During the test the forces and horizontal motions are measured and analyzed
with Fourier analysis. Three force components can be observed in the fast Fourier transform
(FFT) spectrum of the measured forces: at zero frequency, which is the wave drift force; at the
low frequency of the sway oscillation; and at the wave encounter frequency. The significance
of the wave-drift damping and the wave-drift added mass is examined by comparing them
with the corresponding values in still water. It is found that the significance of the wave-drift
damping is small; it is comparable with the damping measured in still water. For the wave-
drift added mass, a value is found that is less than 10% of the value measured in still water.
For further investigations, an improvement of the measurement accuracy is recommended by
the authors.

Ueno et al. [114] conduct free-running model tests in regular waves using a VLCC model ship.
They compare the measurement results in different wave length to ship length ratios and
different encounter angles with measurement results in calm water. Straight runs, turning
circles, zig-zag and stopping maneuvers are performed. The results can be summarized as the
following:
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Straight running

• Ship speed ratio U/U0 becomes smallest in head wave condition for �/L = 1.0 due to
the large added resistance.

• For �/L = 0.4 and 0.6 in beam, bow and quartering wave conditions, the speed loss is
attributed to a combined effect of the added resistance due to reflected waves on the
hull surface and oblique motion including rudder force.

• The oblique angle � and the counter rudder angle �C are large for short wave lengths, es-
pecially in beam wave condition due to the large wave drift force and moment compared
with that of long waves.

• The ship bow tends to turn in the wave propagating direction for most cases.

Turning tests

• The drifting distance becomes large for short waves and the average ship speed ratio
Uave/U0 shows larger values in 0.4 wave length ratio condition than in 1.0 wave length
ratio.

• The drift direction is not necessarily the wave propagating direction.

• The average yaw rate rave shows a slightly decreasing tendency in the short wave region.

Zig-zag

• Overshoot angles in beam sea condition show large deviations from those in calm water
condition.

• Overshoot angles are larger in following sea than in head sea.

• The wave effect is larger on the ship in full load condition than in ballast condition.

Stopping

• The waves reduce the track reach in head and in beam waves due to the added resistance
in head waves and the wave reflection on the hull surface in beam waves.

• The final state heading angle is smaller in head and in beam waves due to the wave drift
moment causing the ship to direct toward the wave propagating direction.

Yasukawa [122], [123] and Yasukawa and Nakayama [124] present experimental results of
turning circles of the S-175 container ship in waves. The free-running tests are carried out with
a model equiped with rudder, propeller and diverse measurement equipment. The propeller
revolution in the tests is set to accomplish a Froude number of Fn = 0.15 in still water. In
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the model tests, the carriage tracks the ship model automatically by using a speed control
unit which receives feedback from the position signal from an optical position measuring
equipment. The measured items are:

• all six degrees of ship motion at the center of gravity of the model,

• acceleration of vertical and horizontal motions of the bow,

• propeller revolution, propeller thrust and propeller torque,

• rudder angle, rudder normal force and rudder torque,

• ship position, ship speed and yaw rate.

For the turning motion, two encounter wave directions are investigated: namely, head waves
and side waves in the initial condition. Four ratios between wave length and ship length for
each wave direction are set �/L = 0.5, 0.7, 1.0 and 1.2. The height ratio of the incident
waves aims to be HW /L = 0.02. The time to start the steering is the moment in which the
incident wave bottom passes the midship of the model. The experimental data is compared
with the results of a numerical method based on a two-time scale model that is described in
the following section.

Two-time scale models

Two-time scale models basically divide the ship motions into slowly varying maneuvering mo-
tion and rapidly varying motion due to seakeeping effects. Each problem is solved separately
and provides the relevant parameters to the other problem.

Skejic [96] and Skejic and Faltinsen [97] present a model to describe the maneuvering behav-
ior of an advancing ship in regular deep water waves. The effect of the seakeeping on the
maneuvering analysis is in terms of the slowly varying mean second-order wave loads. These
account for the changing ship speed and wave heading. The more rapidly varying linear wave
loads make the ship oscillate around a mean average value and do not change the ship’s track.
Skejic [96] and Skejic and Faltinsen [97] deduce from this to disregard the first-order wave
loads in the time-domain simulation. The computational algorithm used by Skejic [96] and
Skejic and Faltinsen [97] is sketched in figure 1.2.

Yasukawa and Nakayama [124] also assume the ship motion to be the sum of the maneuvering
motion and the wave-induced motion, where each problem is solved separately. The method
coincides with the time-domain strip method when a ship is assumed to move straight and with
the maneuvering simulation method, the so-called MMG model, when the wave height is set to
be zero. The six degrees of freedom (6DOF) motion of the ship in waves can be obtained from
solving ten motion equations in total, i.e. four for the low-frequency maneuvering motion and
six for the wave-induced motions. Additionally, the ship position, including the wave-induced
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Figure 1.2.: Computational algorithm used by Skejic [96] and Skejic and Faltinsen [97]
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motion component, is derived by adding the displacement from

˙X1 = (

˙⇠1 + V0 1) cos( 0)� (

˙⇠2 � U0 1) sin( 0) (1.5)
˙X1 = (

˙⇠1 + V0 1) sin( 0) + (

˙⇠2 � U0 1) cos( 0) (1.6)
˙Z1 =

˙⇠3 (1.7)

to the position from

˙X0 = U0 cos( 0)� V0 sin( 0) (1.8)
˙X0 = U0 sin( 0) + V0 cos( 0) . (1.9)

A comparison with experimental data shows that the method can simulate the general ten-
dencies of the 6DOF motion during turning in regular waves.

Likewise, Seo and Kim [95] divide ship motions in waves into the linear wave-induced motion
regarded as high-frequency motion and the maneuvering motion regarded as low-frequency
motion. The two sets of equations are regarded separately while some coupling effects are
considered: the seakeeping motion of the ship depends on the wave encounter angle and
frequency, which are functions of the maneuvering motion and, on the other hand, the ma-
neuvering motion is affected by the wave drift forces. The coupling is performed stepwise.
First, the maneuvering module is applied to determine the velocity and the position of the
ship in space-fixed coordinates. Velocity and position are used then to define the incident
wave condition. Secondly, the boundary value problem in seakeeping is solved to obtain the
ship motion response to the waves. Moreover, the second-order mean wave drift forces, the
diffraction and the radiation forces are calculated in this step and transferred to the maneu-
vering module where they are used in the first stage of the next time step. Together with
other maneuvering forces they are used to calculate the new ship velocity and position. This
is continued until the end of the simulation. Due to the different time behavior of the seakeep-
ing and the maneuvering module, different time step sizes need to be applied so that for the
seakeeping problem multiple time steps are solved within one time step of the maneuvering
motion. A flow chart of the computational algorithm can be found in Figure 1.3.

Since the two-time scale models divide the motion in maneuvering motion and seakeeping mo-
tion, the models used for each motion can be regarded and described separately. A description
of the models used by the authors mentioned above is given below.
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Figure 1.3.: Computational algorithm used by Seo and Kim [95]

Maneuvering The maneuvering motion is in all two-time scale models known considered as
a 4DOF problem. The hydrodynamic forces in this low-frequency component are the sum of
the hydrodynamic forces acting on the hull, the propeller, the rudder and the second-order
mean wave drift forces. To solve this motion, the following set of equations can be applied:

m(u̇0 � v0r0) = XH +XP +XR +XW

m(v̇0 � u0r0) = YH + YP + YR + YW

Ixxṗ0 = KH +KP +KR +KW

Izz ṙ0 = NH +NP +NR +NW (1.10)

where the subscripts H, P and R denote the hydrodynamic forces on the ship hull, propeller
and rudder, respectively. The subscript W denotes the second-order mean wave drift force
which is obtained from the seakeeping analysis.

Skejic [96] and Skejic and Faltinsen [97] follow a modular approach. In this approach, the
forces and moments due to the rudder, resistance, propulsion, and nonlinear viscous loads are
described in separate modules. Söding’s [104] slender-body theory is applied to determine the
linear maneuvering derivatives. They are calculated with the two-dimensional added mass
coefficients (a0jk) that are determined from the two-dimensional boundary value problem for
zero encounter frequency !e = 0. Strong nonlinearities occur during tight maneuvers so that
nonlinear terms need to be applied in the equation of motion. They are obtained by applying
a cross-flow drag model. However, it is difficult to establish an appropriate drag coefficient
CD. Within the rudder module the rudder-propeller-hull interactions are taken into account.
The rudder forces and the interaction effects are calculated with semi-empirical formulae. The
calm water resistance is calculated with the Holtrop-Mennen method [46]. In the propulsion
module, an equilibrium between the calm water resistance and the propulsion is assumed in
the case of the ship sailing straight at cruising speed without rudder helm and in calm water.
The propulsion machinery is not modelled and the propeller rate of rotation is assumed to be
constant. The thrust of the propeller is calculated with the thrust coefficient of an open-water
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propeller.

Yasukawa and Nakayama [124] separate the added mass in zero frequency from the hydro-
dynamic forces of the maneuvering problem. So, the hull, propeller, rudder and wave forces
include no acceleration effects. A further description of the hydrodynamic forces is only given
in Japanese.

Seo and Kim [95] determine some parts of the hull force with potential theory while the
other parts are obtained from empirical formulae or model tests. They split the hull force in
the 4DOF maneuvering motion in the hydrodynamic force due to potential flow and viscous
effects. The viscous effects that cannot be determined with potential theory are the hull lift
force and additional viscous damping forces on the ship hull. Seo and Kim obtain the potential
force directly by using their potential flow code WISH. The lift force is modelled as a lift force
on an equivalent plate. Furthermore, nonlinear components are included with hydrodynamic
derivatives based on the MMG approach. The forces of the propeller and rudder are calculated
with empirical formulae.

Seakeeping To simulate the ship motion trajectories correctly it is necessary to accurately
predict the wave drift forces.

Skejic [96] and Skejic and Faltinsen [97] have used different methods to compute the second-
order mean wave drift forces. A comparison of the different methods is provided which shows
a strong dependence of the results on the wave length. Subsequently, four different theories
are applied to determine the wave drift forces in different wave lengths so that the entire wave
length range of interest is covered. The ship’s forward speed and the wave heading are taken
into account within the models. For the maneuvering simulations in waves, the oscillatory
wave-induced motion of first order is not considered.

Yasukawa and Nakayama [124] estimate the hydrodynamic forces for the high-frequency com-
ponent based on the strip method. The wave exciting forces are expressed as the sum of
Froude-Krylov and scattering force components. The added mass and wave damping coef-
ficients are treated quasi-steadily for simplicity. Memory effects with respect to changing
frequency of encounter are omitted. The method used to determine the wave drift forces is
not further specified.

Seo and Kim [95] use potential theory to solve the wave-induced motion. The boundary value
problem is linearized with the Neumann-Kelvin linearization method. The ship motion is
simulated by solving the equation of motion:

M

¨

r = fFK + fHD + fRes (1.11)

where M is the mass matrix of the ship and fFK , fHD, fRes are the Froude-Krylov, hydro-
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dynamic and restoring forces, respectively. r denotes the displacements of the wave-induced
body motion in the body-fixed coordinate system. The seakeeping problem is solved with
the time-domain Rankine panel method WISH, which uses a constant ship speed to solve
the seakeeping behavior. It is extended to include lateral and rotational motions of the ship.
The second-order mean wave drift forces are calculated with a near-field method that directly
integrates the pressure over the body surface. The second-order boundary value problem does
not need to be solved completely because only the linear solution is needed to calculate the
the wave drift forces.

All two-time scale models demonstrate the importance of the wave influence on the maneu-
vering behavior of ships. The mean second-order wave drift forces as well as the yaw moment
significantly change the motion trajectories of the maneuvering ship.

Methods based on unified theory

Maneuvering motion is classically described in a body-fixed frame of reference, while sea-
keeping analysis is performed in an equilibrium frame of reference. Bailey et al. [7] derive
relations between the fluid actions defined for a maneuvering analysis using a body-fixed
frame of reference and the fluid actions defined for a seakeeping analysis using an equilibrium
frame of reference. A comparison of measured PMM data with data predicted by potential
flow theory shows differences at low frequencies of oscillation. Bailey et al. introduce a linear
viscous ramp to adjust the predicted damping data so that the values of the damping are
equal at zero frequency. A much better agreement between the data sets over a wide range of
frequencies is achieved in this way. Furthermore, the acceleration hydrodynamic coefficients
are affected, so that they satisfy the transform relations. The equations of motion are set up
either based on the maneuvering theory variables or on the seakeeping theory variables. The
basic characteristics of maneuvering theory are retained by incorporating slow motion deriva-
tives within the impulse-response functions and those of the seakeeping theory by including
frequency hydrodynamic coefficients.

Fossen [32] derives a unified model using a state-space approach. The model is capable
to describe ship maneuvering, station-keeping and control in waves. The relationship be-
tween frequency-dependent oscillatory derivatives, hydrodynamic derivatives and frequency-
dependent hydrodynamic coefficients can be explained exemplarily with one degree of freedom,
the sway motion:

[m+A22(!)]v̇ +B22(!)v = ⌧2,FK+diff + ⌧2 (1.12)

The hydrodynamic added mass and damping coefficients are functions of the motion frequency.
The frequency-dependent damping can be split into a potential part B22p(!) and a viscous
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part B22v(!):
B22(!) = B22p(!) +B22v(!) (1.13)

The potential damping is zero when the motion frequency is zero (B22p(! = 0) = 0). However,
the viscous damping B22v(!) has a non-zero value for ! = 0. This viscous damping is decaying
with increasing ! and is modelled by Fossen as an exponentially decaying function:

B22v(!) = �22e
�↵! (1.14)

A linear, potential flow strip theory formulation based on the theory of Salvesen et al. [88] is
used to calculate the hydrodynamic forces in frequency domain. Impulse-response functions
or state-space models are used then to transform the frequency-dependent equations to time
domain. For the retardation function, an alternative representation is derived where the
convolution integral is over B⇤

(!)�B⇤
(1), since this term is zero at ! = 1. The nonlinear

damping terms are found from PMM experiments. Wave drift forces and moments are not
included in the simulation model. Furthermore, no results are presented for a ship under
forward speed. The validity is subsequently not proven.

Yen et al. [126] develop and validate a method for the direct simulation of ship maneuver-
ing in calm water and in waves, called LAMP (Large Amplitude Motion Program). The
seakeeping and maneuvering models are formulated in the same framework of time-domain
hydrodynamics and rigid-body dynamics. Forces due to viscous flow effects and other external
forces such as hull lift, propulsors and rudders are modelled using other computation methods
or with empirical or semi-empirical formulae and are added to the potential solution. The
6DOF forces and moments acting on the ship are computed in the time domain, including
the following force components:

• wave-body hydrodynamic forces,

• hydrostatic and Froude-Krylov wave forces,

• hull lift,

• hull drag,

• additional viscous damping forces,

• other external forces due to control surfaces, propulsion systems, wind forces, etc.

Hydrodynamic forces are evaluated with an initial boundary value problem for a disturbance
velocity potential. The effects of forward speed, radiation and diffraction are included in this.
Nonlinear effects due to large amplitude motions and the coupling between diffraction and
radiation are considered directly by satisfying the three-dimensional body boundary condition
completely. Wave drift forces are determined with respect to the perturbation elevation at
the hull waterline and are implemented for both body-linear and body-nonlinear wave-body
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hydrodynamics. The hull is regarded as a low aspect ratio lifting surface to determine the lift
force:

Lv =

⇢

2

Chull
v |Ve|2TLpp (1.15)

Lr =
⇢

4

Chull
r urTL2

pp (1.16)

Chull
v and Chull

r are similar to the linear hydrodynamic maneuvering derivatives Y 0
v and Y 0

r .
These coefficients can be adjusted when forces and moments are available from external sources
such as model tests or CFD calculations. The drag of the hull consists of lift-induced drag,
viscous drag and wave drag. A validation is performed for maneuvering in calm water and
for straight ahead motion in waves. The maneuvering results in calm water are comparable
to results from systems-based methods. For the straight ahead motion in waves, the resulting
motion amplitudes mostly follow the experimental data. The approach appears to be valid for
at least ship maneuvering in moderate seas. For ship dynamic stability in severe seas, including
extreme roll motions and capsizing, the authors state that it is necessary to investigate to
what extent it is valid and applicable.

Methods using CFD

Greeley and Willemann [35] present procedures for and results of maneuvering force calcu-
lations in still water and in waves using lifting potential flow techniques. They follow the
original Hess approach [43] for the formulation of the panel method. The nonlinear Kutta
condition equations are solved together with the normal velocity equations, using repeated
linearization of the nonlinear Kutta condition at each matrix iteration. For slender bodies,
the trailing vorticity from the lifting surface trailing edges follow the body flow streamlines,
which results in excellent agreement with experimental results. The potential flow is first cal-
culated around the unappended hull and then this calculated body flow field is used to trace
out the correct geometric positions of the trailing vortex wake from the keel. For full-form
ships, attached flow is unlikely to occur and thus the applicability of potential flow techniques
is questionable. However, according to Greeley and Willemann [35], for many hull forms,
the separated flow is not due to gross smooth surface flow separation but rather to side-edge
separation from a longitudinal geometric feature. In the case of bilge keels, Bollay’s model
[16] is used to determine the behavior of the shed vorticity near the bilge keels.

CFD methods using the RANS equations provide an adequate description of all physics.
However, they are highly challenging from a computational point of view. Another problem
is connected to difficulties in applying an appropriate turbulence model. This is especially
difficult in the case of curvilinear motion of a surface displacement ship, since the flow around
the ship’s hull is strongly influenced by separations, re-attachments, vortex formation and
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substantial interaction with the rudder and propeller (Tello Ruiz et al. [112]).

Xing-Kaeding [120] presents a computational procedure for the prediction of the motion of
rigid bodies floating in viscous fluids and subjected to currents and waves. The rigid-body
equations of motion in 6DOF are coupled iteratively with the RANS equations describing the
turbulent fluid flow. The method is used to compute the motion of floating ships subjected to
waves. Turning circles and zig-zag maneuvers are simulated with the ship hull and the rudder
modelled geometrically while the propeller effect is substituted by a body force model. The
results show favorable agreement with experiments.

Manzke et al. [72] show the application of efficient approaches to perform maneuvering sim-
ulations in challenging operating conditions, i.e. in seaway and restricted water. A RANS
solver is applied to solve the hydrodynamic forces. The computational domains are kept very
compact by coupling the method to an inviscid description of the waves in the far field. This
reduces the amount of cells and subsequently the computational time.

1.3 Present work

The objective of this work is to develop computationally efficient state-of-the-art methods to
simulate ship maneuvering motion in a seaway. A method based on a two-time scale model
and a method based on a unified theory are introduced. Both methods are validated and
compared with each other. The advantages of each method are identified but the limitations
of their use are also determined and listed.

1.3.1 Contributions in the present work

The major contributions in the present work can be summarized as follows:

• A motion solver is implemented to determine arbitrary motions of rigid bodies. The
6DOF motion solver is based on quaternions in order to avoid the limitations of the
gimbal lock. The equations are solved in global coordinates to obtain a universal validity.
Due to the large dependence of the fluid force on the body’s acceleration, instabilities
are likely to occur and special attention is paid to the numerical stability.

• A modular concept is applied to solve the maneuvering motion of ships. The hull, pro-
peller and rudder effects are accounted for in separate modules which interact with each
other during the simulation of ship maneuvering. The reliability and accuracy within
engineering practice is demonstrated for each module. The estimation of the hull forces
is carried out by using modern methods commonly used in the maneuvering research
field. Different methods are presented and compared with regards to the applicability
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of real time simulations of maneuvering in waves. A numerical model to describe the
ship propulsion is developed and validated with sea trial measurements. This model
incorporates the behavior of the propeller rate of rotation for diesel-electric propulsion
trains.

• Numerical methods to simulate the motion of ships in waves are outlined. A time-domain
approach based on the impulse-response function is derived, following the concept of
Fossen [33]. A structured verification and validation for different ships is presented.

• The maneuvering behavior of displacement ships in regular waves is analyzed with two
different mathematical models:

– a two-time scale model that splits the combined maneuvering and seakeeping mo-
tion into its components and solves each component separately, while certain pa-
rameters are exchanged.

– a model based on unified theory that combines the maneuvering and seakeeping
model into one set of equations. Based on the zero-speed approach of Fossen [32],
which is mainly intended to simulate dynamic positioning, forward speed effects
and additional terms due to maneuvering motion are incorporated.

A theoretical derivation of each model is given and followed by a validation with exper-
imental data from literature. The models are compared in detail and their advantages
and disadvantages are highlighted.

1.3.2 Layout of the thesis

The remainder of the thesis is divided into the following chapters:

Chapter 2 - Fundamentals introduces the general notations and definitions of the present
work. The fundamental equations used in the present work to describe ship motions are
derived and verified.

Chapter 3 - Maneuvering outlines different models to describe the still water maneuvering
motion of ships. A model to describe the propulsion is developed that includes the engine
characteristics of diesel-electric engines. The influence of the rudder and the hull on the
maneuvering motion is regarded.

Chapter 4 - Seakeeping deals with the simulation of ship motions in waves. A brief sum-
mary on state-of-the-art seakeeping simulation models is given. The impulse-response function
is deduced according to the fundamentals that are defined in Chapter 2. The seakeeping mod-
els are verified and validated for straight motion in waves. Furthermore, mean second-order
wave drift forces are introduced and the procedure of their determination is described.
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In Chapter 5 - Maneuvering in Waves, two different approaches are derived to simulate
the maneuvering motion of ships in waves and the wave-induced motion during maneuvering.
Standard maneuvers in regular waves are simulated with two different ships and compared
with model test results from the literature. A direct comparison of the two approaches is
drawn.

Finally, Chapter 6 - Conclusion and Perspective presents a summary, conclusions and
an outlook on possible future work.





