
Spatiotemporal Analysis of Wireless Internet of
Things Networks

Vom Promotionsausschuss der
Technischen Universität Hamburg

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von
Mustafa Muhamed Talat Ali Muhamed Emara

aus
Geddah, Saudi-Arabien

2021



Vorsitzender des Prüfungsausschusses:
Prof. Dr.-Ing. R. Grigat

1. Gutachter:
Prof. Dr.-Ing. Gerhard Bauch

2. Gutachter:
Prof. Marco Di Renzo

3. Gutachter:
Prof. Hesham ElSawy

Tag der mündlichen Prüfung:
26.10.2021

Mustafa Emara
DOI: https://doi.org/10.15480/882.3918

Creative Commons License Agreement
The text is licensed under the Creative Commons Attribution 4.0 (CC BY 4.0) license unless otherwise noted. This means that
it may be reproduced, distributed and made publicly available, even commercially, provided that the author, the source of the
text and the above-mentioned license are always mentioned. The exact wording of the license can be accessed at
https://creativecommons.org/licenses/by/4.0/legalcode

https://orcid.org/0000-0003-3286-5482
https://orcid.org/0000-0003-3286-5482
https://doi.org/10.15480/882.3918
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/legalcode


Summary

The wireless future industry will be dominated by a prevalent wireless integration of smart phones,
wearables, sensors, tablets, drones, and other objects into a massive integrated system. A plethora of
diverse services within every vertical segment is rapidly emerging within the context of the massive
Internet of Things (IoT) wireless networks. Over the past decades, the features and functionalities of
wireless networks have become more complex, which calls for a new way of thinking via designing
the wireless networks from a combined communication and computation perspective. This thesis
discusses the need to rigorously study the spatiotemporal dynamics of large scale IoT networks for
diverse requirements, deployments, and use cases for both communication and computation pillars. For
the communication pillar, analytical models are presented to model wireless networks, while considering
random spatial deployment and dynamic temporal traffic models. Use cases capturing prioritized multi-
stream, time and event-triggered traffic, and task offloading are considered in this thesis. By virtue of
the spatiotemporal analysis, novel spatiotemporal metrics as well as the Pareto frontiers that represent
stability region for network operation are derived and discussed.

For the computation pillar, because of the massive number of running services, the presence of
demanding computations within the network is inevitable. One solution is to let such computations
be executed at a remote data center. However, such approach is not only inefficient due to bandwidth
constraints, but also hinders the performance of time-sensitive and location-aware applications due to the
imposed network delay. Consequently, we investigate throughout this thesis the advents of Multi-access
Edge Computing (MEC)-assisted networks, focusing on the latency and task execution efficiencies in
task-offloading use cases. A novel computation-based cell association criterion is proposed to exploit
both the communication and the computation resources within a heterogeneous network. Additionally,
when it comes to safety-critical use cases within the automotive vertical, it is shown that in contrast
to conventional remote cloud-based cellular architecture, the deployment of MEC infrastructure can
substantially prune the end-to-end latency as well as the experienced information freshness. Furthermore,
joint consideration of contention-based communications for task offloading, parallel computing, and
occupation of failure-prone MEC computation resources are inspected. Finally, the availability and
reliability of wireless links running diverse services are quantified, with the aim to reveal the incurred
performance trade-offs between spatial and temporal resource provisioning.

In summary, this thesis provides a unified insight on modeling, designing, and assessing future
wireless IoT networks, while considering different communication and computation key enablers. Such a
joined communication and computation perspective is essential to meet the envisaged requirements of
the future applications and services in diverse market segments.
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Chapter 1

Introduction

1.1 Background and Motivation

The evolution of mobile networks is characterized by a growing traffic demand (currently dominated
by video content [1]), a paradigm shift in the consumed services, where content sharing and social
behavior are redefining network utilization, and a massive number of devices [2]. The roll-out of fifth
generation (5G) systems will witness a dramatic increase of device-to-device connections [3] due to the
progressive increase of internet of things (IoT) traffic and services, that will be dominated by several new
vertical business segments (e.g., automotive and mobility, factories of the future, health-care, media, and
entertainment) [4]. As a result, the need for efficient use of network resources is continuously increasing.
However, current mobile systems have been planned and deployed so far with the mere aim of enhancing
radio coverage and capacity [5]. Hence, future networks will need to effectively support heterogeneous
services, variable in both space and in time.

The massive deployment of IoT devices such as smart-phones, tablets and wearables, along with
advanced wireless network capabilities, has led to prominent research in the field of wireless commu-
nication to address the resulting challenges [6]. Despite steady improvement in the capabilities of the
hardware components (e.g., computing units, battery and memory), the majority of IoT devices are still
not capable of fully supporting the requirements of the emerging computation-intensive and delay sensi-
tive applications [7]. Additionally, the realization of the network objectives of reliable communication,
low latency, and efficient computation, significantly relies on efficient network design, analysis, and
optimization, where a joint communication-computation perspective should be considered. Throughout
this thesis, we aim to address this joint point of view by first, modeling the envisaged large scale IoT
networks and second, by augmenting the computing capabilities of devices by allowing them to use
remote cloud servers to address their computation demanding tasks.

1.1.1 IoT and Massive Connectivity

The IoT paradigm is paving the way to ensure seamless connectivity, efficient networking, and continuous
monitoring within different market segments [8]. Emerging segments entail, among other examples,
smart cities, connected vehicles, industrial IoT, health-care, and smart homes, which are all tied with the
IoT technology advancement [4]. According to a recent analysis by Cisco, the number of mobile devices
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AutomotiveHealthcare Industrial 

Figure 1.1: Envisaged IoT penetration in different vertical segments.

will grow to 13.1 billion by 2023 at a compound annual growth rate of 8% between 2018 and 2023 [9].
Moreover, it is predicted in the same study that 5G systems will support more than 10% of global mobile
connections. Such growth is fueled by the aforementioned emerging markets. Such markets generate
services that have characteristics which may be bandwidth-hungry (surveillance, video conferencing,
traffic monitoring), latency-critical (industrial IoT, autonomous vehicles, human-machine interaction),
and may cause spatial or temporal activity spikes (e.g., sporting events).

In Figure 1.1, an envisioned ecosystem is shown, in which a versatile and massive collection of
silos, devices and network components is interconnected. In the health-care silo, applications related
to health, patient monitoring and identification or collection of medical data are expected to coexist.
Health-care applications are generally characterized by low mobility, medium data rates and high service
availability and reliability. In the automotive silo, connected and autonomous vehicles are envisioned to
form, along with smart stations and road side units, a connected network, which is characterized by high
mobility, low latency and jitter and high reliability. Finally, the industrial silo encompasses applications
that are designed to optimize the plant, logistics and supply chain management, which are characterized
by stringent delay and reliability constraints. In addition, the deployment of edge servers within the
ecosystem is expected, in order to extend the computation resources within the network to the edge.
Thus, lower network congestion, improved resource optimization, and enhanced user experience can be
realized. By leveraging the radio access network (RAN), edge deployment will improve significantly
the experienced latency, yielding efficient resources utilization, thus, accommodating a larger number of
services [10]. Owing to the large scale IoT deployment, as depicted in Figure 1.1, one can deduce that
current 5G and beyond systems, will be poised to induce a significant surge in demand for networking
infrastructures, computation resources and data, in order to accommodate the anticipated requirements of
the heterogeneous running applications [11].
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1.1.2 The Communication and Computation Pillars

For many years, cellular networks have been evolving to offer global coverage, quality of service (QoS)
support, security, low cost of deployment, scalability, mobility and roaming support. The third generation
partnership project (3GPP) standards development organization covers the radio access and the core
transport network, and defines the interfaces for non-3GPP networks [12]. Focusing on 5G-new radio
(NR), it is globally considered the first cellular technology designed to provide efficient coexistence of
diverse 5G services with highly heterogeneous requirements [13]. In particular, new service classes have
been introduced targeting to address services spanning enhanced mobile broadband (eMBB), massive
machine type communications (mMTC) and ultra reliable low latency communication (URLLC) [14].
The eMBB service addresses the bandwidth-hungry, data-intensive and human-centric use cases. The
demand within this use case is continuously increasing due to the emerge of new applications with more
stringent requirements (e.g., virtual, augmented and mixed reality). On the other hand, URLLC considers
latency-sensitive services that necessitate extremely high service reliability and availability, as found in
industrial automation, autonomous vehicles and machine-centric applications. Finally, mMTC entails
providing spectral and energy efficient connectivity to a massive number of low cost and low energy IoT
devices with sporadic traffic.

In parallel, the wireless local area network (WLAN) technology (i.e., IEEE 802.11) has been since
many years and continues to be a first choice for fixed and local area broadband wireless access for home
and enterprise networks, and being an alternative technology in terms of data throughput performance,
cost, and interoperability support [15]. Investigating both, WLAN and 3GPP, the evolution of radio
access technologies got driven primarily by peak data throughput following timely the Ethernet road-map
with an offset of many years as shown in Figure 1.2. Meanwhile, the advancement of the communication
peak data throughput by WLAN and 3GPP along with the advancement in the computing performance,
quantified via floating point operations per second, delivers some motivating insights regarding the
relationship between the communication and computation growth. It is evident that computing, supported
by reliable communication, is the cornerstone for realizing the promised gains. It can be also articulated
that such a computation-communication ecosystem will be hindered by the communication systems
capabilities to meet the imposed demand. Thus, one of the main challenges of next generation systems
is to offer sufficient understanding, novel solutions, and architectural designs that balance efficiently
computation performance with the communication and access capabilities.

A result of the staggering number of running applications and services is the presence of demanding
computations within the network. One solution is to let such computations be executed at a remote data
center. However, such approach is not only inefficient due to bandwidth constraints but also hinders the
performance of time-sensitive and location-aware applications due to the imposed network delay for
offloading data to the cloud, and computation dependencies between data generated by nearby sensors. A
natural alternative would to bring the computation resources closer to the devices, so the network delays
can be alleviated and the additional computation resources can be efficiently utilized. In this context, the
challenges of large scale IoT deployment in future wireless systems that will be addressed throughout
this thesis are summarized as follows.
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Figure 1.2: Computing trends, cellular, WLAN and Ethernet technology road-maps [16].

• Massive connectivity: based on the anticipated number of coexisting services, massive number of
IoT devices will be trying to utilize the scarce available computation and communication resources.
Due to the sharing nature of the wireless channel, understanding the effect of such large-scale
access within the deployment area is paramount to meet the targeted requirements.

• Services heterogeneity: resulting from the wide range of running applications and services impose
the necessity that each service be properly differentiated and addressed. This results in the need to
support diverse characteristics in terms of mobility, latency, power efficiency, traffic, number of
devices and computation requirements.

• Demanding computation tasks: massive devices coexist with varying profile activity, where some
of them are idle, others are connected, while running voice/ video/ data services, whereas others
aim to access the network in order to delegate processing tasks that cannot be locally addressed in
a timely fashion.

• Spatiotemporal randomness: exists based on the anticipated highly dynamic network topology.
Temporal and spatial randomness are inevitable in the dynamic geographical deployment, traffic
burstiness, and tasks arrival and departure.

1.2 Scope and Organization

In order to address the identified challenges, this thesis aims at addressing the communication and
computation pillars from different perspectives. We utilize analytical tools from stochastic geometry,
queueing theory, and reliability theorem to model, analyze and investigate large scale IoT networks. For
the communication pillar, our objective is to develop general, flexible, and rigorous frameworks for
different traffic models under a spatiotemporal viewpoint. Such frameworks are used for analyzing the
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system behavior with respect to the different system design parameters. Consequently, many design
insights and trade-offs for the considered networks are obtained. For the computation pillar, we propose
architectural modifications to enable efficient and faster task execution via task offloading to the multi-
access edge computing (MEC) hosts, co-located at the base stations (BSs). In addition, we showcase
MEC latency reduction gains through a deployed vehicular network. Moreover, novel key performance
indicators (KPIs) related to dependable network functionality are considered in order to provide a novel
service-centered perspective of the network. To this end, the contributions and organization of the thesis
can be summarized as follows:

Chapter 2

This chapter provides the foundations of the analytical tools and key enablers that are utilized throughout
the thesis. First, the spatial, temporal and spatiotemporal modeling frameworks and their detailed
building blocks are discussed. The spatial and temporal models encompass stochastic geometry and time
Markovian models, respectively. Afterwards, the different KPIs that are employed within the thesis are
presented and explained in order to provide a holistic overview on the performance assessment conducted
in later chapters. Finally, an introduction to MEC technology and its architectural components within
cellular networks is presented to lay out the foundations of the computation pillar proposed within this
thesis.

Chapter 3

This chapter develops a novel priority-aware spatiotemporal framework to characterize large scale IoT
uplink networks with prioritized multi-stream traffic. A systematic and tractable scheme to model
the prioritized traffic is introduced. Such a scheme alleviates the curse of dimensionality resulting
from the state of the art schemes. Additionally, dedicated and shared channel priority-aware access
strategies are presented, and bench-marked against a priority-agnostic scheme. The impact of prioritized
uplink transmission on the performance of different priorities is highlighted, in terms of transmission
probabilities and delay. Additional performance metrics as average number of packets, peak age of
information (PAoI), delay distribution, and Pareto frontiers for different parameters are presented, which
give insights on stable operation of uplink IoT networks with prioritized traffic.

Chapter 4

Moving to time and event-triggered data traffic models, this chapter provides a spatiotemporal framework
that captures the information freshness within large scale IoT uplink networks. In contrast to the typical
user analysis that is conducted in Chapter 3, this chapter builds upon the idea of the meta distribution of
the transmission success probability and derives key expressions for the location-dependent performance
of devices under the two mentioned traffic variants. Numerical evaluations are conducted to validate
the proposed mathematical framework and assess the effect of traffic load on the realized information
freshness. The results unveil a counter-intuitive superiority of the event-triggered traffic over the time-
triggered one in terms of information freshness, which is due to the underlying temporal interference
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correlations. Insights regarding the network stability frontiers and key design recommendations are
presented and discussed.

Chapter 5

Moving to the computation pillar, this chapter advocates the advents of MEC deployment to reduce the
experienced latency within heterogeneous and vehicular networks. First, a novel computation-based cell
association criterion is proposed to exploit both the communication and the computation resources within
a heterogeneous network. It is shown that, for a range of disparities between radio and MEC capabilities
between tiers, the proposed computation association criterion provided gains in terms of the experienced
one-way latency, as compared to the conventional association criterion. Additionally, when it comes
to safety-critical use cases within a vehicular network, we showcase that in contrast to conventional,
remote cloud-based cellular architecture, the deployment of MEC infrastructure can substantially prune
the end-to-end communication latency and the experienced information freshness.

Chapter 6

Focusing on successful task execution, in this chapter, novel definitions of dependability attributes for
communication and computation services are provided. First, joint consideration of contention-based
communications for task offloading and parallel computing as well as the occupation of failure-prone
MEC computation resources are inspected. The influence of various system parameters on dependability
metrics such as (i) computation resources availability, (ii) task execution retainability, and (iii) task
execution capacity are investigated. Second, the availability and reliability of wireless links, running
diverse services, are quantified via a novel spatiotemporal framework, with the aim to reveal the incurred
performance trade-offs between spatial and temporal resources provisioning.

Chapter 7

Finally, this chapter summarizes the thesis. A summary of the different proposed spatiotemporal
frameworks and their key results are discussed. The impact of MEC deployment on different performance
metrics is reviewed and different task execution dependability insights are recapitalized. Finally, future
research directions are pointed out.



Chapter 2

Wireless Networks Modeling

Modeling and analysis of wireless networks is a comprehensive topic that entails an enormous number of
building blocks, especially for the envisaged use cases that combine the communication and computation
aspects of future network. To yield the overview relevant to the thesis scope, we focus throughout this
chapter on key concepts and tools that are employed within the coming technical chapters. First, concepts
addressing spatial, temporal and spatiotemporal models of cellular networks are presented in Section 2.1.
Afterwards, the different KPIs adopted throughout this thesis are presented and explained in Section 2.2.
Finally, MEC technology, its architecture and relation to the IoT technology advancement is discussed in
Section 2.3.

2.1 Preliminaries for Cellular Networks Modeling

Throughout this section, some mathematical preliminaries and tools that are utilized throughout the
thesis will be presented. The spatial and temporal models are discussed in Subsections 2.1.1 and 2.1.2,
respectively, whereas the fused spatiotemporal perspective is provided in Subsection 2.1.3.

2.1.1 Spatial Modeling

To address the exploding and diverse heterogeneous service requirements, network parameters (e.g.,
physical and medium access control (MAC)) should be carefully modeled and optimized through a
collective cross-layer framework in order to showcase meaningful insights. The modeling phase aims at
obtaining mathematical expressions that characterize the network behavior. The inputs for the modeling
expressions are the network parameters (i.e., network geometry, MAC protocol, propagation environment,
etc.) and the outputs are the different KPIs of interest. Afterwards, performance analysis can be
conducted, in which the system response to different network parameters is analyzed, to understand
the system behavior, performance trends, trade-offs, and design insights. Analytical frameworks that
characterize the performance of large scale networks provide a trade-off between model practicality in
mimicking real networks and complexity. Such models in the literature were facilitated by resorting to
simplifications such as the Wyner model [17], which considered only one or two interfering cells. Other
models such as [18] aggregated the network-wide interference into a single random variable that is then
empirically fit to some distribution. Equidistant interference was considered in [19], which is far from
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(a) (b) (c)

Figure 2.1: Cellular deployment variants: (a) hexagonal (b) PPP (c) square. BSs and their coverage
regions are depicted via red circles and black lines, respectively.

actual network deployments. Another widely accepted model is the grid-based model, which is suited for
large-scale infrastructure-based wireless networks [20]. In the grid-based model, the BSs are deployed on
a hexagonal or square lattice as shown in Figure 2.1(a) and (c), respectively. Nevertheless, real network
planning and deployment are far from being uniform as highlighted in [21]. Such disparity from real
deployments increases in the case of heterogeneous BSs deployment, where each tier is characterized by
different radio capabilities.

An alternative to the aforementioned simplified models is simulations, which aim at exhaustively
complex simulations in order to average out the many sources of randomness, such as fading distributions,
noise, and BSs and device locations. These simulations can be extremely time consuming and generally
require continuous human maintenance and development. Although system-level simulations will
continue to be indispensable for cellular network analysis and design, the need for a complementary
analytical approach for the purposes of bench-marking and comparison has long been called for. In
this context, stochastic geometry is a powerful tool that has been utilized in the last decade to capture
the random network’s topology and to provide tractable yet accurate expression of different KPIs
[22, 21]. Specifically, stochastic geometry study the spatial average performance, over large enough
spatial realizations of a network, whose nodes (i..e, BSs, devices or both) are deployed following a
predetermined distribution [23]. Spatially-averaged performance implies that each spatial deployment
realization is weighted by its probability of occurrence [24].

To this regards, point processes are employed to mimic the spatial distribution of the BSs and devices
[25]. The Poisson point processes (PPP) is regarded as the commonly adopted point process when
modeling wireless network due to its mathematical tractability [26]. Due to its spatial randomness,
alternative point processes are adopted to model repulsion between the points, such as the Matérn hard
core point process [25] and the Poisson cluster point process. Nevertheless, such non-PPP based models
are not as tractable as the PPP-based models. An example of a network deployment based on a PPP is
shown in Figure 2.1(b). The PPP-based deployment are advantageous compared to grid-based models
when it comes to deriving mathematical expressions for complex network scenarios. Such expressions
are cumbersome to realize when dealing with the location-dependent grid-based models.

In what follows, we briefly highlight some of the key mathematical properties of the PPP. Let
Λ = {xi; i ∈N} be a PPP, which is a countably-finite collection of points in the d-dimensional Euclidean
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space Rd , where xi ∈ Rd represents the coordinates of the i-th point. Given a generic set of points,
denoted by A ∈ R2, the number of points Ξ(A) = |Λ∩A| ∼ poisson(λ ), with the following probability
mass function (PMF)

P{Ξ(A) = k}= (λL(A))k

k!
e−λL(A), (2.1)

where λ is the intensity of the PPP and L(.) is the Lebesgue measure [22] 1. An additional major property
of the PPP is that for another set of points B ∈ R2, such that A∩B = /0, the number of points in each set,
i.e., Ξ(A) and Ξ(B), are independent. Throughout this thesis, we will consider only homogeneous PPP,
which is a class of PPP that is only characterized via its intensity measure λ [24]. In the following, we
present some of the main statistical properties of a homogeneous PPP that are utilized in this thesis. For
a more detailed study on this subject, the reader is kindly referred to [23–25].

• Campbell’s theorem: converts an expectation of a random sum over a PPP to an integral. This
enables the computation of the aggregate interference in a network. Let f :Rd →R be a measurable
function, then Campbell’s theorem states that

E

{
∑

xi∈Λ

f (xi)

}
=
∫
Rd

λ f (x)dx. (2.2)

• Probability generating functional: converts an expectation of a random product over a PPP to an
integral. Such a property enables the Laplace transformation of the aggregate interference. Let
f : Rd → [0,1] be a real-valued function, then the probability generating functional states that

E

{
∏
xi∈Λ

f (xi)

}
= exp

(
−λ

∫
Rd

(1− f (x))dx
)

. (2.3)

• Slivnyak’s theorem: states that for a PPP Λ, because of the independence between all of the points,
conditioning on a point xi does not change the distribution of Λ. In other words, a PPP observed
from any generic location remains the same irrespective of having a point on that location. In
practice, Slivnyak’s theorem enables the analysis of cellular networks, as the case of downlink
where it allows the treatment of interference as coming from a PPP despite removing the serving
BS from that PPP. Such an equivalence is expressed mathematically as P!{a} = P{a}, where
P!{a} is the reduced Palm probability of event a [25].

• Independent thinning: the thinned point process Λthin obtained from Λ by randomly and indepen-
dently removing some points with probability p is a PPP with intensity pλ . Independent thinning
can be applied to capture the portion of active devices within the network as will be shown in the
coming sections.

• Displacement: let Fxi be a random translation on the PPP Λ such that its distribution depends on
xi, then the resulting displaced point process Λdis is a PPP such that Λdis = {xi ∈ Λ : xi +Fxi}. The
displacement property is adopted in modeling mobility and uplink interference in wireless network.

1The Lebesgue measure for d = 2 represents the area of a given set.
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To this end, network deployment can be modeled depending on the system model that is of interest.
However, an underlying limiting aspect of the stochastic geometry based models is the full buffer
assumption, which assumes that the transmitter has always backlogged packets to be transmitted [22, 21,
27, 23]. In reality, a device oscillates between idle and active states, depending on the underlying traffic
model and the experienced radio conditions. Thus, conventional models based on stochastic geometry are
oblivious to the temporal traffic evolution and the underlying queueing dynamics at each device. Before
delving into the coupled temporal fluctuation at the nodes with their large scale spatial characterization,
we briefly present some aspects from queueing theory that will be utilized throughout this thesis.

2.1.2 Temporal Modeling

Queueing models are utilized to account for the temporal dynamics of packets (i.e., arrival, waiting
and service) and their contention at a communication node [28]. The design of a queueing model may
become very complex depending on its features, which may or may not be common in other types of
models. Throughout this thesis we consider a single node queueing model, which is characterized by the
arrival process (A), the service process (B), the number of hosts (C) in parallel, the service discipline
(D) and the queue size (E). In this regard, using the famous Kendall’s notations, a single node queue can
be represented as A/B/C/D/E. The arrival process of a queueing model describes the distribution of the
inter-arrival times of packets (or users), as well as how many packets (or users) arrive simultaneously
[29]. For continuous systems, the most common assumed arrival process is the Poisson process, in
which the inter-arrival times for individual devices or class, are independent and identically distributed
as exponential random variables with a shared average rate [30]. This distributional assumption is
often prized for its memory-less property, among other features, which allow for tractable analysis
[28]. For discrete systems, the phase (PH) type have been considered as a fundamental corner stone
in stochastic modeling as it allows numerical tractability of some difficult problems and in addition
several distributions encountered in queueing seem to resemble the PH distribution [31]. In particular,
every PH type distribution can be represented by the tuple (ρ ,S). In this regard, let us consider an m+1
absorbing discrete time Markov chain (DTMC) with a state space J = {0,1,2, · · · ,m} and let state 0
be the absorbing state. The vector ρ = [ρ1 ρ2 · · · ρm] is the initialization vector, such that ρ1m = 1. In
particular, ρi is the probability that the system starts from a transient state i, 1 ≤ i ≤ m, and Si, j is the
probability that the system transitions from the i-th transient state to the j-th transient state. In this regard,
S is an m-dimensional sub-stochastic transient matrix constructed as follows2

S =


S1,1 S1,2 · · · S1,m

S2,1 S2,2 · · · S2,m
...

... · · · ...
Sm,1 Sm,2 · · · Sm,m

 . (2.4)

2A matrix in which the elements is each row sum to at most one is denoted as sub-stochastic matrix.
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Moreover, a PH type distribution is defined as an absorbing Markov chain [29], which is defined
mathematically as

T =

[
1 0
s S

]
, (2.5)

where s ∈Rm×1 represents the absorption probability from a given transient state and is given by s = 1m−
S1m. Before delving into how to represent different traffic models via the PH type distribution, let α ∈
(0,1] be a geometric random variable that models the packet arrival probability, i.e. P{packet arrival}=α

and P{no packet arrival}= ᾱ . Examples of different traffic distributions utilizing the PH type distribution
are as follows:

• Negative binomial ET traffic: ρ = [1 0 · · · 0] and

S =


ᾱ α

ᾱ α

. . . . . .

ᾱ

 . (2.6)

• Mixed geometric ET traffic: ρ = [ρ1 ρ2 · · · ρm] and

S =


ᾱ1

ᾱ2
. . .