2
Fundamentals

The investigation of the ship motion dynamics can be divided into separate fields of study:
kinematics and kinetics, whereat the former treats the geometrical aspects of the motion
and the latter analyzes the forces that cause the motion. This chapter provides the descrip-
tion fundamentals for the ship motions; and after introducing the general notation and the
coordinate systems used in this work, the kinematic and kinetic equations are derived. In
conjunction, the acting forces are of major interest. A short overview on the problem of force
determination is given, while the following chapters deal with the forces in more detail.

2.1 General notations

The used notation complies with SNAME standards [113]. The six motion components of
a ship are defined accordingly as surge, sway, heave, roll, pitch and yaw (see Table 2.1 and
Figure 2.1).

Table 2.1.: Nomenclature of ships according to SNAME [113]

Surge Sway Heave Roll Pitch Yaw

DOF 1 2 3 4 5 6
Force/Moment X Y Z K M N
Linear/angular velocity u v w p q r
Positions/Euler angles x y z � ✓  
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Figure 2.1.: Definition of the 6DOF motion components of ships

2.2 Coordinate systems

Two orthogonal coordinate systems are introduced to describe the position and the motion of
ships (note that another coordinate system will be introduced in Chapter 4). The coordinate
systems are (see also Figure 2.2):

• The global frame K{O, ix0 , iy0 , iz0} that is fixed to the earth, with z0 pointing down-
ward. The position r

K
= (x0 y0 z0)T and the orientation in Euler angles ⇥ = (� ✓  )T

within the K frame are summarized in a vector

⌘ = ((x

K
0 )

T ⇥T
)

T
= (x0 y0 z0 � ✓  )

T . (2.1)

• The body-fixed frame ˆK{C, ix, iy, iz} is fixed to the hull. The coordinates of the center
of gravity with respect to the origin C are r

K̂
G/C = (xG yG zG)T . The x-axis is positive

towards the bow, the y-axis is positive towards starboard and the z-axis is positive
downwards. The linear velocities u

K̂
C/K = (u v w)T are given in C and the angular ve-

locities !K̂
K̂/K

= (p q r)T are defined relative to the global frame. They are summarized
as

⌫ = ((u

K̂
C/K)

T
(!

K̂
K̂/K

)

T
)

T
= (u v w p q r)T . (2.2)



2.3 Kinematics | 31

The notation for marine craft is adopted from Fossen [32], [33] and can be explained exam-
plarily as follows:

u

K
C/K = linear velocity of the point C wih respect to K expressed in K.

!

K̂
K̂/K

= angular velocity of ˆK wih respect to K expressed in ˆK.

f

K̂
C = force attacking at the point C expressed in ˆK.

m

K̂
C = moment about the point C expressed in ˆK.

⇥K/K̂ = Euler angles between K and ˆK.

O

x0

y0

z0

C x

y

z

Figure 2.2.: Coordinate system

2.3 Kinematics

To give a unique description of the position of any point on the body, it is enough to know the
translation, the rotation of the local system to the global system and the local coordinates.
The rotation of ˆK to K is specified by the rotation matrix S. For O = C, the position vector
of a point P can be described in coordinates r

K̂
= (x y z)T of the ˆK-system as well as in

coordinates r

K
= (x0 y0 z0)T of the K-system. For the relation between r

K and r

K̂ , the
following applies:

r

K
= S · rK̂ . (2.3)

Since S is an orthogonal matrix, it follows that

r

K̂
= S

T · rK . (2.4)
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2.3.1 Unit quaternions

According to Euler’s rotation theorem, a coordinate transformation can be performed by a
single rotation around an appropriate axis. The transformation can therefore be described
by four parameters: three parameters to describe the axis, and one parameter for the angle.
Naming the axis n and the rotational angle �, the rotation of a point P 0 with the position
vector s

0 to the point P with the position vector s yields

s = s

0
cos�+ n(n · s0)(1� cos�) + n⇥ s

0
sin� . (2.5)

By introducing the unit quaternion

e0 = cos

�

2

(2.6)

e = (e1 e2 e3)
T
= n sin

�

2

(2.7)

Eqn. (2.5) can be rewritten as

s = (2e20 � 1)s

0
+ 2e(e · s0) + 2e0e⇥ s

0 . (2.8)

By introducing the 3⇥ 3 unit matrix I and the skew symmetric cross product matrix

˜

E =

0

B@
0 �e3 e2

e3 0 �e1

�e2 e1 0

1

CA (2.9)

the equation can be rewritten further as

s = [(2e20 � 1)I + 2ee+ 2e0 ˜E]s

0 . (2.10)

Comparing this with Eqn. (2.3) yields

S = (2e20 � 1)I + 2(ee+ e0 ˜E) . (2.11)

In full, the rotation matrix becomes

S =

0

B@
2(e20 + e21)� 1 2(e1e2 � e0e3) 2(e1e3 + e0e2)

2(e1e2 + e0e3) 2(e20 + e22)� 1 2(e2e3 � e0e1)

2(e1e3 � e0e2) 2(e2e3 + e0e1) 2(e20 + e23)� 1

1

CA . (2.12)

The unit quaternion can be written in a four-line vector p

p = (e0 e1 e2 e3)
T . (2.13)
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2.3.2 Euler angles

Alternative to the description of rotations based on unit quaternions, Euler angles can be
used to describe the rotatory situation of the body. Roll (�), pitch (✓) and yaw ( ) describe
the rotation around the global x-, y- and z-axis, respectively:

⇥ =

0

B@
�

✓

 

1

CA . (2.14)

Each rotation in space can be performed by a rotation around z with the angle  , followed by
a rotation around the newly generated axis y0 with the angle ✓, and finally, a rotation around
the new axis x00 with the angle �. This is the so-called zyx convention. The rotation matrix
resulting from these rotations yields

S( , ✓,�) =

0

B@
c c✓ �s c�+ c s✓s� s s�+ c c�s✓
s c✓ c c�+ s�s✓s �c s�+ s✓s c�
�s✓ c✓s� c✓c�

1

CA . (2.15)

In this equation, c stands for cos() and s for sin().

The body-fixed angular velocity ! = (p q r)T and the Euler rate vector ˙⇥ = (

˙� ˙✓ ˙ )T are
related through a transformation matrix T⇥(⇥):

˙⇥ = T⇥(⇥)! . (2.16)

The transformation matrix T⇥(⇥) can be derived in several ways, e.g.

! =

0

B@

˙�

0

0

1

CA+ S1(�)

0

B@
0

˙✓

0

1

CA+ S2(✓)

0

B@
0

0

˙ 

1

CA = T

�1
⇥ (⇥)

˙⇥ . (2.17)

Expanding this equation yields the desired rotation matrix

T

�1
⇥ (⇥) =

0

B@
1 0 �s✓
0 c� c✓s�
0 �s� c✓c�

1

CA ) T⇥(⇥) =

0

B@
1 s�t✓ c�t✓
0 c� �s�
0 s�/c✓ c�/c✓

1

CA . (2.18)

For ✓ = ±90

� and subsequently cos ✓ = 0, T⇥(⇥) is undefined, which is often referred to
as the gimbal lock. For the motion of surface ships, this is not a problem since it means
a pitch angle of 90�. However, for other objects (e.g. underwater vehicles) this might gain
importance. To avoid the gimbal lock, the kinematics can be described using the quaternion
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representation.

Quaternions to Euler angles

The Euler angles �, ✓ and  (zyx convention) can be derived from the unit quaternions
ei, i = 0, ..., 3 by requiring that the associated rotation matrices ((2.15) and (2.12)) are equal
(Fossen [33]):

S(⇥) = S(p) . (2.19)

A component-wise formulation yields nine equations with three unknowns:

0

B@
c c✓ �s c�+ c s✓s� s s�+ c c�s✓
s c✓ c c�+ s�s✓s �c s�+ s✓s c�
�s✓ c✓s� c✓c�

1

CA =

0

B@
S11 S12 S13

S21 S22 S23

S31 S32 S33

1

CA . (2.20)

One of the possible solutions to this equation is

� = atan2(S32, S33) , (2.21)

✓ = arcsin(S31); ✓ 6= ±90

� , (2.22)

� = atan2(S21, S11) . (2.23)

2.3.3 Velocities in local body-fixed coordinates

To describe the velocities of a point P in local body-fixed coordinates, the velocity follows to

u

K̂
P/K = u

K̂
C/K + !

K̂
K̂/K

⇥ x

K̂
P/C , (2.24)

with u

K̂
C/K being the velocity of the body origin C and x

K̂
P/C being the vector to the center

of gravity of the body in local body-fixed coordinates (Abdel-Maksoud [2]). The relationship
between acceleration b

K̂
P/K (relative to the earth and expressed in body-fixed coordinates)

yields
b

K̂
P/K = !

K̂
K̂/K

⇥ u

K̂
P/K +

˙

u

K̂
P/C . (2.25)

When substituting (2.24) into (2.25), one obtains

b

K̂
P/K = !

K̂
K̂/K

⇥ u

K̂
C/K + !

K̂
K̂/K

⇥ (!

K̂
K̂/K

⇥ x

K̂
P/C) + ˙

u

K̂
C/K +

˙

!

K̂
K̂/K

⇥ x

K̂
P/C . (2.26)

The rigid-body kinetics are calculated with respect to the body’s center of gravity as described
in the following. To obtain the velocity and acceleration of its coordinate origin C, Eqn. (2.24)
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and Eqn. (2.26) have to be reformulated to

u

K̂
C/K = u

K̂
G/K � !

K̂
K̂/K

⇥ x

K̂
G/C , (2.27)

˙

u

K̂
C/K = b

K̂
G/K � !

K̂
K̂/K

⇥ u

K̂
C/K � !

K̂
K̂/K

⇥ (!

K̂
K̂/K

⇥ x

K̂
G/C)� ˙

!

K̂
K̂/K

⇥ x

K̂
G/C . (2.28)

The hydrodynamic forces in maneuvering and seakeeping are generally given in ship-fixed
coordinates, relative to the local origin located at the main frame. The rigid-body kinetics
are derived for the motion of the body’s center of gravity, see Section 2.4. Therefore, this
coordinate transformation is of importance.

2.4 Rigid-body kinetics

For the rigid-body kinetics, all forces and moments are calculated with respect to the body’s
center of gravity. The two coordinate systems K{O, ix0 , iy0 , iz0} and ˆK{C, ix, iy, iz} with the
origins O and C, respectively, have been introduced in Section 2.2. System K is the inertial
frame that is not accelerated and system ˆK is moved arbitrarily but fixed to the body. A
detailed derivation of the following is given in Koliha [59].

2.4.1 Translation

For translatory motion of the body’s center of gravity, Newton’s second law applies:

f

K
G = m¨

r

K
G/O , (2.29)

with the external force f

K
G acting on the center of gravity, the body mass m and the absolute

acceleration of the body ¨

r

K
G/O with respect to the earth-fixed frame in global coordinates.

2.4.2 Rotation

Generally speaking, the time rate of change of the angular momentum l equals the external
moment acting on the body. With the inertia tensor I and the angular velocity !, the angular
momentum l yields

l = I · ! (2.30)

and subsequently
dl

dt
=

d(I · !)

dt
= m , (2.31)

with the external moment m. When writing this equation in local body-fixed coordinates
with the local mass moment of inertia, the inertia tensor I

K̂ is constant and the equation
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yields
I

K̂ · ˙!K̂
K̂/K

+ !

K̂
K̂/K

⇥ (I

K̂ · !K̂
K̂/K

) = m

K̂
G , (2.32)

with the local moment m

K̂
G and the local angular velocity !

K̂
K̂/K

.

2.4.3 Time integration

To obtain the time-dependent position of the body, the accelerations known from Eqn. (2.29)
and (2.32) need to be integrated. For notational convenience, the global position of the body’s
center of gravity in global coordinates (rKG/O) is denoted r and the angular velocity is denoted

! in global coordinates (!K
K̂/K

) and !

0 in local coordinates (!K̂
K̂/K

). The following derivation
is based on the work of Koliha [59].

Translatory quantities

For the translatory quantities, the following applies:

˙

r(t) =

Z t

0
¨

r(⌧)d⌧ , (2.33)

r(t) =

Z t

0
˙

r(⌧)d⌧ . (2.34)

Rotatory quantities

The rotatory quantities of the body are:

• angular acceleration ˙

!,

• angular velocity !,

• the vector p, describing the rotatory position.

The angular body velocity ! cannot be integrated directly since finite rotations are not
summable. Therefore, the vector ˙

p needs to be introduced. The integration of ˙

p to p is
possible. The integration of the rotatory quantities can now be performed following

m

0 ! Eqn. (2.32) ! ˙

! !
Z

! ! ! ˙

p = f(!0
) !

Z
! p . (2.35)
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The function f(!0
) must be derived. With the skew symmetric cross product matrix of the

angular velocity !

˜⌦ =

0

B@
0 �!3 !2

!3 0 �!1

�!2 !1 0

1

CA (2.36)

it can be shown that (Nikravesh [77])

˙

S =

˜⌦S , (2.37)

which, multiplied by S

T yields,
˙

SS

T
=

˜⌦ . (2.38)

S can be written as the product of two matrices

S = GL

T , (2.39)

with

G =

0

B@
�e1 e0 �e3 e2

�e2 e3 e0 �e1

�e3 �e2 e1 e0

1

CA (2.40)

and

L =

0

B@
�e1 e0 e3 �e2

�e2 �e3 e0 e1

�e3 e2 �e1 e0

1

CA . (2.41)

Because G

˙

L

T
=

˙

GL

T the time integration of S becomes

˙

S = 2

˙

GL

T (2.42)

and subsequently
2

˙

GL

T
LG

T
=

˜⌦ . (2.43)

When taking into account that L

T
L is the sum of the 4 ⇥ 4 identity matrix and �pp

T and
that Gp = 0, it follows that

2

˙

GG

T
=

˜⌦ . (2.44)

With G

˙

G

T
= � ˙

GG

T and � ˙

GG

T
=

˜Gṗ, one obtains

! = 2G

˙

p . (2.45)

The tilde shows that the matrix has the form of a cross product matrix.



38 | Fundamentals

It can be shown that p

T
p = 1 and subsequently

d(pT
p)

dt
=

˙

p

T
p+ p

T
˙

p =

˙

p

T
p+

˙

p

T
p = 0 ) ˙

p

T
p = 0 . (2.46)

Using G

T
G = L

T
L and Eqn. (2.46), one obtains by multiplying Eqn. (2.45) with G

T

˙

p =

1

2

G

T
! . (2.47)

! can be substituted by S!

0 and S by GL

T , so that with Lp = 0

˙

p =

1

2

L

T
!

0 . (2.48)

This equation represents the desired function f(!0
).

Numerical integration

To obtain the position of the body in each time step, numerical integration needs to be applied
to the linear and angular acceleration.

The Runge-Kutta method can be used for the time integration of initial value problems:

ẏ(t) = f(t, y(t)), y(0) = y0, y : R ! Rd (2.49)

Runge-Kutta methods are one-step procedures with

yn+1 = yn +�t
sX

j=1

bjkj . (2.50)

�t is the time step size given as �t = tn+1� tn. The coefficients bj define the procedure. The
values kj contain the values of the function f at discrete intermediate steps:

kj = f(tn +�tcj , yn +�t
sX

l=1

ajlkl), j = 1, ..., s (2.51)

cj and Ajl are further characteristic coefficients of the procedure. The coefficients of the
procedure can be given in so-called Butcher arrays, according to Table 2.2. Table 2.3 shows
examplarily the characteristic values for the explicit Euler scheme, the implicit Euler scheme
and the fourth-order Runge-Kutta scheme.

The implicit method uses the time derivative of the new time step to calculate the values of
the new time step. Since this time derivative is not known in advance, an iteration process is
necessary.
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Table 2.2.: Butcher array (Goettsche [38])
c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
... . . . ...

cs as1 as2 · · · ass
b1 b2 · · · bs

Table 2.3.: Butcher array for first-order explicit Euler scheme (left), first-order implicit Euler
scheme (center) and fourth-order Runge-Kutta scheme (right)

0

1

1 1

1

0

1
2

1
2

1
2 0

1
2

1 0 0 1

1
6

1
3

1
3

1
6

In this special case, the equations of motion are of interest, so y is not a scalar but includes
as a vector y 2 R13 the translatory position r 2 R3, the orientation describing quaternion
p 2 R4, the translatory velocity ˙

r 2 R3 and the angular velocity in local coordinates !0 2 R3.
It can be written as

y =

0

BBBB@

r

p

˙

r

!

0

1

CCCCA
. (2.52)

The time differential ˙

y subsequently yields

˙

y =

0

BBBB@

˙

r

˙

p

¨

r

˙

!

0

1

CCCCA
. (2.53)

The terms of ˙

y are determined as follows:

• The velocity ˙

r is directly taken from ˙

r, i.e. from lines 8 to 10 of y.

• ˙

p is calculated with Eqn. (2.48) out of p and L

T (built with p) and !

0.

• The acceleration ¨

r can be calculated with Eqn. (2.29), in which the external force is in
global coordinates f .

• The angular acceleration ˙

!

0 is calculated with Eqn. (2.32), in which the external moment
is in local coordinates m

0.



40 | Fundamentals

2.4.4 Instabilities due to added mass effects

For the motion of a rigid body in a fluid of substantial density like water, there is a linear
dependence of the fluid force f on the acceleration ¨

r and ˙

!

0,

f =

¯

f �A

¨

r , (2.54)

where ¯

f does not depend on the acceleration and A is the added mass matrix. Subsequently,
Newton’s equation (2.29) (the same applies for Eqn. (2.32)) can be rewritten as

(M +A)

¨

r = f +A

¨

r =

¯

f . (2.55)

However, because A is usually unknown, it is common to apply numerical integration schemes
directly to Eqn. (2.29) (and Eqn. (2.32)). As shown by Söding [109], explicit Euler integration
methods become unstable if the added mass exceeds the real mass of the body. For implicit
integration schemes, the iteration converges slowly (for small relaxation factors) or is not
robust (for larger relaxation factors). A robust and economic method requires determining
an approximation of the added mass matrix A so that Eqn. (2.55), instead of Eqn. (2.29),
can be used.

The added mass can be determined from the flow computations for preceding time steps and
iteration steps within an implicit integration method, as recommended by Söding [109]. If
one distinguishes these different flow computations by the index k, Eqn. (2.54) becomes

fk =

¯

fk �A

¨

rk . (2.56)

For the first implicit step, zero acceleration is used within each time step. By taking the
difference between body forces determined in later implicit steps and in the first implicit step
within the same time step, ¯

fk is eliminated from Eqn. (2.56), yielding

�fk = �A

¨

rk . (2.57)

This is an over-determined linear equation system for A when having a sufficient number
of k values. By minimizing the sum over k of weighted squared errors of these equations,
separately for each line i, one obtains the following linear equation system for A, where the
elements of A are denoted by Aij :

X

k

(g ¨rl ¨rj)kAji = �
X

k

(g ¨rl�fi)k , (2.58)

where AT
ji = Aij .
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2.4.5 Verification of rigid-body motion

Different test cases are calculated in order to verify the implementation of the methods de-
scribed above. First, the equations for the rigid-body motion are verified. The excitation
follows from unit forces in these cases. Then, a potential flow is taken into account and differ-
ent floating cases are presented. For these cases, the influence of the different time integration
schemes is shown. Finally, a verification of the calculation of the added mass is presented.

For the verification of the rigid-body kinetics, different procedures proposed in Koliha [59] are
adopted. The first test case serves to check the integration schemata of normally integratable
quantities and the behavior of numerical errors. A unit force is acting on a unit mass at rest.
For this case, the numerical integration schemes are describing the analytical solution of the
velocity exactly. For the position, the numerical error per time step can be determined as

✏ =
f

2m
dt2 , (2.59)

with the acting force f and the body mass m. Subsequently, the error after n time steps
becomes

Err(n) = n✏ =
t

dt
✏ =

dtf

2m
t = Err(t) . (2.60)

For the implicit time integration, it can be shown that ✏impl = �✏expl. The fourth-order
Runge-Kutta integration scheme gives the exact solution of the position. Figure 2.3 shows
the deviation of the numerical solution from the analytical solution of the position and the
velocity. It reveals zero deviation for the velocity and linear deviation with a gradient of
dtf
2m for the position determined with the Euler integration schemes and zero deviation when
determined with the fourth-order Runge-Kutta integration scheme.
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Figure 2.3.: Translatory acceleration; difference of the numerical and the analytical solution

The second test case considers a space gyro. A rotationally symmetric body shall be considered
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with a local inertia of

I

0
=

0

B@
1 0 0

0 1 0

0 0 2

1

CA kg m2 (2.61)

and a mass of m = 1kg. In the beginning of the simulation, the local coordinate system
is rotated by ↵ = 45

� around the x-axis. The initial predefined angular velocity in local
coordinates is

!

0
=

⇣
⇡ 0 2⇡

⌘T
1 /s . (2.62)

The constant angular momentum in local coordinates follows to

l

0
= I

0
!

0
=

⇣
⇡ 0 4⇡

⌘T
Nms . (2.63)

Figure 2.4 shows the rotation components of the space gyro.
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Figure 2.4.: Rotation of a space gyro; Numerical (solid) and analytical (dashed) solution;
dt = 0.01s

The figure shows that the rotation is in phase with the analytical solution and reveals an
increasing deviation for the Euler integration schemes. However, it further reveals that the
conserved quantity !0

3 is reproduced exactly.

Further details on the verification procedure can be found in Koliha [59].

To demonstrate the different time integration schemes and the calculation of added mass ac-
cording to Section 2.4.4, the oscillatory motion of a cube in water is calculated with the poten-
tial flow solver panMARE. The panel code panMARE (panel code for Maritime Applications
and REsearch) is a command-based program for the simulation of potential flows in maritime
applications. The program is based on a three-dimensional panel method of first order, where
the geometry of the body is discretized into flat quadrilateral elements. Adequate boundary
conditions are defined on the disretized body and a linear equation system is set up. Solving
the equation system yields the local velocity and pressure distribution on the body (Bauer
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and Abdel-Maksoud [8]).