ᾱm

 , (2.7)

where α i and ρi ∈ [0,1]; ∀i = {1,2, · · · ,m}.

• Bernoulli ET traffic: ρ = 1 and S = ᾱ .

Regarding the service process of the DTMC, we consider that the packet departures from the queues
are based on a signal to interference noise ratio (SINR) capture model. That is, a packet departs from
the queue if the achieved SINR exceeds a certain threshold. Considering the network-wide interaction
between the devices in uplink communications, first come first serve based interactive queues have been
well investigated in the literature for the collision model [32, 33], which ignore the mutual interference
between the devices. Collision models assume everything to be static and deterministic, and hence, the
collision event cannot be resolved. However, things are more challenging and involving in the SINR
capture model. Accordingly, we adopt wireless-based queue abstraction model, in which every wireless
link between two nodes can be abstracted with a queue with a given departure probability. In each of
the technical chapters, we will build upon the presented model according to the system model at hand.
In addition, it will be clearly explained how the SINR model implicitly considers the network-wide
aggregate interference along with the devices temporal dynamics which are governed by their traffic.
Apart from the arrival and service processes, single-host model with finite and infinite queue sizes are
adopted in this thesis. In addition, a first come first serve (FCFS) queueing discipline is adopted, where
packets/ users within a given queue are addressed based on their relative temporal arrival time-stamp. In
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what follows we will briefly summarize time Markov chains, which are powerful tools to characterize the
temporal dynamics of a queue.

Time Markov Chains

Discrete and continuous Markov chains are utilized throughout this thesis to track the temporal dynamics
of different system parameters (e.g., packets arrivals, number of users, task offloading instructions, etc.).
Without loss of generality, we will briefly present some of the key concepts of the DTMC, whereas for
continuous time Markov Chain (CTMC), similar definitions can be deduced. Let X0,X1, · · · ,Xn;n ∈ N be
a discrete time stochastic process with countable state space D = {i1, i2, · · · , in}. If P{X j+1 = i j+1|X j =

i j,X j−1 = i j−1, · · · ,X0 = i0} = P{X j+1 = i j+1|X j = i j} holds for any j and D, then X j is said to be a
DTMC. Furthermore, if P{X j+m+1 = i|X j+m = v}= P{X j+1 = i|X j = v}, ∀(i,v) ∈ D, ∀( j,m)≥ 0, then
the DTMC is said to be time-homogeneous or stationary [29]. Let pv,i( j) = P{X j+1 = i|X j = v} denotes
the transition probability from state v at time j to state i at time j+1.3 All the probability transitions
between the different states in D are collected in the probability transition matrix P ∈ R|D|×|D|, in which

∑v∈D pv,i = 1, which implies that each row of P sums to one. One of the most encountered DTMC in
discrete time queues is the quasi-birth-death (QBD) [29]. For the queues with infinite queue size, the
transition matrix P of an QBD is given in the block partitioned form as follows

P =


B C
E A1 A0

A2 A1 A0
. . . . . . . . .

 . (2.8)

An important feature of the QBD is that it only transitions a maximum of one level up or down. In
addition, it is skip-free to the left and to the right. Assuming that the matrices Ak, k = 0,1,2 ∈ Rn×n and
matrix B ∈ Rm×m, then, C ∈ Rm×n and E ∈ Rn×m. The matrix analytic method (MAM) is a powerful
mathematical tool, utilized to analyze DTMCs [31, 29]. The key matrices that form the ingredients of the
MAM are the R and G matrices, which are the minimal non-negative solutions to the following equations
[31]

R = A0 +RA1 +R2A2, (2.9)

G = A2 +A1G+A0G2. (2.10)

The computations of R, G as well as the steady state probability of the DTMC is dependent on the block
matrices of P as will be explained in more details in the next chapters. Finally, we would like to emphasize
that throughout this thesis, different queueing models will be introduced and studied, we postpone the
treatment of each specific model to its respective chapters in order to provide a self-contained analysis
within each technical chapter.

3Throughout this thesis, we consider cases where the transition between states is independent of the time, i.e. pv,i( j) =
pv,i, ∀ j.
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2.1.3 Spatiotemporal Modeling

As mentioned in the previous subsection, there has been considerable effort toward characterizing and
understanding the performance of wireless links in large-scale networks by using tools from stochastic
geometry [24, 23, 25]. Typical system-level expressions for a variety of network statistics, e.g., coverage,
throughput, or delay can be captured, by capturing the spatial and physical layer attributes [26]. This
intrinsic elegance has marketed stochastic geometry as a disruptive tool for performance evaluation
among various wireless systems. However, an underlying limiting aspect of the stochastic geometry
based models is the full buffer assumption, which assumes that the transmitter has always backlogged
packets to be transmitted. Thus, conventional models based on stochastic geometry are oblivious to the
temporal traffic evolution and the underlying queueing dynamics at each device. Moreover, tools from
queueing theory are suited for analyzing the per-node temporal dynamics, which provide little insight on
the network-wide interactions within the network. To account for the temporal domain, recent efforts
have integrated queueing theory with stochastic geometry, offering a full spatiotemporal characterization
of the large-scale networks [34–42]. This spatiotemporal network perspective triggered a plethora of
challenging research directions that addresses the modeling, analyzing and optimizing the network from
spatial and temporal perspectives.

Throughout this thesis, the different proposed frameworks entail the macroscopic and microscopic
scales of large scale wireless-networks as highlighted in Figure 2.2. The microscopic scale is per device
level that addresses the temporal dynamics at each device, whereas the macroscopic scale represents a
holistic view of the network that captures the mutual interaction (i.e., mutual interference and contention
among the resources) among the devices (i.e, queues). Hence, the microscopic and macroscopic scales
can be regarded as, respectively, a zoom in that shows the behavior of each device and a zoom out that
shows the behavior of the entire network. This integrated analysis of the network can be considered
as extension to the well established interactive queues problem in the literature [32, 33], in which the
collision model, which ignores the mutual interference between the devices, has been widely adopted.
However, adopting such an integrated view enables a more holistic understanding of the network’s
behavior as well as the effect of the different system parameters. For the sake of organized presentation,
the detailed discussion of the related spatiotemporal underlying models is left to the technical chapters.
That is, for each chapter, the specific system model, related state of the art works and key novelty are
discussed there.

2.2 Performance metrics

Through this subsection we will review the main KPIs that are adopted throughout this thesis. The choice
of of a specific KPI in the technical chapters is motivated by its relevance to the investigated use case and
its effect on different system design insights.

2.2.1 Link Quality

The quality of a given link can be assessed via its achieved SINR (or signal to interference ratio (SIR)
in case of interference-limited networks). The SINR distribution characterizes also the aggregate
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Figure 2.2: Spatiotemporal model with microscopic (macroscopic) network scale highlighted on the left
(right). Blue (green) represent active (idle) devices.

interference within the network. Mathematically, the SINR at a generic i-th receiver communicating with
a generic j-th transmitter can be characterized as

SINRi, j =
P jhi, jr

η

i, j

∑k∈Z j akPkhi,krη

i,k +σ2
, (2.11)

where P j is the transmission power of the j-th transmitter, hi, j and ri, j
η are the channel gain, that

are Rayleigh distributed with unity gain and the Euclidean distance between the i-th receiver and its
j-th transmitter, with the path-loss exponent η > 2, Z j is the set of transmitters utilizing the same
channel as the j-th transmitter, ak equals one if the k-th transmitter is active, and zero otherwise, and
σ2 is the noise power. For the sake of completiness, (2.11) represents the SINR of a generic link
direction, nevertheless, in this thesis we consider mainly uplink transmissions. As a result, P j represent
the transmission power of the j-th device to its serving i-th BS. Morevoer, due to the randomness
encompassed in (2.11), resulting from the spatial locations, fading, activity profiles, etc., interest is
focused on the transmission success probability, denoted by Ps, which represents the complementary
cumulative distribution function (CCDF) of the SINR. The transmission success probability entails
spatial and temporal averaging and is mathematically expressed as

Ps = P{SINR> θ}, (2.12)

where θ is the decoding threshold. The expression in (2.12) can be thought of equivalently as:

• the probability that a randomly chosen device can achieve SINR> θ ,

• the average fraction of devices within the network who at any time achieve SINR> θ ,

• the average network’s area fraction that is in coverage at any time.

Moreover, a packet transmitted in a given time slot is considered successfully decoded, if the accom-
panying instantaneous SINR is greater than θ . For the case of unsuccessful decoding, a negative
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acknowledgment is sent via a dedicated channel and the transmitter attempts a re-transmission in the
following time slot. We would like to emphasize that throughout this thesis, the latency incurred by
acknowledgment messages is not considered, as it is negligible compared to data transmission latency.
Additionally, a quasi-deterministic channel model is adopted, such that the experienced channel gain (i.e.,
hi, j) by the i-th transmistter is constant over the packet transmission period (i.e., slot). On the other hand,
in case of retransmissions, a new randomized channel gain is observed by that transmitter.

2.2.2 Pareto Frontiers

The temporal fluctuation of traffic introduces a significant source of randomness to the network, which
is captured, tracked, and analyzed, as mentioned earlier, using tools from queueing theory [28]. This
randomness raises important questions that cannot be answered via the full-buffer analysis. Some of
these questions are i) given that packets arrive following a given traffic model at a device, how long on
average a packet takes to be successfully transmitted; ii) how such random packet arrival in different
devices affect their interactions in terms of mutual interference; iii) will the devices be able to deliver all
of the generated packets or will they run into instability, and iv) what are the network parameters that
guarantee that the devices will be able to deliver all generated packets.

As mentioned earlier, prior stand alone stochastic geometry or stand alone queueing theory models
cannot address these questions. This is attributed to the fact that devices are randomly deployed, with
deterministic or stochastic traffic, and random interaction in both space and time. Hence, a combined
stochastic geometry and queueing theory model, denoted as spatiotemporal model, should be used to
model such network and answer the aforementioned questions. Considering the spatiotemporal network’s
performance, the Pareto frontiers define regions where the queues employed at the transmitters are
guaranteed to be operating within a stable region. Thus, operating beyond the Pareto frontiers, will yield
the network (of queues) unstable. Throughout the Chapters 3 and 4, we study, characterize and analyze
the Pareto frontiers for large scale uplink IoT networks.

2.2.3 Latency

Achieving low latency is an important target for many of the computation and communication applications
[43]. Moreover, MEC promised latency reductions are facilitated by the computation of such intensive
tasks at the MEC host. As a result, assessing the different latency components of the end-to-end
experienced latency, can help identify latency bottlenecks and provide insights on how to alleviate them
if possible. Throughout this thesis, the following latency components will be investigated:

• Radio latency: represents the latency incurred to transmit a packet in either downlink or uplink.
Parameters such as mutual interference, transmission power and radio resources, among others,
affect this metric.

• Queueing latency: results from the waiting time of a packet within its queue till it is successfully
received at its destination. Latencies resulting from packet re-transmissions are implicitly included
in this metric.
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• Network latency: results from the different network components such as back-haul, transport and
core network. This metric will be utilized to analyze the MEC latency reduction gains.

• Execution latency: considers the time required to process a given task either locally or at the MEC
host. Parameters such as task size, processing power, and number of required cycles to process an
input bit will be considered in subsequent chapters.

2.2.4 Information Freshness

Different from the experienced latency and inter-delivery time, the timeliness and retainability of
continuous updates of nodes within a system are overarching requirements to meet the different data
transfer, monitoring, timing, and scaling challenges [44, 45]. This implies continuous information update
about the real-time states between a given source and its targeted destination. As presented in Chapter 1,
this is essential for IoT and its underlying architecture, that include among others, ubiquitous sensors and
autonomous actuators [46]. Regarding the computational aspect, timely execution of tasks is essential to
ensure timely result delivery and an enhanced quality of experience [47].

To characterize the freshness of information at the receiver, we adopt the age of information (AoI)
metric, that was first introduced in [48]. The AoI accumulates the transmission delay in addition to the
time elapsed between successive system updates [49]. To account for the information freshness, the AoI
increases linearly when there are no packets in the system as shown for a single source-destination pair
in Figure 2.3. Compared to traditional time metrics (e.g. packet waiting time which is denoted by w1 and
w2 for two consecutive packets in the aforementioned figure), AoI captures the timeliness of updates in a
way those traditional metrics do not [50, 51]. Assume that the i-th packet is generated at time Gi, then
∆i(t +1) is computed recursively as

∆i(t +1) =

{
∆i(t)+1, transmission failure,
t −Gi +1, otherwise

(2.13)

For an M/M/1 FCFS queuing model, in which update packets are generated at the source following
a Poisson process with average rate λa and service times are independent and identically distributed
exponentials with average service rate µser, the average AoI can be evaluated as reported in [48] as

∆ =
1

µser

(
1+

λa

µser
+

µ2
ser

λ 2
a (1−

µser
λa

)

)
. (2.14)

In Figure 2.3, we compute the average waiting time E{W}, average inter-arrival time E{I} and average
AoI E{∆} for µser = 1 and three different values of λa. It is observed that for relative extreme values of
λa (i.e., 0,01 and 0.99), information is outdated (i.e., high AoI values). In such cases, focusing on the
delay solely is not sufficient, as it neglects that impact of the inter-delivery time. It can also be observed
from the reported values in Figure 2.3 that a desirable low AoI is realized when packets with low waiting
times are delivered regularly. Thus, AoI adds a new perspective to the system view that is overcoming the
shortcomings of the typical delay metrics. Moreover, through this thesis, we consider the PAoI, which is
an alternative and more tractable metric compared to the AoI. It is defined as the value of age resulted
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Figure 2.3: Age of information illustration and M/M/1 example.

immediately prior to receiving the i-th update [52]. Mathematically, the time averaged PAoI is computed
as

∆p = E{W}+E{I}. (2.15)

The increased focus on the PAoI stems from the guaranteed system performance insights it unveils. In
addition, the minimization of the PAoI may be required for time critical applications [53]. The PAoI
will be investigated for event-triggered traffic, prioritized traffic and vehicular use cases in the coming
chapters.

2.2.5 Dependability Attributes

A fundamental question for future computation and communication systems is how to characterize and
quantify the ability to operate fault-free. In both recent 3GPP specifications and academic research
works, URLLC use cases have been studied with similar questions in mind. Generally, metrics such
as packet error ratio, latency and jitter, have been well understood in order to assess a given system
performance. These metrics, though fundamentally meaningful from the radio communication perspec-
tive, need to be looked collectively with the computational service demands. Consequently, applying
dependability parameters describe not only the proportion of fault-free functioning of the communication
system, but also its readiness to function and the ability to preserve and restore the desired function.
From a dependability point of view, temporal and spatial availability of a service and reliability of its
operation, help us understand a new perspective of the system’s functionality. A glimpse of the different
dependability attributes is illustrated in Figure 2.4, where adopting such measures is inevitable for 5G
and beyond systems [54]. Understanding and optimizing such attributes facilitate addressing the plethora
of challenges and their stringent requirements, which is needed to ensure service operation with virtually
no failures during the operation time [55]. The need to bridge the gap between traditional radio-link and
service-level key performance indicators is imminent, via providing an insight on the system components
from a dependable perspective.

To this end, tools from reliability theory will be utilized throughout the thesis to assess the computation
and communication paradigm via novel defined KPIs. Reliability theory involves the development of
mathematical methods in order to evaluate the reliability, maintainability, availability, and safety of
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Figure 2.4: Assessment of different dependability attributes for dependable systems.

technical components, equipment, and systems [56]. We utilize such concepts to study efficient service
availability, its reliability and computational-execution related KPIs.

2.3 Multi-access Edge Computing

To realize efficient computing, caching, and data analytic resources at the network edge, MEC is
introduced by the European telecommunication standards institute (ETSI) industry specification group as
a mean of extending intelligence to the edge of the network along with higher processing and storage
capabilities [10]. MEC enables the implementation of MEC applications as software-only entities that
run on top of a virtualization infrastructure, which is located close to the network edge [57]. MEC
deployment will introduce computing capabilities at the edge of the network and will provide an open
environment targeting low packet delays due to close proximity to end users [58]. As a result, this
will minimize network congestion and improve resource optimization, user experience, and the overall
network performance.

From a standardization point of view, 3GPP indicates the interoperability of MEC deployment in
the 5G network as presented in [12]. Seamless integration of MEC into 5G is illustrated in Fig 2.5. The
presented architecture comprises two parts: the 5G service-based architecture on the left and an MEC
reference architecture on the right. The network functions defined in the 5G architecture and their roles
are briefly summarized as follows [59, 10]:

• Access and mobility management function (AMF): handles mobility and access procedures (e.g.,
connection and mobility management, termination of the RAN control plane, integrity protection
and access authentication/ authorization).

• Session management function (SMF): performs session management-related functionalities, such
as , session establishment, charging and support for roaming, and downlink data notification.

• Network slice selection function (NSSF): assists in the selection of suitable network slice instances
for users and the allocation of necessary AMFs.
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Figure 2.5: Integration of 5G service-based architecture and a generic MEC system [59].

• Network repository function (NRF): entails the discovery of network functions and their supported
services.

• Unified data management (UDM): handles user subscription and identification services.

• Policy control function (PCF): unifies the network policies and provides policy rules to control
plane functions (e.g., traffic steering).

• Network exposure function (NEF): acts as a service-aware border gateway for providing secure
communication with the services supported by the network functions.

• Authentication server function (ASF): performs authentication procedures.

• User plane function (UPF): provides functionalities to facilitate user plane operations, e.g., packet
routing and forwarding, data buffering, and allocation of IP address.

Although the aforementioned integrated architecture clarifies how the logical system entities can
interconnect and interoperate, it does not specify where the edge cloud is physically located. Deployment
options can vary from central to remote [60]. In practice, the logical architecture defined in the standards
does not aim to answer the frequently asked question: where is the edge? So far, only qualitative
studies are present in the literature, providing generic guidelines for decision makers [10, 58]. In fact,
when it comes to physical deployment options, the MEC stakeholders (i.e., network operators, cloud
providers, and infrastructure owners) need to clarify how this logical mapping is translated into a practical
deployment blueprint. However, quantitative analysis that demonstrates the performance gains resulting
from MEC system deployment is still to be conceived in different use cases. As a first attempt to provide
meaningful assessment to MEC gains, we consider throughout this thesis that, a MEC host, that addresses
the different services within the network, is physically co-located with each BS. Before delving into the
considered technical use cases, it is first worth highlighting the inter-connection between MEC and IoT
network deployments.

Enabled by the IoT paradigm, MEC has opened many new frontiers for network operators, services
and content providers to deploy versatile, heterogeneous and continuous services on IoT devices [3].
In this sense, MEC and IoT are viewed as complementary technologies, in which MEC empowers
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computational-limited IoT devices with significant additional computational capabilities, to execute
computationally demanding tasks, via task offloading [7]. On the other hand, IoT provides MEC with
a plethora of devices that can utilize its promised gains, ranging from sensors and actuators to smart
vehicles and industrial automation [61]. As presented in [3], the IoT-MEC collaboration offers i) less
traffic passing through the network’s infrastructure, ii) latency reduction for applications and services, and
iii) scalability gains in terms of offered services. Among such gains, latency reduction gains, introduced
by MEC due the reduced physical and virtual communication distance, stands out as a key enabler for
many new market segments [61].



Chapter 3

Prioritized Multi-stream Traffic: Spatially
Interacting Vacation Queues

This chapter develops a novel priority-aware spatiotemporal mathematical model to characterize massive
IoT networks with uplink prioritized multi-stream traffic. In such networks, heterogeneous traffic is
envisaged, where packets generated at each device should be differentiated and served according to
their priority. Stochastic geometry is utilized to account for the macroscopic network wide mutual
interference between the coexisting devices. DTMCs are employed to track the microscopic evolution
of packets within each priority queue. To provide a systematic and tractable model, we decompose the
prioritized queueing model at each device to a single-queue system with server vacation. To this end,
the IoT network with prioritized multi-stream traffic is modeled as spatially interacting vacation queues.
Dedicated and shared channel priority-aware access strategies are presented. A priority-agnostic scheme
is used as a benchmark to highlight the impact of prioritized uplink transmission on the performance of
different priorities in terms of transmission probabilities and delay. Additional performance metrics as
average number of packets, PAoI, delay distribution, and Pareto frontiers for different parameters are
presented, which give insights on stable operation of uplink IoT networks with prioritized multi-stream
traffic.

This chapter is organized as follows. The background, literature review and our contributions are
highlighted in Section 3.1. Section 3.2 provides the system model and the underlying physical and MAC
assumptions. The proposed queueing model along with the microscopic intra-device interactions among
the priority queues are presented in Section 3.3. Section 3.4 shows the macroscopic inter-device queueing
interactions in terms of mutual interference. Simulation results are presented in Section 3.5. Finally,
Section 3.6 summarizes the work and draws some conclusions.

3.1 Introduction

Traffic prioritization schemes in IoT is inevitable due to the IoT heterogeneous traffic such as regular
traffic (e.g., reports or updates), query responses (e.g., diagnostics), special measurements, control
packets, warnings, and alarms [62]. In addition, system alarms or failures need to be addressed almost
immediately. Thus, heterogeneous multi-stream traffic is envisaged, where each traffic stream needs to be
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differentiated and addressed according to its priority. Such traffic discrepancies impose new challenges
on how to properly model the network. The necessity to meet the targeted QoS becomes more prominent
with prioritized multi-stream traffic in mixed-criticality systems. For cellular systems, the concept
of QoS class identifier (QCI) was first adopted in long term evolution (LTE) systems to characterize
different services and to ensure that resources are allocated appropriately [63]. Each stream (i.e., data
bearer) has a corresponding QCI, which indicates the service type, priority, and packet transmission
requirements. Industrial automation is another sector that relies on prioritized traffic, where guaranteed
performance regarding successful packet delivery and latency is an imminent KPI [64]. In particular, the
IEEE 802.1 Qbv amendment, among its many features, introduces eight different priority classes that are
assigned to an incoming traffic stream which define the service requirements of each stream [65].

In addition to traffic prioritization within the network, massive number of deployed IoT devices is
foreseen as highlighted in the previous chapters [6]. Due to the shared characteristic of the wireless
channel, mutual interference between the IoT devices is imminent. In this context, a key enabler of large
scale IoT devices is the low cost of deployment, which is realized via distributed and uncoordinated
devices. Due to its decentralized nature, grant-free access is adopted in uplink cellular transmissions,
where the scheduling complexities imposed by the scheduling grants from the BSs are alleviated [66].
To this end, proper understanding and modeling of the prioritized traffic within the massive number of
devices is required to i) characterize the performance; ii) understand the impact of different network
parameters; iii) highlight common trends in the network’s performance, and iv) provide design insights.

Queues with prioritized traffic have attracted wide attention in the queueing theory literature where
different metrics (e.g., waiting time distribution and average queue length) are characterized [29, 67].
The incorporation of vacations to facilitate the analysis of priority queues is proposed in [68, 67, 69–72].
Nonetheless, the previously mentioned works consider only the interactions within a single queue and
disregard the network-wide interaction between the devices prioritized multi-stream traffic. Focusing on
the work addressing the spatiotemporal view, the work in [34] characterizes the delay outage and downlink
SIR for a heterogeneous cellular network under random, FCFS and round-robin scheduling schemes.
The authors in [35] present a spatiotemporal characterization for grant-free uplink transmissions in IoT
network, where the performance of power-ramping and back-off transmission strategies are investigated.
The work in [35] is extended and compared to scheduled (i.e., grant-based) uplink transmissions in [36]
and it is shown that the network performance is highly dependent on the devices densities and traffic load.
Analysis for small cell deployment is presented in [38], where the authors show the traffic load effect on
the transmission success probability. For an ad-hoc network, [39] presents a fine-grained spatiotemporal
characterization for location-dependent QoS classes in IoT networks.

Considering prioritized traffic under a spatiotemporal perspective, [40] studies the delay and through-
put in a cognitive radio setup, in which a network of secondary users share the channel with a single
primary user. Secondary users are allowed to access the channel with a probability that depends on the
primary user’s queue length. However, their proposed framework only considers two priority classes.
Recently, a framework to characterize an N-class prioritized devices is proposed in [41], where users
randomly share the available channel. However, the model in [41] is for prioritized devices, not traffic
streams, and is only applicable to ad-hoc networks. In summary, none of the aforementioned works
consider prioritized multi-stream traffic in uplink IoT networks. In addition, we are not aware of any
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work in the literature that characterizes the spatiotemporal performance, stability frontiers, and delay
under different channel allocation strategies.

When compared to the results presented in the aforementioned works, we provide an analytical
framework that entails spatial macroscopic and microscopic scales of uplink large scale IoT networks
with prioritized traffic. The analysis relies on the joint utilization of stochastic geometry and queueing
theory. The spatial macroscopic scale denotes the network-wide interactions arising between the devices
in terms of the packet departure probabilities, due to mutual interference between the simultaneously
active devices. Tools from stochastic geometry are employed to characterize the network-wide aggregate
interference. On the other hand, the spatial microscopic scale, investigated via tools from queueing
theory, represents the priority queues temporal dynamics and their interactions. To track the priority class
being served at a given time stamp, a two-dimensional geometric (Geo)/PH/1 DTMC is employed for
each device. In summary, the main contributions of this chapter are summarized as:

• Develop a novel and tractable spatiotemporal framework, based on stochastic geometry and
queueing theory, that jointly accounts for prioritized multi-stream traffic traffic in uplink large scale
IoT networks;

• employ a two dimensional Geo/PH/1 DTMC at every IoT device to account for the temporal
evolution of queues in response to the prioritized multi-stream traffic arrivals and departures;

• integrate the developed DTMCs within a stochastic geometry framework to account for interference-
based intrinsic inter-dependency between the macroscopic- and microscopic-scales;

• compare the dedicated and shared allocation strategies with respect to various KPIs;

• present the Pareto frontiers that characterize the stability regions for different parameters.

3.2 System Model

3.2.1 Spatial & Physical Layer Parameters

This chapter studies a cellular uplink network, where the BSs and IoT devices are spatially deployed
in R2 according to two independent homogeneous PPPs, denoted by Φ and Ψ with intensities λ and µ ,
respectively. Single antennas are employed at all devices and BSs. Grant-free access is assumed, where
the devices attempt their transmissions on a randomly selected channel without a scheduling grant from
their serving BS. In addition, single connectivity is considered where each device is served by its nearest
BS. To alleviate congestion, a set of C channels are utilized by the network and a priority-aware access
strategy is adopted by the devices to access the available channels. This corresponds to the Zadoff-Chu
codes utilized in LTE and 5G system for the random access channels to request scheduling grants[66].1

In this chapter, we analyze three channel allocation strategies for priority-aware packet transmission,
namely, i) dedicated strategy for each priority class with equal channel allocation; ii) dedicated strategy

1For mathematical tractability, we consider only orthogonal channels (i.e., Zadoff-Chu codes stemming from the same
root).
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for each priority class with weighted channel allocation, and iii) shared strategy for all priority classes.
For the dedicated strategy, each priority stream has an exclusive set of channels that can only be accessed
by the devices to transmit their corresponding priority packets. For the shared strategy, all the channels
can be accessed by all devices irrespective of the transmitted packet’s priority.

An unbounded path-loss propagation model is adopted such that the signal power attenuates at the
rate r−η , where r is the distance and η > 2 is the path-loss exponent. Small-scale fading is assumed to
be multi-path Rayleigh fading, where the signal of interest and interference channel power gains h and
g, respectively, are exponentially distributed with unit power gain. All channel gains are assumed to be
spatially and temporally independent and identical distributed. Full path-loss channel-inversion power
control is adopted, which implies that all devices adjust their transmit powers such that the received
uplink average powers at their serving BS is equal to a predetermined value ρ [73]. Moreover, a dense
deployment of BSs is assumed, ensuring that every device is able to invert its path-loss almost surely. A
packet generated at a given device is successfully decoded at its serving BS if the received SINR is larger
than a predefined threshold θ .2 Let di and Ps,i denote the departure probability and the transmission
success probability of an i-th priority packet, given a transmission attempt, respectively. Mathematically,
both metrics can be evaluated as follows

di = TiPs,i, (3.1)

Ps,i = P{SINRi > θ}, (3.2)

where SINRi and Ti are the SINR and the transmission access probability of the i-th priority queue,
respectively. It is worth noting that Ps,i incorporates the inter-dependency between the macroscopic and
microscopic scales of the network.

3.2.2 Temporal & MAC Layer Parameters

The proposed framework considers a synchronized, time slotted, and priority-aware system, in which
packets of different priorities are generated at the devices. A prioritized multi-stream traffic model
is considered such that packets are generated at each priority class independently of other classes.
Hence, for a system with N priority classes, batch arrivals up to N packets can occur in every time slot.
Independent geometric inter-arrival times are assumed between packets belonging to each priority class
with parameters α i ∈ [0,1], i ∈ {1,2, · · · ,N}. Through this chapter, traffic parameterized with lower
indices has higher priority. Generally, we consider that each device has N-priority finite queues, each of
size qi, that accumulate generated packets according to their priorities. The devices employ a priority-
aware transmission strategy that prioritizes the transmission of high priority over lower priority packets.
Furthermore, spatially-uniform distributed traffic is considered, whereas the case of location-dependent
traffic can be extended by adopting different point processes (e.g., Poisson cluster point process) [22].

Furthermore, it is assumed that arrival and departure of packets only occurs at the start of a time slot.
If a high priority packet arrives at its respective queue while a lower priority queue is being addressed,

2Throughout this thesis, queueing activities at the BS are not considered and left for future works. Nevertheless, analysis
developed in this chapter for the prioritized multi-stream traffic can be extended to study networks with queues at both the IoT
devices and their serving BSs.
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Figure 3.1: A snapshot realization of the network with two priority classes. Dark teal, orange and green
rectangles represent devices with high priority packet, low priority packet and no packets in their queues,
respectively. The Voronoi cells of the BSs are denoted by the solid black lines while the dashed lines
denote the active transmissions between devices and their serving BSs.

service is interrupted and switched to the higher priority queue. The interrupted service is resumed after
the high priority queue is empty. Thus, an inter-class preemptive discipline is considered along with an
FCFS discipline within each priority queue. In addition, BSs have no knowledge regarding the status of
the devices queues. For the dedicated channel allocation strategies, the device randomly and uniformly
selects one of the channels dedicated for the addressed packet priority. For the shared strategy, the device
randomly and uniformly selects one of the complete set of channels regardless of the packet priority. In
both cases the channel selection process is repeated in each transmission attempt.

Pictorially, a snapshot realization of the network for two priority classes is shown in Figure 4.1. The
right-hand side of the figure highlights a macroscopic network view and the left-hand side emphasizes
the microscopic scale of three links. Due to the adopted preemptive priority discipline, imposed by the
priority filter block, packets existing at high priority queues are prioritized for service (i.e., transmission)
over packets existing in lower priority queues. If no high priority packets exist, the backlogged lower
priority packets are served. In the case of having empty queues, no transmission is attempted and the
device does not contribute to the network interference. It is worth noting that the time scale of channel
fading, packet generation and transmission is much smaller than that of the spatial dynamics.Each spatial
network realization for the adopted PPPs remains static over sufficiently large number of time slots, while
channel fading, queue states, and device activities change from one time slot to another.

3.3 Temporal Microscopic Analysis

Throughout this section, a novel technique to model the prioritized multi-stream traffic is presented. In or-
der to mathematically describe the different priority queues, a conventional way of characterizing the sys-
tem is based on the following state space [29, Chapter 9]. Let Y = {(z1,n,z2,n, · · · ,zN,n)|zi,n ∈ {0,1, · · · ,qi}}
and i ∈ {1,2, · · · ,N},n = 1,2, · · · , where zi,n denotes the number of i-th priority packets at the n-th time
slot. Although tractable for the case of N = 2, the depicted state space becomes disproportionately
complex for larger values of N [29]. As a result, we seek to introduce a scalable and tractable model for
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Figure 3.2: Vacation-based preemptive priority queues for i = 3. White curves indicates how low priority
packets await service till higher priority queues are addressed.

a general number of priority classes based on vacation queues. For ease of mathematical exposition, the
time-index n will be dropped hereafter.

Priority queues can be modeled using vacation queues, where low priority queues are forced into
a vacation period to allow the high priority queues service [67, 69, 71, 72, 68]. In other words, the
prioritized multi-stream traffic is decomposed into a single queue with vacations, where the server
becomes alternatively available and unavailable for a given priority class. In our model the server
represents the wireless link over which a packet is transmitted. A sever vacation means that the IoT
device is utilizing the current uplink time slot to transmit a high priority packet and no lower priority
packet can be transmitted within this time slot. The unavailability of the server, denoted as vacation, is
due to serving higher priority packets.

An illustrative example for the vacation-based modeling of priority queues is shown in Figure 3.2.
Due to its priority, the first priority queue is agnostic to the lower priority queues dynamics. On the other
hand, the second priority queue will be in vacation till the first priority queue is empty. Similarly, the third
priority queue will be in vacation till the two higher queues are empty. Conceptually, a given queue will
go strictly to vacation if a packet resides in any of the higher priority queues. For ease of demonstration,
Figure 3.2, assumes a hypothetical flawless server (i.e., Ps,i = 1;∀i = {1,2,3}), thus, ignoring the events
of packet transmission failures due to poor wireless channel conditions or high aggregate network-wide
interference from mutually active devices.

In that sense, one can consider that the vacation period of the i-th priority queue is the summation
of the busy periods of the higher queues. In this context, the i-th priority queue’s vacation period
can be modeled via an PH type distribution, which tracks the server’s status whether it is serving
the intended (i.e., i-th) priority queue or in vacation serving higher priority queues. By virtue of
preemptive prioritization, there is no need to track any of the lower priority queues when analyzing the
i-th priority class. Accordingly, the state space for the proposed vacation-based model Yv =

{(
Si,Vi

)
|i ∈

{1,2, · · · ,N},
}

, where Si ∈ {0,1, · · · ,qi} represents the number of packets at the i-th priority queue and
Vi = {(v1,v2, · · · ,vi−1)|v j ∈ {0,1, · · · ,k j} & ∃v j > 0} captures the vacation states of the server in terms of
the number of packets in the higher priority queues. It is worth mentioning that, due to service preemption,
any combination of non-empty higher priority queues is considered as a service vacation event for the
lower priority queues. Utilizing such categorization of states, Figure 3.3 presents a two-dimensional
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Geo/PH/1 Markov chain that is employed at each IoT device to track the packet’s temporal evolution. The
horizontal transitions represent the states of the server, denoted as phases, whether in vacation serving
higher priority packets or serving the intended i-th priority queue. The vertical transitions represent
the number of the packets in the i-th priority queue, denoted as levels. By virtue of the vacation-based
categorization in Yv, Figure 3.3 represents the transitions between serving the third priority class (S3 is
captured via the left hand states) and being in vacation serving higher priority classes (V3 is captured via
the right hand state and its internal components).

In details, the PH type distribution of the server’s vacation is represented via an absorbing Markov
chain. When serving higher priority packets, the server will be looping in the transient states of the PH
type distribution. Absorbing Markov chains are mathematically described via an initialization vector
and a transient matrix. In our case, the initialization vector and transient matrix are denoted as vi and
Vi, respectively. The initialization vector vi captures all the possible initial states for vacations with
their corresponding probabilities. That is, any combination of batch arrivals, that include higher priority
packets, represents a legitimate initial state for the server vacation. For i = 3, all legitimate initial
vacation states are illustrated in Figure 3.3. The sub-stochastic transient matrix Vi tracks the server’s
vacation through tracking the temporal evolution of packets in the higher priority queues. Adopting this
vacation-based model allows a systematic and tractable approach to model a network with generic N
priorities.

For simplicity and ease of understanding lets consider only the first three priority classes, shown
in Figure 3.3, where it is represented the possible states (i.e., in terms of number of packets) of the
third priority queue on the left hand side (depicted by S3). On the right hand side, we plot the vacation
states (i.e., in terms of all combinations of the number of packets for the higher priority queues). Such
vacations are represented by the states V3 = {(1,0),(0,1),(1,1),(1,2),(2,2), · · ·}, since the server has
to serve first priority queues’ packets and then proceed to the second priority queue, before serving the
third priority queue packets. Now consider the server is serving a third priority packet. Such service
will be interrupted if a higher priority packet arrives. It is important to note that there exist several
higher priority packet arrival events due to the considered multi-stream traffic. That is, the higher priority
packet arrival may be for the first queue only, the second second queue only, or both priority queues
simultaneously. Such possible states for a start of vacation period are shaded in Figure 3 and labeled
as "Initial vacation possible states". Moreover, the phases that capture all the interactions between the
first and second priority queues (i.e., busy period of both first and second priority queues) are embedded
within the matrix V3. The vector representing the successful serving of the first and second priority
queues is captured via ṽ3, whereas v3 represents the vacation initialization vector. The probability of a
packet arrival (first priority packet, second priority packet or both) is captured by χ3. In other words, χ3

represents the probability that the third priority queue starts a vacation. Now consider the third priority
queue’s perspective, what is important is just to know the busy period of the aggregate higher priority
queues, which is how long the server will be in vacation before it starts serving its packets (i.e., third
priority packets). Thus, the right hand side just represents the vacation phases, but upon zooming in, one
observes all the possible phases that represent such vacation.
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Figure 3.3: Two-dimensional DTMC modeling the vacation-based priority queues for i = 3. States for
the first, second and third priority classes are depicted by red, green and blue circles, respectively. Solid
(dashed) lines are all multiplied by ᾱ3 (α3).

3.3.1 Vacation-based Priority Queues Analysis

Let mi = ∏
i−1
m=1(km + 1) denotes the number of transient states in the PH type distribution of the i-th

priority queue. For mathematical convenience, we utilize a two level PH type distribution. In the
higher level, absorption denotes packet departure from the i-th priority queue. At the lower level,
absorption implies that the server comes back from vacation and is serving the i-th priority packet. Such
hierarchy facilitates the construction of the system transition matrix. The utilized higher level PH type
distribution is denoted by the initialization vector and transient matrix tuple (β i,Si), where β i ∈ R1×mi

and Si ∈ Rmi×mi . In details, Si is the sub-stochastic transient matrix that incorporates all the transition
probabilities (including whether the server is in vacation or not) until packet departure [29]. Starting from
any state, the temporal evolution until a single packet departures is captured via the following absorbing
Markov chain

Ti =

[
1 0
si Si

]
, (3.3)

where si ∈ Rmi×1 is the probability of being absorbed from a given transient phase and is given by
si = 1mi −Si1mi . It is worth noting that si only have a non-zero element in the location corresponding to
the serving state of the server, since a packet only departs while the server is not in a vacation. Exploiting
the mentioned PH type distribution, a scalable formulation that captures the queueing dynamics can be
given in the form of a QBD process [74]. In particular, the probability transition matrix Pi of the i-th
priority queue is

Pi =


B1,i Ci

A2,i A1,i A0,i

A2,i A1,i A0,i
. . . . . . . . .

A2,i B2,i

 , (3.4)
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where B1,i,Ci and B2,i ∈ Rmi×mi are the boundary sub-stochastic matrices.3 In addition, A0,i,A1,i and
A2,i ∈ Rmi×mi represent the sub-stochastic matrices that capture the transition down a level, in the same
level, and up a level within the QBD, respectively.

In details, B1,i = ᾱ iS0,i captures all transitions from and to the idle state, where S0,i is the stochastic
transient boundary matrix. Similarly, Ci = α iS0,i captures the transitions to level 1, that represents an
increment of the i-th priority packets. The forward transitions sub-matrix A0,i = α iSi represents the case
where a new packet arrives and no packet departs (i.e., vacation state or serving state with transmission
failure). The local transitions sub-matrix A1,i = α isiβ i + ᾱ iSi represents no packet arrival while in
transient state or a simultaneous arrival of one packet and a departure of another packet of the same
priority. The backward transitions sub-matrix A2,i = ᾱ isiβ i captures the case of a packet being dispatched,
leading to a decrement of the i-th queue packets. Finally, the boundary sub-matrix B2,i = α isiβ i +Si

captures the events when the i-th queue is full. Note that packets of the i-th priority that arrive in this
state are lost due to queue overflow. Due to the embedded vacation model, the initialization vector is
expressed as β i = [1 0mi−1] has only 1 at the serving state and zeros otherwise.

In order to construct the QBD via (3.4), the stochastic transient matrices Si and S0,i need to be
computed. We first present preliminary definitions that facilitate the construction of S0,i and Si. Let
χi denote the probability that server starts a vacation while serving the i-th priority queue. Due to the
adopted preemptive priority discipline, a vacation starts upon the arrival of any of the higher priority
packets. Exploiting the independence between the traffic streams, χi equals

χi = 1−
i−1

∏
m=1

ᾱm. (3.5)

Let vi ∈ R1×mi−1 denotes the vacation initialization vector, which have only non-zero values at the
legitimate initial vacation states. The two level PH type distribution used to build the QBD in (3.4) is
constructed through the following proposition.

Proposition 1. The stochastic transient matrices of the i+1-th priority queue with transmission success
probability Ps,i, for the boundary S0,i+1 and non-boundary Si+1 states, are evaluated as

S0,i+1 = S̃i+1, Si+1 = S̃i+1 ⊙Q([Imi]1,1, P̄s,i), such that S̃i+1 =

[
χ̄i χivi

ṽi Vi

]
,

where the operator Q([A]i, j,b) replaces the element in the i-th row and j-th column of A with the scalar
b, Vi = DiPiDT

i is the vacation visit matrix, χi is given in (3.5), vi is the vacation initialization vector
and ṽi = 1mi−1 −Vi1mi−1 is the absorption vector. In addition, Di−1 is the selection matrix and equals
Di−1 = [0mi−1 Imi−1] .

Proof. See Appendix A.1. �

Based on Proposition 1, the vacation states are initialized through the vector χivi (black arrows in
Figure 3.3), while all the vacation phases are captured by Vi (golden arrows in Figure 3.3). Successful

3Those matrices capture the transitions between idle to idle, idle to serving i-th priority queue, idle to vacation (serving
1 ≤ j < i priority queues) and their complementary directions.
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transmission of higher priority packets (i.e., end of vacation) is captured by ṽi (green arrows in Figure
3.3). At this point, the steady state distribution of each priority queue at each device can be evaluated.
Let Ai = A0,i +A1,i +A2,i and let πi represent the unique solution of πiAi = πi, with the normalization
condition πi1mi = 1. Since finite queues are considered at the devices, one is interested to determine the
critical arrival probability after which the probability of having full queues starts to dominate and the
queues tend to be always non-empty [75]. Through the rest of the chapter, we use the term overflow
(non-overflow) region to denote operating beyond (below) such a probability. Mathematically, for the
DTMC in (3.4) to be in the non-overflow region, the following condition must be satisfied

πiA2,i1mi > πiA0,i1mi . (3.6)

The condition in (3.6) ensures that the departure probability of packets is higher than the arrival probability
of packets, which ensures a low overflow probability. Consequently, the overflow probability can be
highly reduced by increasing the queue size. When (3.6) is not satisfied, this implies that the packet
departures cannot cope with the packet arrivals.

Let xi =
[
xi,0 xi,1 · · · xi,qi

]
be the steady state probability vector where xi, j incorporates the joint

probabilities of having j i-th priority packets and all possible combinations of number of packets with
priority higher than i. In particular, let P{n1,n2,n3, · · · ,ni} denotes the joint probability of having n1

packets at the first priority queue, n2 packets at the second priority queue and so on until ni packets at the
i-th priority queue, xi, j can be represented as

xi, j =
[
P{(0, · · · ,0︸ ︷︷ ︸

i−1

, j)}· · ·P{(k1, · · · ,0, j)}· · ·P{(k1, · · · ,1, j)}· · ·P{(k1, · · · ,ki−1, j)}
]
.

In addition, let the scalar xi, j represents the probability of having j packets in the i-th priority queue,
which is evaluated as xi, j = xi, j1mi . By virtue of the adopted preemptive discipline and observing Figure
3.2, it is clear that the third priority queue is only granted service when all higher priority queues are
empty. Thus, the transmission probability Ti can be computed as

Ti =
ki

∑
zi=0

P{(0,0, · · · ,0,zi)}, (3.7)

whereas for the first priority queue γ1 = 1. Let ri = mi(qi +1) be the number of possible states for the
i-th queue, then the steady state solution for a stable system is characterized as follows.

Lemma 1. The steady state distribution for the i-th queue with state transition matrix Pi is

xi = 1ri

(
Pi − Iri +Iri

)−1. (3.8)

Proof. Since we are considering finite DTMC based on (3.4), the steady state vector xi satisfies

xiPi = xi, xi1ri = 1, (3.9)

which is in the form of Ax = b. Employing [76, Lemma 1], the lemma can be proved. �
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3.3.2 Matrix Analytic Method Solution

The mathematical complexity required for the inversion in (3.8) can be cumbersome, specially for large
number of priority classes and large queue sizes qi. Thus, a less-complex and mathematically tractable
solution is sought. To this end, the matrix analytic method is a powerful mathematical tool which is most
suited to Markov chains with QBD structure [74],[29]. Based on the state transition matrix defined in
(3.4), the following lemma derives the steady state distribution for the i-th priority queue.

Lemma 2. The steady state distribution based on the matrix analytic method for the i-th queue is

xi, j =


ϒiA2,i

(
Imi −B1,i

)−1, j = 0,

ϒi, j = 1,

xi,1Ri−1
i , j > 1,

(3.10)

where ϒi = xi,0Ci
(
Imi −A1,i −RiA2,i

)−1 and Ri = A0,i(Imi −A1,i −A0,i1miβ i
)−1 is the matrix analytic

method. In addition, (3.10) must satisfy the normalization xi,01mi +ϒi(Imi −Ri)
−11mi = 1.

Proof. Based on [74, 29], Ri is the minimal non-negative solution to the quadratic equation Ri =

A0,i +A1,i +A2,i. Let xi,0 and xi,1 be the solution to

[
xi,0 xi,1

]
=
[
xi,0 xi,1

][ B1,i Ci

A2,i A1,i +RiA2,i

]
. (3.11)

The employed DTMC has an advantageous feature that can be exploited, since A2,i is a rank one matrix,
which simplifies Ri to Ri = α iSi(Imi − ᾱ isiβ i − ᾱ iSi −α iSi1miβ i). Given that (3.6) is satisfied, Ri has a
spectral radius less than one [29]. The solution to (3.11) is

xi,0 = α ixi,0S0(Imi −α isiβ i − ᾱ iSi −Riᾱ isiβ i)
−1

ᾱ isiβ i(Imi − ᾱ iS0,i)
−1, (3.12)

with the normalization xi,01mi +α ixi,0S0(Imi −α isiβ i − ᾱ iSi −Riᾱ isiβ i)
−1(Imi −Ri)

−11mi = 1. Finally,
xi,1 is obtained through solving (3.11) and xi, j = xi,1R−1. Substituting the component stochastic matrices,
the lemma can be reached. �

3.3.3 Vacation Model Verification

As verification, the proposed vacation-based preemptive model is compared against the conventional
method presented in [29, Chapter 9] for the case of N = 2. Assuming a hypothetical fixed service
probability Ps,i, Figure 4 compares the conventional method with the proposed one. It is observed that the
vacation-based model exactly characterizes the priority queues evolution while offering a computationally
convenient, tractable, and scalable model for larger number of priority classes, whereas for higher values
of N, the conventional method becomes highly complex.

It is clear that in order to compute the steady state distributions xi, j of the i-th queue, one need to
compute Ps,i. Such inter-dependency highlights the interaction between the microscopic and macroscopic
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Figure 3.4: Steady state probabilities for (a) first (b) second priority class for q1 = 6,q2 = 5,α1 =
0.1,α2 = 0.5 & Ps,1 = Ps,2 = 0.5.

scales in the network. In what follows, we present the framework adopted to characterize Ps,i based on
stochastic geometry analysis.

3.4 Spatial Macroscopic Analysis

Based on (3.1), it is clear that Ps,i is a function of the aggregate network mutual interference induced by
the macroscopic interactions between the devices. This section utilizes stochastic geometry to delve into
the network-wide interactions between devices and characterizes the transmission success probability
defined in (3.1). Before proceeding further, we state two commonly used and core approximations that
are utilized in this chapter for tractability and mathematical convenience.

Approximation 1. (i) The spatial correlations between adjacent Voronoi cell areas are ignored. (ii) All
devices in the network are assumed to perform (i.e., in terms of transmission success probability) as the
typical device located at the origin.4

Remark 1. (i) Implies that all devices will have independent and identically distributed transmit powers
to invert their path-loss to the serving BS. Such assumption is commonly used and verified in the literature
[77, 73]. (ii) For static networks, the transmission success probability is location dependent, which
is captured via the meta distribution [78] and can be incorporated to the spatiotemporal analysis as
in [39, 38]. However, it is shown [35, 36, 79, 80] that such location dependence diminishes with path-loss
inversion and random channel selection. (iii) The device becomes typical by spatial averaging. That is,
the typical device’s performance is obtained by averaging over different network realizations, fading
parameters, and queue states [22]. Hence, no generality is lost in studying the statistics seen by the
typical device.

4Both approximations are validated in Section 5.3.5 against independent Monte Carlo simulations.
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Exploiting Approximation 1(i) and 1(ii), the transmission success probability of an i-th priority packet
transmitted from a typical device located at the origin can be further expressed as

Ps,i = P{SINRi > θ}= P
{

ρho

Ii +σ2 ≥ θ

}
, (3.13)

where ho is the channel gain between the device and its serving BS, σ2 is the noise power, and Ii is the
aggregate interference seen by an i-th priority packet, which is expressed as

Ii = ∑
y j∈Ψ\yo

1{ai, j}Pjg j||y j − zo||−η , (3.14)

where y j is the location of an interfering device (all active devices will be interfering except the typical
device Ψ\ yo), ai, j is the event that the device located at y j is transmitting on the same channel as the
typical device, Pj is its transmit power, g j is the channel power gain between the interfering device and
the serving BS, ||.|| is the Euclidean norm, and zo is the typical device’s serving BS’s location.

Remark 2. It is worth noting that Ps,i across different priority classes will only be different for the
dedicated channel allocation, where the channel selection is dependent on the packet priority. Hence,
a device sending an i-th priority packet may only experience interference form devices transmitting
packets of the same priority. However, for the case of shared channel allocation, the transmission success
probability is agnostic to packets priorities.

Due to the assumed exponential distribution of ho, the channel inversion power control and the
definition of the Laplace transform (LT), (3.13) can be expressed as

Ps,i = exp
{
− σ2θ

ρ

}
LIi

(
θ

ρ

)
, (3.15)

where LIi(.) is the LT of the aggregate interference Ii. One can observe from (3.15) the effect of fading,
power control, and decoding threshold on the achieved transmission probabilities, which in return affects
the queues temporal evolution. Thus, coupling the queues departure probabilities and the aggregate
interference in the network. In the remaining of this section, we characterize the transmission success
probability for three different channel allocation strategies.