A box with dimensions of length⇥width⇥height = 1m⇥1m⇥0.5m and a mass of m = 300kg
is put into water with a draft of d0 = 0.25m. Due to the higher weight, no hydrostatic
equilibrium is achieved in this state and the box starts to oscillate.

Figure 2.5.: Oscillating cube

No friction forces are acting and no free-surface is modelled, i.e. no real damping exists.
Subsequently, the damping is due to numerics (artificial damping). It can be shown that the
damping increases with decreasing time step size, see Figure 2.6. For explicit time integration,
the damping appears to be negative, as can be seen from Figure 2.6. Since the added mass is
not calculated in explicit calculations, a fixed value of A33 = 500kg is set. Without the usage
of the added mass, the calculations become unstable and no result can be obtained.
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Figure 2.6.: Oscillating displacement of a cube

Furthermore, the calculation of the added mass can be verified. The total mass term of an
oscillating system yields

M33 =
C33

!2
0

. (2.64)

The mass term M33 includes the real body mass and added mass terms and C33 is the restoring
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term. To obtain the undamped Eigenfrequency, the logarithmic decrement of the oscillation
is determined:

✓ = � · TS = ln

xn
xn+1

, (2.65)

with xn and xn+1 being arbitrary neighboring extrema. The logarithmic decrement is shown
in Figure 2.6. With the period of oscillation TS , the damping constant � can be found. The
frequency of the damped oscillation is in relation with the undamped Eigenfrequency:

!2
= !2

0 � �2 . (2.66)

The restoring term follows from hydrostatic considerations to

C33 = ⇢ · g ·AWL = 9810N m�1 , (2.67)

with the water plane area AWL.

The added mass is then the difference of the mass term M33 and the real mass m

A33 = M33 �m = 487kg . (2.68)

Figure 2.7 shows the numerically and the analytically determined added mass as described
above. The figure shows that the mean value of the added mass fits well with the analytical
result. For the case that the acceleration becomes zero, the added mass becomes infinite.

0 2 4 6 8 10

200

400

600

800

t [ ]

[
]

A33

A33

Figure 2.7.: Calculated added mass during oscillation of a cube
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2.5 External forces

The external forces acting on the vessel are basically the hydrodynamic forces. Other forces,
such as wind forces, tug forces or arbitrary loads, can be added easily but are not part of
this work. To determine and describe these hydrodynamic loads, different approaches can be
found in the literature. An overview is given in the review on previous work, see Section 1.2.

Assuming that the system is linear, the forces acting on the ship can be regarded as the
superposition of two components: the forces due to the forced body motion in calm water and
the wave forces acting on the restrained body, see e.g. Journée and Pinkster [58]. Subsequently,
for the external forces acting on a ship, it can be assumed that:

• The motion of the ship in water causes a hydrodynamic reaction, which induces the
hydrodynamical forces and moments.

• Incoming waves that act on the restrained ship cause the wave excitation forces and
moments.

The former hydrodynamical forces and moments depend on the ship motion and thus can be
described as a function of these:

fhydrodynamical = f(y, ˙y) (2.69)

With y and ˙

y according to Eqn. (2.52) and Eqn. (2.53), respectively. The forces connected
with the acceleration of the body are called added mass terms (A · ˙⌫) and those connected
with the velocity are the damping terms (B · ⌫). Furthermore, restoring terms (C · ⌘) are
present due to the hydrostatics. An important fact is that the hydrodynamic added mass and
damping coefficients are dependent on the motion frequency of the body. This is mainly due
to free surface effects and has therefore a special meaning for ships. Figure 2.8 illustrates this
dependency for motion in sway. In this figure, only potential components are regarded. The
curves are computed using PDSTRIP [111], a strip theory program that is further described
in Chapter 4.

Examplarily for the ship moving in sway, the equation of motion yields

mv̇ = fy,additional + fy,hydrodynamical (2.70)

, mv̇ = fy,additional �A22(!)v̇ �B22(!)v (2.71)

, [m+A22(!)]v̇ +B22(!)v = fy,additional . (2.72)

The additional forces can be caused by arbitrary loads and the mass and damping forces
(A22(!)v̇ and B22(!)v) are due to the ship motion.

The frequency-dependent damping consists of potential and viscous effects. The potential
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Figure 2.8.: Added mass and potential damping of the S-175 container ship

component in sway can be denoted as B22p(!) and the viscous component as B22v(!), following
Fossen [32]. Both components are frequency-dependent. Subsequently, the total frequency-
dependent linear damping coefficient is

B22(!) = B22p(!) +B22v(!) . (2.73)

The potential damping B22p(!) can be determined with potential theory, however, the viscous
part B22v(!) needs more sophisticated tools. The potential damping becomes zero for zero
frequency (B22p(0) = 0), while the viscous part has its maximum for this frequency.

Maneuvering

For a ship moving in calm water, i.e. ! = 0, the wave excitation force has to be separated
from the additional forces. The remaining model can be designated as low-frequency (LF)
model. Eqn. 2.72 then yields

(m� Yv̇)v̇LF � YvvLF = fy,additional , (2.74)

where vLF is the LF velocity in sway.

The hydrodynamic derivatives are the zero-frequency hydrodynamic coefficients:

� Yv̇ , A22(0) (2.75)

� Yv , B22(0) = B22v(0) (2.76)

The hydrodynamic derivatives can be determined with model tests or with viscous flow com-
putations. However, linear terms are not always sufficient to describe the acting forces with
enough accuracy. To describe the forces acting on a maneuvering ship, higher-order damping
terms should be considered.
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The maneuvering models used in the work are presented in Chapter 3 .

Seakeeping

For seakeeping calculations, the frequency dependence of the hydrodynamic coefficients needs
to be regarded.

The frequency dependence of the body’s motion can be solved directly with Eqn. (2.72). This
is valuable for evaluating natural frequency and modal problems. If the frequency of encounter
of the waves is known as well as the added mass and damping terms for this frequency, the
equation can also be solved in the time domain. The frequency of encounter yields

!e = !0 �
!2
0U

g
cos� . (2.77)

An equation that is valid for arbitrary motion frequency can be found by using the approach
of Cummins [20] and Ogilvie [79]. They have derived a time-domain equation based on the
frequency-dependent coefficients A22(!) and B22(!):

[m+A22(1)]v̇WF +B22(1)vWF +

Z t

�1
K22(t� ⌧)vWF (⌧)d⌧ = fy,additional . (2.78)

The additional forces contain the linear Froude-Krylov forces and diffraction forces as well as
the second-order mean wave loads, often called wave drift forces.

A detailed description and derivation of the seakeeping models is given in Chapter 4.

Two-time scale theory

The Eqns. (2.74) and (2.78) can be combined to describe the maneuvering motion in waves.
Following the principle of linear superposition (proposed by Denis and Pierson [23]) yields

y = yLF + yWF . (2.79)

In this model, the effect due to linear waves is considered as oscillatory motion with a zero
mean value added to the low-frequency ship motions.

Two-time scale models are further investigated in Chapter 5.
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Unified theory

To derive a unified theory, Bailey et al. [7] suggest a linear viscous ramp to adjust the damping
data such that the values of the damping at zero frequency are equal to the viscous part. This
viscous ramp is decaying with increasing !. Fossen [32] models the viscous damper with an
exponentially decaying function

B22v(!) = �22e
�↵! , (2.80)

with �22 being the zero-frequency damping coefficient, i.e. B22v(0) = �22 and ↵ being a
constant that predefines the amount of decaying whereas ↵ > 0. The linear maneuvering
derivative can be used to unify the seakeeping and the maneuvering theory. Furthermore, the
nonlinear maneuvering derivatives have to be included into the equation of motion.

A complete derivation of the unified model is given in Chapter 5.



3
Maneuvering

This chapter provides the maneuvering models applied in this study. Maneuvering generally
includes course keeping, course changing, track keeping and changing the ship’s speed (espe-
cially stopping). It is characterized by a high degree of complexity due to the large number
of factors influencing the maneuvering motion, including maneuvering devices such as rud-
ders and movable thrusters, as well as the propulsion units and the hull. Furthermore, these
components are interacting with one another.

In general, Newton’s second law is applied in order to simulate the maneuvering motion,
as described in Chapter 2. The mass properties are mainly well known, which means that
correctly determining the hydrodynamic loads is essential for creating a reliable simulation of
the ship motions. Once the forces are determined, a numerical model in dependence of the
motion parameters must be defined to describe the forces during the time-domain maneuver
simulation.

According to the Manoeuvring Committee of the ITTC [1], the generation of a maneuver-
ing model can be divided into different steps. The model includes the prediction of the
hydrodynamic forces, the modelling of these forces with a mathematical model, the numeri-
cal integration method included in the simulation software and the subsequent simulation of
maneuvers. Each step needs to be validated and documented separately.

The present work utilizes different maneuvering simulation models. In the following, the
different models and their most important derivation steps are presented. In the beginning
of the chapter, the fundamentals of the maneuvering theory are defined. Since the way in
which the hydrodynamic forces are modelled also affects the procedure to determine the
forces, the modelling of the forces is first described, followed by the prediction methods of
the hydrodynamic forces. Afterwards, the numerical methods used to solve the equations of
motion are presented. Each step is accompanied by simulation examples and validation.
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3.1 Definitions

The motions are generally limited to four degrees of freedom, i.e. translatory motion in longi-
tudinal and transverse direction and rotatory motion around the longitudinal and the vertical
axis (surge, sway, roll and yaw, respectively). When regarding maneuvering motion in calm
water, no heave or pitch motion are expected.

The ship’s track is described in the earth-fixed frame K. The origin of the body-fixed frame
ˆK is typically at the main frame, in the water plane area and amidships. The rudder angle is
positive towards starboard according to the SIMMAN workshop [81]. The course angle  is
the angle between the ship’s longitudinal axis x and the global x0-axis, while the drift angle
� is between the ship’s longitudinal axis x and the ship’s velocity vector u, specified by

� = arctan(

�v

u
) . (3.1)

The absolute ship velocity is denoted with a capital U :

U =

p
u2 + v2 . (3.2)

The definitions are shown in Figure 3.1.
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�

 

Figure 3.1.: Velocity components and angles in maneuvering

The hydrodynamical forces are defined in the body-fixed frame with X being the force in
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longitudinal direction and Y the force in transverse direction. K is the roll moment and
N is the yaw moment with respect to the main frame at LPP /2. The forces and moments
are generally non-dimensionalized as shown in the following equations. The non-dimensional
version is denoted by a prime (0).

X 0
=

X

0.5⇢U2LPPT
, Y 0

=

Y

0.5⇢U2LPPT
, (3.3)

K 0
=

K

0.5⇢U2L2
PPT

, N 0
=

N

0.5⇢U2L2
PPT

. (3.4)

The velocity components can also be given in a non-dimensional form as

u0 =
u

U
, v0 =

v

U
, p0 =

pLPP

U
, r0 =

rLPP

U
, (3.5)

u̇0 =
u̇LPP

U
, v̇0 =

v̇LPP

U
, ṗ0 =

ṗL2
PP

U2
, ṙ0 =

ṙL2
PP

U2
. (3.6)

The IMO has developed a set of criteria for achieving satisfactory maneuvering behavior [49],
which includes turning ability, initial turning ability, yaw-checking and course-keeping abilities
and stopping ability. The standard maneuvers identify significant qualities for the evaluation
of ship maneuvering characteristics.

Different test procedures have been established by the IMO to support the application of
maneuvering standards, and to this end, they also provide standard procedures for testing
trials. The IMO guide includes trial procedures that need to be performed in order to pro-
vide sufficient data for assessing ship maneuvering behavior with the defined criteria. The
tests comprise turning circle maneuvers, zig-zag maneuvers and stopping tests. A detailed
description of the different standard maneuvers is given by the IMO [48].

3.2 Modelling of hydrodynamic forces

When applying computationally fast simulation methods, e.g. the slender-body theory (see
Section 3.3), the forces can be directly calculated during the time simulation. However, for
more expensive methods, it is preferable to predetermine the forces and make them available
during the time simulation. The hydrodynamic forces can be modelled in different ways to
be available during the time simulation.

Generally, whole ship models, in which all components are modelled in one set of equations,
are distinguished from MMG models, a modular concept in which each single component
comprising of the hull, propeller and rudder is regarded separately (named after the Japanese
Maneuvering Modeling Group (MMG), see Yasukawa and Yoshimura [125]).
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The equation of motion for whole ship models can be written as

M

˙

⌫ = f(u, v, p, r, u̇, v̇, ṗ, ṙ, �) , (3.7)

where f denotes the hydrodynamic force acting on the entire system as a function of the
velocity (u, v, p, r), the acceleration (u̇, v̇, ṗ, ṙ) and the rudder angle (�).

For MMG models, the equation of motion is

M

˙

⌫ = fH + fP + fR , (3.8)

with H denoting the hull, P the propeller and R the rudder.

The most popular method for modelling the hydrodynamic forces using the whole ship model
is based on hydrodynamic derivatives and has been proposed by Abkowitz [4]. This approach
is derived in the following. The MMG models concept is picked up in Section 3.3, where the
forces acting on each separate component are deduced.

Following the concept of Abkowitz [4], the forces f in the 4DOF relevant for maneuvering
can be described as a polynomial of u, v, p, r, u̇, v̇, ṗ, ṙ and �:

f = (X(x) Y (x) K(x) N(x))

T , (3.9)

with
x = (u v p r u̇ v̇ ṗ ṙ �)T . (3.10)

The forces include the effects of all participating components such as hull, rudder and pro-
peller.

Building a Taylor-series expansion of the hydrodynamic force functions X(x), Y (x), K(x)

and N(x) at
x0 = (u0 0 0 0 0 0 0 0 0)

T (3.11)

gives

X(x) ⇡ X(x0) +

nX

i=1

✓
@X(x)

@xi
|x0�xi +

1

2

@2X(x)

(@xi)2
|x0�x2i +

1

6

@3X(x)

(@xi)3
|x0�x3i

◆
, (3.12)

Y (x) ⇡ Y (x0) +

nX

i=1

✓
@Y (x)

@xi
|x0�xi +

1

2

@2Y (x)

(@xi)2
|x0�x2i +

1

6

@3Y (x)

(@xi)3
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◆
, (3.13)

K(x) ⇡ K(x0) +

nX

i=1

✓
@K(x)
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|x0�xi +
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@2K(x)

(@xi)2
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(@xi)3
|x0�x3i

◆
, (3.14)

N(x) ⇡ N(x0) +

nX

i=1

✓
@N(x)

@xi
|x0�xi +

1

2

@2N(x)

(@xi)2
|x0�x2i +

1

6

@3N(x)

(@xi)3
|x0�x3i

◆
, (3.15)
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where �x = x� x0 = (�x1 �x2 ... �x9)T .

In principal, higher-order Taylor-series expansions can be derived. An important issue that
must be addressed is the exact degree to which it needs to be extended in order to ensure
that the principal nonlinear hydrodynamic effects are described correctly. However, it is also
necessary to consider to what extent it is necessary to retain a great number of terms for a
reasonably accurate description of maneuvers.

Abkowitz assumes that a third-order Taylor series can describe most ship maneuvers. For the
acceleration terms, only first-order approximations are considered and a coupling between the
acceleration and the velocity terms can be neglected.

A port/starboard symmetry yields further simplifications. For the symmetric force X, the
symmetric motion (u) only has odd powers; while the asymmetric motions (v, r, �) only have
even powers. The other way around is valid for the asymmetric forces Y , K, N . Constant
terms are kept to describe the force and moment due to asymmetric effects from single-screw
propellers.

Several authors report that simulations of standard ship maneuvers using these assumptions
yield satisfactory results (see e.g. Fossen [33], Cura Hochbaum [21], Schoop [89], Schoop-Zipfel
et al. [93], Stern et al. [100]). When applying the assumptions, the forces X(x), Y (x), K(x)

and N(x) can be written as

X =X0 +Xu̇u̇+Xu�u+Xuuu�u3 +Xvvv
2
+Xrrr

2

+X���R
2
+Xvvuv

2
�u+Xrrur

2
�u+X��u�R

2
�u

+Xv�v�R +Xr�r�R +Xvruvr�u+Xv�uv�R�u+Xr�ur�R�u+Xr�vr�Rv , (3.16)

Y =Y0 + Yv̇v̇ + Yṙṙ + Yuu�u2 + Yvv + Yvvvv
3
+ Yvrrvr

2

+ Yv��v�R
2
+ Yvuv�u+ Yvuuv�u2 + Yrr + Yrrrr

3
+ Yrvvrv

2

+ Yr��r�R
2
+ Yrur�u+ Yruur�u2 + Y��R + Y����R

3

+ Y�vv�Rv
2
+ Y�rr�Rr

2
+ Y�u�R�u+ Y�uu�R�u2 + Yvr�vr�R , (3.17)

K =K0 +Kv̇v̇ +Kṙṙ +Kuu�u2 +Kvv +Kvvvv
3
+Kvrrvr

2

+Kv��v�R
2
+Kvuv�u+Kvuuv�u2 +Krr +Krrrr

3
+Krvvrv

2

+Kr��r�R
2
+Krur�u+Kruur�u2 +K��R +K����R

3

+K�vv�Rv
2
+K�rr�Rr

2
+K�u�R�u+K�uu�R�u2 +Kvr�vr�R , (3.18)
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N =N0 +Nv̇v̇ +Nṙṙ +Nuu�u2 +Nvv +Nvvvv
3
+Nvrrvr

2

+Nv��v�R
2
+Nvuv�u+Nvuuv�u2 +Nrr +Nrrrr

3
+Nrvvrv

2

+Nr��r�R
2
+Nrur�u+Nruur�u2 +N��R +N����R

3

+N�vv�Rv
2
+N�rr�Rr

2
+N�u�R�u+N�uu�R�u2 +Nvr�vr�R . (3.19)

The hydrodynamic derivatives are defined using the notation

F0 = F (x0) , Fx
i

=

@F (x)

@xi
|
x0 ,

Fx
i

x
j

=

1

2

@2F (x)

@xi@xj
|
x0 , Fx

i

x
j

x
k

=

1

6

@3F (x)

@xi@xj@xk
|
x0 ,

for F 2 {X,Y,K,N} and i, j, k = 1...9.

The hydrodynamic derivatives are generally given in the ˆK frame, i.e. in body-fixed coordi-
nates, while the origin C is at the main frame (LPP /2).

Simulation example

The hydrodynamic derivatives presented by Cura Hochbaum et al. [22] are used to calculate
the hydrodynamic forces acting on the KVLCC2 during standard maneuvers. The resulting
turning circle and zig-zag maneuvers are shown in Figures 3.2 and 3.3, respectively. The figures
compare the simulated results with measured maneuvers (benchmark data from SIMMAN
2008 [99]).
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Figure 3.2.: �35

� turning circle of KVLCC2 calculated with derivatives from Cura Hochbaum
et al. [22]; measurements from MARIN [99]

The simulated turning circle maneuver shows a very good agreement with the measured data.
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Figure 3.3.: �20

�/�20

� zig-zag maneuver of KVLCC2 calculated with derivatives from Cura
Hochbaum et al. [22]; measurements from MARIN [99]

However, deviations can be seen in the zig-zag maneuver. Despite the large amount of used
hydrodynamic derivatives and the extensive computational effort in connection with this (see
Section 3.3), there is a considerable deviation of the overshoot angles. Even more derivatives
are needed to achieve a better agreement in this maneuver.

Ćoncluding, it can be said that hydrodynamic derivatives can be a useful basis for determining
arbitrary maneuvers, but an extensive computational effort is necessary for determining a total
set of derivatives.

3.3 Prediction of hydrodynamic forces

The forces acting on different hulls and their appendages are introduced in this section.
Further, methods for identifying the forces are given.

3.3.1 Propulsion

In maneuvering model tests, the propeller rate of rotation is classically kept constant at
the self-propulsion point of either the model or of the full scale ship (ITTC Manoeuvring
Committee [53]). However, this will not be the case for real ship maneuvers. The varying flow
situations at the propeller during the maneuver will result in a fluctuating torque. Depending
on the installed engine, these torque variations will result in a change of the propeller rate of
rotation. This becomes even more important in a seaway due to the oscillatory motion of the
waves.
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Mathematical models for simulating the engine are presented by different authors. A short
review on different models is given in the review on previous work, see Section 1.2. For the
present work, it is not necessary to model the engine in each detail since only the effect on
the propulsion is of interest, i.e. the dynamic rate of rotation of the propeller. In the present
work, a model for diesel-electric engines is developed and implemented. Models to describe
the behavior of diesel engines can e.g. be found in Haack [39] and Wirz [117].

A diesel-electric transmission system consists of a diesel engine, a generator and an electric
traction motor. The diesel engine powers the generator to produce electricity for the traction
motor. For the behavior of the propulsion, the electrical generator is of minor interest and it
is assumed that enough electrical power is delivered to the traction motor.

The hydrodynamic torque at the propeller due to the inflow and the number of revolutions is
available as dimensionless coefficient in the open water diagram of the propeller. The open
water diagram can be obtained with open water tests in a model basin (see e.g. Kuiper [64])
or from numerical calculations (see e.g. Hundemer [47]). This torque is the torque demand of
the propeller and is opposed to the torque generated by the engine. If these torques are equal,
the propeller rate of rotation is constant. The change of the propeller rate of rotation can be
computed with the equation of motion, using the difference in the torque of the propeller and
the engine. The time derivative of the speed of rotation of the propeller yields

dn

dt
=

Qm �Qp

2⇡(IShaft + IProp)
. (3.20)

Qm and Qp are the torque of the engine and the propeller, respectively, and I is the moment of
inertia of the propeller, shaft, gearbox and engine. Added mass effects have to be considered
since these will significantly change the moment of inertia. The moment of inertia of the
propeller IProp is described as a function of the current pitch ratio. The moment of inertia of
the shaft IShaft is fixed and also includes the gearbox and the rotating parts of the engine.
The added mass is considered as a ratio of the mass inertia of the propeller and is generally
given by the propeller manufacturer.