3.4.1 Dedicated allocation

This scheme considers an orthogonal allocation among the active queues based on their priority. The
interfering sources to an active transmission of the i-th priority queue can only be from the set of all
active devices having packets to be transmitted in their i-th priority queue. The transmission success
probability of an i-th priority packet under the dedicated allocation is derived as follows.
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Theorem 1. The transmission success probability Ps,i of a packet belonging to the i-th priority class
under the dedicated allocation strategy is given by

Ps,i ≈
exp
{
−σ2θ

ρ
− 2θJiκ i,m

(η−2) 2F1(1,1−2/η ,2−2/η ,−θ)
}

(
1+ θJiκ i,m

(1+θ)c

)c ,

(η = 4)
=

exp
{
−σ2θ

ρ
−Jiκ i,m

√
θarctan

(√
θ

)}
(

1+ θJiκ i,m
(1+θ)c

)c , (3.16)

where Ji = ∑
ki
zi=1P{(0,0, · · · ,0,zi)} is the joint probability of having no packets with priority higher

than i and at least a packet with priority i, κ i,m = µ

λCi,m
is the average number of devices per BS per

channel, where m ∈ {EA, WA} indicates equal-allocation or weighted-allocation dedication strategy.

2F1(·) is the Gaussian hyper-geometric function that is defined as 2F1(a,b,u;z) = ∑
∞
k=0

(a)k(b)kzk

(u)kk! and
c = 3.575. The approximation is due to Approximation 1(i) and the employed approximate probability
density function (PDF) of the PPP Voronoi cell area in R2 as shown in (A.4).

Proof. See Appendix A.2. �

The parameter κ iJi represents the portion of devices attempting a transmission of an i-th priority
packet. Thus, interfering on the typical device that is attempting the transmission of its own i-th priority
packet. Moreover, κ i is affected by the number of channels assigned to each priority class. Through
this chapter, we investigate two dedicated channel allocation strategies; namely, equal allocation (EA)
and weighted allocation (WA). The former equally splits the total available channels among the existing
priority classes, whereas the latter considers an allocation of channels that is dependent on that given
priority class arrival probability. Mathematically, the number of allocated channels for the equal and
weighted schemes are expressed as

Ci,EA =
C
N

, Ci,WA =C
α i

∑
N
j=1 α j

. (3.17)

3.4.2 Shared allocation

This strategy considers the case of inter-class channel multiplexing among all the active devices irrespec-
tive of the packet’s priority that is to be transmitted. That is, all the active devices can mutually interfere
regardless of the priority of the packets being transmitted. Hence, all the devices with non-empty queues
are potential interferers to the typical device’s packet. Recalling the preemptive-based mechanism, the
probability of being a potential interferer is the complement of the joint probability that all the N priority
queues are empty. In the following theorem, the transmission success probability of an i-th priority packet
under the shared allocation is derived.
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Theorem 2. The transmission success probability Ps,i of a packet belonging to the i-th priority class
under the shared allocation strategy is given by

Ps,i ≈
exp
{
−σ2θ

ρ
− 2θ J̄0κ

(η−2) 2F1(1,1−2/η ,2−2/η ,−θ)
}

(
1+ θ J̄0κ

(1+θ)c

)c ,

(η = 4)
=

exp
{
−σ2θ

ρ
−J̄0κ

√
θarctan

(√
θ

)}
(

1+ θ J̄0κ

(1+θ)c

)c , (3.18)

where J0 = P{(0,0, · · · ,0,0)} is the joint probability of having no packets in all the N priority queues,
κ = µ

λC is the average number of devices per BS per channel, and 2F1(·) is the Gaussian hyper-geometric
function and c = 3.575. The approximation is due to Approximation 1(i) and the employed approximate
PDF of the PPP Voronoi cell area in R2 as shown in (A.4).

Proof. Since all the packets being transmitted experience the same aggregate interference under the
shared allocation, Ps,i of all the queues are identical. Furthermore, a device is attempting a transmission if
it has any packets within its N priority queues. Thus, the portion of interfering devices within the network
is µJ̄0, where J0 is the joint probability of having no packets in all the N priority queues. Finally, the
theorem is realized following similar steps as Theorem 1. �

In summary, the shared channel allocation strategy aims at allowing the devices to utilize all available
channels. Thus, a given device will have a larger pool of channels to utilize for its transmission, while
experiencing mutual interference from different priority transmission. On the other hand, the dedicated
strategies provides a limited number of the channels for a given class, based on an allocation criteria,
either equally or proportionally. This prohibits mutual interference from different priority transmission.

3.4.3 Iterative Solution

As discussed in Section 3.3, the idle probability of an i-th priority queue employed at a given IoT device
governs the interference it causes within the network. In addition, the aggregate network interference
affects the idle probability of each device. Thus, an inter-dependency exists between the devices activity
and aggregate interference scales. Such inter-dependency can be solved iteratively as presented in
Algorithm 1, which converges uniquely to a solution by virtue of the fixed point theorem [81]. Regarding
the complexity, the dedicated allocation scheme is considered to be more complex compared to the
shared one, as it requires an additional coordination step to compute the portion of channels available
to each priority class. In order to conduct this, prior knowledge of the number of priority classes or the
arrival probabilities α i are required for the equal and weighted-allocation strategies, respectively. On the
other hand, the shared allocation alleviates such step, as all the channels are available irrespective of the
packet’s priority class.
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Algorithm 1 Iterative computation of Ps,i and xi for dedicated and shared channel allocation

procedure ((α1 α2 · · · αN),λ , µ ,η ,θ ,C,ϕ) ◃ ϕ is a convergence tolerance parameter
initialize J0 and Ji ∈ [0,1]
while ||xk

i −xk−1
i || ≥ ϕ do

Compute Ps,i from (3.16)-dedicated or (3.18)-shared.
Construct S0,i and Si from Proposition 1.
if πiA2,i1 > πiA0,i1 then ◃ non-overflow (i.e., stability) condition

Solve xi based on Lemma 1 or Lemma 2.
Compute J0 and Ji from xi.
Compute Ps,i from (3.16)-dedicated or (3.18)-shared.

else
Set J0 = 0 and calculate Ji.
Compute Ps,i from (3.16)-dedicated or (3.18)-shared.
Break.

end if
Increment k.

end while
return Ps,i and xi ∀i.

end procedure

3.4.4 Performance Metrics

Based on the provided iterative framework, once can evaluate the steady state distribution of the N
priority queues. To this end, a number of KPIs can be evaluated, which are insightful when designing
and assessing massive prioritized multi-stream traffic IoT networks.

First, the departure probability is evaluated as di = TiPs,i, where Ti, defined in (3.7), is the probability
that the sever is available to serve the i-th priority packet. Articulated differently, Ti is the probability
that all higher priority queues are empty such that the device is able to send an i-th priority packet. Such
transmission attempt succeeds with probability Ps,i as given by (3.16) for the dedicated allocation and
(3.18) for shared allocation. Let Qi be the instantaneous number of packets at the i-th queue, then the
average number of packets is

E
{

Qi
}
=

qi

∑
n=1

nP{Qi = n}=
qi

∑
n=1

nxi,n. (3.19)

For the i-th priority packet, its transmission will be postponed till all the packets belonging to higher
classes are successfully served. Transmission availability for the i-th priority class in a generic device
denotes the probability that the i-th priority queue is non-empty and that all higher priority queues are
empty. Thus, transmission availability is evaluated as

Ai = 1−
i−1

∑
j=1

k j

∑
m j=1

x j,m j . (3.20)
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A critical KPI in prioritized traffic is the information freshness, which is quantified via the age of
information [82]. Specifically, we focus on the PAoI, which is defined as

∆p,i = E
{
I i
}
+E

{
W i
}
+E

{
Di
}

, (3.21)

where E
[
W i
]
,E
[
Di
]

and E
[
I i
]

denote the average queueing delay, average transmission delay and
inter-arrival delay, respectively. Based on the adopted geometric distribution for packets arrival, the
average inter-arrival times simplifies to E

[
I i
]
= 1

α i
. In addition, let Wi be the queueing delay (i.e., number

of time slots spent in the queue before the service of the i-th priority queue starts) for a randomly selected
packet, then the average queueing delay is given by

E
{
W i
}
=

∞

∑
n=0

nP{W i = n}, (3.22)

where the temporal distribution of the delay (i.e., across different packets) can be obtained as P{W i = 0}=
xi,0 and P{W i = j}= ∑

j
k=1 xi,kG(k)

j 1, where G(k)
i, j represents the probability of having k packets in the

i-th priority queue and being serviced in j time slots with

G(k)
i, j =


S j−1

i siβ i k = 1,
(siβ i)

k j = k,k ≥ 1,

SiG
(k)
i, j−1 + sβG(k−1)

i, j−1 k ≥ j ≥ 1.

(3.23)

Based on the considered PH type distribution for the vacation duration, let Wi be the number of time slots
spent in the queue before the service starts for a randomly chosen packet. Averaging over all packets, the
transmission delay can be computed as [29, Section 2.5.3]

E
{

Di
}
= β i(Imi −Si)

−1. (3.24)

Finally, the PAoI is evaluated by plugging (3.22) and (3.24) into (3.21).

3.5 Simulation Results

Through this section various numerical results are presented that aim at (a) validating the proposed
analytical model; (b) highlighting the influence of the different channel allocation strategies, and (c)
showing priority-aware wireless-based system design insights.

3.5.1 Simulation Methodology

The developed simulation framework incorporates microscopic and macroscopic averaging, where the
former addresses the steady state temporal statistics of the different queues employed at each device
and the latter addresses the stochastic geometric network-wide performance. The simulation area is
10× 10km2 with a wrapped-around boundaries to ensure unbiased statistics imposed by the network
boundary devices.
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Unless otherwise stated, we consider the following physical layer parameters: κ = 1 devices/BS/channel,
C = 64 channels, η = 4 and ρ = σ2 = −90 dBm. For the MAC layer parameters, we consider
three priority classes with (α1,α2,α3) = (0.1,0.25,0.35), where all the queues have equal size (i.e.,
q1 = q2 = q3 = 8). The proposed priority-aware transmission schemes are compared to a reference
multi-stream priority agnostic (PA) FCFS queueing model. In such model, the transmission is granted on
an FCFS basis, equally among the all existing N priority classes.

Synchronous time-slotted system is adopted and each microscopic simulation run is considered as a
time slot where independent channel gains are instantiated and packets are generated probabilistically.
The queue occupancy for each of the considered priority classes are tracked. For a transition from one
time slot to another, packets are independently generated at every device for all queues based on the batch
arrival process (i.e., α i). Every device with a non-empty queue of the N queues tries to communicate its
backlogged packets with its serving BS based on the employed preemptive priority-aware transmission
strategy. For a device with non-empty i-th priority queue, a packet is dispatched from the i-th priority
queue if and only if i) all higher priority queues are empty, and ii) the achieved uplink SINRi on the
selected channel is greater than θ . In order to ensure that the different queues at the devices are in
steady state, simulation is first initiated with all queues at the devices as being idle and then it runs for
a sufficiently high number of time slots until the steady-state is reached. Let x̂k = [xk

1,0,xk
2,0, · · · ,xk

N,0]

denotes the idle steady state probability for the t-th iteration of the N queues. Mathematically, the steady
state is realized once ||x̂k − x̂k−1|| < ϕ , where ϕ is some predetermined tolerance. After steady state
is reached, all temporal statistics are then gathered based on sufficiently large number of microscopic
realizations. Finally, the whole process is repeated for sufficiently large number of macroscopic network
realizations to ensure spatial ergodicity is reached.5

3.5.2 Prioritized Traffic Evaluation and Discussion

We start with the framework validation for all considered priority classes and proposed channel allocation
strategies. Figure 3.5 shows thetransmission success probability (TSP) for three priority classes against
the decoding threshold θ . The close matching between the theoretical and simulation results validates
the developed spatiotemporal mathematical model. Moreover, focusing on a given channel allocation
strategy and a priority class for low values of θ , the devices are able to empty their queues and go
into idle state when operating below the overflow threshold. This leads to a lower network aggregate
interference. As θ increases, the transmission success probability decreases, which leads in turn into
having higher aggregate network interference. Based on the prioritized transmission and the assumption
that α j > α i, ∀ j > i, it is expected that TSP j < di. This is justified as lower priority packets are served
only if all the higher priority queues are empty. In addition, it is clear that the SINR threshold θ , at which
the system transitions from non-overflow to overflow operation depends on the priority class.6

To better assess the performance of the different allocation strategies, Figure 3.6 compares the
considered strategies against the priority-agnostic strategy. First, it is observed that for lower values of θ ,
the dedicated equal-allocation strategy outperforms the shared strategy. This is attributed to the successful

5In point processes theory, a point process is said to be spatially ergodic if the spatial averages (across points) equal the
ensemble averages (across realizations).

6Note that the overflow thresholds depict the point where the probability of queues overflow starts to dominate.
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Figure 3.5: TSP for three priority classes as a function of the decoding threshold θ under (a) Shared (b)
Dedicated equal allocation (c) Dedicated weighted allocation.

packets transmission attempts from the first priority class while benefiting from interference protection
from lower priority classes. As θ increases, the shared strategy outperforms the dedicated one, which
results from the head of queue effect of the higher priority packets. In the dedicated strategy, when several
devices have high priority packets, they keep interfering on a subset of the available channels leaving
other channels for lower priority packets underutilized. Moreover, the dedicated-weighted allocation
strategy fails to provide gains in the high θ region, due to the strong interference experienced by the
higher priority packets, that are allocated a smaller number of channels (i.e., compared to the dedicated
equal-allocation strategy). Thus, hindering the transmission of lower priority packets, that are assigned
larger pool of channels, due to the imposed priority-aware transmission discipline. Additionally, the
shared channel allocation strategy alleviates the additional overhead required for channel allocation
procedures, that is essential for the dedicated strategies. For the priority-agnostic scheme, we observe the
performance deterioration experienced by the higher priority classes (e.g., first and second classes), which
results from the priority-agnostic negligence of higher priority traffic. For the priority-agnostic scheme, a
given packet is granted service depending on its arrival time, not its priority. Accordingly, depending on
the arrival probability, transmission probability is larger for traffic with higher arrival probabilities (i.e.,
third class has larger transmission probability compared to second and first classes). For the third priority
class, due to the FCFS nature of the priority-agnostic scheme, it outperforms the priority-aware strategies.
Accordingly, the TSP values depict a flipped behavior among the higher and lower priority classes.

To further investigate the prioritization effect, the average packet delay is shown in Figure 3.7.7 Due
to its priority negligence of the priority-agnostic strategy, the packets belonging to the three classes
experiences nearly the same waiting time with different values of θ . This is attributed to the inter-class
FCFS discipline of the priority-agnostic. However, for the priority-aware strategies, high priority packets
experience lower packet delays when compared to lower priority packets. The figure also highlights
the traffic prioritization cost on lower priority packets, which is due to the service interruption upon

7The delay is defined as the time elapsed from packet generation at the device until its successful reception at the BS.
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Figure 3.6: Comparison of different allocation strategies for three priority classes.

higher priority packets arrival. Hence, it is important to ensure that the prioritized transmission offers a
differentiated service that meets the QoS requirement for all priority classes.

Throughout the rest of this section, we will focus on assessing the shared and dedicated equal-
allocation strategies due to their promised performance superiority as shown in Figure To this end, 3.6.
Figure 3.8 showcases different KPIs under the mentioned strategies. As a common behavior in all
the sub-figures, we observe a large performance superiority of the shared allocation strategy over the
dedicated equal-allocation one in the high θ regime. As θ increases, packets transmission is subjected
to a more stringent requirement on the achieved SINR. This leads to increased retransmissions, thus,
increasing the aggregate network interference. Furthermore, it can be interpreted that for the low θ

regime, head of the queue is determined by the arrival priority, whereas for the high θ regime, head of
the queue is determined by the prioritized-based preemption discipline. In details, Figure 3.8(a) presents
the average number of packets, where it is observed that the shared strategy results in lower number
of packets residing in the queues at the high θ regime. Within a given channel allocation strategy, as
the priority of the queue gets lower, its average number of packets increases. Packets residing in a
given queue will have to wait until all the higher queues are served, while new packets might arrive and
accumulate in the queues. The figure also highlights the effect of the queue’s priority on the overflow
threshold. The transmission availability is presented in Figure 3.8(b). For the first priority class, such a
metric equals one as highest priority packets will be served upon their arrival. However, for lower priority
packets, the transmission availability decreases. Fig .3.8(c) demonstrates the transmission delay, where it
can be observed the superiority of the shared over the dedicated strategy. In addition, Fig .3.8(d) presents
the average queueing delay distribution over the first five time slots. The queueing delay distributions
is dependent on the prioritization and the allocation strategy. In specific, the distribution tail decays
for higher priority classes, whereas for the lower classes, it takes longer to dispatch their packets. We
observe also a larger tail for the dedicated strategy, when compared to the shared one over the considered
priority classes. Finally, Fig .3.8(d) shows the PAoI. We observe a flipped behavior between the first and
second priority classes when considering a given allocation strategy. This is justified based on the PAoI
sensitivity to the inter-arrival delays (recall α1 = 0.1 and α2 = 0.25). Such a behavior is expected, since
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Figure 3.7: Average packet delay for priority agnostic, shared, and dedicated-equal strategies.

PAoI is lower when packets with low queueing delays are delivered regularly. Thus, larger inter-arrival
times increases the PAoI. As θ increases, the queueing delays start to dominate the PAoI, yielding the
queues eventually in an overflow state. Finally, via observing the reported results in Figure 3.8, it can be
concluded that the exclusive resource partitioning for prioritized grant-free uplink traffic in IoT systems
is outperformed by the shared channel allocation strategy.

In Figure 3.9, we investigate the effect of network scalability and devices densification of the first
two priority queues under shared and dedication-equal-allocation allocation strategies. The considered
values of κ represent a network with 640 and 5120 device/KM2, given that λ = 10 BS/KM2 and C = 64
channels. First, focusing on the first priority class (c.f. Figure 3.9(a)), we observe a slight superiority
of the dedicated equal-allocation over the shared strategy over θ ∈ [−20,−6] dB. As mentioned earlier,
such performance superiority is attributed to the successful packets transmission attempts from the first
priority class while benefiting from interference protection from lower priority classes. Such a behavior
is also reflected for κ = 8 within the range θ ∈ [−20,−14.8] dB. Furthermore, as κ increases, a given
device experiences stronger interference which degrades the TSP and shifts the overflow-region threshold
to lower values of θ . For the second priority class (c.f. Figure 3.9(b)), we observe the superiority of
the shared over the dedicated equal-allocation strategy for the two values of κ . This is due to the fact
that lower priority classes experience head of the queue problem more severely under the dedicated
equal-allocation strategy. Finally, since κ implicitly considers the number of deployed channels at every
BS, such a study can help in deriving the minimum number of channels required to meet a targeted
requirement.

To showcase the network’s stability regions, Figure 3.10 presents the non-overflow region frontiers
under shared and dedicated equal-allocation strategies for different system parameters. Such regions
ensure queues operating below the overflow threshold, which is represented via the filled area under
the curves. The dark (solid lines) and light shaded (dashed lines) represent the shared and dedicated
equal-allocation allocation strategies, respectively. First, Figure 3.10(a) shows the relation between the
arrival probability of the two highest priority classes (α1 and α2) and the decoding threshold θ . As
explained in Figure 3.5, larger values of θ leads to higher aggregate network interference, thus, supporting
lower traffic arrivals to operate within the non-overflow regions. We observe that for low values of θ , the
gap between the shared and dedicated equal-allocation allocation diminishes, since the devices are able
to empty their queues nearly easily even under strong mutual interference. As θ increases, the shared
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Figure 3.9: Effect of devices densification on the (a) first (b) second priority class.

strategy outperforms the dedicated equal-allocation, since more channels are available for each device
for the former strategy. Similarly, Figure 3.10(b) highlights the effect of increasing the third priority
packets arrival probability, where the overflow region decreases with larger arrival probabilities. Such a
figure can provide interesting insights when studying the relation between different classes of traffic in
order to ensure a stable network. The performance comparison between the shared and the dedicated
equal-allocation strategies follows Figure 3.10(a). Finally, Figure 3.10(c) focuses on the relation between
θ , uplink power control threshold ρ and κ . For a given κ , we can expect that as the uplink transmission
can operate under higher thresholds (i.e., higher probabilities), the feasible set of θ ensuring non-overflow
operation increases till saturation is reached. This follows from the system transitioning from the noise
limited to the interference limited scenario, which is governed by the value of σ2. On the other hand,
as κ increases, the non-overflow region diminishes, which is due to the increased interference within
the network. It is important to notice that the shared and dedicated equal-allocation strategies provide
similar (θ ,ρ) frontiers when considering the network’s parameters, since the main dynamics affecting
this frontier is radio-related and is oblivious to the adopted resource allocation strategy.

3.6 Conclusion

This chapter presents a tractable and scalable spatiotemporal mathematical framework for large scale
uplink prioritized multi-stream traffic in IoT networks. The network is modeled via network of interacting
vacation queue, where at the spatial macroscopic scale, interactions occur between different devices
due to the mutual interference. At the spacial microscopic scale, interactions among different priority
packets occur as the uplink channel can only be utilized by the highest priority packets at the device
and is not available to any of the lower priority packets, which is denoted as service vacation. The
developed spatiotemporal model is used to assess and compare three priority aware channel allocation
strategies; namely dedicated-equal allocation, dedicated weighted allocation and shared allocation
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strategy. Numerical evaluations showcase the performance of each priority class in terms of transmission
success probability, average queue length, average-delay, delay distribution, and peak age of information.
Furthermore, a multi-class priority agnostic scheme is used to benchmark the gains and costs of traffic
prioritization on the different priority classes in terms of transmission success probability and average
packet delay. The stability of the IoT network is assessed via the Pareto-frontiers of the non-overflow
regions. Finally, results indicate the superiority of the shared channel allocation strategy over the
dedicated ones, since the former offers higher pool of channels, enabling interference diversification.



Chapter 4

Time and Event-triggered Traffic: An
Information Freshness Perspective

In the previous chapter, we considered prioritized multi-stream traffic in large scale networks. Utilizing
similar methodology and analytical tools, in this chapter, we introduce a novel spatiotemporal framework
that captures the PAoI for large scale IoT uplink network under time and event-triggered traffic. As
mentioned in Chapter 2, timely message delivery is a key enabler for IoT and cyber-physical systems
to support wide range of context-dependent applications, where conventional time-related metrics
(e.g. delay and jitter) fails to characterize the timeliness of the system update. In the foreseen large-
scale IoT networks, mutual interference imposes a delicate relation between traffic generation patterns
and transmission delays. Numerical evaluations are conducted to validate the proposed mathematical
framework and assess the effect of traffic load on the PAoI. The results unveil a counter-intuitive
superiority of the event-triggered traffic over the time-triggered one in terms of PAoI, which is due to the
involved temporal interference correlations. Insights regarding the network stability frontiers and the
location-dependent performance are presented. Key design recommendations regarding the traffic load
and decoding thresholds are highlighted.

To this end, information freshness background and our contributions are discussed in Section 4.1.
Section 4.2 presents the system model, the underlying physical and MAC parameters, and the PAoI
definition. Sections 4.3 and 4.4 discuss the location-dependent characterization of the network-wide
interference and the queueing models along with the PAoI characterization, for the two traffic models,
respectively. In Section 4.5, various simulation results and observations are discussed. Finally, Section
4.6 summarizes this chapter and draw final conclusions.

4.1 Introduction

Information freshness allows the devices to communicate with proximate devices and learn from their
surrounding environment. One key characterization of IoT is the traffic generated by the IoT devices,
which governs many of the system key performance indicators [83]. Therefore, it is important to provide
a mathematical framework that can characterize the information freshness within large scale uplink IoT
networks under different traffic models. IoT traffic can be categorized into time-triggered and event-
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triggered traffic [84]. Time-triggered events generate periodic traffic as in vehicular communications,
smart grids, and wireless sensor networks [85, 8]. As an example, one may consider a smart monitoring
application where devices send timely-based updates to the network’s server, resulting in uncoordinated
time-triggered (i.e., periodic/deterministic) traffic. In such segments, a central entity collects status
updates from multiple nodes (e.g., sensors, vehicles and monitors) through wireless channels. On the
other hand, event-triggered traffic arises in scenarios where devices transmit their packets based on
detecting random events [86]. Such scenarios can be observed as an example in a given area where power
outage occurs. Thousands of devices report their status before the outage occurrence. The IoT network
support for the two considered traffic models is crucial to maintain network functionality and attain the
required QoSs [87]. Throughout this chapter, we address the critical challenge of how to maintain timely
updates within an IoT uplink network under the two aforementioned traffic models.

To position our contribution in context, we first discuss a series of key prior works that studied the
AoI and its variants. Authors in [48] consider the system where a sensor generates and transmits update
packets to its destination under a FCFS discipline and derive the expression of average AoI for different
queueing models. The work in [48] is extended to out-of-order packet delivery in [88]. Last come
first serve queue discipline, with and without service preemption, is studied and contrasted to FCFS in
[49, 89]. The AoI is characterized in [82] for prioritized packet delivery and in [50] for deterministic
traffic. In summary, the previously mentioned works consider only a single sensor scenario.

In addition, a number of works has considered the information freshness in IoT networks with multiple
sensors [90, 91, 52]. In particular, authors in [90] consider that one transmitter sends status update packets
generated from multiple sensors to the destination, and analyze the average AoI for updates allowing
the latest arrival to overwrite the previous buffered ones. In [91], the authors provided an optimization
framework to analyze the optimal sampling and updating processes under energy constraints for single
and multiple IoT devices. The authors in [92, 93] propose a new metric, namely PAoI, that characterizes
the maximum value of the age achieved immediately before receiving a new packet. Focusing on the
PAoI, [52] analyzes the system performance by considering a general service time distribution, and
optimizes the update arrival rates to minimize its defined PAoI-related cost function. In [94], the authors
investigate the role of an unmanned aerial vehicle as a mobile relay to minimize the PAoI. The joint
effects of data pre-processing and transmission procedures on the PAoI under Poisson traffic model are
investigated in [53].