The simulation model distinguishes between two different operation modes. As long as the
propeller has a positive torque, the speed of rotation of the propeller shaft is estimated with
respect to the available power. When the torque becomes negative, wind-milling occurs and
the propeller is driven by the inflow. For wind-milling, the engine torque is set to zero and
the speed of rotation increases due to torque generated by the propeller inflow.

The computational algorithm used for the propulsion determination is given in Figure 3.4.
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Figure 3.4.: Computational algorithm of propulsion

Motor

Alternative current motors exist in two main types: synchronous and asynchronous motors.
Figure 3.5 shows a typical behavior of an asynchronous drive, where Q is the torque and !

the angular frequency.

!S

�Tmax

Tmax

!

Q

Figure 3.5.: Typical RPM to torque line for an asynchronous motor

The frequency !S where the curve crosses the abscissa is called synchronous frequency (where
the slip is zero). The motor is generally operated at a frequency a little below !S , so that
the motor produces a torque but still has enough reserve until reaching the maximum torque
Qmax. The synchronous frequency can be set by regulating the electrical AC frequency using
the transformer (see Figure 3.6).
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Figure 3.6.: Arrangement for a propulsion string

The frequency changer controls the electrical frequency, which is equal to the synchronous
frequency of the motor. It is therefore possible to control the rate of rotation independently
of the load torque, assuming an appropriate behavior on the generator side.

However, the electrotechnical specificities are not necessary to be implemented in the numer-
ical model for the maneuvering simulations. The engine, its supply and the controller can be
modelled by a common control model.

Engine control

The engine and frequency changer are controlled by a PI-controller, as shown in Figure 3.7.
It is characterized by two constants, Kn (proportionality constant) and Tn (integration time).
Q is the torque and n the shaft revolutions. A star ⇤ means the target values. Further, t is
the current time and h is the time step.

n⇤ Vref Q⇤ Q

QP

�

�

Figure 3.7.: Control strategy for the engine

The PI law is given by

Q⇤
(t) = Kpe(t) +

Kp

Tn

Z t

0
ed⌧ , (3.21)

where e(t) = n⇤ � n. If both sides are differentiated with respect to time, it becomes

˙Q⇤
(t) = Kpė(t) +

Kp

Tn
e(t) . (3.22)
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Applying the first-order approximation gives

Q⇤
(t)�Q⇤

(t� h)

h
= Kp

e(t)� e(t� h)

h
+

Kp

Tn
e(t) , (3.23)

which can be rewritten as

Q⇤
(t) = Q⇤

(t� h) +Kp(e(t)(1 +
h

Tn
)� e(t� h)) . (3.24)

Engine response and latency

The control value of the torque is given by the PI controller, but the engine does not instanta-
neously produce this torque. Therefore, an engine lag time is defined. In practice, this means
that the engine will use the target torque of a past timestep (called neng.lag). For a 5MW
engine, the lag time usually lies around T1 = 250ms.

The torque difference to the propeller torque is related to the rate of change of the shaft
revolutions by means of the inertia,

ṅ =

Q⇤
(neng.lag)�QProp

2⇡(IShaft + IProp)
· 60 . (3.25)

Propeller Forces

Thrust and torque of the propeller are determined from the open water diagram, see Figure
3.4. The advance coefficient J yields

J =

uA
n ·D , (3.26)

with n being the number of revolutions of the propeller and D its diameter. For a given
propeller, the thrust and the torque can be calculated via the indices kT and kQ from the
open water diagram. Subsequently, thrust and torque can be calculated:

TP = ⇢ · kT · n · |n| ·D4 , (3.27)

Q = ⇢ · kQ · n · |n| ·D5 . (3.28)

The thrust coefficient kT can be described by a cubic function of the advance coefficient J for
a fixed pitch as

kT = kT,0 � kT,1J � kT,2J
2 . (3.29)

An interpolation procedure is applied to obtain the thrust and torque coefficients for varying
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pitch ratios of the propeller. The thrust for each pitch can be determined with the equation
given above.

Interaction of hull and propeller

The thrust deduction due to the interaction of the hull and the propeller is accounted for with
the help of the thrust deduction factor t, reducing the thrust to

TP ! (1� t) · TP . (3.30)

Therefore, the force on the hull is assumed to be linearly proportional to the thrust. This
is a common practice and is valid for forward thrust, but in the case of negative thrust, the
problem has to be studied anew. In this case, the force on the hull is not a suction anymore
but a thrust. Nevertheless, it counteracts the effect of the propeller and reduces the absolute
value of the thrust in the same way as it does for forward thrust.

Haack [39] investigates this effect on a single and a double screw ship with a potential method.
He concludes that the use of a thrust deduction coefficient is still valid but it should be
different from the one at forward thrust. The effect is greater than in normal condition, thus
the coefficient has to be greater.

Generally, the thrust deduction factor from the open water test with design condition yields
a shorter stopping distance in a crash stop maneuver [39]. Calculations of Haack [39] with
a newly developed CFD-method show a three to five times larger thrust deduction than the
thrust deduction factor from design condition. Haack shows that this results in a much better
agreement of the simulations with full scale measurements. Gronarz [37] states that increasing
the resistance by 20% for a backing ship gives realistic results.

Another influence of the hull is that the wake generates a non-homogeneous inflow at the
propeller. This is simplified to an equivalent inflow speed uA defined by Son and Nomoto [98]
as

uA = u[(1� wp) + ⌧(v + xp · r)2] , (3.31)

where wp is the wake fraction and ⌧ is an experimental constant. This effect is not affected
by the direction of the thrust, as the inflow does not change its direction.
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Simulation example

The developed engine model is applied to simulate crash stop maneuvers for the seismic
research vessel HAI YANG SHI YOU 720. It is a twin-screw ship and due to the symmetry,
no course deviation is assumed during stopping. Therefore, only the resistance is included as
hull forces.

The vessel was built in 2011 by Shanghai Shipyard. It is equipped with a diesel-electric engine
manufactured by Siemens. Sea trial measurements of the engine characteristics during the
crash stop maneuvers are available for validation (see Schoop-Zipfel et al. [94]).

The vessel has a length between perpendiculars of 96.6m. It is equipped with a diesel-electric
propulsion system combined with two electric motors, each with a rating of 4500kW driving
two controllable-pitch propeller (CPP) in a nozzle. The main dimensions and a picture of the
vessel can be found in Table 3.1.

Table 3.1.: Main dimensions of HAI YANG SHI YOU 720 (Image source: www.cosl.com.cn)

Length LOA [m] 108.3
Breadth B [m] 24.0
Draft D [m] 9.6
Speed U [kn] 16
Displacement m [t] ca. 5000
Gross tonnage [t] ca. 13000
Towing capacity [t] min. 100

Different scenarios of stopping the ship are investigated. The scenarios are simulated and
the results of the simulations are compared to the measurements taken during sea trial. The
ship speed, the speed of rotation and the pitch angle of the propeller are varied during the
simulation. The four test cases (A, B, C and D) are summed up in Table 3.2.

In the first test case A, the electric motors are decoupled at a ship speed of 16 knots. In this
sailing mode, the shaft speed directly depends on the ship’s speed, as the torque from the
engine is zero. Due to technical reasons, the pitch angle is reduced to zero when the engine
is decoupled. In cases B and C, the target number of revolutions is kept constant during the
stop maneuver, while reducing the pitch angle to the maximum negative value. In case D,
the target number of revolutions is increased during the stop maneuver in order to increase
the backward thrust and decrease the possibility of wind-milling.
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Table 3.2.: Testing conditions for stop maneuver of HAI YANG SHI YOU 720

Case Initial ship Propeller Initially Propeller
speed revolutions delivered power pitch
[kn] [rpm] [kW] [P/D]

A 16 145 2x 0 from 1.1767
to 0

B 12.8 129.1 2x 2,173 from 1.0297
to -0.6556

C 16 145 2x 4,500 from 1.1767
to -0.6556

D 12.8 from 129.1 2x 2,173 from 1.0297
to 145 to -0.6556

Case A In case A, the electric motor is electrically decoupled from the propellers when the
maneuver starts. As stated above, the propeller pitch angle is reduced to zero when the
electric motor is decoupled.

Figure 3.8 shows the behavior of different characteristic values during the stopping process.
Important parameters during stopping are ship speed, propeller speed of rotation, propeller
pitch ratio, torque and power. The solid curves represent the calculated values and the dashed
curves are the results from the sea trial measurements. Because the vessel has two propellers,
for each measured value there are two curves: one for the portside propeller and the other for
the starboard side propeller. In the simulations, no distinction is made between the propellers
due to symmetry.

Before beginning the maneuver, there is perfect agreement between the calculated and the
measured values. Once the maneuver starts it can be seen that the calculated and measured
values of torque and power instantly fall to zero. Calculated and measured pitch change with
the same gradient. The curve of the propeller rate of rotation indicates that wind-milling
occurs shortly after the maneuver begins. This tendency is captured by the measurements and
the calculations, but the calculated rate of rotation increases more than the measured values.
The results show that the initial value is not exceeded, so no danger for the propulsion system
should be expected. After approximately 120s, an unplanned switch on of the electric motor
drive was initialized. This resulted in an oscillation in the measured torque. Simultaneously,
the measured rate of rotation increases, which indicates a torque intake condition. This
scenario can be excluded from the dynamic analysis.
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Figure 3.8.: Stopping simulation of HAI YANG SHI YOU 720

Case B In case B, the target propeller rate of rotation is held constant during the entire
maneuver. With the beginning of the maneuver, the propeller pitch angle is decreased. The
different values over time are also plotted in Figure 3.8.

Due to the descreasing hydrodynamic torque at the propeller, the propeller speed increases
until the engine control counterbalances. At approximately 90s, the torque starts increasing
due to the inflow condition at the propeller. This results in a decrease of the propeller speed.
Due to the predefined control parameters, the propeller speed increases very slowly and does
not reach the target value within the time of the maneuver.
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Case C Case C is similar to case B. The target rate of rotation is kept constant while the
propeller pitch is decreased. However, the approach speed is higher. Similar tendencies as in
case B can be seen for the characteristic parameters (Figure 3.8).

Case D Stopping is performed by constantly decreasing the pitch angle while increasing the
target propeller rate of rotation to a predefined value. The behavior of the characteristic
values is very comparable to case B, as seen from Figure 3.8. The increase of the propeller
speed with the beginning of the maneuver is higher than in case B due to the higher target
rate of rotation. However, the drop of the propeller speed and the behavior of the torque and
power are almost equal to case B. Again, the propeller rate of rotation does not reach the
target value.

Concluding remarks The numerical model used to desribe the ship propulsion is applied to the
seismic research vessel HAI YANG SHI YOU 720. Special attention is paid to the behavior
of the propeller rate of rotation. A satisfactory correlation is found between the simulations
and the measurements. Wind-milling can be reliably predicted. The general trends of the
engine control can be captured.

3.3.2 Rudder forces

The rudder force calculation is based on semi-empirical formulae, following the approach
proposed by Söding [105]. Further details are also given in Bertram [12]. The velocity and
the radius of the propeller slipstream far behind the propeller are, according to the slipstream
theory,

u1 = uA
p
1 + cTh , (3.32)

r1 = r0
p

0.5(1 + uA/u1) . (3.33)

r0 is the radius of the propeller (D/2) and cTh is the thrust loading coefficient:

cTh =

T
1
2⇢u

2
a(0.25⇡D

2
)

. (3.34)

Usually, the slipstream is not completely contracted at the rudder. Its radius and axial velocity
can then be approximated as

rx = r0
0.14(r1/r0)3 + r1/r0 · (x/r0)1.5

0.14(r1/r0)3 + (x/r0)1.5
, (3.35)

ux = u1
r21
r2x

, (3.36)
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where x is denoting the position behind the propeller plane. Söding proposes to use the
position of the rudder’s centre of area within the slipstream to calculate the rudder force and
moment.

The rudder inflow is not uniform due to the finite lateral extent of the propeller slipstream
so that the rudder lift has to be corrected. This is done by multiplying the rudder lift that is
determined with the velocity within the slipstream by the correction factor �:

� = (

uA
ux

)

f , with f = 2(

2

2 + d/c
)

8 . (3.37)

Here uA is the rudder approach speed outside of the propeller slipstream. d is the slipstream
radius and c is the rudder chord length in the region of the slipstream.

The angle of attack follows from the rudder angle �, the mean longitudinal flow speed ux and
the mean transverse flow speed at the rudder vR = �(v + xR · r) to

↵ = � + arctan(

vR
ux

) . (3.38)

The coefficients of the lift, drag and moment of the rudder can be approximated according to
Söding [107] as

CL = 2⇡
⇤(⇤+ 0.7)

(⇤+ 1.7)2
sin↵+ CQ sin↵| sin↵| cos↵ , (3.39)

CD = 1.1
C2
L1

⇡⇤
+ CQ| sin↵|3 + CD0 , (3.40)

CM = (CL1 cos↵+ CD1 sin↵)

✓
0.47� ⇤+ 2)

4(⇤+ 1)

◆
+ 0.75(CL2 cos↵+ CD2 sin↵) . (3.41)

The lift and drag forces are determined from these coefficients. Whereas the propeller inflow
velocity uA is used outside of the propeller slipstream and for the force inside of the stream,
the propeller slipstream velocity is approximated using Söding’s formulae [105]. The lift is
acting perpendicular to, and the drag in the direction of the local inflow given by arctan(

v
R

u
x

).
Lift and drag are then separated in x- and y-direction. The y-component is multiplied by the
factor (1 + aH) to account for the influence of the hull in front of the rudder.

aH = (1 + (4.9e/T + 3c/T )2)�1 (3.42)

Here T is the draft of the ship and e the mean distance between the leading edge of the rudder
and the aft end of the hull.

The yaw moment due to the rudder follows from multiplying the y-component of the rudder
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force with the x-coordinate of the attack point. This is assumed to be

�x =

0.3T

e/T + 0.46
(3.43)

in front of the rudder axis.

For the roll moment, the transverse force is assumed to attack at the barycenter of the rudder.

Figure 3.9 shows the total force on a KVLCC2 for different rudder angles. The simulated
results are opposed to measurements from the Hyundai Maritime Research Institure, South-
Korea (HMRI) [102] and the National Maritime Research Institute of Japan (NMRI) [127],
published via the SIMMAN 2014 workshop [81]. The figure reveals that the influence of the
rudder on the total forces can be predicted very well with the semi-empirical method of Söding
[105].
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Figure 3.9.: Total force on KVLCC2 over rudder angle; measurements from HMRI [102] and
NMRI [127]

3.3.3 Hull forces

The hull forces are generally split into velocity dependent damping forces and acceleration
dependent added mass forces. The damping forces are influenced to a large degree by viscous
effects such as friction and separation. These effects have a minor influence on the added mass
forces. Subsequently, potential theory can properly determine the inertial forces. Corrections
are necessary for properly determining the velocity-dependent forces with potential theory.
These corrections can be applied in different ways.

Söding [105] proposes to simulate the hull forces based on slender-body theory. According to
this theory, the transverse acceleration of the water next to the ship generates a horizontal
force per ship length in transverse direction. This force can be integrated over the ship length
to obtain the entire hull forces and moments. Söding [105] suggests different corrections to
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this approach to model the effects of the real flow.

In three-dimensional potential theory, the velocity dependent forces can be calculated by
modelling vortices for slender ships with salient hull features. Therefore, a wake sheet is shed
from salient hull features (Greeley [35]). However, the strength of these vortices is difficult
to determine for blunt bodies like ship hulls, which do not have a sharp edge leading to
separation. Alternatively, a force correction based on the slender-body theory can be applied
(Söding [110]).

RANS methods can determine the acting forces with very high accuracy. However, the com-
putational effort increases with increasing accuracy. An extensive amount of time is needed
to determine all the required forces of the maneuvering simulations.

Slender-body theory

The basis of the slender-body theory approach formulated by Söding [105] is the idea that
the hull force in y-direction on a strip of length dx is equal to the change in time of the y-
momentum of the water that is next to the hull at this strip. The amount of this water is the
added mass of the specified hull section, the sectional added mass in sway a022(x). The added
mass for zero frequency and low frequency, respectively, must be used for the maneuvering
motion, which is denoted here with the superskript 0.

The transverse momentum of the water per ship length follows subsequently to

a022(x)(v + xr) . (3.44)

The substantial derivative yields the force per length, which is integrated over the entire ship
length L:

Y =

Z

L
(� @

@t
+ u

@

@x
)a022(x)(v + xr) dx . (3.45)

The minus sign is neccessary because the force of the water on the ship is considered and not
the force of the ship on the water.

Equation (3.45) can be extended to obtain the moments around the x- and the z-axis, K and
N , respectively. The force vector for all four degrees of freedom yields
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where zy is the z-coordinate of the center of the hydrodynamic mass in each section, i.e. the
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height of the point of attack of the hydrodynamic transverse force and zya022 = a042.

Söding [105] proposes empirical corrections to account for different influences.

The real flow is not only across the sections but also around the bow and the stern. To account
for this fact, the terms including @/@t are multiplied by the reduction factors k1 and k2. These
factors are calculated for ellipsoids of revolution in Lamb [65] and can be approximated with:

k1 =
p
1� 0.245✏� 1.68✏2 , k2 =

p
1� 0.76✏� 4.41✏2 , (3.47)

with ✏ = 2d/L. So the acceleration part of the hull forces follows to
0
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For the parts including u@/@x, one has to distinguish if this term is applied to a022 and a042
or to v + xr. The derivatives of a022 and a042 have to be built on the fore ship, from the bow
to the point where the flow presumably separates. These derivatives are omitted for the aft
part of the ship because of the flow separation. This will generate a lifting effect comparable
to the Kutta condition used in lifting foil theory.

The derivatives of v + xr need to be integrated over the whole ship length. The steady part
of the hull forces then becomes
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The index f means fore and the index a aft of the ship. m is the position where the flow
presumably separates, i.e. where a022 has a large negative gradient, mainly at the aft end of
the skeg or in front of the propeller.

The slender-body theory does not provide any longitudinal forces. The following forces from
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three-dimensional potential theory are added:
0
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A0
11 is the added mass for longitudinal acceleration of the ship. This will also be approximated

with an empirical formula following Lamb [65]:

A0
11 =

m

⇡
p
⇢L3/m� 14

. (3.51)

The particular force components can be summed up and written in matrix notation as
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with
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where

a022,m = a022(x = xm) , a022 = a022(x) ,

a042,m = a042(x = xm) , a042 = a042(x) .

The slender-body theory does not contain any nonlinear terms. These can be calculated
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similar to rudder forces with the stagnation pressure, the area and a drag coefficient CD:
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with d being the draft of the respective section and zD the z-coordinate of the point of attack
of the drag force.

However, some experience is needed with the cross-flow drag coefficient to obtain reliable
results.

Resistance

The slender-body theory cannot determine any forces in longitudinal direction. The resistance
has to be calculated separately.

The basis for estimating the ship resistance needs to be model experiments or extensive CFD-
calculations. The resistance is calculated as the sum of the residual resistance RR and the
skin friction resistance RF0. The residual resistance can be obtained by model tests or CFD-
calculations. The skin friction resistance coefficient can be calculated by using the ITTC 1957
correlation line:

cF0 =
0.075

(log10Rn � 2)

2
. (3.56)

According to Söding [105], the dependence of the resistance on v and r has to be taken
into account with the coefficients Xvv, Xrr and Xvr that can be determined with model
experiments. The resistance force in longitudinal direction follows to:

X =

1

2

⇢u2Sw · (cF0 + cR) +Xvvv
2
+Xrrr

2
+Xvrvr . (3.57)

The contribution of the ship resistance to the force in y-direction and the yaw moment must
be considered:

Y = RF0(v + xr)/u , (3.58)

N = RF0L
2r/(6u) . (3.59)
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Simulation example KVLCC2

The slender-body theory is applied to simulate standard maneuvers with the KVLCC2 tanker
ship. Extensive results for validation are available for this hull, e.g. from the SIMMAN
workshop 2008 [99] and 2014 [81]. The KVLCC2 is a tanker ship with bulbous bow and stern.
Her main dimensions and frame plan are shown in Table 3.3.

Table 3.3.: Main dimensions and frame plan of KVLCC2

Dimensions

LPP [m] 320.0
B [m] 58.0
D [m] 20.8
CB [−] 0.8101
CM [−] 0.9980
Fn [−] 0.142
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Figure 3.10 shows the distribution of the added mass over the ship length. The added mass is
calculated using the open source strip methods PDSTRIP [111]. According to this figure, the
sectional added mass is integrated from the bow to section 4 at xm = �150m. This section is
highlighted in the frame plan (Table 3.3) in blue. Figure 3.10 also shows the cross-flow drag
coefficient per section of the KVLCC2.
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Figure 3.10.: Added mass (left) and cross-flow drag (right) per ship length of KVLCC2

The forces acting on the hull during pure drift and pure yaw motion are calculated and com-
pared with measured results of NMRI [127]. Figure A.1 in Appendix A shows the comparison
of the simulated and the measured drift force and yaw moment resulting from drift and from
yaw motion. Most of the agreement appears to be fair. However, a deviation can be seen
in the drift force resulting from yaw motion. The simulated drift force overestimates the
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measured value. The uncertainty of the model test results is not known.

A direct maneuver simulation using the slender-body theory shows very promising results. A
35

� turning circle maneuver is presented in Figure 3.11. The measurements were conducted at
MARIN and published via the SIMMAN 2008 workshop [99]. The simulated tactical diameter
deviates less than 1% from the measurements. However, the steady rate of turn is higher in
the simulation.
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Figure 3.11.: �35

� turning circle of KVLCC2; simulation with slender-body theory; measure-
ments from MARIN [99]

The simulation of 20�/20� zig-zag maneuvers also shows acceptable agreement with measured
results, see Figure 3.12. The first and the second overshoot angle have a deviation of 5% and
13%, respectively.

Simulation example S-175

Simulations of turning circle maneuvers are also presented for the S-175 container ship. The
main dimensions and the frame plan are shown in Table 3.4. Yasukawa [122] conducted free-
running model tests for this ship. The relevant data of the model and the resistance and thrust
curves are given in Table 3.5. The added mass distribution is calculated with PDSTRIP and
shown in Figure A.2 in Appendix A. The horizontal drag coefficient is assumed to be CD = 0.7

over the entire ship length.

The simulation of port and starboard turning circle maneuvers shows satisfactory agreement
with the measured data, see Figure 3.13.

With regards to the simplicity and the low computational effort, the results that can be
obtained with the slender-body theory are very satisfactory. However, some experience is
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Figure 3.12.: �20

�/�20

� zig-zag maneuver of KVLCC2; simulation with slender-body theory;
measurements from MARIN [99]

needed with the transverse drag coefficient since it has a considerable influence on the motion
of the ship.

Simulations with 3D potential theory

Determining the strength of the vorticity and the position where it leaves the hull is not a
straightforward process for blunt ships. Therefore, it is easier but not less accurate to account
for separation forces using semi-empirical formulae (Söding [110]). Following the slender-
body theory, these forces can be calculated by specifying a separation point. Söding [110]
recommends to use the aft end of the horizontal keel or the lower aft end of the rudder for
ships. The force acting on this point can be calculated as:

Fsep = uva022,m (3.60)

with u being the ship’s speed and v the transverse velocity at the separation point. a022,m is
the sectional added mass at the separation point.

Similar to slender-body theory, additional nonlinear terms need to be applied for simulating
narrow maneuvers. In Schoop-Zipfel and Abdel-Maksoud [92], additional nonlinear terms
based on results obtained with a RANS method are introduced. Correction factors can be
deduced by comparing the results of steady drift and of steady turning motion obtained with
potential theory and with RANS. These nonlinear correction factors describe the difference
of the damping forces obtained with potential theory and with RANS.

The computational effort is much lower than using RANS methods. However, the effort is
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Table 3.4.: Main dimensions and frame plan of S-175 for maneuvering according to Yasukawa
[122]

Dimensions

LPP [m] 175.0
B [m] 25.4
T [m] 9.5
CB [-] 0.572
Fn [-] 0.15
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Table 3.5.: Data of S-175 for maneuvering simulations according to Yasukawa [122]

m 24801t Fn 0.15 DP 6.507
xG -2.545m hR 12.0deg/s n 1.42
zG 9.235m HR 7.7m kT,0 0.2932
GM 1.005m c 4.215m kT,1 0.1971
i2xx 110.3889m2 AR 32.46m2 kT,2 0.0481
i2yy 2216m2 t 0.175
i2zz 2216m2 wp 0.1684 X 0

uu 0.01563

nevertheless too large for real-time simulations.

RANS methods

Recent workshops (SIMMAN 2008 [99], SIMMAN 2014 [81], Gothenburg 2010 [67]) have
shown that RANS solvers are capable of calculating flow forces with an accuracy comparable to
model test measurements. Flow solvers based on the RANS equations are therefore adequate
to determine the hull forces depending on arbitrary ship motions.

A further advantage of RANS is that it makes flow details available. E.g. vortices can be
traced and the pressure distribution along the hull can be made visible.
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Figure 3.13.: ±35

� turning circle of S-175; simulation with slender-body theory; measurements
from Yasukawa [122]

3.3.4 Whole ship forces from captive motions

According to Stern et al. [100], the SIMMAN workshop [99] has shown that RANS CFD has
the potential to provide data from maneuvering investigations that are fully equivalent to ex-
perimental data. The RANS method is applied in the present work to determine maneuvering
forces. However, experiments would follow the same procedures.

The forces acting on the hull can be determined during captive motions. The dependence of
the forces on the ship motions is classically described by hydrodynamic derivatives, see Section
3.2. The forces acting on the ship have to be determined for the entire range of motions
that the ship will encounter during the maneuver to provide a proper basis for maneuvering
simulations (Stern et al. [100]). Subsequently, these motions have to be simulated in advance.
This leads to an extensive amount of calculations or measurements and is therefore inadequate
in the early design stage.

Generally, the target of the force determination using RANS or model experiments is the use
of the forces in a whole ship model. However, the forces acting on each component (hull,
propeller, rudder) are available separately, so that the single components can also be used in
the MMG model.

The simulations can be divided into quasi-stationary and transient ones. Both types are eval-
uated in a different way. Resistance and drift simulations are quasi-stationary as a stationary
wave pattern develops after a certain simulation time at constant speed. The converging
forces and moments at different speeds and drift angles form discrete sampling points, which
can be approximated by a nth degree polynomial function. This function can, for instance,
be found by applying a least-squares approximation.
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In PMM tests, the ship moves along a sinusoidal path while forces and moments acting on the
hull are measured. The time histories of the forces and moments acting on the ship are eval-
uated using Fourier analysis. From the coefficients of the Fourier analysis, the maneuvering
derivatives can be determined. The hydrodynamic forces determined with transient motions
show a dependence of the frequency due to free-surface effects. According to the Manoeuvring
Committee of the ITTC [53], this frequency dependence should be checked and it should be
ensured that the coefficients are equivalent to those at zero frequency.

In a pure sway test, the ship performs a sinusoidal motion with its bow pointing into the
mean direction of travel i.e. the direction of the incoming flow (see Figure 3.14). The path
can be described by amplitude ⌘0, velocity u and time period T .

In a pure yaw test, the ship performs a sinusoidal motion while moving tangent to its path
(see Figure 3.14). Again, the path can be described by amplitude ⌘0, velocity u and time
period T .

⌘ ⌘

Figure 3.14.: Pure sway and pure yaw motion in PMM model tests

Further details on the derivation of maneuvering derivatives from the force tracks are given in
Schoop [89] and Zinkmann [129]. In Schoop [89] and Schoop-Zipfel et al. [93], the maneuvering
derivatives of the Series 60 ship are determined with virtual PMM tests. The captive motions
are conducted on different water depths to investigate the influence of the water depth on
the ship maneuvering motion. Zinkmann [129] conducts RANS simulations to determine the
maneuvering derivatives of a catamaran. A comparison with model test measurements shows
good agreement.

3.4 Solving the equation of motion

Once the hydrodynamic forces are properly determined, the motion of the vessel can be
calculated using the rigid-body kinetics described in Section 2.4.

Pérez and Clemente [85] investigate the mathematical problems in maneuverability. They
state that the most important part of the maneuverability is the physical problem; but once
it is solved, the mathematical problem of solving the ordinary differential equations system can
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be studied using different methods, such as the typical Runge-Kutta or Predictor-Corrector
methods. They state that Runge-Kutta methods can be used when the goal is to obtain global
parameters. Generally, the global parameters are of major interest, e.g. the rules given by
the IMO [50] refer to global parameters as tactical diameter and overshoot angles. However,
for a long time simulation, the trajectories can have a large deviation. For this case, they
recommend to use multi-step methods, such as predictor-corrector methods.

3.5 Concluding remarks

For the subsequent simulations of maneuvering in waves, two methods are chosen. The slender-
body theory based on the MMG concept yields acceptable results with a low computational
effort. Furthermore, simulations based on hydrodynamic derivatives are conducted. Once the
derivatives are known, the computational effort is very low and arbitrary maneuvers can be
simulated in very short times.





4
Seakeeping

“The basic law of the seaway is the apparent lack of any law.”

Lord Rayleigh (1842-1919)

This chapter discusses the simulation of ship motions in waves, and a general description of
the adopted theory is given. Subsequently, a deeper insight into the time-domain solution
using the impulse-response functions is provided. The simulation examples are meant to
demonstrate both capabilities and validation.

Linear wave theory is often applied to determine the response of a ship in regular waves.
Results in an irregular seaway can be obtained by linearly superposing the results in regular
waves. Subsequently, it is sufficient from a hydrodynamical point of view to analyse the wave
induced forces and the motion behavior of the ship in regular waves of small steepness (Faltin-
sen [28]). When presuming a steady state (no transient effects due to the initial condition and
the motions and loads are oscillating with the same frequency as the waves) the hydrodynamic
problem of a ship in regular waves can be split into two parts:

• A forced harmonically oscillating motion in calm water resulting in so-called hydrody-
namical forces and moments; namely the added mass, damping and restoring terms.

• The restrained body in regular waves where the waves exert the so-called wave excitation
forces.

Generally, linearity is assumed, so the forces obtained in these sub-problems can be added to
give the total hydrodynamic forces.
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4.1 Seakeeping coordinate system

The encounter angles between the ship, the earth and the waves are defined in Figure 4.1.

y0

x0

O  

y, v

x, u

C

�
⌘

Figure 4.1.: Definitions for seakeeping

In seakeeping, the motion is often described relative to a coordinate system K fixed to an
equilibrium virtual ship that moves at a constant speed and heading that corresponds to
the average motion of the actual ship (Fossen [33]). In general, hydrodynamic computation
methods use this coordinate system to compute the loads and motions of a ship in waves, see
e.g. Söding and Bertram [111]. This is in contrast to maneuvering theory, where the equations
of motion are described in a coordinate system fixed to the ship ( ˆK).

The seakeeping coordinate system K{S, xS , yS , zS} is not fixed to the simulated ship. It moves
with the average ship velocity, but does not follow the wave-frequency oscillations of the ship.
When no waves are present, its origin S equals the origin of the body-fixed coordinate system.
Waves cause that the ship oscillates around this equilibrium condition. The position vector
in the K coordinate system is defined as

⇠ = (⇠1 ⇠2 ⇠3 ⇠4 ⇠5 ⇠6)
T , (4.1)

where the ⇠i are the positions/angles with respect to the body-fixed coordinate system.
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4.2 Hydrodynamical forces and moments

The hydrodynamical forces are the so-called added mass and damping terms. These forces
occur due to forced oscillatory motion of the ship without the presence of incoming waves,
however, waves are radiating from the ship. The oscillating pressure field around the ship
generates forces that can be calculated by integrating the pressure over the hull surface. The
added mass is by definition the force term proportional to the body acceleration while the
damping is proportional to its velocity. They can subsequently be written as

fhydrodynamical = �A

d2⇠

dt2
�B

d⇠

dt
. (4.2)

The word ‘added mass’ may be misleading, since it is not a finite fluid mass that is oscillating
together with the ship, which is a common misunderstanding. It can be shown, for instance,
that for a catamaran, the heave added mass can be negative in a certain frequency domain
(Faltinsen [29]).

Different physical effects cause a damping of the ship motion. Faltinsen [29] sums the four
main sources of damping for a rigid ship as:

• wave radiation damping,

• hull-lift damping,

• foil-lift damping,

• viscous damping.

The former three can easily be calculated with potential theory, while the viscous damping is
small when the flow does not separate and induces vortices.

Both the added mass and the damping terms are dependent on the frequency of the forced
oscillation of the ship.

Furthermore, restoring terms are present. The restoring forces and moments are obtained
by integrating the pressure loads due to the hydrostatic pressure. The force and moment
components can be written as

f restoring = �C⇠ . (4.3)
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4.3 Strip theory

Because it is necessary to both maintain a quick simulation time and an appropriate level
of accuracy, a certain level of simplicity must be pursued. On account of this, strip theory
methods are applied for the seakeeping calculations. 2D strip methods simplify the complex
3D problem of an advancing ship in waves by dividing the hull into a finite number of transverse
strips. For slender bodies, the variation of the flow is much larger in transverse direction than
in longitudinal direction of the body. It is therefore sufficient to compute the two-dimensional
hydrodynamics of each strip and integrate them over the length of the ship to obtain the
three-dimensional solution. The theory is explained by several authors, see e.g. Newman [76],
Faltinsen [28], Journee and Massie [57].

In the present work, the strip theory program PDSTRIP [111] is used for the seakeeping
calculations, which computes the seakeeping behavior of ships and other floating bodies ac-
cording to the strip method. For the motions, a method from Söding [103] is applied, while
a procedure of Hachmann [40] is used to determine the pressure. PDSTRIP considers mainly
linear responses, but it takes into account some nonlinear effects. It gives the responses to
regular waves as RAO.

Schoop-Zipfel and Abdel-Maksoud [90] use PDSTRIP for determining the RAO of a S-175
container vessel and a Wigley hull. The results agree well with experimental data. Recently,
Gourlay et al. [34] have systematically compared the simulation results of PDSTRIP with the
results of other seakeeping simulation codes and the results from model tests. The motions
simulated with PDSTRIP are in good agreement with the results of the other codes and the
measurements.

In principal, strip theory is valid for long and slender bodies. However, experiments have
shown that strip theory gives reliable results for bodies with a length to breadth ratio larger
than three (Journée and Massie [57]). It should further be noted that strip theory is basically
a theory for the simulation of high-frequency motion (Faltinsen [28]), meaning that it is more
applicable in head sea waves than in following sea for a ship with forward speed. Moreover,
strip theory is suitable for the simulation of the ship motion at low Froude number. It does
not properly account for the interaction between the steady wave system of the advancing ship
and the oscillatory effects of ship motion. Another limitation of strip theory is the linearity
between response and incident wave amplitude.

Strip theory codes do not compute the zero- and infinite-frequency cases. According to Perez
and Fossen [82], a curve fitting can be applied to the hydrodynamic data to obtain values for
! = 0 and ! = 1. The fact that the damping values are zero for ! = 0 and ! = 1 can be
exploited.
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4.4 Hydrodynamical forces of S-175 container ship

Exemplarily, the added mass and damping terms are determined for the S-175 container ship.
Table 3.4 has shown the main dimensions and the geometry of the hull. The linear strip theory
code PDSTRIP is applied to determine the frequency-dependent added mass and damping
terms. Figures 4.2 and 4.3 show the components of the main diagonal of the added mass and
damping matrices, respectively. All components of the lateral and the longitudinal mode can
be seen in the Appendix in Figures B.1 to B.4.

The calculated damping coefficients are extended to zero frequency and the double of the
maximum calculated frequency. The damping values are zero for these frequencies. The
values in between are interpolated by a piecewise cubic hermite interpolating polynomial.
A zero gradient is enforced for the end values. The solid lines in the figures represent the
calculated values as obtained with PDSTRIP and the dashed lines show the fitted graphs
where the limits for ! = 0 and ! = 1 are employed.
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Figure 4.2.: Added mass of S-175 for zero speed
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Figure 4.3.: Potential damping of S-175

4.5 Frequency-domain approach

The classical equation of motion in frequency domain yields

[M +A(!)]¨⇠ +B(!) ˙⇠ +C⇠ = f e , (4.4)

where A(!) is the frequency-dependent added mass matrix, B(!) is the frequency-dependent
potential damping matrix and f e is the excitation force vector.

Solving this equation yields the motion amplitudes of the ship as a function of the wave
encounter frequency, the so-called RAO. Once the RAOs are known, the ship motion can also
be described with them. The wave elevation is ⇣ = ⇣A cos(!t), meaning that the motion and
velocity of the ship yields

⌘ = RAO⇣A cos(!t+ ✏) , (4.5)

⌫ = �RAO⇣A! sin(!t+ ✏) . (4.6)
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4.6 Time-domain approach

The time-domain approach is based on the work of Cummins [20]. The impulse-response
function according to Cummins proves that the motion response of a ship on an impulse,
i.e. an external load at time t, is comprised of the superposition of all fading impulses in
preceding time steps up to the time t. The advantage of this approach is that the reaction on
arbitrary loads can be determined if the reaction on the unit impulse is known. However, it
has to be noted that nonlinear excitations also yield linear responses. The superposition of
the fading impulses is often referred to as the memory effect.

Using the results of Cummins [20] and Ogilvie [79], the frequency-dependent coefficients A(!)

and B(!) can be transformed for linear systems to a formulation in time-domain.

When applying Cummins’ formulation [20], the hydrodynamical forces and moments acting
on a ship due to time varying ship motions can be written as

fhydrodynamical = �A

¨

⇠ �
Z t

�1
K(t� ⌧) ˙⇠(⌧)d⌧ �C⇠ , (4.7)

with the generalized hydrodynamic added mass matrix A, the spring stiffness matrix C, and
a matrix of retardation functions K(t � ⌧). Rewriting the equation of motion by putting
the hydrodynamical forces on the left hand side and adding additional external loads f e, one
obtains the Cummins equation, in honor of his work:

[M +A]

¨

⇠ +

Z t

�1
K(t� ⌧) ˙⇠(⌧)d⌧ +C⇠ = f e (4.8)

To obtain the hydrodynamic coefficients A, C, and K, an approach proposed by Ogilvie [79]
can be used. By assuming that the floating object carries out oscillations and then comparing
Cummins equation (Eqn. 4.8) with the equation of motion in frequency domain (Eqn. 4.4), it
is shown that the relation between the frequency-dependent hydrodynamic coefficient matrices
A(!) and B(!) and the hydrodynamic coefficients in Cummins equation can be written as

A(!) = A� 1

!

Z 1

0
K(⌧) sin(!⌧)d⌧} , (4.9)

B(!) =

Z 1

0
K(⌧) cos(!⌧)d⌧ . (4.10)

The first equation is valid for all ! so that ! = 1 can be chosen,

A = A(1) . (4.11)
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The second equation can be rewritten by applying the inverse Fourier transform:

K(t) =
2

⇡

Z 1

0
B(!) cos(!⌧)d! . (4.12)

K(t) is a matrix of retardation functions. The convolution integral in this equation captures
the so-called fluid memory effects. The waves that are generated by the moving ship will last,
in theory, for all susequent times and influence then the motion of the ship. Figure 4.4 shows
the entries on the main diagonal of the retardation function matrix of the S-175.
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Figure 4.4.: Retardation functions of the potential damping of S-175

Fossen [32] states that from a numerical point of view it is better to integrate

K(t) =
2

⇡

Z 1

0
[B(!)�B(1)] cos(!⌧)d! , (4.13)

than to use Eqn. (4.12), because B(!)�B(1) is zero at ! = 1. To include this in Cummins
equation, Fossen [32] writes Eqn. (4.12) as

K(t) =
2

⇡

Z 1

0
[B(!)�B(1) +B(1)] cos(!⌧)d!

= K(t) +
2

⇡

Z 1

0
B(1) cos(!⌧)d! (4.14)

which yields Z t

�1
K(t� ⌧) ˙⇠(⌧)d⌧ =

Z t

�1
K(t� ⌧) ˙⇠(⌧)d⌧ +B(1)

˙

⇠ . (4.15)
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Here it is made use of the fact that the inverse Fourier transform of the constant B(1) is an
impulse and that

B(1)

˙

⇠ =

Z t

�1
(

2

⇡

Z 1

0
B(1) cos(!⌧)d!) ˙⇠(⌧)d⌧ . (4.16)

So, finally Cummins equation (Eqn. (4.8)) can be written as

[M +A(1)]

¨

⇠ +B(1)

˙

⇠ +

Z t

�1
K(t� ⌧) ˙⇠(⌧)d⌧ +C⇠ = f e . (4.17)

The hydrodynamical forces can be summed up as:

fhydrodynamical = �A(1)

¨

⇠ �B(1)

˙

⇠ �
Z t

�1
K(t� ⌧) ˙⇠(⌧)d⌧ �C⇠ . (4.18)

For further details, reference is made to Fossen [32].

4.7 Time-domain equations in body-fixed coordinates

Hydrodynamic maneuvering derivatives are normally given in body-fixed coordinates, i.e. in
the ˆK coordinate system. To derive a unified theory, it is therefore useful to also represent
the impulse-response function in the ˆK coordinate system. Subsequently, Eqn. (4.18) needs
to be transformed from K to the rotating coordinate system ˆK. With this transformation,
Coriolis and centripetal forces appear due to the rotation of the body-fixed coordinate system
around the inertial coordinate system.

The kinematic transformations are according to Fossen [33]:

⇠ := �⌘ , (4.19)

�⌫ ⇡ ⌫ + U(L�⌘ � e1) , (4.20)

� ˙⌫ ⇡ ˙

⌫ + UL⌫ , (4.21)

with

e1 :=

0

BBBBBBBBB@

1

0

0

0

0

0

1

CCCCCCCCCA

, L :=

0

BBBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 �1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

CCCCCCCCCA

. (4.22)
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Using this transformation yields for Eqn. (4.18)

fh = �A[

˙

⌫ + UL⌫]�B(1)[⌫ + U(L�⌘ � e1)]�
Z t

�1
K(t� ⌧)�⌫(⌧)d⌧ �C�⌘ . (4.23)

Assuming a steady state, when no waves and wind are present, yields

fh = �A(1)[

˙

⌫ + UL⌫]�B(1)[⌫ + UL�⌘]�
Z t

�1
K(t� ⌧)�⌫(⌧)d⌧ �C�⌘ . (4.24)

The influence of �⌫ on the forward speed is rather small and therefore commonly neglected
when computing the damping and retardation functions (Fossen [33]) such that

�⌫ ⇡ ⌫ + U(L�⌘ � e1) ⇡ ⌫ � Ue1 (4.25)

and subsequently

fh = �A(1)

˙

⌫ �C

⇤
A⌫ �B(1)⌫ �

Z t

�1
K(t� ⌧)[⌫(⌧)� Ue1]d⌧ �C⌘ , (4.26)

where
C

⇤
A = UA(1)L (4.27)

which are the linearized Coriolis and centripetal terms due to the rotation of ˆK about K.
More conveniently, the equation can be reformulated as

fh = �A(1)

˙

⌫ �D⌫ �
Z t

�1
K(t� ⌧)[⌫(⌧)� Ue1]d⌧ �C⌘ , (4.28)

with

D = C

⇤
A +B(1) (4.29)

= UA(1)L+B(1) (4.30)

Now the body-fixed velocity ⌫ and acceleration ˙

⌫ (known from Eqn. (2.27) and (2.28)) can
be used instead of ⇠ and its time derivatives.