While the aforementioned works characterize the AoI at the microscopic device level, they overlook
the macroscopic impact of aggregate network interference between multiple devices. In the foreseen
massively loaded IoT networks, the mutual interference between the active transmitters, trying to utilize
the set of finite resources, might hinder timely updates of a given link of interest [62]. Capitalizing
on the spatiotemporal perspective, delay and AoI can be characterized and assessed in large scale IoT
networks. For instance, lower and upper bounds for the average AoI are proposed under a stochastic
geometry framework in [95]. Additionally, AoI under a spatiotemporal framework has recently been
investigated in [96], where the authors investigate different scheduling techniques to optimize the PAoI
under a spatiotemporal framework. However, the work in [96] focuses on ad hoc networks with Bernoulli
traffic arrivals, which is a special case of the event-triggered traffic considered our proposed framework.
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To the best of our knowledge, PAoI has not been yet investigated under either of the time-triggered
and generalized event-triggered traffic variants in uplink large-scale IoT networks.1 In addition, the
macroscopic and microscopic network scales are addressed through the proposed framework. For the
macroscopic aspect, stochastic geometry is utilized to characterize the mutual interference among active
devices (i.e., position dependent). In addition, tools from queueing theory are adopted to account for
the microscopic queue evolution at each device under the time-triggered and event-triggered traffic
models. In summary, the main contributions of this chapter compared to the previously stated works are
summarized as follows:

• Develop a novel and tractable mathematical framework, based on stochastic geometry and queueing
theory, that characterizes the spatiotemporal interactions under time-triggered and generalized
event-triggered traffic models;

• develop a framework that integrates DTMCs and stochastic geometry to characterize and assess
the PAoI in large-scale IoT networks under time-triggered and generalized event-triggered traffic
models; and

• showcase the Pareto frontiers that characterize the network’s stability regions.

4.2 System Model

4.2.1 Spatial & Physical Layer Parameters

An uplink cellular network is considered in this chapter where the BSs are deployed based on a PPP Φ

with spatial intensity λ . The IoT devices follow an independent PPP Ψ, such that within the Voronoi
cell of every BS bi ∈ Φ, a device is dropped uniformly and independently. All devices and BSs are
equipped with single antennas. Let r be the distance between a device and its serving BS and η > 2 be the
path-loss exponent, an unbounded path-loss propagation model is considered such that the signal power
attenuates at the rate r−η . Multi-path Rayleigh fading is assumed to characterize the small-scale fading.
Additionally, h and g denote the intended and interference channel power gains, and are exponentially
distributed with unit power gain. Spatial and temporal independence is assumed for all the channel gains.
Fractional path-loss inversion power control is considered at the devices with compensation factor ε .
Accordingly, the transmit power of a device positioned r meters is given by ρrηε , where ρ is a power
control parameter to adjust the average received power at the serving BS [73]. In this chapter, a fixed,
yet arbitrary network realization of the network is considered to account for the much smaller time
scale of the channel fading, packet generation, and transmission when compared to the spatial network
dynamics.2

1When compared to the average AoI, PAoI is considered throughout this chapter because it is more suited to provision
QoS and for min-max network design objectives [52, 96].

2To analyze the location-dependent performance of the network, we consider a static network where for a generic network
realization, Φ and Ψ remain static over sufficiently large time horizon, while device activities, channel fading, and queue
states vary each time slot.
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Figure 4.1: A network realization for λ = 10−6 BS/ km2. Black squares depict the BSs while green and
blue circles represent devices with empty queue and devices with non-empty queues.

4.2.2 Temporal & MAC layer parameters

The proposed framework studies a discretized, time slotted, and synchronized system in which a new
packet is generated at a generic device based on time-triggered or event-triggered traffic. For the time-
triggered traffic, we consider an asynchronous homogeneous periodic packet generation scheme with duty
cycle T and time-slot offset ν . That is, each device in the network generates a packet (e.g., measurement
or status update) periodically every T time slots. However, it is not necessary that all devices in the
network are synchronized to the same time slot for packet generation. Instead, it is assumed that the
offset of the devices ν i ∈ {0,1, · · · ,T −1}, ∀i ∈ Ψ are independently and uniformly distributed among
the time slots within the duty cycle T , i.e., P{ν i = τ}= 1/T , τ ∈ {0,1, · · · ,T −1}. For a generalized
event-triggered traffic, the PH type distribution is employed to capture a wide range of different traffic
variants as will be shown in more details in Section 4.4. An FCFS discipline is considered at each device,
where failed packets are persistently retransmitted till successful reception. In particular, a packet residing
at a generic device is successfully decoded if the received SIR is larger than a detection threshold θ at its
serving BS.

In Figure 4.1, a spatiotemporal realization of the network is shown. At a given time slot, two different
states of devices can be observed i) active due to non-empty queue and ii) idle due to empty queue. Note
that for the time-triggered traffic, all devices with the same offset are synchronized together and become
active at the same time slot. Furthermore, two devices with different offsets may become simultaneously
active in case of retransmission, where the probability of simultaneous activity depends on the relative
offset values between the devices and the decoding threshold θ .

4.2.3 Age of Information in Large Scale Networks

As previously mentioned, AoI quantifies the freshness (i.e., timeliness) of information transmitted by the
devices within the network [48]. For any link within the considered time slotted system, the metric ∆(t)
tracks the AoI evolution with time as shown in Figure 4.2. Assume that the i-th packet is generated at
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time
∆

o(
t)

Go(1) Go(2) Go(3) Go(4)

τ0(1) τ0(2) τ0(3)

∆o(τ0(1))

∆o(τ0(2))
∆o(τ0(3))

Io(1) Wo(2)

Figure 4.2: AoI evolution of a generic (o-th) device. The time stamps Go(i) and τo(i) denote the time at
which the i-th packet was generated and successfully delivered. Io(1) and Wo(2) denote the inter-arrival
time and the waiting times.

time Gi, then ∆i(t +1) is computed recursively as

∆i(t +1) =

{
∆i(t)+1, transmission failure,
t −Gi +1, otherwise

(4.1)

Through this chapter, we consider the peak AoI, termed through the subsequent sections PAoI, which is
defined as the value of age resulted immediately prior to receiving the i-th update [52]. The increased
focus on the PAoI stems from the guaranteed system performance insights it unveils. In addition, the
minimization of the PAoI may be required for time critical applications [53]. To this end, conditioned
on a fixed, yet generic spatial realization, the spatially averaged PAoI,3 as observed from Figure 4.2, is
computed as

E{∆p|Ψ}= E!
{
Io +Wo

∣∣Ψ,Φ
}

, (4.2)

where E!{.} is the reduced Palm expectation [22], Io and Wo denote the inter-arrival time between
consecutive packets and the waiting time of a generic packet at the o-th device, respectively. As observed,
the evaluation of the waiting time is required to evaluate the PAoI. The waiting time depends on,
among other parameters, the considered traffic model, queue distribution and network-wide aggregate
interference. Throughout the following sections, we provide a spatiotemporal mathematical framework
to characterize the PAoI.

4.3 Spatial Macroscopic Analysis

Throughout this section, a novel characterization of the network-wide aggregate interference will be
presented for the time and event-triggered traffic models. Such characterization depends on the meta
distribution of the network-wide SIR, which will be explained in the following subsection. Afterwards,
we consider the time-triggered analysis followed by the event-triggered analysis in subsections 4.3.2 and
4.3.3, respectively.

3It is noteworthy to mention that the considered PAoI in this chapter incorporates temporal and spatial averaging.
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Figure 4.3: For θ = 0 dB (a) network visualization with devices and BSs represented by green squares
and red triangles, respectively, whereas the per-device achieved transmission success probability is shown.
(b) Transmission success probability histogram with mean depicted via the dashed red line.

4.3.1 The Meta Distribution of the SIR: A Fine-grained Analysis

The meta distribution of the SIR has been firstly proposed for Poisson bipolar networks and downlink
cellular networks in [78] and for uplink networks with power control in [97, 79]. Questions such as What
fraction of users in a network can achieve a target link reliability ξ given a required SIR threshold θ or
How is the transmission success probability of individual devices is distributed with a network realization
are crucial to answer in order to meet the targeted diverse requirements. Moreover, the discrepancies
among the users performance, which as an example, can be captured via the 5% user performance, that is
the performance level that 95% of the users achieve or exceed, provide network operators with insights
about the network performance and the delivered QoS. Quantitative answers for the above questions can
be revealed from the meta distribution of the transmission success probability, whereas the traditional
(mean) standard transmission success probability analysis provides virtually no information about it.
Before delving into the meta distribution of the SIR, we briefly introduce some formal definitions that
will help understand the connection between the typical-user and the transmission success probability
analysis carried out in Chapter 3 and its meta distribution. Let SIRo denotes the SIR of the typical receiver,
the CCDF of the SIR, which characterizes the events that the typical receiver achieves an SIR above a
given decoding threshold θ , is given by

Ps(θ) = F̄SIR(θ) = Po{SIRo ≥ θ}, (4.3)

where Po{·} is the Palm probability of the point process, which represents the probability of an event
given that the transmitter point process contains a point at some location [22]. To this end, the conditional
transmission success probability Ps is evaluated from the transmission success probability, conditioned
on a fixed, yet generic spatial realization as follows

P̃s(θ) = Po {SIRo > θ |Ψ,Φ} . (4.4)
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It is worth noting that the expression in (4.3) entails randomness resulting from the channel fading,
the channel access, and the point processes, whereas the expression in (4.4) is conditioned on the point
processes (i.e., transmitter and receiver locations are given). Thus,the conditional transmission success
probability unveils the transmission success probability of each link for a certain realization of the
network point processes, and it characterizes the SIR performance (reliability) of a given link within the
network. It is straightforward to obtain the standard transmission success probability from the conditional
transmission success probability via the spatial averaging of P̃s, i.e., (Ps(θ) = E{P{SIRo > θ |Ψ,Φ}}). In
order to provide a visualized understanding of the difference between (4.3), (4.4) and its meta distribution,
we resort to Figure 4.3. The individual link achieved conditional transmission success probabilities Ps are
plotted next to each transmitter in Figure 4.3(a), whereas the histogram of such values along with the
network averaged transmission success probability Ps(θ) are plotted in Figure 4.3(b). One can observe
that the transmission success probability fails to capture the link achieved performance discrepancies,
which is rather captured by the conditional transmission success probability. To this end, the meta
distribution of the conditional transmission success characterizes the the location dependent success
probability P̃s. Formally, it can be mathematically expressed as [78, 80]

F̄P̃s
(θ ,ξ ) = Po{Ps(θ)> ξ |Ψ,Φ}, (4.5)

where ξ ∈ [0,1] denotes the percentile of devices within the network that achieves an SIR equals to θ .
To this end, P̃s can be interpreted as the reliability, i.e., the conditional success probability of the link in
consideration given the SIR threshold θ , whereas the meta distribution corresponds to the fraction of links
in each network realization that achieve an SIR of θ with reliability at least ξ . In other words, the meta
distribution of the transmission success probability evaluates the distribution of achieved probabilities
shown in Figure 4.3. Since an exact expression for the meta distribution from (4.5) is mathematically
impossible, different approaches have been developed to utilize the moments of the meta distribution to
reveal the high order statistics of Ps [98]. The b-th moment of P̃s with respect to the Palm measure is
defined as

Mb(θ) = Eo
{

P̃s
b
}

, b ∈ N. (4.6)

Utilizing this definition and recalling that P̃s ∈ [0,1], we get

Mb(P̃s) =
∫ 1

0
ξ

bdFP̃s
(ξ ) =

∫ 1

0
bξ

b−1F̄P̃s
(ξ )dξ . (4.7)

For the average transmission success probability Ps(θ), we have Ps(θ) = M1(θ). Different statistical
inequalities (e.g., Markov, Chebyshev, and Chernoff) have been proposed in the literature to evaluate
the moments as shown in [78, 97]. Throughout this thesis, we adopt the tractable approach presented in
[78, 79], which utilizes the beta distribution to approximate the meta distribution by mapping

first and second moments M1 and M2 of P̃s to the mean and variance of the beta distribution as follows

F̄P̃s
(θ ,ξ )≈ Iξ

(
M1 (M1 −M2)(

M2 −M2
1
) ,

(1−M1)(M1 −M2)(
M2 −M2

1
) )

, (4.8)



4.3 Spatial Macroscopic Analysis 52

where Iξ (a,b) =
∫ ξ

0 ta−1(1− t)b−1dt is the regularized incomplete beta function. Since this approach
only uses the first and second moments, it incurs low computational complexity compared to other
techniques (e.g., Gil-Pelaez approach) [98]. In addition, the beta approximation method provides very
good accuracy to the simulations, as will be shown in Section 4.5. In the next subsection, we will dive
into the time-triggered analysis to quantify the meta distribution of the transmission success probability.
Hereafter, the subscript P̃s in F̄P̃s

(θ ,ξ ) will be dropped for easier readability.

4.3.2 Time-triggered Traffic: Spatial Analysis

Due to uplink association, the devices point process Ψ is a Poisson Voronoi perturbed point process with
intensity λ [99, 79, 100, 101]. The periodic time-triggered traffic can be incorporated to the devices
point process via the notion of marked point process. That is, let Ψ̃ = {xi,ν i} be a marked point process
with points xi ∈ Ψ and time offset marks ν i drawn from the uniform distribution P{ν i = τ}= 1/T ,τ ∈
{0,1, · · · ,T −1}. In addition, let Ψ̃τ = {(xi,ν i) ∈ Ψ̃ : ν i = τ} be the point process where all the devices
have identical time offset. Due to the independent and uniform distribution of the time offsets, the
intensity of Ψ̃τ for each τ ∈ {0,1, · · · ,T −1} is λ

T . Note that, all the devices within the same Ψ̃τ have
synchronized packet generation every T time slots, and hence, always interfere together in their first
transmission attempt. On the other hand, two devices within different sets Ψ̃τ1 and Ψ̃τ2 for τ1 ̸= τ2 may
only interfere together due to retransmissions. A pictorial illustrations of the transmission and mutual
interference of four devices in the time-triggered traffic model is shown in Figure 4.4.

Focusing on a fixed, yet arbitrary, spatial realization of Φ and Ψ̃, let (uo,νo)∈ Ψ̃, bo = argminb∈Φ||uo−
b|| and ro = ||uo −bo|| define, respectively, the location, time offset, serving BS, and association distance
of a randomly selected o-th device, where ||.|| is the Euclidean norm. For the ease of notation, we define
the set Ψ̃o,κ = {ri = ||xi −bo|| : (xi,ν i) ∈ Ψ̃,ν i = κ} that contains the relative distances to the serving
BS of the o-th device from all devices with time offset ν = κ . Due to the adopted time-triggered packet
generation and persistent transmission scheme, the SIR exhibits a regular time slot dependent pattern that
is repeated every T time slots. In particular, let ℓ ∈ Z be an integer and τ ∈ {0,1, · · · ,T −1} be a generic
time slot within the duty cycle T , then the SIR of the o-th device at the (τ + ℓT )-th time slot is given by

SIR
T
o,τ+ℓT =

ρhorη(1−ε)
o

∑
ri∈Ψ̃o,τ

Pigir
−η

i︸ ︷︷ ︸
determistic for each τ

+∑
κ ̸=τ

∑
rm∈Ψ̃o,κ

1{a(m)
κ (τ+ℓT )}Pmgmr−η

m︸ ︷︷ ︸
probabilistic retransmissions

, (4.9)

where ho is the intended channel power gain, a(m)
κ (τ + ℓT ) is the event that the m-th device with offset

νm = κ has a non-empty queue at the (τ + ℓT )-th time slot, 1{·} is an indicator function that is equal to
1 if the event {·} is true and zero otherwise, Pi (Pm) and gi (gm) denote the i-th (m-th) uplink transmit
power and its channel power gain, respectively.

Let p(m)
κ ,τ = E

{
1{a(m)

κ (τ+ℓT )}|m,κ ,τ
}

be the probability that the m-th device with time offset νm = κ

has a non-empty queue at the τ-th time slot within any cycle τ + ℓT . Then the intensity of the interfering
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Figure 4.4: Packets generation, departure process, and mutual interference between devices undertime-
triggered traffic with duty cycle T = 6.

devices within the τ-th time slot is given by

λ τ =
(1+Θτ)λ

T
, (4.10)

where Θτ ∈ [0,T −1] is given by Θτ = ∑κ ̸=τ EΨ̃κ
{p(m)

κ ,τ }. Recalling that the intensity of the devices at
each distinct time offset is λ

T , it is clear that Θτ depicts the aggregate percentiles of devices with time
offsets κ ̸= τ that are active at time slot τ . At the extreme case of flawless transmissions, Θτ = 0 and
λ τ =

λ

T , where only synchronized devices with newly generated packets mutually interfere together. On
the other extreme, assuming backlogged queues due to poor transmission success probability, Θτ = T −1,
and hence, λ τ = λ , where all devices are always active and mutually interfere together. In realistic cases,
0 ≤Θτ ≤ T −1, which is the focus of the current analysis.

As mentioned earlier, devices are only active when they have non-empty queues. A packet at the queue
of a generic o-th device departs from its queue in the time slot τ ∈ {0,1, · · · ,T −1} if P{SIRT

o,τ > θ}.
Since a packet is generated every T slots, it is required that SIRT

o,τ exceeds the threshold θ at least
once for any of the time slots τ ∈ {0,1, · · · ,T −1}. Once the generated packet departs and the queue is
empty, the device remains idle for the rest of the cycle until the next packet generation (cf. Figure 4.4).
Otherwise, the departure rate is not sufficient to cope with the periodic packet generation and packets keep
accumulating in the device’s queue. Such devices are never idle and are denoted hereafter as unstable
devices.
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As illustrated from (4.9) and (4.10), the activities of interfering devices, and consequently, SIRT
o,τ

are location and time slot dependent. Due to the fixed realization of the network, the static time offsets,
and the periodic generation of packets, each device experiences a location and slot-dependent pattern
of SIRT

o,τ+ℓT for τ ∈ {0,1, · · · ,T −1} that is repeated every cycle ℓT , ∀ℓ ∈ Z. Despite the randomness
in the channel gains and the probabilistic interference of devices with different offsets, the network
geometry and the periodic packet generation with static offsets have the dominating effect that highly
correlates SIRT

o,τ+ℓT for each τ across different cycles. Such location and time slot dependence of the SIR
yields intractable analysis. Furthermore, there is no known tractable exact analysis for Poisson Voronoi
perturbed point process [99, 79, 100, 101]. Hence, for th sake of analytical tractability, we resort to the
following two approximations.

Approximation 2. The location and time slot dependent TSPs P{SIRT
o,τ > θ} of the BSs in Φ and devices

in Ψ̃ are approximated by the location-dependent TSPs P{ ˆSIR
T
o > θ} where each BS in Φ sees a fixed

panorama of always active interfering devices constituting a fixed, yet arbitrary, PPP Ψ̂ with intensity
function

λ T (x) =
(1+ΘT )λ

T
(1− e−πλx2

); 0 ≤ΘT ≤ T −1. (4.11)

Remark 3. Approximation 2 can be regarded as approximating the success probability P{SIRT
o,τ > θ}

of each device across different time slots within the same cycle T by an approximate mean value
P{ ˆSIR

T
o > θ} ≈ Eτ{P{SIRo,τ}T > θ} to alleviate the time-slot dependence. The approximating PPP

Ψ̂ is assumed to be static to account for the temporal correlations between different cycles, and hence,
capture the location dependent performance of the devices. Note that the intensity function in (4.11) is
sensitive to the effect of unsaturated time-triggered traffic through the parameter (1+ΘT )λ

T . Furthermore,
(4.11) is also sensitive to the uplink association through the factor (1− e−πλx2

) [99, 79, 100, 101].
It is worth noting that the validity of such approximation is validated via independent Monte-Carlo
simulations in Section 4.5.

Approximation 3. The transmission powers of the interfering devices are uncorrelated.

Remark 4. Approximation 3 ignores the correlations among the sizes of adjacent Voronoi cells, which
lead to correlated transmission powers of devices due to the adopted fractional path-loss inversion
power control scheme. Such approximation is widely utilized in the literature to maintain mathematical
tractability [99, 79, 100, 101]. We further validate Approximation 3 via independent Monte-Carlo
simulations in Section 4.5.

By virtue of Approximation 2, the time slot indices κ and τ are dropped hereafter. Furthermore,
exploiting Approximations 2 and 3 along with the mapping and displacement theorems of the PPP [22], the
effect of the power control and path-loss can be incorporated to the intensity function of the approximating
PPP. That is, the PPP of the interfering devices Ψ̂ can be mapped to a 1-D PPP with unit transmission
powers and inverse linear path-loss function. After mapping and displacement, following [79, Lemma 2],
the intensity function in (4.11) becomes

λ̃ T (ω) =
2(1+ΘT )(πλ )1−ερ

2
η

T ηω
1− 2

η

γ

(
1+ ε ,πλ (ωρ)

2
η(1−ε)

)
, (4.12)
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M̃b,T =
∫

∞

0
exp

{
− z−

((1+ΘT
)
2z1−ε

T η

∫
∞

1{ε=1}
y

2
η
−1(1−( y

y+θ

)b)
γ

(
1+ ε ,zy

2
η(1−ε)

)
dy
)}

dz.

(4.15)

where γ(a,b) =
∫ b

0 ta−1e−tdt is the lower incomplete gamma function. Using the intensity function in
(4.12), the transmission success probability in the time-triggered traffic model is defined as

Ps = P!{
SIR

T
o > θ |Ψ̂,Φ

}
,

= ∏
ωi∈Ψ̃T

E!


(

1

1+ θrη(1−ε)
o
ρωi

)∣∣∣∣Ψ̂,Φ

 , (4.13)

where P!{·} is the reduced Palm probability ,Ψ̂T = {ωi =
ri
Pi

, ∀ri ∈ Ψ̂o}, and the set Ψ̂o contains all
relative distances from the approximating PPP Ψ̂ to the serving BS of the o-th device. The computation
in (4.13) follows from the exponential distribution of ho and hi. The meta distribution of the transmission
success probability for the time-triggered traffic FT (θ ,ξ ) is approximated as

FT (θ ,ξ )≈ Iξ

M1,T (M1,T −M2,T )(
M2,T −M2

1,T

) ,
(1−M1,T )(M1,T −M2,T )(

M2,T −M2
1,T

)
 , (4.14)

where M1,T and M2,T are the first and second moments of P̃s under the time-triggered traffic model. The
approximate moments of P̃s for the time-triggered traffic model are given via the following lemma.

Lemma 3. The moments of the TSPs in an uplink IoT network under time-triggered traffic with duty
cycle T are approximated by Mb,T ∼ M̃b,T as given in (4.15).

Proof. See Appendix A.3. �

Network Categorization

It is observed from Lemma 3 that the macroscopic network-wide aggregate characterization depends
on the parameter ΘT . Before delving into the details of characterizing ΘT , we first discretize the
meta distribution of P̃s through uniform network partitioning [39]. Categorizing each devices within
the network into a distinctive QoS class is not feasible due to the continuous support of P̃s ∈ [0,1].
Consequently, the transmission success probability is quantized into Ñ QoS classes.4 The network
categorization process of the distribution in (4.14) for the n-th class is conducted as follows

FP̃s
(ωn)−FP̃s

(ωn+1) =
∫

ωn+1

ωn

fP̃s
(ω)dω =

1
N

, (4.16)

4The continuous random variable P̃s with distribution fP̃s
(ω) is quantized to an equally-probable uniform random variable

d̃ = [d̃1 d̃2 · · · d̃Ñ ].



4.3 Spatial Macroscopic Analysis 56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

ξ

D
is

tr
ib

ut
io

n

FP̃s
(θ ,ξ )

FP̃s
(θ , d̃n)

PMF of d̃n

Figure 4.5: Quantized meta distribution for Ñ = 10, hypothetical ΘT = 0.5 and θ = 5 dB.

where n ∈ {1,2, · · · Ñ}. Afterwards, the discrete probability mass function d̃n (i.e., FP̃s
(d̃n) =

1
Ñ ) can be

evaluated using the bisection method as

∫ d̃n

ωn

fP̃s
(ω)dω =

∫
ωn+1

d̃n

fP̃s
(ω)dω . (4.17)

The computation of d̃n, ∀n via (4.16) and (4.17) quantizes the meta distribution of P̃s into Ñ equiprobable
classes as shown in Figure 4.5. The queue’s departure rate of a device belonging to the n-class is
determined by d̃n. Now we are in position to characterize the time-triggered traffic parameter ΘT .

ΘT Characterization for time-triggered Traffic

As mentioned earlier, for a given set of synchronized devices (i.e., with equal time offset), ΘT depicts
the aggregate percentiles of retransmitting devices from all other distinct time offsets. The first step to
characterize ΘT is to determine the set of always active devices, if any. Particularly, a QoS class that
imposes a departure rate less than the packet arrival rate yields always active devices that continuously
interfere with other devices irrespective of their relative time offsets. Stable and unstable QoS classes
are discriminated via a transmission success probability threshold equal to the packet arrival probability
[75]. Consequently, Ss = {d̃n ≥ 1

T−1 | n ∈ {1,2, · · · , Ñ}} is the set of stable QoS classes (i.e., devices
belonging to this class can empty its queue within the duty cycle T ). Visually, Figure 4.4 depicts an
example scenario with four devices, each belongs to a given QoS class. Device 1, belonging to the lowest
performing class (i.e., one with lowest d̃n), requires more time slots to successfully transmit its packet. It
is noteworthy to mention that transmission failures might occur due to the mutual interference between
active devices or fading and path-loss effect. In accordance, Uu = {d̃n <

1
T−1 | n ∈ {1,2, · · · , Ñ}} is the

set of unstable QoS classes. Devices belonging to Uu are not able to empty their queues within the
packet generation duty cycle T . Thus, their queues will have infinite size and become unstable. For
mathematical tractability, we adopt the following approximation in our work.

Approximation 4. Queues employed at the devices are QoS-aware but have temporally-independent
departures.
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Remark 5. The temporal correlation of interference is captured by the static QoS class of each device.
That is, the departure probability of a device belonging to n-th QoS class remains d̃n. Once the QoS class
is fixed, the departures from the same device across different time slots are considered to be independent
due to the randomness introduced by the channel fading and interfering devices activity profiles.

Let rSsn,k be the probability that a device belonging to a stable n-th QoS is active for k-constitutive
time slots. Recall that every device has a new generated packet every T time slots and that stable
devices, on average, are able to empty their packets within each duty cycle T. Leveraging the temporal
independence between the time slots given by Approximation 4, rSsn,k is evaluated as rSsn,k = (1− d̃n)

k.
The k-consecutive time slots activity due to transmission failures is illustrated in Figure 4.4. The
characterization of the spatially averaged aggregate percentiles of retransmitting devices ΘT for the
time-triggered traffic is given in the following lemma.

Lemma 4. Consider a time-triggered traffic model with duty cycle T . For each set of synchronized
devices, the spatially averaged aggregate percentiles of retransmitting devices from all other distinct time
offsets is given by

ΘT =
1
Ñ

T−1

∑
τ=1

(
|Uu|+

|Ss|

∑
j=1

rSs j,k

)
, (4.18)

where Ss = {d̃n ≥ 1
T−1 | n ∈ [1,2, · · · , Ñ]} and Uu = {d̃n <

1
T−1 | n ∈ (1, Ñ)} denote the set of stable and

unstable QoS classes, respectively.

Proof. First, the devices belonging to a QoS class that is unstable are always contributing to the aggregate
interference. Accordingly, for each distinct time offset, |Uu|

Ñ percentile of the devices will always be
interfering every time slot within the window T . Second, the set of stable devices with time offset k slots
away from a given transmission will only interfere if they have encountered k-consecutive transmission
failures. Considering all stable QoS classes within each set of devices with distinct time offset, the

percentiles of devices that are k-slots active can be characterized as
∑
|Ss|
j=1 rSs j ,k

Ñ . Combining the two
components (i.e., stable and unstable devices) together and considering all other distinct T − 1 time
offsets within the duty cycle, the lemma is obtained. �

Iterating through Lemmas 3 and 4, one can evaluate ΘT and the meta distribution F̄T (θ ,ξ ). In
particular, for any feasible initial value of ΘT , the moments and the TSPs for each QoS class can be
calculated via (4.15), (4.16), and (4.17). Then, the value of ΘT can be updated via (4.18). Repeating
such steps, the aforementioned system of equations converges to a unique solution by virtue of fixed
point theorem [81]. After convergence to a unique solution, the waiting time, a generic packet spends in
the system till its successful transmission, can be evaluated based on the analysis that will be provided in
Section 4.4.1.
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M̃b,E =
∫

∞

0
exp

{
− z− 2z1−ε

η

∫
∞

1{ε=1}
y

2
η
−1(1−(y+θΘ̄E

y+θ

)b)
γ

(
1+ ε ,zy

2
η(1−ε)

)
dy
)}

dz. (4.20)

4.3.3 Event-triggered Traffic: Spatial Analysis

Following the same methodology that was presented for the time-triggered traffic analysis, the SIRo,τ of
the o-th device at the τ-th time slot under event-triggered traffic is

SIR
E
o,τ =

Pohorη(1−ε)
o

∑ui∈Ψ\uo 1{ai}Pihir
−η

i

, (4.19)

where ai is the event that a generic device has a non-empty queue at steady state. Due to the randomized
packet generation and departure, the interference in the event-triggered traffic does not exhibit regular
repetitive pattern as in the time-triggered case. Hence, (4.19) is independent of the time slot index
τ , which will be dropped hereafter. Analogous to Approximations 2 and 3, let Ψ̂E be a PPP with an
intensity function λ E(x) = λ (1− e−πλx2

) that approximates the interference from {Ψ\bo}. Exploiting
the mapping and displacement theorems, the interfering PPP seen at a generic BS bo ∈ Φ can be mapped
to a 1-D inhomogeneous PPP Ψ̂E,o = {si =

||xi−bo||η
Pi

, ∀xi ∈ Ψ̂E} with the following intensity function

λ̃ E(s) =
2(πλ )1−ερ

2
η

ηs1− 2
η

γ

(
1+ ε ,πλ (sρ)

2
η(1−ε)

)
. (4.21)

Hence, the conditional transmission success probability for the event-triggered traffic model is expressed
as

P̃s = ∏
si∈Ψ̃E

E!


 ΘE

1+ aiθrη(1−ε)
o
ρsi

+Θ̄E

∣∣∣∣Ψ,Φ

 , (4.22)

where ΘE denotes the spatially averaged active probability (i.e., the probability that a device has a
non-empty queue) under the event-triggered traffic at steady state. Different from its time-triggered
counterpart in (4.13), the transmission success probability for the event-triggered in (4.22) depicts the
varying set of interfering devices through the probability of empty queue [78, 79]. In particular, the
higher probability of empty queues, the less correlated interference across time slots, and vice versa. The
approximations of P̃s moments for the event-triggered traffic model are given via the following lemma.

Lemma 5. The moments of the transmission success probabilities in uplink network with event-triggered
traffic model with arrival probability α are approximated by Mb,E ∼ M̃b,E as given in (4.20), where ΘE is
the spatially averaged active probability.

Proof. The proof follows similar steps as Lemma 3. �
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After the computation of the approximated moments under event-triggered traffic M̃b,E , ; b = {1,2},
the meta distribution FE(θ ,ξ ) is evaluated based on (4.14) after plugging the computed M̃b,E . In addition,
the network categorization procedure is carried out in a similar way as explained in Section 4.3.2.

ΘE Characterization for event-triggered Traffic

The spatially averaged interfering intensity for the event-triggered traffic is equivalent to the percentage
of devices which have packets to be transmitted in their respective queues at steady state. To this end, the
idle probability of the n-th QoS class x0,n captures such activity. Resorting to the mean field theory, ΘE is
computed by averaging over the Ñ classes temporal idle probabilities as

ΘE = 1− 1
Ñ

Ñ

∑
n=1

x0,n. (4.23)

It is clear that to evaluate FE(θ ,ξ ), one needs first to compute x0,n. Such inter-dependency between
the network-wide aggregate interference and the queues characterization highlights the cross-relation
between the microscopic and macroscopic scales in the network. The characterization of x0,n, which is
required to evaluate the waiting times and the PAoI will be discussed in Section 4.4.2.

4.4 Temporal Microscopic Analysis

The mathematical model for the microscopic scale (i.e., queue evolution) will be presented in this section.
As discussed earlier, the device’s location-dependency is captured via its departure probability (i.e. QoS
class dependent), which remains unchanged over long time horizon. In this chapter, a geometric process
is adopted to model the packets departure from each device. It is important to note that the geometric
departure is an approximation that capitalizes on the negligible temporal correlation of the departure
probabilities once the location-dependent QoS class is determined as mentioned in Approximation 4.
Focusing on the time-triggered and event-triggered traffic in Sub-sections 4.4.1 and 4.4.2, respectively,
tractable expressions to characterize the temporal evolution and the spatiotemporal PAoI will be presented.

4.4.1 Time-triggered Traffic: Temporal Analysis

We utilize a degenerate PH type distribution to mimic the time-triggered traffic generation at every
device.5 In particular, the utilized PH type distribution works as a deterministic counter that generates a
packet every T time slots. A pictorial illustration of the DTMC with deterministic arrival of packets every
T = 4 time slots is shown in Figure 4.6(a). The PH type distribution is defined as an absorbing Markov
chain [29], where in the context of time-triggered, absorption implies packet arrival. The utilized PH type
distribution is represented by the tuple (ρ ,S), where ρ ∈ R1×T is the initialization vector and S ∈ RT×T

is the sub-stochastic transient matrix [74]. In addition, the absorption vector s of the PH type distribution

5In probability theory, a degenerate distribution is a distribution that supports a single deterministic outcome. That is,
a random variable with zero variance boils down to a deterministic value and its distribution is said to be a degenerate
distribution [102].
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can be evaluated as s = 1T −S1T . The matrix S is constructed to count exactly T time slots between two
successive packet generations. Accordingly, there is no randomness in the packet generation process and
the transition probabilities between the states equal 1. In order to mimic the periodic generation of a
packet, S is formulated as

S =


0 1 0 · · · 0
0 0 1 · · · 0
...

... · · · 0 1
0 0 0 0 0

 , (4.24)

and ρ = [1 000T−1]. Based on the proposed PH type distribution for the time-triggered arrival process,
we model the temporal interactions via an PH/Geo/1 queue [29]. The departure process is captured
via a geometric process due to the adoption of Approximation 4. Figure 4.6(a) shows the proposed
DTMC model for the time-triggered traffic, where the vertical and horizontal transitions depict transitions
between levels and phases, respectively. Utilizing the previously mentioned PH type structure, one
can provide a tractable model that captures the queueing temporal dynamics in the form of a QBD
process [74]. The queue transitions for a device within the n-th class are captured through the QBD
characterized via the following probability transition matrix

Pn =


B C
En A1,n A0,n

A2,n A1.n A0,n
. . . . . . . . .

 , (4.25)

where B = S,C = sρ and En = d̃nS ∈ RT×T are the boundary sub-stochastic matrices. In addition,
A2,n = d̃nS,A0,n = d̄nsρ , and A1,n = d̃nsρ + d̄nS, where A2,n, A0,n, and A1,n ∈ RT×T represent the sub-
stochastic matrices that capture the transition down a level, up a level, and in a fixed level within the
QBD, respectively. In addition, A2,n, A1,n, and A0,n are represented via the green, violet, and red arrows
in Figure 4.6(a). As mentioned in the previous section, for the DTMC in (4.25) to be stable, the following
condition must be satisfied [75]

d̃n ≥
1

T −1
. (4.26)

Let xi = [xn,0 xn,1 xn,2 · · · ] be the steady state probability vector, where xn,i = [xn,i,1 xn,i,2 · · · xn,i,T ], where
xn,i,k is the probability that a device that belongs to the n-th QoS class has i packets and is in the k-th
arrival state. In this context, the idle probability of device in the n-th class is evaluated as

x0,n =
T

∑
k=1

x0,n,k. (4.27)

Through this chapter, a mathematically tractable solution is sought to address the aforementioned
DTMC employed at each device. Markov chains with QBD structure can be solved via utilizing the
MAM [74],[29]. Based on the state transition matrix defined in (4.25), the following lemma derives the
steady state distribution of the queues temporal evolution.



4.4 Temporal Microscopic Analysis 61

Pa
ck

et
#0

Pa
ck

et
#1

Pa
ck

et
#2

1 1 1

dn dn dn

dn dn dn

dn

dn

dn

d̄n

d̄n

c1 c2 c3 c4

c1 c2 c3 c4

c1 c2 c3 c4

1 1 1

1 1 1

(a) TT traffic where T = 4 and Ci is the i-th counter.

Idle 1 2 3
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Figure 4.6: DTMCs modeling the temporal evolution. Green states represent idle states.

Lemma 6. The steady state distribution of a device belonging to the n-th QoS class based on the state
transition matrix Pn under time-triggered traffic with duty cycle T is given by

xi,n =


xi,nB+xi+1,nEn, i = 0,

xi−1,nC+xi,n(A1,n +RnA2,n), i = 1,

xi−1,nRn, i > 1,

(4.28)

where Rn is the MAM matrix and is given by Rn = A0.n(IT −A1,n −ωA02,n)
−1. The term ω is the

spectral radius of R, which can be evaluated by solving for z in z = s(IT −A1,n− zA2,n)
−1IT . In addition,

(4.28) must satisfy the normalization x0,n111T +x1,n(IT −Rn)
−1]111T = 1.

Proof. See Appendix A.4. �

Once the queue distribution is characterized, one can proceed with evaluating the waiting time
distribution of a generic packet residing in a queue, which is the major component in computing the
PAoI as explained in Section 4.2.3. Let WT

n be the waiting time of a generic packet at a device belonging
to the n-th QoS class in the queue under the time-triggered traffic and Wm,T

n = P{WT
n = m}. Also, let

qn
i = [qn

i,1 qn
i,2 · · · qn

i,T ], where qn
i, j is the probability that an incoming packet at a device belonging to

the n-th class will find i packets waiting and the next packet arrival has phase j. In accordance, qn
i is

evaluated as [29]

qn
l =

σ

(
xi,nsρ +xi+1,nsρ d̃n

)
, l = 0

σ

(
xi,nsρ d̄n +xi+1,nsρ d̃n

)
, l ≥ 1,

(4.29)

where σ = ρ(IT −S)−11. To this end, the waiting time distribution is calculated as

Wm,T
n =

qn
0111T , m = 0,

∑
i
v=1 qn

v111T
(i−1

v−1

)
bv(1−b)i−v, m ≥ 1.

(4.30)
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After computing the waiting time distribution for the time-triggered traffic model, one can proceed with
the PAoI evaluation as presented in the following theorem.

Theorem 3. The spatially averaged PAoI under time-triggered traffic with duty cycle T is given by

E{∆p|Ψ,Φ}= T +
1
N

( N

∑
n=1

∞

∑
j=0

jW j,T
n

)
. (4.31)

Proof. The theorem is proven by plugging (4.30) into (5.20) and noting that E!
{
Io|Ψ,Φ

}
= T . �

4.4.2 Event-triggered Traffic: Temporal Analysis

Similar to (2.5) and leveraging the flexibility offered by the PH type distribution, as discussed in Chapter
2, a wide range of traffic models can be incorporated to model the event-triggered traffic [103, 29].
Following the construction of the PH type distribution to mimic the required event-triggered traffic model,
the probability transition matrix Pn is constructed following (4.25). Afterwards, the MAM is utilized
to compute the steady state probability vector xn as presented in Lemma 6. For the special case of
Bernoulli-based event-triggered traffic, with inter-slot packet arrival probability denoted by α , the per
device DTMC is illustrated in Figure4.6(b) and is characterized in the following corollary.6.

Corollary 1. The probability transition matrix of a device in the n-th QoS class Pn under Bernoulli-based
event-triggered traffic is given by

Pn =


ᾱ α

ᾱ d̃n α d̃n + ᾱ d̄n α d̄n

ᾱ d̃n α d̃n + ᾱ d̄n α d̄n
. . . . . . . . .

 . (4.32)

In addition, the queue distribution is

xi,n = Ri
n

x0,n

d̄n
, where Rn =

α d̄n

ᾱ d̃n
, and x0,n =

d̃n −α

d̃n
, (4.33)

where xi,n is the probability that a device belonging to the n-th class has i packets residing in its queue.

Proof. The probability transition matrix Pn is evaluated by setting S = ᾱ in (4.25), while the queue
distribution follows that of a Geo/Geo/1 DTMC [29]. �

Remark 6. The DTMC presented in Corollary (1) is stable if the inequality α

d̃n
< 1 is satisfied. For

unstable DTMCs, the idle probability is naturally 0.

Once the queue distribution is characterized, one can proceed with evaluating the spatially averaged
idle probability ΘE and the waiting time distribution of a generic packet within the considered queue.
Similar to the time-triggered traffic, an inter-dependency exists between the network-wide aggregate

6The Bernoulli model for event-triggered traffic was adopted in this chapter due to its mathematical convenience [35, 36,
34, 104, 30] and practical significance as reported in the literature [84, 4, 105, 106].
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Algorithm 2 Computation of FE(θ ,ξ )
procedure (α ,ε ,θ ,N,ϕ)

initialize ΘE .
while ||ΘE

k −ΘE
k−1|| ≥ ϕ do

Compute the moments M̃b,E from Lemma 5.
Evaluate FE(θ ,ξ ) based on (4.14).
Compute d̃n,∀n = {1,2, · · · ,N} from discretized FE(θ ,ξ ) based on (4.16)&(4.17).
for n = {1,2, · · · ,N} do

if α < d̃n then ◃ Stability condition
Compute x0,n.

else
Set x0,n = 0.

end if
end for
Compute ΘE based on (4.23).
Increment k.

end while
return FE(θ ,ξ )

end procedure

interference (i.e., FE(θ ,α)) and the queues characterization (i.e., ΘE). To solve such inter-dependency,
Algorithm 2 is presented which provides a unique solution by virtue of fixed point theorem. To this end,
the evaluation of the spatially averaged PAoI for the event-triggered traffic follows Theorem 3 with two
minor modifications. First, the dimension of the vector (i.e., 111T ) in (4.30) equals the number of PH type
distribution transient states m. Second, the average inter-arrival times E!

{
Io|Ψ,Φ

}
equals m/α , ∑

m
i=1

ρi
α i

and 1/α for the negative binomial, mixed geometric and Bernoulli distributions, respectively. For
the special case of Bernoulli-based event-triggered traffic, the PAoI is characterized by the following
corollary,

Corollary 2. The spatially averaged PAoI for the Bernoulli-based event-triggered traffic with inter-slot
arrival probability α is

E{∆p|Ψ,Φ}= 1
α
+

1
N

( N

∑
n=1

∞

∑
j=0

jW j,E
n

)
, (4.34)

where W j,E
n is the waiting time of a generic packet of a device that belongs to the n-th QoS class and is

evaluated as [29]

W j,E
n =


d̃n−α

d̃n
, j = 0,

∑
i
v=1 xv,n

(i−1
v−1

)
d̃n

v
(1− d̃n)

i−v, j ≥ 1.
(4.35)

Proof. The corollary is realized based on (5.20) and setting E!
{
Io|Ψ,Φ

}
= 1

α
. �
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4.5 Numerical Results

In this section, different numerical insights are presented for the purpose of (a) validating the proposed
mathematical framework for the two traffic models, (b) characterizing the information freshness within
a large scale uplink IoT network, and (c) highlighting the influence of the system parameters on the
network’s stability. First, discussion of the simulation environment is presented to establish a clear
understanding of the simulation framework.

4.5.1 Simulation Methodology

The established simulation framework involves deployment of BSs and devices as discussed in Section 4.2.
Ergodicity is ensured via microscopic averaging, in which the temporal steady state statistics of the queues
at each device are collected. The simulation area is 10×10 km2 with a wrapped-around boundaries to
eliminate the effect of the boundary devices within the network. Discretized, synchronized, and time-
slotted system is considered, where during each time slot (i.e., microscopic run), independent channel
gains are instantiated and packets are generated deterministically or probabilistically, depending on the
traffic model. At the start of the simulation, for the time-triggered traffic, all the devices within the network
are assigned an i.i.d. transmission offset ν i from the distribution fν(τ) =

1
T for τ ∈ {0,1, · · · ,T − 1},

which depicts the time index of a packet generation event. A new packet is generated periodically
following νo + ℓT , ∀ℓ= 1,2, · · · . For the event-triggered traffic, a new packet is generated at each device
every time slot with the probability α . Every device with packets residing in its queue attempts the
communication of such packets with its serving BS based on a FCFS strategy. A packet is dropped from
its queue if the realized uplink SIR at the serving BS is greater than the detection threshold θ .

To ensure a steady state operation of the queues, each queue’s occupancy at each device is monitored.
For initialization, all queues at the devices are initiated as being empty and then simulation runs for a
sufficiently large number of time slots till steady-state is realized. Let x̂t

0 denotes the average idle steady
state probability across all the devices within the network for the t-th iteration. Mathematically, the
steady state behavior is reached once ||x̂k

0− x̂k−1
0 ||< ϕ , where ϕ is some predefined tolerance (e.g. 10−4).

Once steady state is reached, all temporal statistics are then collected based on adequately large number
of microscopic realizations (e.g., 10000). Unless otherwise stated, we consider the following parameters:
η = 4, ρ =−90 dBm, ε = 1, T = 8 and α = 0.125.

4.5.2 Time and Event-triggered Results Discussion

In Figure 4.7, we consider the framework verification via the meta distribution of the transmission success
probability for the time-triggered, Bernoulli-based and mixed geometric-based event-triggered traffic
models with different traffic loads and detection threshold values. First, for all the considered traffic
models, one can observe a close match between the simulation and the proposed analytical framework,
which confirms the accuracy and flexibility of the proposed mathematical model and shows how the
inter-dependency between the network-wide aggregate interference and the queues temporal evolution is
well captured. For low values of θ , the devices are able to empty their queues and become idle. This leads
to a lower network-wide aggregate interference, and thus increased percentile of devices achieving a given
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Figure 4.7: Framework verification for (a) time-triggered (b) Bernoulli-based event-triggered (c) mixed
geometric-based event-triggered traffic.

reliability ξ . As θ increases, the probability of successful transmission attempts for a generic device
decreases, which aggravates the aggregate network interference. Consequently, more devices are active
within the network and the achieved reliability to meet the targeted θ decreases. Figure 4.7(a) presents the
time-triggered traffic patters for different values of cyclic duration. It is observed that as T decreases, the
percentile of active devices increases within the network. Decreasing T increases the packet generation
rate, shortens the time required to dispatch generated packets, and increases the number of synchronized
devices. Accordingly, the network interference increases, which deteriorates the transmission success
probabilities. Such a consequential effect of increased traffic load affects the percentile of devices within
the network to achieve a given transmission success probability, as illustrated via the meta distribution.
In addition, Figure 4.7(b) presents the Bernoulli-based event-triggered traffic model with different arrival
probabilities. Similar to time-triggered case, as α increases, the percentile of active devices increases
within the network, thus affecting the reliability to achieve a targeted decoding threshold θ . More insights
comparing the time-triggered to the event-triggered models will be discussed in Figure 4.11. Finally,
Figure 4.7(c) shows the mixed geometric-based event-triggered traffic model with two traffic arrival
classes α1 and α2 and initialization vector ρρρ = [0.3 0.7]. It is observed that the effect of the initialization
vector values on the network-wide performance. Recall that ρ1 (ρ2) denotes the probability of a given
device gets assigned to α1 (α2). Based on the selected values of ρρρ , we observe the performance gap
between the different traffic loads for θ = 0 dB, which is attributed to the effect of higher arrival rates
of packets captured via α1 and α2. After the verification of the proposed spatiotemporal framework,
throughout the rest of this section, we will focus on the Bernoulli-based event-triggered traffic model in
order to benchmark it against the time-triggered traffic.

Figure 4.8 shows the spatially averaged PAoI along with average waiting time for versus the cycle
duration T for the time-triggered traffic model. As explained in Section 4.2.3, the PAoI is sensitive to the
inter-arrival and system waiting times of a randomly selected packet within the queue. First we investigate
the effect of θ . As θ increases, packets transmission success is subjected to a more stringent requirement
on the achieved SIR. This leads to increased retransmissions, thus, increasing the mutual interference
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Figure 4.8: PAoI (left) and average waiting time (right) for time-triggered traffic with increasing duty
cycle T and different θ .
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Figure 4.9: PAoI (left) and average waiting time (right) for event-triggered traffic with increasing arrival
probability (α) and θ .

due to lower idle probabilities. The increased mutual interference hinders the successful departure of the
packets from their respective queues and lead to queue instability in some devices, yielding instability
(i.e., infinite waiting times and PAoI). The figure also shows the effect of the cycle times. For high values
of T , the large inter-arrival times is the dominant factor, yielding high values of PAoI, while the waiting
time is low. Low values of waiting times are the result of having sufficient time to transmit a residing
packet, before the event of a new packet arrival. As T decreases, the waiting times dominates, yielding
an increase in the PAoI till point of queue instability, as indicated by the stability point. Consequently,
adopting a time-triggered traffic with duty cycle T < 4 results in an unstable system and infinite PAoI.
The effect of θ on the stability frontiers can be explained in a similar fashion to that of Figure 4.7, where
increasing θ diminishes the stability region due to the increased network-wide aggregate interference.
While reduced traffic arrivals reliefs network interference and reduces delay, it is not the case for AoI
because it prolongs the updates duty cycle. Hence, there is an optimal duty cycle that minimizes the PAoI
by balancing the trade-off between frequency of updates and the aggregate network interference.
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Figure 4.10: PAoI for N = 10 QoS classes and θ = 5 dB.

Similar to the time-triggered traffic, Figure 4.9 shows the PAoI along with average waiting time for
the event-triggered traffic with increasing arrival probability α . For low values of α , the inter-arrival
component dominates, yielding high values of PAoI, while the waiting time is low. For low arrival
probabilities, the network-wide aggregate interference is low, yielding higher probabilities for a packet
to be successfully transmitted without large number of retransmissions. However, as α increases, the
waiting times dominates, yielding an increase in the PAoI till point of queue instability, as indicated by
the stability point.

Figure 4.10 presents the per-QoS class PAoI among the different QoS classes within the network.
The shown classes are sorted in an ascending order with respect to d̃n (i.e., a device belonging to class i
is spatially located closer to its serving BS compared to a device belonging to class j, such that i > j).
The time-triggered and event-triggered traffic models are shown in Figure 4.10(a) and Figure 4.10(b),
respectively. For T = 15 (α = 1/15), the inter-arrival times dominates the PAoI, leading to a nearly-
constant PAoI over all the classes. The location-dependency is more clear as T (α) decreases (increases).
for α = 0.15 and α = 0.25. Consequently, classes with lower indices experience large PAoI due to
their larger waiting times (i.e., effect of the location dependency captured via the meta distribution).
For large traffic load (i.e., T = 5 (α = 1/5)), all except last two and three classes are unstable, for the
time-triggered and event-triggered traffic models, respectively. As mentioned earlier, unstable queues
results in infinite PAoI.