When substituting the hydrodynamic coefficients with the terms obtained from strip theory,
one obtains terms similar to the terms obtained for the slender-body theory in Chapter 3 (see
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Fossen [32]).

D(!e) = B(!e) + UA(!e)L (4.31)

=

0

BBBBBBBBB@

B11 0 B13 0 B15 � UA13 0

0 B22 0 B24 0 B26 + UA22

B31 0 B33 0 B35 � UA33 0

0 B42 0 B44 0 B46 + UA42

B51 0 B53 0 B55 � UA53 0

0 B62 0 B64 0 B66 + UA62

1

CCCCCCCCCA

. (4.32)

Substituting the Salvesen, Tuck, Faltinsen (STF) strip theory coefficients (Salvesen et al. [88])
given in Appendix B.1 yields

D(!e) =U

0

BBBBBBBBB@

0 0 0 0 0 0

0 a22,A 0 a24,A 0 xAa22,A

0 0 a33,A 0 �xAa33,A 0

0 a42,A 0 a44,A 0 xAa42,A

0 0 �xAa33,A 0 x2Aa33,A 0

0 xAa22,A 0 xAa24,A 0 x2Aa22,A

1

CCCCCCCCCA

(4.33)

+

0

BBBBBBBBB@

0 0 0 0 0 0

0 B22 0 B24 0 B26

0 0 B33 0 B35 0

0 B42 0 B44 0 B46

0 0 B53 + UA33 0 B55 + UA53 0

0 B62 � UA22 0 B64 � UA42 0 B66 � UA62

1

CCCCCCCCCA

.

(4.34)

Bij are the frequency-dependent damping terms for zero ship speed. The index A denotes the
aft section.

4.8 Additional damping terms

The four main sources of damping are wave radiation damping, hull-lift damping, foil-lift
damping and viscous damping as written previously. The wave radiation damping can be
captured by the zero-speed potential theory. Additional corrections may be necessary for
the other parts. Linear damping can be included directly into the damping terms and the
retardation functions. Non-linear damping has to be added to the external forces on the
right-hand side of Cummins equation (Eqn. (4.8)).
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The linear damping can be introduced to the equation in different ways. Fossen [32] suggests
using an exponentially decaying ramp to add the zero-frequency viscous damping terms (Bv)
to the potential damping (Bp) (see Figure 4.5). The retardation functions then includes the
additional damping terms. Alternatively, the additional damping terms can be directly added
during the time-domain simulation. Ross and Fossen [86] have shown the equality of both
approaches.
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Figure 4.5.: Roll damping of S-175; potential (B44,p) and additional viscous damping (B44,v)

4.8.1 Roll damping

Roll damping is generated by wave radiation, vortex generation and the lift and friction
on the hull, see Himeno [44]. In addition, ship appendages can have a noticeable effect on
roll damping. For the consideration of the total roll damping, additional terms need to be
embedded in the simulation method.

To take viscous roll damping into account, a quadratic coefficient approach according to
Kröger [61] is used. The roll moment can be written as

m�(
˙�) = (dL + dQ| ˙�|) ˙� . (4.35)

The viscous roll damping content can be determined with experiments or numerical RANS
computations (see e.g. Handschel et al. [41]). Alternatively, the coefficients proposed by
Blume [14] can be used. In Blume, roll damping coefficients for different hull shapes and
driving conditions are determined experimetally with model tests. Further information on
the applied roll damping can be found in Detlefsen [24].

Figure 4.6 shows the roll motion of the S-175 container vessel. Two possibilities for applying
the additional damping are compared and contrasted. For the results labeled with �4e�↵!, an
exponentially decaying linear damping is added to the potential damping before building the
retardation functions. For the results labeled with �4, the linear damping is added directly
in the time domain. The figure shows that both approaches yield comparable results.
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4.8.2 Sway and heave damping

For motion in transverse and vertical direction, an additional nonlinear viscous damping can
be applied. As in the slender-body theory (see Section 3.3.3 and Söding [105]), the nonlinear
viscous damping reads

fy,NL = �1

2

⇢

Z

L
(v + xr) |v + xr| CDy d dx . (4.36)

Similarly, a force in vertical direction can be defined (Söding and Bertram [111]):

fz,NL = �1

2

⇢

Z

L
(w + xq) |w + xq| CDz d dx . (4.37)

The cross-flow drag coefficients CDy and CDz can be determined with experiments or viscous
RANS computations. For well rounded frame shapes, CDy = 0.8 is recommended by Söding
and Bertram [111]. If bilge keels, a knuckle at the keel or a knuckle at the bilge are present,
CDy = 1.2 can be assumed. For CDz, values between 0.4 and 0.8 are recommended; 0.4

can be used for sections which intersect the waterline at maximum breadth and 0.8 for fully
submerged sections.
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4.9 Additional restoring terms

To simulate straight motion, additional restoring terms have to be applied if the ship is not
self-propelled and has no steering. Similar to the fastenings in model testing, springs have to
be applied to the hull. Otherwise, the surge, sway and yaw motions will not be restored to
the average and the ship will lose its mean track. However, the spring terms influence the
motion of the ship, so care has to be taken when choosing the proper terms.

4.10 Wave excitation forces

Incoming waves cause a pressure variation along the ship hull which results in wave excitation
forces. The forces can be split in parts that are linearly dependent on the wave elevation and
nonlinear parts. Linear wave excitation forces of first order have a zero mean value. They
are the Froude Krylov and the diffraction forces. The nonlinear components have a non-zero
mean value and therefore produce non-oscillatory drift forces. Furthermore, the nonlinear
components produce also oscillatory forces with energy at higher and lower frequency than
the waves. Artyszuk [5] states that the forces at lower frequencies oscillate around the mean
second-order forces and are not significant in ship maneuvering. According to Fossen [33] the
nonlinear high-frequency forces are critical for oscillations in the structure (springing) but are
also of no concern for maneuvering. The second-order mean wave drift forces are addressed
in Section 4.13.

The linear exciting forces and moments are the loads of incident waves acting on a ship
that is restrained from moving. The unsteady fluid pressure can be divided into two effects.
One effect is the unsteady pressure induced by the undisturbed waves. The force due to
the corresponding undisturbed pressure field is called a Froude-Krylov force. The second
one is due to the changes of the wave shape by the structure and the associated change of
the pressure field. This force is called diffraction force. Both forces are of similar orders of
magnitude.

4.11 Solving the equation system

The simulation method is implemented into the potential framework panMARE; however, the
potential solution of panMARE is not used in the present work. The frequency-dependent
added mass and damping terms as well as the restoring terms and the wave excitation forces
are determined with PDSTRIP.

Figure 4.7 shows the workflow of the numerical simulation.
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Figure 4.7.: Computational algorithm for the seakeeping simulation

For the time-domain simulations, the added mass, damping, restoring and wave excitation
terms are predetermined and saved in a database. During the time-domain simulation, the
hydrodynamic forces acting on the ship can be determined according to Eqn. 4.28. Alter-
natively, the associated added mass and damping terms can be directly retained from the
database if the wave encounter frequency is known. Then Eqn. 4.4 instead of Eqn. 4.28 can
be solved to obtain the hydrodynamic forces. However, this is only possible for regular waves
with a known frequency.

The amplitudes and phase shifts of the linear wave excitation forces are stored for a set of
encounter angles �, wave lengths � and forward speeds of the ship U . The wave excitation
force can then be written as

f e = f

0
e,A⇣A cos(!t� kx0 cos(⌘)� ky0 sin(⌘) + ✏) . (4.38)

Schoop-Zipfel and Abdel-Maksoud [92] show that the linear wave excitation forces acting on
a Wigley hull in regular waves can be calculated with high accuracy using PDSTRIP.

The strong memory effects associated with the free-surface flow and the dependence of the fluid
force upon the ship displacement, velocity and acceleration introduce a degree of complexity
not encountered in ordinary differential equations free of strong memory effects. In Kring
and Sclavounos [60], the numerical stability of Newton’s rigid-body equations of motion for
a ship advancing in waves in the time domain is studied. It is concluded that a fourth-order
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Adams-Bashforth-Moulton method is optimal for practical work in terms of accuracy and
efficiency. However, for small time steps, many integration methods are stable and therefore
convergent. Therefore, a precise knowledge of the maximum time step of various integration
methods, before instability sets in, is an essential prerequisite for the development of a robust
and efficient seakeeping code. The problem of numerical instability is adressed in Section
2.4.4.

To solve the differential equation, the Runge-Kutta method of fourth order is applied, since it is
essentially easier to implement than a multistep method as the fourth-order Adams-Bashforth-
Moulton method. However, precise investigations of the time step size are conducted. Figure
4.8 shows exemplarily the heave and pitch motion of the S-175 in regular waves coming from
bow quartering direction. The amplitudes are shown on the right hand side of the figure.
The equation of motion is integrated with three different time integration schemes: explicit
Euler (EE), implicit Euler (IE) and fourth-order Runge-Kutta (RK4). Three different time
step sizes are used. The figure shows a clear convergence. Furthermore, the figure shows
that the fourth-order Runge-Kutta method can be applied with large time steps, while still
maintaining a high accuracy.

4.12 Verification and validation of seakeeping simulations

Extensive model test results for the S-175 container ship are available in the ITTC 1978 Pro-
ceedings [51]. The RAOs are measured for a large range of wave lengths and wave encounter
angles. The mass distribution, as used in the experiments, is given in Table 4.1.

Table 4.1.: Mass distribution of S-175

m xG zG GM i2xx i2yy i2zz
[kg] [m] [m] [m] [m2

] [m2
] [m2

]

24609620 -2.55 9.375 0.891 69.3889 1764 1764

Figure 4.9 shows a comparison of the measured motion amplitudes with the simulation results
in frequency-domain with PDSTRIP and the results using the time-domain approach based
on impulse-response functions as described above.

The cases with � = 0

�, � = 30

�, � = 90

�, � = 120

�, � = 150

� and � = 180

� are given in
Figure B.5 in Appendix B.

The figures reveal that the results of frequency domain determined with PDSTRIP are almost
in perfect agreement with the experimental data. The general agreement of the time-domain



4.13 Mean second-order wave loads | 95

simulation results is satisfactory, also in the resonance region. The roll motion is very sensitive
to additional damping and restoring terms. Some deviation of the roll motion can be observed
in the cases with � = 30

� and � = 60

� in the resonance region. Interestingly, the roll motion
in the resonance peak is overestimated for � = 30

� and underestimated for � = 60

�. The
simulated pitch motion in time domain shows a dent, where the frequency-domain result has
its resonance peak.

The same trends can be found for different ship speeds.

When the regular wave characteristics are known, the best results can be achieved within
frequency domain or by using the frequency-dependent hydrodynamic forces in time domain
(Eqn. (4.4)). However, the impulse-response function (Eqn. (4.28)) offers a satisfactory basis
to determine the hydrodynamic added mass and damping forces if the waves are unknown or
irregular and/or additional external forces are acting on the ship.

4.13 Mean second-order wave loads

Wave drift forces are the time-averaged wave forces acting on a body. The body is not
restrained from moving, unlike for the determination of the linear wave excitation forces.
The wave drift forces are approximately proportional to the square of the wave amplitude.
The methods that are usually used for the calculation of mean second-order wave loads can
basically be divided into two categories: a method directly integrating the pressure and a
method using the conservation of momemtum/energy. Their applicability depends on the
wave characteristics, the Froude number and the slenderness of the ship hull.

Söding and Bertram [111] derive the most important part of the wave drift forces from the
motions, pressures, etc. that depend linearly on the wave amplitude. Further parts of the
wave drift forces, usually much smaller components, require more complex computations.
The computations follow the approximations by Boese [15]. Boese proposes a simple method
to estimate the added resistance in waves. First, the pressure is integrated up to the still
water line. Under the assumption that the harmonic pressure variations are known on the
hull, the longitudinal forces and the added resistance can be determined. Furthermore, the
wetted water line oscillates around the still water line, which generates more components that
have to be taken into account. Both components yield an average longitudinal force of second
order. Söding and Bertram implement this method in PDSTRIP.

The drift forces can be displayed in dimensionless form denoted with a prime (0):

fx
0
=

fx

⇢g⇣2a
B2

L

, fy
0
=

fx

⇢g⇣2a
B2

L

, mz
0
=

fx
⇢g⇣2aB

2
. (4.39)
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Little experimental data on the mean second-order wave loads can be found in the literature.
Generally, the wave drift forces are difficult to determine experimentally. The forces depend
on the motion of the ship so that in experiments the hull may not be restrained from moving.
However, some fastening is necessary to be able to measure the acting forces.

Figure 4.10 shows the wave drift forces and yaw moment acting on the S-175 hull. Experimen-
tal results of the wave drift forces are given in Yasukawa [122]. The mass distribution, as used
in Yasukawa [122], is given in Table 4.2. The wave drift forces are determined and measured
for the advancing ship with a Froude number of Fn = 0.15. The figure reveals a satisfactory
agreement of the calculations with the experiments. The yaw moment is underestimated, but
the general slope can be determined with the calculations.

Table 4.2.: Mass distribution of S-175 for drift force calculations according to Yasukawa [123],
[122]

m xG zG GM i2xx i2yy i2zz
[t] [m] [m] [m] [m2

] [m2
] [m2

]

24801 -2.545 9.235 1.006 110.406 2216 2216

Also, in Schoop-Zipfel and Abdel-Maksoud [91], it is shown that the wave drift forces can be
determined with satisfactory accuracy via Söding and Bertrams’ theory [111] using PDSTRIP,
see as well Figures B.8 and B.9 in Appendix B. Furthermore, Augener and Vorhölter [6] present
very satisfactory results with the same theory. However, both references determine the mean
wave drift forces acting on a ship with zero forward speed. This simplification is questionable
for the maneuvering case. The forward speed can crucially influence the wave drift forces.

Comparable calculations in the literature (e.g. Skejic and Faltinsen [97]) show similar results
to the present work.

Therefore, the application of PSDTRIP to determine the wave drift forces appears adequate,
especially from an engineering point of view.
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angles; Fn = 0.15; measurements from Yasukawa [122]



5
Maneuvering in Waves

Two different approaches are developed to simulate the maneuvering behavior of ships in
waves. First, the so-called two-time scale model is presented. This model splits the motion
into a seakeeping and a maneuvering motion and solves each component separately, while
certain parameters are exchanged. Secondly, a unified theory is introduced. This theory
unifies the seakeeping and the maneuvering theories within one set of equations. Starting
with the seakeeping equations, nonlinear terms are introduced to describe the maneuvering
effects.

5.1 Two-time scale model

The maneuvering behavior of a ship in waves can be simulated by regarding the combined
seakeeping and maneuvering as a two-time scale problem. The assumption behind this model
is that the oscillating motion due to linear wave loads has a rapidly varying time-scale while
the maneuvering varies slowly. The two time-scales can then be solved separately while some
interaction effects have to be regarded. The maneuvering motion affects the rapidly varying
wave-frequency problem in terms of changing heading angles and average ship speeds. On the
other hand, the maneuvering analysis is influenced by the seakeeping in terms of the slowly
varying mean second-order wave loads.

The total motion can be written as the sum of the low-frequency (LF) maneuvering motion and
the wave-frequency (WF) seakeeping motion, following the principle of linear superposition
(Denis and Pierson [23]):

y = yLF + yWF , (5.1)

as illustrated in Figure 5.1.
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Figure 5.1.: Total motion as sum of LF and WF motion (Fossen [32])

The basic assumption is that the average track of the ship is not influenced by the linear wave
loads, since these only produce an oscillatory motion. The only effect of the seakeeping on
the maneuvering motion is due to the mean second-order wave drift forces that change slowly
in time. The WF motion is influenced by the maneuvering through the changing angle of
attack of the waves and the changing frequency of encounter. The LF maneuvering model
is extended to account for the slowly varying wave drift forces and moments. They are the
surge mean wave force fx, the sway mean wave force fy and the yaw mean wave moment mz.
The equation of motion for the LF motion can be written as (see Eqn. (3.7))

M

˙

⌫ = f(u, v, p, r, u̇, v̇, ṗ, ṙ, �) + fW , (5.2)

where the mean wave drift forces are marked with W .

The motion equation for maneuvering, applying the MMG notation, is written as (see
Eqn. (3.8))

M

˙

⌫ = fH + fP + fR + fW . (5.3)

The motion equation for seakeeping in frequency domain has been derived as (see Eqn. (4.4))

M

˙

⌫ = fh = �A(!)¨⇠ �B(!) ˙⇠ �C⇠ + f e . (5.4)

When this equation is solved for the motion amplitudes and the RAOs are known, the motion
can be solved directly as (see Eqn. (4.5) and Eqn. (4.6))

⌘ = RAO⇣A cos(!t+ ✏) , (5.5)

⌫ = �RAO⇣A! sin(!t+ ✏) . (5.6)

For irregular waves and when additional forces are applied, the impulse-response function has
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been derived in Section 4.7 to determine the forces acting on the ship (see Eqn. (4.28)):

M

˙

⌫ = fh = �MA ˙

⌫ �D⌫ �
Z t

�1
K(t� ⌧)[⌫(⌧)� Ue1]d⌧ �C⌘ + f e , (5.7)

where the wave excitation forces f e are added to the hydrodynamical forces.

When no waves are present, the equations become exactly the same as the still water ma-
neuvering equations. The resulting motion is then the same motion as predicted using a
maneuvering theory. Also, the other way around, when no steering is present, the results of
the WF component equal the linear seakeeping solution. However, no direct interaction is
regarded for the maneuvering in waves case.

5.1.1 Implementation

Both equations of motion are solved parallel to determine the maneuvering motion in waves.
The mean heading, ship speed and position calculated in the LF model are transferred to the
WF model after each iteration. Those values are used to determine the frequency of encounter,
the wave excitation forces and the displacement within the WF-model. The latter is needed
to calculate the restoring forces. The particular results of each component are summed up to
obtain the total motion. The general computational procedure is sketched in Figure 5.2.

+

Figure 5.2.: Computational algorithm of the two-time scale simulation
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WF model

The frequency of encounter depends not only on the wave frequency, but also on the global
position of the ship:

!e = !0t� kx0 cos(⌘)� ky0 sin(⌘) . (5.8)

The motion of the ship can be solved by either using the RAOs with Eqns. (5.5) and (5.6) or
by solving the equation of motion, Eqn. (5.4) or (5.7).

LF model

For the LF model, regular maneuvering simulations are conducted as described in Chapter 3.
Additionally, the mean second-order wave drift forces are added to the hydrodynamic forces
acting on the ship. The wave drift forces are predetermined with PDSTRIP and saved in a
database. During the time simulation, the forces are available in this database.

5.2 Unified theory

For the unified theory, the time-domain seakeeping equations are used as the basis. The linear
damping terms are modified to achieve agreement with the maneuvering theory in the calm
water case and necessary nonlinear terms are added. History effects are already included with
the retardation functions in the seakeeping equation. Linear and nonlinear wave loads are
also kept from the seakeeping model. The time-domain transformations are given in Chapter
4. The approach is based on the results of Fossen [32], [33].

Reconsidering the time-domain equation derived in Chapter 4 based on the impulse-response
function (Eqn. (4.28)) gives

M

˙

⌫ = fh = �A(1)

˙

⌫ �D⌫ �
Z t

�1
K(t� ⌧)[⌫(⌧)� Ue1]d⌧ �C⌘ + f e . (5.9)

This equation has been derived using zero-speed potential coefficients. The remaining speed-
dependent damping terms have to be added directly in time domain. Speed-independent
damping terms can also be regarded by modifying the damping terms that provide the basis
for the retardation functions (see Section 4.8). However, the maneuvering derivatives, which
are of major interest in this work, are generally speed dependent, so that a direct inclusion in
time domain is more reasonable.

In contrast to the two-time scale method, the unified theory provides a direct coupling of
the low-frequency maneuvering motion and the wave-frequency motion. Subsequently, the
maneuvering motion is also influenced by the first-order wave loads. The entire motion of the
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ship is described with one set of equations.

Unified theory based on MMG model

To evolve the unified theory, the forces due to maneuvering motion have to be incorporated
into Eqn. 5.9. Applying a MMG model, the forces of the propeller and the rudder and the
mean wave drift forces are added as additional exciting forces. The hull forces consist of linear
added mass forces and linear and nonlinear damping forces.

The motion equation then becomes

M

˙

⌫ = fH + fP + fR + f e + fW , (5.10)

with

fH = �A(1)

˙

⌫ �D⌫ �
Z t

�1
K(t� ⌧)[⌫(⌧)� Ue1]d⌧ �C⌘ + fNL,maneuvering(⌫) , (5.11)

where

D = C

⇤
A +B(1) , (5.12)

C

⇤
A = UA(1)L . (5.13)

When using the slender-body theory to determine the forces due to maneuvering motion, the
linear damping forces yield (see Eqn. (3.54))

Bmaneuvering =

u ·

0

BBBBBBBBB@

0 0 0 0 0 0

0 �a022,m 0 0 0 �a022,mxm +

R x
m

x
a

a022dx�A0
11

0 0 0 0 0 0

0 a042,m 0 0 0 a042,mxm �
R x

m

x
a

a042dx

0 0 0 0 0 0

0 �xma022,m �
R x

f

x
m

a022dx+A0
11 0 0 0 �x2ma022,m +

R x
m

x
a

xa022dx�
R x

f

x
m

xa022dx

1

CCCCCCCCCA

,

(5.14)

with a linear dependence on the forward speed u. The separation section is generally close
to the stern of the ship. The integral along the hull behind the separation point (

R x
m

x
a

adx) is
subsequently small and can be neglected. The integral along the hull in front of the separation
point equals approximately the entire ship’s added mass. For the forward speed, it holds
that u ⇡ U . So, the matrix equals the linear speed-dependent damping terms obtained in
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seakeeping. These are (see Eqn. 4.33)

D(!e) =

U ·

0

BBBBBBBBB@

0 0 0 0 0 0

0 a22,A 0 a24,A 0 xAa22,A

0 0 a33,A 0 �xAa33,A 0

0 a42,A 0 a44,A 0 xAa42,A

0 0 �xAa33,A +A33 0 x2Aa33,A +A53 0

0 xAa22,A �A22 0 xAa24,A �A42 0 x2Aa22,A �A62

1

CCCCCCCCCA

.