Next we assess the time-triggered and event-triggered traffic based on their PAoI, meta distribution,
and TSPs for three different traffic loads. Figure 4.11 presents different performance comparisons
between the two traffic models. First, Figure 4.11(a) shows the PAoI as a function of increasing detection
threshold θ . It is observed that the event-triggered traffic provides lower PAoI for all the considered set
of traffic loads. Although, it was shown in [50] that periodic packet generation minimizes the age for
the FCFS queues, considering the network-wide aggregate interference into the age analysis provides
another perspective. As mentioned in Section 4.3, the time-triggered traffic model imposes a spatial
and temporal correlation between the devices. In particular, each device sees the same set of active (i.e.,
interfering) devices in each transmission cycle T . Such correlation is alleviated in the event-triggered
traffic model, in which the activity profiles are diversified among different time slots. This performance
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Figure 4.11: TT and event-triggered traffic models comparison based on (a) PAoI (b) meta distribution of
the TSP for θ = 1 (c) TSP.

gap between the time-triggered and event-triggered traffic is larger for low duty cycles (or high arrival
probabilities), due to the stronger interference correlation in such scenarios. As the activity profiles are
more relaxed (i.e., T (α) increases (decreases)), the gap between the two traffic models decreases. Next,
Figure 4.11(b) presents the meta distribution for the considered traffic loads. As the traffic load increases
for the two traffic models, the percentile of devices achieving a given reliability (i.e., ξ ) decreases as
explained in Figure 4.7. In addition, one can observe the discrepancies between the time-triggered and
event-triggered traffic considering the similar traffic load. Such discrepancies are hardly captured by the
spatially averages Ps, which emphasizes the importance of the meta distribution as shown in 4.11(c). In
addition, a sharper transition in the meta distribution implies less location-dependent performance (i.e.,
less temporal interference correlation) and that all devices tend to operate as a typical device. Due to
the aforementioned explained correlation between the active devices, the time-triggered traffic provides
lower TSPs for all the considered traffic loads. The stability point, depicted by green circles, represent
the point at which the queues are unstable. Any operation beyond such a point yields in operating in the
non-stable region.

Finally, Figure 4.12 presents the Pareto frontiers for the arrival intensity of the event-triggered and
time-triggered traffic with the detection threshold over the N QoS classes. Pareto frontiers define regions
where the queues are guaranteed to be operating within a stable region. First, Figure 4.12(a) shows the
relation between the arrival probability and the detection threshold θ for the existing five QoS classes.
Due to retransmissions, a higher θ implies lower idle probability, and hence, higher aggregate network
interference allowing lower values of α to ensure stability. In addition, due to the favorable spatial
locations of the higher QoS classes compared to the lower ones, the Pareto frontiers for those higher
classes are covering a larger set of (θ ,α) values. Similarly, Figure 4.12(b) presents the Pareto frontiers
between θ and the cyclic time T . The curves explanation follows that of the event-triggered traffic, since
T represents the arrival events, comparable to α .
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Figure 4.12: Pareto frontiers between detection threshold and traffic load for N = 5. Dashed lines
represent the spatially averaged frontiers.

4.6 Conclusion

This chapter presents a mathematical spatiotemporal framework to characterize the PAoI in IoT uplink
networks for time-triggered and event-triggered traffic. First, we leverage tools from stochastic geometry
to analyze the location-dependent performance of the network under the two traffic models. Expressions
for the network-wide aggregate interference are presented in the context of the location-aware meta
distribution. Furthermore, we analyze the inter-dependency between the aggregate network wide-
interference and the queues evolution at each device. Additionally, PH type distribution is leveraged
to model the periodic and random traffic generation for the time-triggered and event-triggered traffic,
respectively. In summary, both the time-triggered and event-triggered traffic models can be captured
via unified queueing analysis. However, in large scale networks, both traffic patterns lead to different
mutual interactions between the coexisting IoT devices, which is captured via the stochastic geometry
analysis. To this end, the two traffic models are verified and compared in terms of transmission success
probabilistic, delay, and PAoI. Simulation results are presented to validate the proposed framework. The
results unveil the counter-intuitive lower PAoI of event-triggered traffic over the time-triggered traffic,
which is due to the higher temporal interference correlations of the time-triggered traffic. In addition,
the stability frontiers coupling the network’s traffic load and decoding threshold are presented and their
effect on the PAoI are discussed.



Chapter 5

Multi-access Edge Computing and Low
Latency Communication

5.1 Introduction

Throughout this and the following chapter, we focus on the design of computation-aided wireless
networks, in particular, leveraging the advents of MEC deployment. As mentioned earlier, the efficient
design of 5G mobile networks is driven by the need to support the dynamic proliferation of several
vertical market segments. Such verticals are nevertheless faced with new challenges such as, resources
dimensioning, densification impact, network-wide mutual interference and others [7]. As a result, network
design and resources dimensioning need to consider not only the communication aspect, but also the
computation one and the interconnection between the two. Throughout this chapter, we investigate the
following points:

• In a heterogeneous network deployment, where heterogeneity among different tiers is present in
the communication and computation resources, questions related to the impact of the adopted cell
association criterion on the experienced latency is our main focus. We propose in Section 5.2 a new,
device-cell association metric, which takes into consideration the proximity of MEC resources to a
device and investigate its effect on the device’s end-to-end experienced latency.

• For a vehicular network, we showcase in Section 5.3 the latency and information freshness gains
achieved from MEC deployment in comparison with a conventional, remote cloud-based cellular
architecture. In order to carry out such evaluation, we model the different network components.
Furthermore, the effect of different system parameters as well as the latency bottlenecks are
discussed.

5.2 MEC-aware Cell Association for Future Networks

As mentioned earlier, the advent of MEC brings up the need to efficiently plan and dimension network
deployment by means of jointly exploiting the available radio and processing resources [57, 58]. From
this standpoint, advanced cell association of devices can play a key role for 5G systems [107]. Focusing
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on a heterogeneous network , this Section proposes a comparison between state-of-the-art (i.e., radio-
only) and MEC-aware cell association rules, taking the scenario of uplink task offloading as a use case.
Numerical evaluations show that the proposed cell association rule provides nearly 60% latency reduction,
as compared to its standard, radio-exclusive counterpart.

5.2.1 Background and Contributions

The applied rule for user-cell association plays a key role towards efficiently exploiting the entire set
of resources [108]. Nevertheless, current mobile systems have been planned and deployed so far by
following traditional paradigms of network planning (e.g., based on radio-only coverage). Unfortu-
nately, this approach is not sustainable anymore, as current cell association rules completely discard the
aforementioned availability of processing resources at the network’s edge, hence, they fail to constitute
cost-effective and flexible solutions for QoS provisioning [107]. To the best of our knowledge, current
technical literature mostly sheds light on the problem of optimally allocating radio and computation
resources to already connected devices, inherently assuming conventional cell association, where the
device is connected to its serving BS based on the maximum reference signal received power (RSRP)
rule.

In details, authors in [109] investigate task offloading in a multi-cell scenario, where they show
an enhancement achieved by offloading to multiple BSs via benefiting from prior knowledge of radio
statistics. In [110], the problem of radio and computation resource allocation over connected devices is
investigated under time division multiple access (TDMA) and frequency division multiple access (FDMA)
schemes. The authors optimize the joint allocation and show the achieved gains, as compared to a baseline
round-robin scheme. An analytical framework that optimizes the offloading decision under task deadlines
for a single device is presented in [111]. For multi-devices deployment, [112] studies the problem of
joint radio and processing power allocation under an optimization framework, where the task completion
time is minimized subject to energy consumption constraints. It is, thus, evident that none of the above
works question the effectiveness of the applied cell association rule. With regards to the design of a cell
association rule driven by performance requirements, in [113], a cross-layer, device matching problem
was studied for a cloud-RAN. In this work, the authors proposed a joint matching scheme between
the devices, cloud-RAN components and MEC hosts, aiming at meeting a task completion deadline at
the device side. Nevertheless, this work did not exploit the multi-tier resource disparity expected in a
heterogeneous network as well as reveal the practicality of the association procedure from a signaling
overhead viewpoint. Given the above described research development and identified gaps, this section
presents the following:

• Focusing on a MEC-enabled heterogeneous network , we introduce a new, device-cell association
metric, which evaluates the proximity of MEC resources to a device.

• To highlight the benefits of the proposed association rule, we introduce a one-way packet latency
budget metric, which is the latency consisting of the radio transmission time of an input packet
between the device and the connected BS in the uplink, along with the execution time of a given
task at a MEC host.
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• We conduct numerical evaluation to compare the proposed association rule to the conventional
RSRP rule, in terms of the packet latency budget performance for various inter-tier resource
disparities, as well as for different network deployment densities.

5.2.2 Heterogeneous Communication and Computation Model

Throughout this section, a K-tier cellular network is studied, where the BSs and devices locations are
spatially randomized following a PPP deployment. According to this model, the locations of the BSs of
the i-th tier are modeled through a homogeneous PPP Φi = {xi}, i = 1,2, · · · ,K of density λ i. It should
be noted that the K PPPs are mutually independent. On the other hand, the device positions are modeled
via a different homogeneous PPP, Ψ, of density µ . Due to the network’s heterogeneity, different tiers are
distinguished by the transmit power, Pi, of their BSs, their spatial density, λ i, and the total processing
power, Ci, of a MEC host co-located with an i-th tier BS. Cross-tier radio resource disparity can be
adjusted by defining the ratio of the transmit powers of two consecutive tiers, Gr

i, (i.e., Gr
i =

Pi
Pi+1

> 1), as

well as the ratio of processing powers of their MEC hosts, Gc
i, (i.e., Gc

i =
Ci
Ci+1

> 1). It should be noted
that the mentioned ratios are always greater than 1 as a tier i ∈ {1, · · · ,K} is assumed to be overlaid with
tiers of lower transmit power and processing capabilities. Note that Gr

K = Gc
K = 1.

The path-loss between a given device and its serving BS is modeled as inversely proportional to the
distance r with a given path-loss exponent denoted by η , of common value for all tiers. Small-scale
fading h,g is assumed to be Rayleigh distributed with unit average power and the fast fading effects are
assumed non-correlated among the various links. Additionally, each device employs a fixed transmit
power, P, which is greater than its serving BS sensitivity threshold. The target BS belonging to the i-th
tier is assumed to be placed at the origin [114], thus, for uplink communication, the measured SINR at
the k-th device associated to an BS in the i-th tier is

SINRk,i =
Phk,ir

−η

k,i

Ik,i +σ2 , (5.1)

where σ2 is the noise power and Ik,i is the interference generated by other active devices as Ik =

∑y j∈Ψ\yk
Pg j,i||y j − zi||−η , such that y j is the location of an interfering device, g j,i is the channel power

gain between the interfering device and the serving BS, ||.|| is the Euclidean norm, and zi is the device
of interest serving BS’s location. Finally, orthogonal channel allocation is assumed to avoid intra-cell
interference.

As mentioned earlier, low latency access to cloud infrastructure is foreseen as a critical feature of
5G systems [115]. As a result, the experienced one-way packet latency budget, denoted by E , at the
device side during task offloading will be our metric of interest throughout this section. In Figure 5.1,
the end-to-end experienced packet latency budget is provided. First, T dev represents the time needed
for application initiation and packet generation at the device side, followed by time intervals for data
transmission and task execution at the MEC host, denoted by T radio and T exc, respectively. Throughout
this section, T dev is implicitly modeled through T radio, via random generation of packets, whereas, the
back-haul, web and remote processing latencies, denoted by T BH+CN, T Web and T Proc respectively, are
left to be addressed in the following Section. It is also assumed that the BSs and their corresponding
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Figure 5.1: End-to-end latency overview.

MEC hosts are physically located at the same node and that all deployed devices concurrently offload
their tasks to their chosen MEC host. As modeled in [110], the packet latency budget for the k-th device
associated to an BS in the i-th tier is calculated as follows

Ek,i = T radio
k,i +T exc

k,i , (5.2)

where T radio
k,i and T exc

k,i stand for the radio propagation time and the task execution time at the MEC host,
respectively. The radio propagation latency represents the time needed for a given packet of size of lk bits
to arrive at the serving BS [116], thus can be calculated as

T radio
k,i =

lk
rk,i

=
lk

Bk,ilog2(1+SINRk,i)
, (5.3)

where rk,i is the achievable rate of the k-th device and Bk,i represents the bandwidth allocated to device k
when served by an BS in the i-th tier. On the other hand, the execution time can be computed as

T exc
k,i =

lk fk

Yk,iCi
, (5.4)

where fk, measured in cycles/bit, is the number of processing operations per input bit for the task to
be offloaded by the k-th device and Yk,i represents the fraction of the total processing power of a tier-i
MEC host dedicated to the k-th device. Throughout this chapter, we assume equal per-user allocation of
radio bandwidth and computation (MEC) resources [117], as the design of a more sophisticated resource
allocation scheme can be left to future work. Thus, for a given BS belonging to the i-th tier, the number
of associated devices, which is obtained by means of applying a cell association rule, will determine the
portion of bandwidth and computation resources dedicated to each connected device. In what follows,
we present in detail the investigated association rules.

5.2.3 Computational Proximity Cell Association

Conventionally, considering a single tier of communication, the downlink RSRP rule determines the
cell to which the device will be connected for both downlink and uplink communication. Nevertheless,
employing such a connectivity criterion in a highly heterogeneous network consisting of multi-tier BSs
with diverse capabilities leads to load imbalance among the different tiers [118, 99]. Moreover, the uplink
cell association is achieved based on an BS proximity criterion, hence, leading to the minimum path-loss
experienced by the device. A depiction of such a miss-match between the downlink and uplink coverage
regions for two-tiers network is shown in Fig 5.2, where it is observed the load imbalance between the
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(a) (b)

Figure 5.2: Coverage regions visualization for a) downlink and b) uplink communications for Gr
1 = 40.

Macro and micro BSs are depicted via red and black circles, respectively. Devices with same and different
serving BSs in downlink and uplink are shown by green and blue circles, respectively.

two tiers as well as the number of devices with decoupled access. As a result, downlink-uplink decoupled
access has been proposed as a disruptive solution for an enhanced network performance, mainly giving
the devices the flexibility to associate with the BS that provides the minimum path-loss, when it comes
to uplink communication [119, 120]. To this end, we choose to revisit the aforementioned rules and
propose a new, MEC-aware cell association rule, that aims at minimizing the execution time at the MEC
host, along with ensuring connectivity to the closest BS. This is motivated through the added degree
of freedom resulting from the MEC deployment, and questioning the optimality of the conventional,
maximum downlink RSRP-based association rule, when it comes to the latency experienced by a device
in a heterogeneous network . A mathematical representation of the association problem can be formulated
as follows

xi =argmax
x∈Φi

(ιi||x− y||−η),∀i = 1,2, · · · ,K, xo = argmax
x∈xi:i=1,···K

(ιi||x− y||−η), (5.5)

where xi is the serving BS index and ιi, i = 1, · · · ,K represents a biasing factor for the i-th tier imposed
to the devices, and y is the device’s location. According to the RSRP cell association rule, a device is
served by the BS providing it with the maximum RSRP in the downlink. This is equivalent to setting
ιi to be equal to Pi in (5.5). In a heterogeneous network with large radio disparity (i.e., Gr

i >> 1), the
adoption of this rule leads to an imbalanced load among the multiple tiers and, as a result, to limited radio
performance, since most of the devices will be associated to BSs of high transmit power. This problem
is well-known and multiple solutions have been proposed, such as load-aware optimization [115] and
cell range extension [121]. In order to quantify the number of devices associated with a tier-i BS, the
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association probability of a given device to an BS of the i-th tier is calculated as [122]

ARSRP
i =

λ i

ΞRSRP
i

, (5.6)

Ξ
RSRP
i = P

−2
η

i

K

∑
j=1

λ jP
2
η

j . (5.7)

Consequently, the average number of associated devices to an BS of the i-th tier, termed as N̂RSRP
i ,

will affect the experienced packet latency budget per device, as the amount of bandwidth and pro-
cessing resources allocated per device is inversely proportional to the achieved packet latency budget.
Mathematically, N̂RSRP

i can be evaluated as

N̂RSRP
i =

ARSRP
i λ u

λ i
=

λ u

ΞRSRP
i

. (5.8)

Assuming equal resource allocation among the devices connected to an BS, the bandwidth and processing
resources allocated to the k-th device associated to an BS of the i-th tier will be equal to

Bk,i =
B

N̂RSRP
i

, Yk,i =
1

N̂RSRP
i

, (5.9)

where B represents the total bandwidth allocated to tier i, i = 1, · · · ,K. At this stage, we can introduce
the proposed MEC-aware cell association rule, according to which the serving BS is the one of the
maximum computation proximity. In this context, computation proximity refers to the existence of a
processing power source in the vicinity of a device of limited computation capabilities that chooses to
offload a demanding task to this source. Such resources, as defined in Section 6.2.2 (Ci,∀i = 1, · · · ,K)
can be the same for all the tiers, thus, resulting in a homogeneous network from a MEC perspective,
or can be varying across the tiers, resulting in a MEC heterogeneous network , thus, affecting the task
offloading latency experienced by a device. As observed from (5.2), the overall packet latency budget
is jointly affected by the proximity to the connected BS (i.e., radio part - T radio

k,i ) as well as by the
available processing power (i.e., MEC part - T exc

k,i ). Our aim is to consider both resource domains through
introducing a new association rule for uplink communication, by setting the bias factors ιi as functions of
the available computation resources (i.e., ιi = Ci). As a consequence, the association probabilities and
the average numbers of connected devices can be computed easily by replacing Pi by Ci and computing
AMEC

i , ΞMEC
i and N̂MEC

i , accordingly.
Referring to the spatial network deployment, a critical factor affecting the performance of the proposed

device-cell association rule is the ratio of radio/ MEC cross-tier disparities, which is defined as

X i =
Gr

i

Gci
. (5.10)

In order to visualize the influence of parameter X on device connectivity, focusing on a two-tier network,
Figure 5.3 presents a zoomed overview of a network realization, where devices are connected to their
serving BSs/MEC hosts via the two discussed rules. One can observe that, assuming a large value of
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Figure 5.3: A spatial realization of a two-tier network consisting of macro, micro BSs and devices,
represented by red, black and green circles, with Gr

1 = 40, Gc = 2, X 1 = 20. The blue dashed-dotted
lines represent device connectivity following the maximum downlink RSRP association rule, while, the
red dashed lines represent device connectivity based on the proposed computation proximity-based rule.

parameter X 1, for a fair number of devices, the maximum downlink RSRP association rule indicates a
node for connectivity which is different from the one obtained by applying the proposed computation
proximity-based association rule. This occurs because large cross-tier radio/ MEC disparities lead
towards quite dissimilar radio/ MEC coverage areas. Such an observation paves the way towards a
different insight on the network planning process, taking into account the available computation resources
together with the radio transmission capabilities, since both of them directly affect the packet latency
budget experienced by a given device, when the latter wishes to offload a demanding processing task to a
MEC host. In the following subsection, we present various simulation results, highlighting key messages
regarding the studied association rules, the role of cross-tier parameter disparities, as well as the effect of
deployment densities on the achieved packet latency budget.

5.2.4 RSRP and MEC-aware Association Results

Our objective throughout this section is to provide insight on the packet latency budget improvements
when applying the new proposed MEC-aware association rule, by means of numerical evaluation. A
two-tier heterogeneous network is investigated, where the k-th device generates a random packet of size
of lk bits that is modeled as a uniform random variable taking values between lmin and lmax. Additionally,
the number of processing operations per input bit, fk, is uniformly distributed, as well, between values
fmin and fmax. The amount of dedicated bandwidth and computation resources that each BS assigns to
its associated devices is computed based on the applied association rules. A summary of the adopted
simulation parameters is provided in Table 6.2, where the parameter values are fixed throughout the
section, unless otherwise stated. It should be noted that, as a two-tier heterogeneous network is considered,
the subscript of parameter X 1 will be dropped for the sake of simplicity.

In Figure 5.4(a), the CCDF of the packet latency budget is shown for the two discussed association
rules and for different values of X . As previously explained, when X varies away from the value of one,
the radio and MEC coverage areas become more dissimilar, hence, resulting in a selection divergence of
the associating BS/ MEC host by a device. It is observed that, for values of X greater than one (X = 2),



5.2 MEC-aware Cell Association for Future Networks 77

Table 5.1: Simulation parameters for MEC-aware cell association evaluations

Parameter value
Number of tiers (K) 2
BSs spatial intensity (λ 1,λ 2) (0.5, 3) BSs/km
BS transmit power (P1,P2) (46, 30) dBm
Deployment area (Adep) 10 km2

Devices spatial intensity (µ) 30 devices/km
Device transmit power (Pdev) 23 dBm
Noise power (σ2) -90 dBm
Packet size range (lmin, lmax) (100, 300) kbits
Processing operations range ( fmin, fmax) (500, 1500) cycles/bit
Bandwidth (B) 10 MHz
Path-loss exponent (η) 4
Number of realizations 10000

the proposed computation proximity association rule (denoted by MEC) provides a lower probability to
violate a given packet latency budget threshold as compared to the maximum RSRP rule (denoted by
RSRP), with nearly 60% packet latency budget reduction for the 50-th percentile of devices. This occurs
due to the enhanced balance between the proximity and available computation resources at the MEC
node. On the other hand, as X is lower than one (X = 0.5), the performance is turned over, as the RSRP
rule provides a lower experienced packet latency budget of the same latency reduction. Consequently,
we observe that having the two association metrics at hand, an adaptive, deployment-dependent cell
association procedure can be envisioned, in order to fully capture the radio and MEC resource disparities
for packet latency budget minimization. Under that framework, the device is ought to only acquire
knowledge of the radio and MEC disparities of the heterogeneous network , in order to decide upon which
association rule to consider. For the case of X = 1, since the corresponding coverage areas obtained by
the two rules will fully overlap, the experienced packet latency budget performance will be identical for
the two rules.

With the aim of observing the effect of deployment density on the experienced packet latency budget,
Figure 5.4(b) depicts the probability of violating a target of 0.4 seconds for an increasing ratio of micro-
over-macro BS spatial densities when X = 2. We observe a nearly constant association-based outage
reduction in favor of the proposed MEC-aware association rule, similar to the latency reduction observed
in Figure 5.4(a). The decreasing slope of the two curves is expected as the number of micro BSs over a
unit area increases. This is due to the increasing probability for a device to be associated with a closer
node, thus leading to lower delay values.

Finally, in Figure 5.5, the percentage of devices for which the maximum downlink RSRP and the
proposed MEC-aware cell association rules provide different connectivity recommendations, is illustrated,
as a function of the value of parameter X . As anticipated, for the increase of cross-tier disparity between
the radio and MEC capabilities (i.e. X ̸= 1), the two coverage areas become highly divergent, thus,
leading to a higher probability of a device being present in this disjoint region (e.g., nearly 40% of UEs
will reach different decisions upon associating to an BS/ MEC node for large disparities of X = 0.01
or X = 80). On the contrary, for the X = 1 case, the radio and MEC coverage areas will be identical,
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Figure 5.4: (a) CCDF of the packet latency budget under different radio and MEC resource disparities (b)
Probability of a target packet latency budget as a function of the ratio of BS/ MEC deployment densities.

hence, the application of the two investigated association rules will provide the same preference for
uplink connectivity.

Finally, it is evident the latency-related gains resulting from the proposed MEC-based cell association
criterion in heterogeneous networks. Throughout the following section, we will continue showcasing
MEC-deployment gains, via investigating a latency-critical vehicular use case in the automotive vertical.

5.3 MEC-Assisted End-to-End Latency Evaluations

Considering the automotive sector, different cellular-V2X (C-V2X) use cases have been identified by
the industrial and research world, referring to infotainment, automated driving and road safety [123].
A common characteristic of these use cases is the need to exploit collective awareness of the road
environment towards satisfying performance requirements. One of these requirements is the end-to-end
latency when, for instance, vulnerable road users (VRUs) inform vehicles about their status (e.g., location)
and activity, assisted by the cellular network [124]. We argue that, when it comes to safety-critical use
cases, such as the one of VRU, additional metrics, such as the AoI can be more insightful when compared
to traditional latency metrics. In particular, the impact of the packet inter-arrival time on the timeliness
of VRU messages arriving at nearby vehicles can be directly assessed by exploiting the AoI metric.
Accordingly, focusing on a freeway-based VRU scenario, we showcase in this section that in contrast
to conventional, remote cloud-based cellular architecture, the deployment of MEC infrastructure can
substantially prune the end-to-end communication latency as well as the experienced AoI. Our argument
is supported by an extensive simulation-based performance comparison between the conventional and the
MEC-assisted network architecture.
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Figure 5.5: Fraction of devices reaching non-cohesive decisions upon cell association, as a function of
cross-tier radio and MEC disparity.
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Figure 5.6: Envisioned 5G C-V2X system.
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5.3.1 Background and Contributions

vehicle-to-everything (V2X) communication paves the way for a drastically improved road safety and
driving experience via reliable and low latency wireless services [125]. The efficient V2X system
development is based on a plethora of reliably-functioning sensors, which provide an enhanced envi-
ronmental perception by means of exchanging critical messages among vehicles, pedestrians and road
infrastructure [126]. Such a system, as depicted in Figure 5.6, incorporates different information exchange
paths, namely, vehicle-to-infrastructure, vehicle-to-network, vehicle-to-pedestrian, and vehicle-to-vehicle.
These signaling paths can be either established via direct short range communication, or, assisted by
the cellular network providing coverage (C-V2X), or, through an inter-working of the two technologies
[127].

Focusing on the C-V2X technology, the architecture of the cellular network is expected to have
a vital impact on the support of delay-intolerant V2X services. This occurs, because the end-to-end
latency of C-V2X signaling is limited by the quality and dimensioning of the cellular infrastructure, i.e.,
the capacity of back-haul connections, as well as the delays introduced by both the core network, as
well as the transport network. As one would expect, these latency bottlenecks will be more prominent
for high loads corresponding to coverage areas of high vehicular/ pedestrian densities. To cope with
such requirements, extensive research has recently taken place to enhance the advent experience of
V2X communication, with emphasis on latency shortening. For instance, in [128], the packet delivery
latency and network utilization, focusing on an LTE system, are investigated for multimedia broadcast
single frequency network. Furthermore, in [129], considering an LTE network architecture, core network
gateway relocation is proposed for V2X latency improvement. Finally, with reference to implementation
aspects, the authors in [130] investigate latency-reduction techniques such as transmission time shortening
and self-contained sub-frames in C-V2X systems, whereas, in [131], a 5G implementation test-bed for
autonomous vehicles based on software defined radio incorporating different solutions, was presented.