(5.15)

The terms are integrated to the point where the flow presumably separates. In seakeeping
theory, this is assumed to be the aft section, denoted by A. In maneuvering theory, this
section is specified and denoted by m.

The zero-speed damping matrix B does not appear in maneuvering, since it is zero for ! = 0.

In seakeeping, D is build for ! = 1. However, in maneuvering it is needed for ! = 0. To
achieve the maneuvering results with the unified theory and ⇣A = 0, the additional damping
terms are used with ! = 0. Simulations with the S-175 and the KVLCC2 show that, otherwise,
the turning rate is too small and subsequently the turning circles become too large.

The nonlinear maneuvering forces are calculated according to the nonlinear terms in slender-
body theory. Similarly, results are found for the propeller and rudder forces (fP and fR)
according to Section 3.3.1 and Section 3.3.2.

Unified theory based on hydrodynamic derivatives

Alternatively, the maneuvering motion can be described based on a whole ship model using
hydrodynamic derivatives. To unify this model and incorporate the wave-induced motion,
some assumptions have to be made. To describe the hull forces, it is assumed that the matrix
D in Eqn. 5.11 can be substituted by the linear hydrodynamic derivatives. Furthermore, the
propeller, rudder and nonlinear hull forces are included in the hydrodynamic derivatives. The
added mass terms included in the hydrodynamic derivatives are omitted and replaced by the
infinite-frequency added mass from seakeeping theory. The equation of motion then yields

M

˙

⌫ =�A(1)

˙

⌫ �
Z t

�1
K(t� ⌧)[⌫(⌧)� Ue1]d⌧ �C⌘

+ f(u, v, p, r, �) + f e + fW , (5.16)

with the term f(u, v, p, r, �) as described in Section 3.2 but not including added mass terms.
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Other than in the two-time scale model, the equations do not fall back on the maneuvering
equations when no waves are present. Also, the equations are different to the linear seakeeping
equations when no steering is performed. However, the maneuvering and seakeeping effects
are directly coupled and interaction effects are not neglected.

5.3 Results

Simulations are conducted for the S-175 container ship and the KVLCC2 tanker ship. Ex-
perimental data is available for the S-175 in Yasukawa [122]. Ueno et al. [114] perform model
tests of maneuvering in waves for a VLCC tanker comparable to the KVLCC2.

A ship in waves does not necessarily drift towards the wave propagating direction. The turning
circles in waves can be characterized by the drifting distance HD and the drifting direction
µD. Ueno et al. [114] define the drifting distance HD as the distance between successive ship
positions, in which the wave encounter angle � is equal to 90

�. The drifting direction µD is
defined as the offset angle between the wave propagating direction and the moving direction
of ship positions, in which the wave encounter angle � is equal to 90

�. The two parameters
are shown in Figure 5.3. They are almost independent of the initial wave encounter angle.

µD

HD
HD

Figure 5.3.: Definition of drifting distance HD and drifting direction µD

Furthermore, the waves influence the classical maneuvering characteristic parameters, i.e. ad-
vance and tactical diameter in turning circle maneuvers and overshoot angles and times in
zig-zag maneuvers. These influences are strongly dependent on the initial wave encounter
angle.
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5.3.1 S-175

The results of the two-time scale model and the unified theory are shown for the S-175
container ship. The main dimensions and the hull geometry have been introduced in Table 3.4.
The simulations are conducted with a mass distribution according to Table 4.2. Measurements
of the hull drift forces and turning circles in waves are given in Yasukawa [122] and are
borrowed in the present work for validation.

The work by Yasukawa [122] is the most extensive experimental work on ship maneuvering
motion in waves known to the author.

The LF-component of the two-time scale model is calculated with the slender-body theory,
whereas the wave drift forces are additionally added. The turning circles without the influence
of the waves have been presented in Figure 3.13. The second-order wave drift forces are
determined with PDSTRIP (see Section 4.13). Figure 4.10 has shown a comparison of the
simulated forces with the measured results from Yasukawa [122]. The influence of the ship
speed on the wave drift forces and the yaw moment can be seen in Figure B.6 in the appendix.

The simulations with the unified theory are based on the MMG model using the slender-body
theory. The unified theory based on the whole ship model, using hydrodynamic derivatives is
applied for the KVLCC2 tanker.

First, maneuvers in calm water simulated with the unified theory are presented to exemplify
the influence of the impulse-response function on the still water maneuvering motion. The
inclusion of the retardation function, in comparison to the maneuvering equations used in
Chapter 3, influences the simulation results. Figure 5.4 shows the simulated �35

� turning
circle. The simulation with straight-forward unified theory shown with solid blue lines is
opposed to the results from Chapter 3 shown with dashed blue lines. The figure shows
that the speed loss, the transverse velocity and the yaw rate are clearly higher when using
the unified theory. This indicates that the retardation function introduces an additional
negative damping in this case. By increasing the cross flow drag coefficient CD, the calm
water maneuvering characteristics equal the results from the maneuvering simulations. The
results with the artifically increased CD are labeled as ‘unified tuned’ in the figure. This
engineering approach allows for comparing the results of the unified theory with the still
water maneuvering.

Similarly, zig-zag maneuvers are simulated, see Figure 5.5. The straight-forward unified result
deviates only slightly from the maneuvering result. However, using the increased cross-flow
drag coefficient CD as for the turning circle, the deviation becomes smaller and the agreement
is satisfactory.
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Figure 5.4.: �35

� turning circle of S-175; comparison of unified theory with maneuvering
theory

Turning circles in regular waves

Subsequently, the influence of the waves on the turning circle maneuver is shown. First, the
two-time scale model is applied and the results are compared to experimental data. Then, the
unified theory is used to simulate turning circles in regular waves. Differences to the results
of the two-time scale model are highlighted.

Two-time scale model Figure 5.6 shows the average track during port and starboard turning
circle maneuvers in regular waves of different lengths with an amplitude of ⇣A = 1.75m. The
LF component is simulated with three degrees of freedom in these simulations. The heel is
neglected. Start of the maneuver is the time instant when the midship is in a wave trough.
Measurements (Yasukawa [122]) are compared to the simulations. The figures reveal that the
simulations roughly capture the turning motion in regular waves. The wave drift forces show
a strong dependence on the wave length (which can e.g. be seen in Figure B.6), which results
in the varying turning motion in the different wave length cases. Simulations with different
wave lengths indicate that the wave length dependence might be shifted in the simulations.
The measurements for �/LPP = 0.7 show a slightly better agreement with the simulations for
�/LPP = 1.0 and the measurements for �/LPP = 1.0 show a slightly better agreement with
simulations for �/LPP = 1.1, as shown with red curves in the figures. The drifting direction
can be reproduced very well within the simulations.

In the case with �/LPP = 0.7, the ship is not able to turn against the waves within the
simulations. In this case, the longitudinal drift force and the drift yaw moment have the
largest maximum values (see Figure B.6). Those occur at an encounter angle of � = 130

� as
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Figure 5.5.: �20

�/�20

� zig-zag maneuver of S-175; comparison of unified theory with maneu-
vering theory

well as � = 230

� for fx and � = 120

� as well as � = 240

� for mz. The turning stops at an
encounter angle of � = 118

�.

It is difficult to judge the drifting distance and direction, since the exact positions with � = 90

�

are not known from the experiments. Furthermore, a maximum of two complete turns are
measured for each wave condition, usually even less. Therefore, a comparison of the advance
and the tactical diameter of the turning circles in regular waves is shown in Figure 5.7. The
figure shows the simulated values contrasted with the measured values from Yasukawa [122].
Furthermore, the still water values are shown in the figure. The simulated values agree very
well with the measurements. The qualitative dependence on the wave length is reproduced
in all cases. Some quantitative deviation can be observed in the tactical diameter of the 35

�

turning circle with a wave angle of ⌘ = 270

�. In this case, the simulated tactical diameter
is under-predicted at all wave lengths. The starboard and port turns show almost equal
characteristic parameters for ⌘ = 180

� due to the symmetry.

The behavior of the WF component for the �35

� turning circle in regular waves with �/LPP =

0.7, ⇣A = 1.75m and ⌘ = 270

� can be seen in Figure 5.8. However, the results are achieved
with the drift force for �/LPP = 1.0, since the turning trajectories show a slightly better
agreement with the measurements of Yasukawa [122] and the turning motion is not stopped
due to large wave drift forces and moment, as described above. The wave-induced high-
frequency motion is simulated with the RAO using Eqn. 5.5 and Eqn. 5.6. These equations
do not include the memory effects of the fluid.

The results of ship speed, drift angle, heave motion, roll and pitch angle as well as yaw
rate during the port turn in beam sea generally reproduce the increases and decreses of the
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motion. However, a time shift between the simulations and the experiments can be observed.
The simulations have an increasing time delay meaning that the simulated yaw rate is larger
than the one of the experiment. Apart from this time shift, the agreement is satisfactory.
The maximum amplitudes are in fair agreement for each motion component.

Unified theory The same turning circle maneuvers in regular waves are simulated as in the
two-time scale model. The approximations described above are applied for the simulations.
Figure 5.9 shows the ±35

� turning circles with wave angles of ⌘ = 180

� and ⌘ = 270

�. The
figure compares the simulation results with the results of the two-time scale model and the
experimental results given in Yasukawa [122].

The results obtained with the unified theory are very similar to the results of the two-time
scale model. The most significant difference is that the turning motion in the case with
�/LPP = 0.7 is not trapped but the ship conducts the entire turn. Obviously, the linear wave
loads cause the moments supporting the turning direction to exceed the counteracting wave
drift moments. Besides this case, the linear wave loads - and subsequently the WF motion -
seem to have a minor influence on the average track of the ship.

Figure 5.10 opposes the advance and tactical diameter simulated with the unified theory to
the values from the two-time scale model and the experimental values. For the case with
⌘ = 180

�, the results are very comparable to the results obtained with the two-time scale
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model. This is not true for the case with beam waves. The advance of the starboard turns are
clearly smaller than the values obtained with the two-time scale model and the experimental
results for ⌘ = 270

�. Especially for �/LPP = 0.7, the advance simulated with the unified
theory is smaller than the two-time scale results and the experimental value. This can also
be observed in Figure 5.9. However, the tactical diameter shows a better agreement with the
experiments than the two-time scale model. Further, the overall track is in better agreement
with the measurement, as can be seen in Figure 5.9.

The individual motion components are shown in Figure 5.11 for a wave length ratio of
�/LPP = 0.7 and a wave angle of ⌘ = 270

�. The figure also shows the results of the two-
time scale model for comparison. Figure C.3 in the appendix contrasts and compares the
simulation results to the experimental data of Yasukawa [122]. As described previously, the
result with the two-time scale model is obtained with the wave drift force of �/LPP = 1.0.
The average rate of turn in the current simulation is slightly lower than in the simulation
with the two-time scale model. This is, however, also the case without waves, see Figure
5.4. Furthermore, a direct comparison of the average values is factually flawed due to the
different wave drift forces. The temporal course of the values simulated with unified theory
and with two-time scale model is very similar. The memory effect has little influence, at least
in this case. The heave motion decays faster in the simulation with the two-time scale model.
Besides this, no clear deviation can be observed.
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Alternatively, the WF results of a hybrid theory are shown in Figure 5.12. The WF component
of the two-time scale model is simulated with the impulse-response function (Eqn. (5.7)) in
these simulations. The figure shows that the there is no noteworthy difference between the
WF components and the result of the unified theory. In this way, the memory effects can also
be included in the two-time scale model.



5.3 Results | 115

2
4
6
8

u
[

]

2
4
6
8

�20

0

20

�
[

]

�20

0

20

�2

0

2

z/
⇣ A

[
]

�2

0

2

�5

0

5

�
[

]

�5

0

5

�2
0
2

✓
[

]

�2
0
2

�1

0

r
[

]

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

�1

0

t [ ]

Figure 5.11.: Motion components during �35
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unified and two-time scale theory (two-time scale results with drift forces for
�/LPP = 1.0); ⇣A = 1.75m, �/LPP = 0.7, ⌘ = 270

�; WF simulated with RAO



116 | Maneuvering in Waves

2
4
6
8

u
[

]

2
4
6
8

�20

0

20

�
[

]

�20

0

20

�2

0

2

z/
⇣ A

[
]

�2

0

2

�5

0

5

�
[

]

�5

0

5

�2
0
2

✓
[

]

�2
0
2

�1

0

r
[

]

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

�1

0

t [ ]

Figure 5.12.: Motion components during �35

� turning circle of S-175 in regular waves using
unified and two-time scale theory (two-time scale results with drift forces for
�/LPP = 1.0); ⇣A = 1.75m, �/LPP = 0.7, ⌘ = 270

�; WF simulated with
impulse-response function



5.3 Results | 117

Zig-zag maneuvers in regular waves

�20

�/�20

� zig-zag maneuvers are simulated in regular stern, beam and bow waves of differ-
ent length and plotted in Figures C.4, C.5 and C.6 in the appendix. The figures show the
simulation result of the unified theory and the two-time scale model in waves contrasted with
the results in calm water. No experimental data is available for this case.

In stern and head waves, the effect of the waves on the maneuver rises with increasing wave
length. Beam waves show an opposite trend; the maneuver is influenced more by short waves
than by long waves. Stern waves (⌘ = 0

�) have the smallest effect on the zig-zag maneuvers.
Both theories show a slight increase of the response time. The overshoot angles increase a
little. The largest effects are in waves with a length of �/LPP = 1.0. The unified theory
shows these effects more pronounced than the two-time scale model. However, the still water
overshoot angles are also larger when simulated with the unified theory. For beam waves
with a wave length of �/LPP = 0.5, the maneuver cannot be finished due to the large wave
drift forces. The other wave length cases show a decrease of the overshoot angles due to the
wave drift forces. The decrease predicted by the two theories is practically the same. The
overshoot time, however, is somewhat larger in the results produced with the unified theory.
Head waves lead to an increase of the overshoot angles. For �/LPP = 0.5, almost no effect
of the waves on the maneuvers can be observed. Both theories predict the same increase of
the overshoot angles and times in waves with �/LPP = 1.2. In the cases with �/LPP = 0.7

and �/LPP = 1.0, the largest deviation between the two theories occurs. In wave lengths
of �/LPP = 1.0, the overshoot angles become very large and especially the overshoot times
become extensive. Both theories show the same trend in this case.

The change of the oscillatory WF motion is rather small since the wave angle of encounter �
has only little variation over time. This results in small changes of the wave excitation forces
and the results are similar to the straight-forward motion simulated in Chapter 4 and is not
discussed here.

5.3.2 KVLCC2

The second simulation example considers the KVLCC2 tanker. Due to the lack of experi-
mental data on the KVLCC2 performing maneuvers in waves, the results are compared with
results from Ueno et al. [114]. Ueno et al. conduct an experimental study on the maneuvering
motion of a VLCC model ship in regular waves. The present study is based on the KVLCC2
given in Table 3.3. The wave drift forces are calculated for the KVLCC2 hull geometry but
with the mass distribution of the VLCC as presented in Ueno et al. [114].

The maneuvering simulations in the present study are based on the hydrodynamic derivatives
given in Cura Hochbaum et al. [22], see Section 3.2. A validation of the seakeeping (straight
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motion in waves and wave drift forces) is given in the appendix, see Section B.3.

Simulations with the two-time scale model and the unified theory are conducted. First, the
unified model is used to simulate maneuvers with ⇣A = 0. The results are compared with
the still water results of Chapter 3. Subsequently, turning circle and zig-zag maneuvers are
conducted in regular waves with different lengths and encounter angles. The results are
contrasted with the experimental data given in Ueno et al. [114].

Figure 5.13 shows a �35

� turning circle simulated with unified theory. The maneuvering
characteristics in calm water are again influenced by the impulse-response function.
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Figure 5.13.: �35

� turning circle of KVLCC2; comparison of unified theory with maneuvering
theory

The maneuvering simulations are based on a set of 45 derivatives. A fine tuning is therefore
not trivial. By increasing the linear X-derivatives, the simulation result can be improved
slightly, as shown in Figure 5.13. However, Figure 5.14 reveals that the zig-zag maneuver
is not significantly influenced by this increase. Investigations have shown that this “tuning”
does not influence the trend induced by waves. So, for the present work, the still water
results are regarded as sufficient. Only the effects generated by waves need to be assessed.
The experimental data used in the present work (given in Ueno et al. [114]) is limited to the
drifting distance and the drifting angle. A precise description of the calm water maneuvers is
not necessary to assess this change. Furthermore, the maneuvering simulations are based on
the KVLCC2; however, Ueno et al. [114] use a different hull geometry in their experiments.
A deviation of the results is therefore expectable and only tendencies can be compared.
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Figure 5.14.: �20

�/�20

� zig-zag maneuver of KVLCC2; comparison of unified theory with
maneuvering theory

Turning circles in regular waves

Turning circle maneuvers are simulated with the KVLCC2 in regular waves with an amplitude
of ⇣A = 2.15m and a wave angle of ⌘ = 180

� and ⌘ = 270

�. Figure 5.15 shows exemplarily
the port turning circle maneuvers in waves with an angle of ⌘ = 270

� and three different
wave lengths (�/LPP = 0.4, �/LPP = 0.6 and �/LPP = 1.0). Starboard turning circles and
turning circles with a wave angle of ⌘ = 180

� are shown in the appendix in Figure C.7. No
experimental data is available for the track of the ship. However, Ueno et al. [114] show the
drifting distance and direction for their VLCC in regular waves. Figure 5.16 compares the
simulated values with the experimental data.
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Comparison of unified and two-time scale theories The following section focuses on the dif-
ferences between the unified theory and the two-time scale theory. A comparison with the
experiments is then given.

The drifting distance calculated with unified theory is in good agreement with the results
of the two-time scale model (see Figure 5.16). However, a deviation can be observed in
the drifting direction. The equations of motion are solved in global coordinates. Due to the
coordinate transformation from local to global coordinates, nonlinear terms arise, e.g. Coriolis
and centripetal forces. These forces can have an average mean value in the horizontal plane
induced by oscillatory motion in the vertical plane. However, these terms can be included in
the drift forces. So, care has to be taken that they are not considered twice. These terms are
not included in the drift forces used in the present work as determined with PDSTRIP. This
implies that a small error is accepted in the two-time scale model. Furthermore, the nonlinear
maneuvering derivatives can induce an average force in the lateral plane resulting from the
wave-frequency motion of the ship. It is, however, rather small but it is also included in the
wave drift forces and subsequently a small error is induced in the unified theory. Interestingly,
the direction is more affected by this than the distance. These effects are not so pronounced
in the simulations with the S-175.

Figure 5.17 shows the individual motion components of the KVLCC2 turning in regular waves
with ⇣A = 2.15m, �/LPP = 0.6 and ⌘ = 270

�. The figure compares the result of the unified
theory with the result of the two-time scale model. The WF motion in the two-time scale
simulation is simulated with the RAO determined with PDSTRIP, according to Eqn. (5.5)
and (5.6). The figure shows that the two-time scale model simulates a slightly larger rate
of turn, so that after a while a time shift can be observed. However, the general motion
components are in fair agreement. Some deviation can be observed in the heave motion. The
maximum heave motion amplitudes are clearly larger when simulated with the unified theory.
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This phenomenon can also be seen in the general RAO, see Figure B.7, where the peak of the
heave motion is larger when determined with the impulse-response function. The roll motion
has its maxima for stern quartering waves. It shows some extreme peaks in the two-time scale
result after approximately 100s. These extreme peaks are not predicted by the unified theory.
The second time when the waves come from stern quartering direction (after approximately
900s), the maximum roll amplitude is clearly less and even larger when simulated with the
unified theory. The forward speed effect on the roll motion is subsequently less pronounced
in the unified theory.

In contrast to the motion of the S-175, the phases with maximum amplitudes are much less.
The S-175 shows large motion amplitudes over the entire maneuver, while the KVLCC2 has
only some time instants with pronounced motion. However, the wave amplitude to ship length
ratio is 50% larger in the simulations with the S-175.

Comparison of simulations and measurements In the following, the similarities and differences
of the simulations and the measurements shall be pointed out.

Figure 5.16 reveals that in the experiments the drifting distance becomes large for short waves.
Generally, this effect is captured by the simulations. However, the simulations show a larger
drifting distance for �/LPP = 0.6 than for �/LPP = 0.4. Within the experiments, the drifting
distance is linearly increasing with decreasing wave length. The simulated drifting distance
has a maximum at �/LPP = 0.6. The calculated transverse drift force and yaw moment have
a maximum at around �/LPP = 0.6 for beam waves, as can be seen in Figure B.8. The
measured force and moment does not show this maximum distinctively.

For the +35

� turn in waves of �/LPP = 1.0, the drifting direction is in the same order of
magnitude as in the �35

� turn but with the opposite sign within the simulations. This is not
the case in the experiments, where the magnitude of the drifting distance is small in the +35

�

turn. Ueno et al. [114] state that the large value of drifting direction µD in the experiments
for the �35

� turn in waves of 1.0 wave length ratio is of small importance because of its small
drifting distance HD. The same holds for the small drifting direction in the +35

� turn.

The drifting direction µD has a negative value in +35

� turning condition and a positive value
in �35

� turning condition. The simulation results show a similar behavior. According to
Ueno et al. [114], this is an inverted tendency in comparison to almost all experimental and
calculated cases reported by Hirano et al. [45].

The general trends of the wave effects on the maneuvering motion are also confirmed by the
simulations with the S-175. For the S-175, the simulations and experimental data show the
largest drifting direction for wave lengths with �/LPP = 1.0, both for starboard and port
turns, as stated previously. This is similar to the simulations with the KVLCC2 but different
than in the experiments. The S-175 shows the same drifting directions as in the simulations
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with the KVLCCs, i.e. the starboard turn has mostly a positive drifting direction for the
shortest wave length case and negative drifting directions for the longer wave lengths. The
other way around is true for the port turns.

The results of the two-time scale model show a slightly better agreement with the experimental
values.

Zig-zag maneuvers in regular waves

Zig-zag maneuvers in stern, head and quartering waves (⌘ = 0

�, ⌘ = 180

� and 270

�, respec-
tively) with wave length to ship length ratios of �/LPP = 0.4, �/LPP = 0.6 and �/LPP = 1.0

are simulated. The simulated zig-zag maneuvers are shown in the appendix, see Figure C.8
to Figure C.13.

Experimental data for the KVLCC2 in waves are used from Ueno et al. [114]. Ueno et
al. conduct �10

�/�10

� and 20

�/20� zig-zag maneuvers in regular waves of different wave
length to ship length ratios with their VLCC. The simulated and measured overshoot angles
are contrasted in Figure 5.18 and Figure 5.19 for the �10

�/�10

� and the 20

�/20� zig-zag
maneuver, respectively. For the �10

�/�10

� zig-zag test, the measurement is carried out two
times for each wave length and wave encounter angle.
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Figure 5.18.: Overshoot angle of �10

�/�10

� zig-zag of KVLCC2 in regular waves; ⇣A = 2.15m;
measurements from Ueno et al. [114]
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Comparison of unified and two-time scale theories The first overshoot angle determined with
unified theory and the two-time scale model is in a comparable range for all wave conditions,
both in the �10

�/�10

� and in the 20

�/20� zig-zag maneuver. In the �10

�/�10

� zig-zag test,
it is almost zero for short beam waves. In both zig-zag tests, the first overshoot angles nearly
equal the calm water values for stern waves. For bow waves with �/LPP = 1.0, the first
overshoot angle becomes very large, especially when predicted with the two-time scale model.

The second overshoot angles show similar trends in the 20

�/20� zig-zag maneuver. They have
the smallest values for beam waves with �/LPP = 0.6 and the largest value for head waves
with �/LPP = 1.0. For the other wave conditions, the second overshoot angle is similar to
the still water value. In the �10

�/�10

� zig-zag maneuver, the agreement is not particularly
distinctive. For stern and head waves with �/LPP = 0.4 and �/LPP = 0.6, the second
overshoot angles are similar to the still water values. Beam waves with �/LPP = 0.4 and
�/LPP = 0.6 show a significant influence on the zig-zag maneuvers, as can be seen from
Figure C.9. The maneuver cannot be continued after the second overshoot.
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Comparison of simulations and measurements The most significant feature of the experiments
is that the �10

�/�10

� zig-zag maneuver cannot be finished due to large wave drift forces
and yaw moment in beam waves with a wave length to ship length ratio of �/LPP = 0.4

and �/LPP = 0.6. Also in the simulations, the entire zig-zag maneuver cannot be finished;
however, the first and second overshoot angle can be determined. In longer beam waves with
�/LPP = 1.0, the overshoot angles show a large deviation from those in still water within the
experiments. This feature is not captured by the simulations. The simulations with the S-175
show similar results to the simulations with the KVLCC2. The maneuver cannot be finished
in beam waves with a wave length of �/LPP = 0.5. The other wave lengths have only a minor
influence on the overshoot angles.

The experimental results show for both zig-zag maneuvers that the overshoot angles in follow-
ing waves are larger than those in head waves. This can neither be found in the simulations
with the KVLCC2 nor in the simulations with the S-175.

The absolute value of the first overshoot angle in following waves becomes smaller in short
waves and larger in long waves within the experiments. This effect is also seen in the simula-
tions (both KVLCC2 and S-175), however, not as pronounced as in the experiments.

The simulated zig-zag maneuvers are considerably influenced by head waves with �/LPP =

1.0. Almost no influence of the waves in this case is seen in the experiments. Also, the
simulations with the S-175 show a strong effect of the waves in this case.

The wave effect on overshoot angles in the 20

�/20� zig-zag test in beam wave condition are
much smaller than those in the �10

�/�10

� zig-zag test.

A detailed explanation for the deviation is hard to find due to the lack of experimental data.
First of all, it needs not be noted that different hull geometries are compared. The VLCC
investigated by Ueno et al. [114] is not the KVLCC2, even if it is considered to be similar.
Furthermore, the temporal course of the characteristic parameter within the experiments is
not given. So the exact reason for the discrepancies is difficult to identify. More information
is needed to explain the deviation of the overshoot angles.

No significant conclusion concerning the validation can be drawn due to the large deviation
from the experimental values. Regarding the applied simplifications and the lack of informa-
tion from the experiments, the simulations cannot be dismissed either. Further investigations
are necessary for this case and are adressed in the outlook of the present work.
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5.4 Concluding remarks

Two different methods are introduced to simulate the maneuvering motion in waves. One
method is based on a two-time scale assumption, where the low-frequency motion and the os-
cillatory wave-frequency motion are separated and regarded individually. The other method
unifies both motion components in one set of equations by applying the impulse-response
function. The two-time scale method falls back to the maneuvering equations when no waves
are present and to the seakeeping equations when there is no steering. This yields the exact
solution for these cases. The unified theory does not give the exact still water maneuvering
motion because the equations additionally include the impulse-response function. Further-
more, the maneuvering terms influence the wave effects. This is especially distinct for the
second-order wave drift forces.

The lateral drift forces and the yaw drift moment are larger for shorter wave lengths. This
results in larger drifting distances in the shorter wave length regions for turning circles. The
turning trajectories are shifted in both the longitudinal and transverse direction with respect
to the wave propagation direction. The overall agreement of the simulation results with the
experiments is acceptable for turning circle maneuvers. The simulated results of the advances
and tactical diameters are in good agreement with the experiments, both in head sea and in
beam sea. In the head sea case, the advances and tactical diameters are smaller in waves
than in calm water. In the beam sea case, the influence of the waves on the turning circle is
different for the two turning directions. For the starboard turning, the advances are larger in
waves than in calm water while the tactical diameters are smaller. The other way around is
true for port turning.

Despite a time delay due to slightly different average yaw rates, both methods provide very
encouraging results of the oscillatory wave-induced motion. The regions with increased ampli-
tudes can be assigned to the wave encounter angle. A satisfactory agreement of the simulations
and the experiments is present in these regions.

The unified and the two-time scale theories are in general agreement. A difference can be seen
in the still water values; however, the deviation from these values due to waves is comparable.
The track of the S-175 is almost identical, whether if simulated with the unified theory or with
the two-time scale theory. For the KVLCC2, a deviation of the drifting direction is observed.
Within the unified theory, additional drift forces are generated by the nonlinear maneuvering
derivatives. These do not exist in the two-time scale model, where only the drift forces from
the seakeeping theory are regarded. The simulations with the S-175 reveal a rather small
influence of these terms. However, the motion of the KVLCC2 is clearly influenced by them.

Not all turning circle maneuvers of the S-175 can be completed with the two-time scale model.
The wave drift forces and moment exceed the steering forces and moment. In the unified
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theory, the linear wave excitation forces and/or the oscillatory motion make the completion
of the maneuver possible. In two-time scale models, the results of the WF component generally
do not influence the LF maneuvering motion.

The oscillatory wave-induced motion is very comparable between the two theories. The motion
amplitudes decay faster when simulated with the RAO in the two-time scale theory. For the
roll motion of the KVLCC2, a stronger influence of the forward speed on the amplitudes
is observed. The oscillatory wave-induced motion is practically identical between the two
theories when simulating the WF component in the two-time scale model with the impulse-
response function. This can be regarded as a hybrid theory. However, additional damping
and restoring terms need to be introduced. This can lead to instability effects. The unified
theory is generally more stable.

Zig-zag maneuvers are simulated with the S-175 and the KVLCC2. The simulation results of
the KVLCC2 are compared with measurements on a similar VLCC. A clear deviation of the
simulations and the measurements is found. The reasons for the deviation cannot be clarified
completely. The simulated KVLCC2 and the measured VLCC have different geometries.
Furthermore, no detailed results are available from the experiments.

The two different simulation methods show for both ships the same tendencies of the wave in-
fluence on the zig-zag maneuvers. The overshoot angles are nearly the same for both theories.
The unified theory predicts slightly larger overshoot times for the 20

�/20� zig-zag maneuvers.
However, for the differences between the two methods, no clear trend can be observed. The
usage of the infinite-frequency added mass in the unified theory has only negligible influence.

Although there is room for improvement, both presented methods can capture the turning
motion in waves as well as the wave-induced motion during turning. An advantage of the
unified theory is that it incorporates all physical effects in one set of equations. Additional
effects can easily be added as external forces. However, in the two-time scale model, all
physical effects can clearly be assigned. This method is easy to implement and gives very
satisfactory results with regard to the turning motion in waves. When the WF motion is
solved with the impulse-response function, no clear differences to the result of the unified
theory can be seen in the WF motion. It has to be kept in mind that all nonlinear wave
effects have to be included in the wave drift forces then.





6
Conclusion and Perspective

Two simulation methods to determine the maneuvering motion of ships in waves have been
presented. The derivation of the methods began with the maneuvering theory and the sea-
keeping theory. The general maneuvering theory describes the maneuvering motion of ships in
still water, while the seakeeping theory deals with straight forward motion of ships in waves.

The motion equations have been derived by using the kinematic and kinetic equations. Ar-
bitrary rigid-body motions due to the acting forces can be determined with these equations.
Unit quaternions have been utilized to describe the rotatory position of the ship. They have
the advantage that the so-called gimbal lock is avoided and no singularities due to the com-
bination of different rotations occur. Newton’s second law is the foundation of the rigid-body
kinetics. When the mass properties of the ship are known, the main task for determining the
ship motions is to determine and model the acting forces. Due to the strong dependence of the
hydrodynamic forces on the acceleration of the body, the numerical solution of the equations
of motion tends to become unstable. This has been avoided by subtracting the added mass
terms from both sides of the motion equations.

The general difference of the maneuvering and the seakeeping theories is the nature of the
acting forces.

The classical maneuvering motion is influenced by the propulsion forces, the rudder forces and
the forces acting on the hull during arbitrary and slowly varying ship motions. The propulsion
forces have been obtained from the open water diagram of the propeller. Therefore, it was
necessary to know the propeller rate of rotation. An engine model to determine the behavior
of diesel-electric propulsion trains has been developed and it shows satisfactory agreement to
sea trial measurements. Wind-milling can be predicted reliably and the general trends of the
engine control can be captured. The rudder forces have been calculated with semi-empirical
formulae utilizing the propeller slipstream and the lift, drag and moment coefficients. A
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comparison with measured forces shows good agreement. To determine the hull forces, the
slender-body theory has been applied. This theory yields the hull forces with acceptable
accuracy while being very computationally efficient. Simulated standard maneuvers with the
S-175 and the KVLCC2 are in fair agreement with model test results. However, the forces
determined with the slender-body theory depend to a large extent on the nonlinear cross-
flow drag forces. Experience is needed to properly determine these forces. Alternatively,
the maneuvering motion was described with so-called whole ship models, where the entire
forces acting on the ship have been modelled with one set of equations that are generally
based on hydrodynamic derivatives. These polynomials calculate the acting forces as function
of the instantaneous motion parameters. An enormous computational effort is necessary to
determine the derivatives. However, nearly arbitrary maneuvers can be simulated once they
are known.

The motion of ships in waves can be described in frequency domain or in time domain.
Time-domain equations have been applied in the present work since the temporal behavior
is of interest. To determine the motion in time domain, the impulse-response function has
been derived. This function describes the hydrodynamic reaction forces due to arbitrary
motions, while also incorporating the history of the motion through the convolution integral
over the retardation functions. A major advantage of the impulse-response function is that
additional nonlinear loads can be applied. The impulse-response function has been applied to
determine the RAO of the S-175 and the KVLCC2. They are in satisfactory agreement with
the frequency-domain results and with model test measurements.

The track of the ship can strongly be influenced by second-order wave effects. Due to the
time average of these effects, wave drift forces occur that can be regarded as a quasi-constant
force acting on the ship. Mean second-order wave drift forces are very difficult to determine,
both experimentally as well as numerically. They depend on the action of the waves on the
ship, the influence of the ship on the waves and also on the interaction of these components.
In the present work, PDSTRIP has been utilized to calculate the mean second-order wave
drift forces. The forces acting on the S-175 under forward speed and the forces acting on the
KVLCC2 without forward speed are in good agreement with model test results.

In order to combine the maneuvering and seakeeping theory as described above, two differ-
ent approaches have been derived. The first approach considers the maneuvering and the
seakeeping motions separately. The combined motion has been regarded as a two-time scale
problem, where the linear, oscillatory wave-induced motion occurs on a more rapidly vary-
ing time scale than the maneuvering. The wave-frequency problem is affected by the slowly
varying maneuvering motion in terms of the changing wave encounter angle and average ship
speed. The maneuvering motion is influenced by the mean second-order wave drift forces.
The other approach has unified both theories in one set of equations. In this approach, the
impulse-response function has been extended to include the maneuvering forces and the non-
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linear wave drift forces. This approach does not fall back to the maneuvering equations when
no waves are present. This yields a different maneuvering behavior and necessitates an adap-
tion of the maneuvering terms to obtain a satisfactory maneuvering prediction. In contrast
to this, the two-time scale model gives the exact maneuvering results if no waves are present.

A validation with experimental data from literature has been conducted. Turning circles and
zig-zag maneuvers in regular waves have been simulated with the S-175 and the KVLCC2.
Both simulation methods show almost equal results for the S-175. The track of the ship
is in satisfactory agreement with the model test results given in Yasukawa [122]. Also, the
individual motion components are similar to the measured values.

The turning circles do not only drift in the wave propagating direction, but under an angle
relative to this. The turning circles of the KVLCC2 show different drifting directions when
simulated with the two-time scale method or the unified theory. The differences in the drifting
direction demonstrate that additional nonlinear terms due to waves occur in the unified theory.
These terms have not been included in the wave drift forces used in the two-time scale model.
The nonlinear centripetal terms, for instance, may generate a transverse drift force due to
combined heave and roll motion. Furthermore, nonlinear terms have been generated because
of the nonlinear maneuvering derivatives that also result in drift forces due to the oscillatory
wave-frequency motion. Subsequently, it is necessary to know which terms are included in
the wave drift force terms so that no terms are considered twice.

The results of the simulations with the KVLCC2 have been compared with measurements
of Ueno et al. [114], although some assumptions and simplifications have to be made. The
agreement is fair for turning circles. The simulated zig-zag maneuvers, however, clearly deviate
from the measurements. The reasons for the deviation cannot be clarified completely. The
measurements have been conducted on a VLCC similar to the KVLCC2, so that differences in
the geometry are present. Furthermore, no detailed results are available from the experiment.

Investigations on the S-175 have shown that only regarding the low-frequency components for
the turning motion might not be sufficient in all cases. In the wave length regions, where the
wave drift forces have their maximum, the turning motion gets trapped in the two-time scale
model and the wave drift yaw moment exceeds the steering moment in this case. This does
not happen with the unified theory since the linear, oscillatory wave loads also have instants
of time where they act in the direction of the steering moments. This leads to an avoidance
of the trapping. So, in this case, the linear wave forces play an important role for the turning
motion, which is not captured by the two-time scale model.

The oscillatory wave-induced motion is very comparable between the two theories. The wave-
frequency motion of the two-time scale model shows slight deviations from the unified theory
and the experiments, when simulated with known RAO. Generally, the agreement is accept-
able, especially with regards to the simplicity of the model. However, a hybrid theory has



132 | Conclusion and Perspective

been introduced where the wave-frequency motion of the two-time scale model is simulated
with the impulse-response function. The resulting wave-frequency motion nearly equals the
result of the unified theory. Some instability concerns have to be solved for this case since
the ship needs to be kept on course in the wave-frequency component by artificial restoring
terms.

The unified theory unifies the maneuvering and the seakeeping equations. All ship motions
have been described with one set of equations, which allows for regarding further effects by
just adding the forces due to these effects. No care has to be taken to split these influences
into low-frequency and wave-frequency components.

Both methods capture the maneuvering motion in waves as well as the wave-induced motion
during turning. It has been hard to justify the general validity of the methods due to the lack
of experimental data. However, the obtained results are very promising.

For the present simulations with the two-time scale model, the heel has been neglected. This
has been acceptable for the low speeds in the presented simulation examples. However, for
higher speeds, the heel that arises from the maneuvering motion might be considerably large
and a neglection is improper. More maneuvering derivatives are needed to include this fourth
degree of freedom in the maneuvering equations. This yields an exponential increase in the
simulations/measurements needed for determining the derivatives. Alternatively, the slender-
body theory needs to be generalized and validated for four degrees of freedom.

Little experimental data is available for validation. Model tests on a maneuvering ship in waves
are challenging. To conduct free-running maneuvers in waves, large model basins equipped
with wave makers are necessary. Only a few basins exist that comply with this requirement. A
large amount of different tests needs to be performed to obtain reliable and meaningful results.
However, for a proper validation of the numerical models, they are irreplaceable. Especially
for the zig-zag maneuvers, a large scatter between the simulations and the measurements
occurs in the present work. Well-documented model tests are therefore desirable to clarify
the differences.

To conduct realistic simulations and to assess the security in a seaway, it is desirable to include
irregular waves. For the present approach, the wave excitation forces have to be adapted.



A
Maneuvering

Figure A.1.: Hydrodynamic damping forces acting on KVLCC2; simulation with slender-body
theory; measurements from circular motion tests at NMRI [127]
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Figure A.2.: Added mass per ship length of S-175
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B.1 Strip theory coefficients

STF strip theory coefficients (Salvesen et al. [88], Fathi and Hoff [31], Skejic [96]):
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Figure B.1.: Added mass of S-175 in the lateral mode
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Figure B.2.: Potential damping of S-175 in the lateral mode
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Figure B.3.: Added mass of S-175 in the longitudinal mode
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Figure B.4.: Potential damping of S-175 in the longitudinal mode
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Figure B.5.: Heave, pitch and roll RAO of S-175; calculated with PDSTRIP and impulse-
response function; measurements from ITTC78 [51]
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B.3 KVLCC2

Figure B.7 shows the RAO of a very large crude oil carried (VLCC). The measurements
are borrowed from Ueno et al. [114]. Unfortunately, not all details of the experiments are
provided in the article, so that a few assumptions have to be made for the simulations. Since
the exact geometry is not known, simulations are conducted for the KVLCC2 with the mass
data provided in Ueno et al. [114]. The results calculated with PDSTRIP and the results
determined with the impulse-response function are in good agreement with the measurements.
The resonance peaks are determined for the same wave length and are in a comparable order
of magnitude.

0

0.5

1

z A
/⇣

A

µ = 30

�

0

0.5

1

y A
/⇣

A

0

0.5

1

z A
/⇣

A

0

1

2

�
A
/(
k
⇣ A

)

0

0.5

1

✓ A
/(
k
⇣ A

)

0 0.5 1 1.5 2

0

0.5

1

�/LPP

 
A
/(
k
⇣ A

)

0

0.5

1

µ = 90

�

0

0.5

1

0

1

2

3

0

5

10

0

0.5

1

0 0.5 1 1.5 2

0

0.5

1

�/LPP

0

0.5

1

µ = 150

�

0

0.5

1

0

0.5

1

0

1

2

3

0

0.5

1

0 0.5 1 1.5 2

0

0.5

1

�/LPP

Figure B.7.: RAO of a VLCC according to Ueno et al. [115]; Fn = 0; calculated with
PDSTRIP and impulse-response function; measurements from Ueno et al. [115]

Figure B.8 shows the wave drift forces acting on the VLCC. The results of the calculations
show a satisfactory agreement with the experiments for the longitudinal and the transverse
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force. The force peaks at �/LPP = 1.2 can be traced back to the resonance region of the ship
motion. These peaks are not found in the measurements, possibly due to the fastening of the
model. The yaw moments show a large deviation. The measured moments are almost zero
over the entire range of wave lengths.
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Figure B.8.: Drift forces and moment on a VLCC as function of the wave length for different
encounter angles; Fn = 0; measurements from Ueno et al. [115]

Figure B.9 shows calculated values of the transverse force and the yaw moment acting on
the KVLCC2 compared with experimental data from Lee et al. [68]. Again, not much details
are known from the experiments, so that a few assumptions have to be made. In contrast to
the measurements and simulations in Figure B.8, this figure shows an underestimation of the
measured values.
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Figure C.1.: Potential damping of S-175 in the lateral mode for unified model
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Figure C.2.: Potential damping of S-175 in the longitudinal mode for unified model
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Figure C.11.: 20�/20� zig-zag maneuver of KVLCC2 in waves calculated with derivatives from
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Figure C.12.: 20�/20� zig-zag maneuver of KVLCC2 in waves calculated with derivatives from
Cura Hochbaum et al. [22]; ⌘ = 270
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Figure C.13.: 20�/20� zig-zag maneuver of KVLCC2 in waves calculated with derivatives from
Cura Hochbaum et al. [22]; ⌘ = 180
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