Nevertheless, in contrast to the above mentioned works, we argue that stringent latency requirements
posed by the V2X system can be satisfied by introducing MEC technology to the cellular network
architecture [132]. Leveraging its ability to provide processing capabilities at the cellular network’s
edge, an overlaid MEC deployment is expected to assist vehicles in achieving low packet delays, due to
its close proximity to end devices, as shown in Section 5.2. In this section, concentrating on the VRU
use case, which studies the safe interaction between vehicles and non-vehicle road devices (pedestrians,
motorbikes, etc.) via the exchange of periodic cooperative awareness message (CAM) [133], we aim
to reveal the latency-related benefits of introducing MEC system deployment over a state-of-the-art
cellular network. Through extensive simulations, we show that the deployment of MEC infrastructure
can substantially prune the end-to-end communication latency. Our study assumes V2X communication
as it exploits the existing cellular infrastructure.

5.3.2 Spatial and Temporal Vehicular System Model

Throughout this section, a freeway road environment is assumed, consisting of one lane per direction, as
shown in Figure 5.7. The vehicles are placed at the start of each system realization following a Matérn
hard-core point process over one dimension [22]. The i-th vehicle’s velocity is drawn from a uniformly
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Figure 5.7: The investigated two-lanes freeway scenario.

distributed random variable (i.e., ∈ U(vmin,vmax)), where vmin and vmax, represent the minimum and
maximum vehicle’s velocity, respectively. To model the inter-vehicle distance, we have resorted to the
hardcore parameter of the mentioned point process, which represents the repulsion between any two
generated points. Additionally, a cluster of NVRU VRUs is located on a pedestrian area between the two
lanes; such a populated area can be mapped to real-world scenarios like gas stations or other service
points across a freeway. At the network side, it is assumed that the focused freeway segment is under
cellular coverage; given that, for brevity, we consider a continuous coverage scenario (i.e., occurrence of
any handover events is not taken into account). The serving BS is assumed to be collocated with a MEC
host of given processing capabilities, similar to the deployment considered in Section 5.2.

As mentioned earlier, a VRU is assumed to interact with vehicles and, possibly, other devices on the
road. A straightforward example is the one of safety-related applications [134], in which periodically
generated VRU messages (e.g., CAM) can be exploited for crash prevention purposes. In order to model
the generation of those periodic messages, we assume that the k-th VRU generates data packets of size of
lk ∈U(lmin, lmax) bits at random starting time offsets, denoted as νk. Such CAM transmission randomness
is used to model the nature of road-safety applications. Due to the CAM signaling periodicity, this cycle
is repeated every T seconds with newly generated transmission offsets. A visualization of the messaging
scheme for two VRUs is shown in Figure 5.8. It should be mentioned that, depending on the periodicity
of packet generation and the number of VRUs existent at the focused service point, the available uplink
radio resources are shared equally among the active VRUs. Once a given VRU transmits its CAM in the
uplink exploiting the radio interface, the corresponding input packet will be processed by the MEC host
collocated with the serving BS and then, the processed information (output packet) will be forwarded to
vehicles in the vicinity of the VRU by means of downlink transmission.

According to the key results in [135], the main challenge in designing efficient C-V2X -CAM
signaling is to serve the cell edge vehicles. Due to their low quality experienced conditions, such vehicles
require a larger bandwidth, as compared to their cell-center counterparts. Therefore, accounting for
the nature of CAM messages, where the end-to-end latency is dependent on the successful reception
of the packets by the destined vehicles, we resort to the concept of location-based vehicle clustering.
According to this approach and, based on location availability, each VRU defines a cluster of closest M
vehicles, denoted by HM,k for the k-th VRU, and a cluster-based multi-cast transmission takes place in
the downlink.
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Figure 5.8: Packet generation procedure for two VRUs (black square and red cross, respectively) with
random transmission timing offsets.

All the considered vehicles and VRUs are assumed to be served by an BS, based on the path-loss
model adopted from the WINNER+ project [136], as follows

PL (dB) = 22.7log10(r)−17.3log10(h̃BS)−17.3log10(h̃VRU)+2.7log10( fc)−7.56, (5.11)

where r is the distance between the transmitter and receiver, fc is the center carrier frequency and h̃BS

and h̃VRU represent the effective antenna heights at the BS and VRU, respectively. The latter quantities
are computed as follows: h̃BS = hBS −1.0 and h̃VRU = hVRU −1.0, with hBS and hVRU being the actual
antenna heights (i.e., in meters). Additionally, independent and identically distributed random variables
are used to model the fast fading and shadowing-based attenuation phenomena. It should be noted that
the scheduler employed in our work equally distributes the available bandwidth over all scheduled VRUs
and vehicles. In what follows, a thorough end-to-end latency analysis is presented, focusing on both the
proposed, MEC-assisted network architecture, as well as the conventional, distant-cloud-based cellular
architecture, which will serve as a comparison benchmark for the numerical evaluations.

5.3.3 Latency Modeling of Network Components

As mentioned earlier, one objective of this section is to investigate the end-to-end latency gains achieved
through MEC deployment within the network. Towards accomplishing this aim, in this section, we
model the various latency components related to CAM transmission, routing and processing for both the
proposed and conventional system approaches. Regarding the conventional cellular network architecture
approach, which is depicted in Figure 5.9, the one-way CAM messaging latency is modeled as Tone-way =

TUL +TBH +TTN +TCN +TExc, where TUL is the radio uplink transmission latency, TBH is the back-haul
network latency, TTN is the transport latency, TCN is the core network latency and TExc is the CAM
processing latency. Consequently, the end-to-end latency for the k-th VRU is expressed as

T k
E2E, C = T k

UL +2(T k
BH +T k

TN +T k
CN)︸ ︷︷ ︸

Network latency

+T k
Exc +T k

DL, (5.12)

where, T k
DL represents the downlink transmission latency. For the proposed, MEC-enabled network

approach, the network latency can be avoided via processing the CAM packets at the MEC host,
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collocated with the connected BS. Therefore, in this case, the average end-to-end latency is given by1

T k
E2E, MEC = T k

UL +T k
Exc +T k

DL. (5.13)

As described in subsection 6.2.2, for a given messaging cycle, each VRU generates a packet for trans-
mission at a random starting time instant. In this section, we assume fair resource allocation, where the
available bandwidth is shared equally among the VRUs transmitting at the same time index. Thus, the
number of these VRUs, denoted by N̂k, sharing the resources with the k-th VRU equals

N̂k =
NVRU

∑
i=1

1(ν i = νk), ∀k = {1,2, · · · ,NVRU}. (5.14)

Thus, the time required for the k-th VRU to transmit a packet of size of lk bits to its serving BS is
computed as

T k
UL =

lk
rUL

k
, rUL

k =
B
N̂k

log2(1+SINRk), (5.15)

where rUL
k is the achievable uplink rate, B is the system’s bandwidth and SINRk represents the received

SINR at the BS. Due to the periodic nature of message generation, the computation of shared resources
is carried out for each time window (i.e., [Tj,Tj+1], ∀ j = {1,2, · · ·}). As mentioned in Section 6.2.2,
for downlink transmissions, after successful packet processing at the host, we resort to the concept of
cluster-based multi-cast transmission [135]. The main idea is to select a set of vehicles in the system for
transmission, in order to avoid large latencies caused by cell-edge vehicles, which would not be of high
criticality for the VRU, as the set of VRUs is assumed to be located close to the cell center. Consequently,
the cluster of the vehicles for the k-th VRU denoted as Hk,M, will consist of the M closest vehicles to that
VRU. Thus, the downlink latency can be expressed as follows

T k
DL = max(∀i∈Hk,M){

lk
rDL

k
}, (5.16)

where rDL
k denotes the downlink rate of the k-th vehicle and the maximum operator is used to measure the

farthest vehicle’s packet reception delay in cluster HM,k. Regardless of the BS location, having the k-th
VRU position as a reference, the maximum radio downlink latency serves as a cluster-wide metric, which
is aimed to be minimized. As it will be shown later, the effect of the cluster size is significant, since the
available radio resources in the downlink have to be shared among all vehicles within cluster HM,k.

As mentioned earlier, the following latency components are non-existent for the MEC-assisted CAM
signaling case, since there is no involvement of the back-haul, core, and transport network components in
CAM packet routing. The back-haul latency TBH represents the time required for packets to be routed
through the back-haul network, which has a finite capacity, denoted by CBH. It is assumed that the
back-haul capacity is equally shared among the N̂k VRUs concurrently uploading their messages at time
instant νk. As a result, assuming that the packet size is the same for all VRUs, the back-haul latency for

1Latency from the BS to the MEC host and vice versa is not considered and is left for future work.



5.3 MEC-Assisted End-to-End Latency Evaluations 84

TBHTUL TTN +TCN TExc

VRU-1

VRU-2

VRU-1

VRU-2

Figure 5.9: One-way signaling latency for two VRUs - conventional approach.

the k-th VRU is

TBH,k =
lkN̂k

CBH
. (5.17)

In order to provide realistic modeling of the transport and core network latencies, we resorted to the
recent results reported in [137], where a proof-of-concept was implemented for an LTE environment
with commercial terminals, running a real-time adaptive video streaming service routed through a MEC
host and several BS agents placed at different geographical locations, as compared to the MEC host
position. More details regarding the system setup and the methodology employed can be found in [137].
Consequently, inspired by the results presented in the mentioned work, the two latency components are
assumed to be uniformly distributed, over a range of realistic values, as it will be shown in the numerical
evaluation section.

Finally, we model the time required for processing a packet of size of lk bits at a host, either collocated
with the BS or at the distant cloud. Assuming that the input packet requires fk cycles/bit for processing
and the host has a processing capacity of F , the k-th VRU execution latency equals

TExc,k =
N̂klk fk

F
. (5.18)

5.3.4 Information Freshness Quantification of the VRU Messages

Concentrating on the VRU use case, we argue that, apart from the end-to-end latency, the freshness of
continuous status updates of nodes within a V2X system is another fundamental performance indicator
to ensure efficient service functionality, especially for safety-critical situations. This implies continuous
information update about the real-time state between a given source and its targeted destination [13]. The
AoI metric proposed in [48] characterizes the freshness of information at the receiver and has recently
received increased attention as it is a useful metric to evaluate the efficiency of technology solutions
for various vertical industries, such as the automotive one. Consequently, for the examined use case, to
ensure an almost real-time VRU awareness across the vehicles, it is the timeliness of VRU messages
received by nearby vehicles that would rather need to be monitored and improved, e.g., by properly
varying the VRU packet generation traffic. In relation to that, a critical challenge is how to maintain
timely VRU status updates across all approaching connected vehicles [138].

For the considered vehicular time-slotted system, the AoI function, ∆k(t), tracks the AoI evolution
over time, t, at each of the cluster member vehicles aimed to be reached by the k-th VRU. Let Gk denote
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the packet generation time stamp for the k-th VRU; then, focusing on a specific vehicle/ cluster member,
the AoI at the (t +1)-st time slot, denoted by ∆k(t +1), is computed recursively as follows

∆k(t +1) =

{
∆k(t)+1, if no update was received,
t −Gk +1, otherwise.

(5.19)

In this section, focusing on a given VRU, we consider the cluster-wide PAoI, which is defined as the AoI
observed at the farthest member of the vehicle cluster targeted by the VRU, when achieved immediately
before this vehicle receives a new VRU message. As discussed before, the PAoI represents the temporally
averaged peaks attained by the AoI function. As the PAoI provides insights on guaranteed system
performance, we deem it as an important metric for the investigated VRU scenario. Mathematically, and
based on the periodic nature of the VRU messages, the PAoI of the k-th VRU, when averaged over time,
is expressed as follows

∆p,k = Et

{
Ik +T k

E2E, j

}
= T +T k

E2E, j, k ∈ {1, · · · ,K}, (5.20)

where j ∈ {MEC, C}, Et{.} is the temporal expectation operator, while, Ik and T k
E2E, j denote the inter-

arrival time between consecutive VRU messages and the end-to-end latency of a given VRU message
under a given network architecture, respectively. As highlighted earlier, the objective of this section is
to investigate the VRU awareness timeliness performance achieved through collocated deployment of
a MEC and cellular network infrastructure and compare it to the one of conventional cellular system
architecture incorporating (distant) cloud infrastructure. Therefore, based on presented models in this
section, the network-wide PAoI, averaged over all NVRU VRUs in the network is expressed as

Ek{∆p,k}=
1
K

K

∑
k=1

(T +T k
E2E, j), j ∈ {C, MEC}, (5.21)

where T (k)
E2E, j represents the time-averaged end-to-end latency for the k-th VRU.

5.3.5 C-V2X Evaluation Campaign

In order to illustrate the latency improvements via MEC deployment within cellular systems for V2X
communications, we provide different simulation scenarios by varying the values of two main system
parameters; namely, the vehicles and VRUs spatial densities. Moreover, we also aim at observing the
vehicles’ cluster size impact on the experienced latency. For both the proposed and conventional cellular
network architectures, the focused metric is the end-to-end latency, as well as its individual components
as explained in (5.12). The values of all involved parameters are presented in Table 6.2, unless otherwise
stated.

First, we look into the case of increasing VRUs. As explained in the previous sections, each VRU is
assigned a random timing offset for transmission. Thus, the generated periodic message traffic increases
accordingly with the VRUs. In Figure 5.10, the average end-to-end signaling latency with and without
MEC host deployment is shown both as a whole and component-wise. Clearly, MEC utilization provides
a lower end-to-end latency (the observed gains are in the range of 66%-80%), due to the exploitation of
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Table 5.2: Simulation parameters for C-V2X evaluations

Entity Parameter Value

Vehicles

Velocity ∼ U(70,140) km/h
Inter-vehicle distance 10 m

Vehicles spatial intensity (µveh) 0.01 vehicles/m
Cluster size (M) 5

VRU

Number of VRUs (NVRU) 100
x-coordinates ∼ U(1200,1800)

Transmit power 23 dBm
Packet size (lk) ∼ U(8,12) kbits

Processing per bit ( fk) ∼ U(100,300) cycles/bit

BS / MEC host

Transmit power 46 dBm
Bandwidth (B) 9 MHz

Back-haul capacity (CBH) 10 Mbps
F 9×109 cycles/sec

General

Frequency ( fs) 5.9 GHz
Number of lanes 2

Lane length 3 km
Lane width 6 m

Path-loss exponent (η) 3
Shadowing standard deviation 3 dB
Fast fading standard deviation 4 dB

Thermal noise power -110 dBm
Additional losses 15 dB

Transport and core network latency ∼ U(15,35) milliseconds
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Figure 5.10: (a) Average end-to-end latency and (b) Component-wise latency.

processing resource proximity offered by the MEC host. Additionally, we observe an increasing behavior
of the latency along with the VRU density, which is due to the increasing demand of the available
resources. First, for the radio transmission latency components, as the number of VRUs increases, the
available resources per VRU decrease, due to the equal allocation assumption. Similar explanations hold
for the back-haul (BH) and the execution latencies. It should be noted that the transport and core network
latencies were modeled as random variables, independent of the other system parameters values.

Regarding the network-wide PAoI behavior of the system for increasing VRU density, due to the
periodic nature of VRU message generation, for an increased number of VRUs, the generated VRU
message traffic per unit time within the network will increase as well, hence, resulting to less radio and
processing resources allocated per VRU to transmit and process each VRU message, respectively. In
Figure 5.11, assuming that T =100 milliseconds, the network-wide PAoI performance is illustrated, for
both the MEC-enabled and conventional network architecture variants. Firstly, as expected, for both
system architecture variants, we observe a monotonically increasing behavior of the PAoI as a function
of the VRU load, owing to the increasing demand for radio and processing resources. Furthermore, it
is observed that, for all considered values of NVRU, MEC infrastructure utilization provides a lower
PAoI, thus, higher information timeliness, which, in its turn, is translated into better VRU awareness,
compared to the conventional cellular architecture. As an example, for K = 150 VRUs, the achieved PAoI
is equal to ∆̃

p
MEC = 160 milliseconds, which is only a fraction of ∆̃

p
C = 258 milliseconds achieved by the

conventional network architecture. Such a, nearly 61%, reduction in PAoI, is due to the exploitation of
MEC processing resource proximity.

To jointly evaluate the effect of VRU packet generation periodicity on system-wide timeliness and
end-to-end delay performance, along with the performance gains provided by the existence of MEC
infrastructure, assuming the existence of NVRU=100 VRUs in the system, we measure the network-wide
PAoI together with the average E2E VRU message latency for various VRU packet inter-arrival times,
T ∈ [10ms,100ms]. Figure 5.12 depicts the numerical evaluation results, where, PAoI and average
end-to-end delay values appear in the left and right hand side vertical axes of the figure, respectively.
Apart from the clear MEC-related performance gains, one can identify two different performance
behaviors with respect to the VRU packet inter-arrival time for both network architecture options.
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Figure 5.11: Network-wide PAoI with increasing VRU density for T = 100 ms.

When T ∈ [10ms,30ms], both the achieved PAoI and the average E2E latency performance curves are
monotonically decreasing, as a function of T . Such a behavior is justified as, in this regime, in contrast
to T , the average E2E delay, which dominantly contributes to the PAoI, progressively reduces due
to the reducing congestion on the available resources; this PAoI regime can be labeled as a resource
stagnation-driven one. On the contrary, when T ∈ [30ms,100ms], it is observed that, although the average
end-to-end latency continues to decrease, as a function of T , the achieved PAoI starts to increase. This
behavior divergence occurs, because, focusing on the end-to-end latency, the resource contention among
the VRUs radically decreases, as the set of possible VRU transmission offsets becomes fairly larger,
hence, leading to lower overall delay per VRU message. Nevertheless, larger values of T imply less
frequent VRU status updates, resulting to higher values of the PAoI, as T now decisively contributes to it;
this PAoI regime can be labeled as an update scarcity-driven one. In summary, we observe the limitations
of considering the end-to-end latency as the sole objective of system design, with regards to time-critical
applications of C-V2X communications. To alleviate these limitations, AoI minimization shall be the
overall design objective when it comes to such applications and use cases.

In this part, an alternative scenario of fixing the number of VRUs and increasing the spatial density of
the vehicles is studied, as per Figure 5.13. Since the VRUs in the investigated use case are the active
agents and the vehicles are the passive ones, i.e., transmission is always initiated by the VRUs, the
end-to-end latency is dependent on the vehicles’ spatial density. As discussed in Section 6.2.2, the
vehicles’ density (i.e., µveh) only plays a role in the radio downlink latency. Since a location-based
multi-cast transmission is employed, where the cluster size (i.e., |HM,k|) is fixed, as the number of
vehicles increases, the probability to have the cluster closer to the VRU of interest will increase as well.
Hence, as expected, the downlink latency decreases with increasing µveh.

Since the cluster size highly affects the end-to-end latency through its contribution to the downlink
radio latency, the experienced downlink latency for increasing vehicle cluster sizes is simulated and
presented in Figure 5.14. Due to the definition of the downlink latency (eq. (5.16)) and its dependence on
the cluster’s farthest vehicle to successfully receive the packet, as the cluster size increases, the probability
of vehicles being far from the focused VRU will increase as well. As a result, this explains the increasing
fashion of the radio downlink latency, which is as depicted in Figure 5.14.



5.4 Conclusion 89

10 20 30 40 50 60 70 80 90 100
50

100

150

200

Peak AoI Avg. E2E latency

VRU packet inter-arrival time (T ) [ms]

A
vg

.E
2E

la
te

nc
y

[m
s]w/o MEC w MEC

100

150

200

250

Pe
ak

A
oI

[m
s]

Figure 5.12: Peak AoI and average E2E latency for increasing VRU packet inter-arrical time with
K = 100 VRUs.
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Figure 5.13: (a) Average end-to-end latency for increasing vehicles’ deployment densities. (b)
Component-wise latency breakdown.

5.4 Conclusion

In this Chapter, we leverage the MEC degree of freedom in planning and dimensioning wireless networks,
via the joint investigation of the communication and computation resources. First, for a task offloading
use case, a new association metric for uplink communication in a heterogeneous network is proposed,
aiming at reducing the experienced packet latency budget of a device. Different scenarios spanning
diverse radio and MEC cross-tier disparities are presented to highlight the cell association decision effect
on system performance. It is shown that, for a range of disparities between radio and MEC capabilities
between tiers, the proposed computation proximity rule provided gains in terms of latencies, as compared
to the conventional maximum RSRP rule. This performance gain degrades as cross-tier radio/ MEC
disparities become similar. Also importantly, we explore the case, in which, for different association
rules, a device would favor associating to different BS/MEC hosts in the uplink.

In addition, we investigate the problem of improving the timeliness of collective road awareness,
concentrating on the vehicular segment and focusing on an VRU use case under cellular network
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Figure 5.14: Average cluster-related radio downlink latency as a function of the vehicle cluster size.

coverage. With the aim of minimizing end-to-end signaling latency, we propose a MEC-assisted
network architecture, according to which MEC hosts are collocated with BSs, thus, they can receive and
process VRU messages at the edge of the access network. Towards quantifying the benefits of the new
approach, we define the latencies related to radio transmission and message processing, driven by realistic
assumptions. In addition, focusing on the PAoI as a means to quantify the information freshness of VRU
messages, we quantify the achieved PAoI for both the proposed, MEC-assisted and the conventional
network architectures. Via numerical evaluation for some of the investigated system parameterizations,
the proposed overlaid deployment of MEC hosts offers up to 80% average gains in latency reduction, as
compared to the conventional network architecture. In addition, we show that, for a given VRU load,
the network-wide PAoI of the conventional system architecture can be reduced by nearly 61% when
a MEC-enabled architecture is taken into account. It is interestingly shown that performance benefits
remain significant for different vehicle/ VRU deployment densities, as well as for different inter-packet
generation times.



Chapter 6

Dependable Computation Services in Wireless
Systems

6.1 Introduction

As shown throughout the previous chapter, the deployment of MEC in 5G and beyond systems allows
more efficient task execution, owing to the MEC hosts high computation power. Nevertheless, a major
challenge for such systems is to provide dependable and ubiquitous computing services that meet the
computing demands of devices running various heterogeneous applications [7]. On the other hand,
wireless links are characterized by fluctuating quality, leading to variable packet error rates which are
orders of magnitude higher than the ones of wired links [139]. Therefore, it is of paramount importance
to develop tools and frameworks that provide insights regarding the limitations of using wireless links
for IoT applications. Such frameworks represent a first step towards the realization of determinism of
process flows anytime and anywhere. Based on a spatiotemporal approach, in this chapter, we provide
novel definitions of dependability attributes for communication and computation services.

In details, Section 6.2 presents a novel spatiotemporal framework that utilizes stochastic geometry and
continuous time Markov chains to jointly characterize the communication and computation performance
of MEC-enabled wireless systems. Additionally, we evaluate the influence of various system parameters
on dependability metrics such as (i) computation resources availability, (ii) task execution retainability,
and (iii) task execution capacity. Our findings showcase that there exists an optimal number of virtual
machines for parallel computing at the MEC host to maximize the task execution capacity. In Section 6.3
the availability and reliability of a given service, assuming a number of BSs and devices deployed over a
fixed area, are quantified. In the space domain, we characterize spatially available areas consisting of all
locations that meet a predefined performance requirement with given confidence. In the time domain,
we propose a channel allocation scheme accounting for the spatial availability of a cell. With the aim to
reveal the incurred space-time performance trade-offs, numerical results are presented, also highlighting
the effect of different system parameters on the achievable service availability and reliability. Finally,
Section 6.4 summarizes this chapter.
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6.2 Dependable Task Execution Services in MEC-enabled Wireless
Systems

6.2.1 Background and Contributions

The joint consideration of i) contention-based communications for task offloading and ii) parallel
computing and occupation of failure-prone MEC processing resources (virtual machines), is envisaged,
to properly understand the communication and computation chain [3]. To ensure efficient operation,
the task offloading reliability, computation resources availability, and task execution retainability ought
to be jointly quantified and optimized. In MEC-enabled networks, successful task execution at the
MEC host is strongly tied to its resources availability and its resilience to failures [54]. In this context,
various resilience and provisioning techniques are discussed in [140] with a focus on cloud computing
infrastructures. Causes of service disruption due to physical machines and virtual machines (VMs)
failures along with their analysis are provided in [141]. With regard to wireless-based task offloading,
[142] examines the network scalability and identifies communication and computation performance
frontiers. Analysis for heterogeneous networks is presented in [143], where the network-wide outage
probability is derived for task offloading assuming different computation architectural variants. Authors
in [144] proposed a transmission and energy efficient offloading algorithm based on a Markov decision
process that accounts for the spatial and temporal network parameters.

However, the aforementioned works either consider a dependability view of the network[54, 140, 141],
or a spatiotemporal one [142–144], where the problem of feasible and dependable task execution,
considering the joint limitation of network-wide mutual interference and parallel task computing by
failure-prone VMs, under a spatiotemporal framework, is still not addressed. Accordingly, we propose
a spatiotemporal feasibility-assessment framework that entails network-wide mutual interference and
temporal-based task arrivals/ processing in uplink MEC-enabled networks. Furthermore, we adopt an
individual (i.e., per-task and per-device) task execution criterion that aims to exploit the computation
resources at the MEC server if the radio conditions permit. Our analysis is then followed by the
assessment of new service dependability-relevant KPIs that shed light on the system availability and task
execution capability.

6.2.2 System Model

Network model

We consider a cellular uplink network, where the BSs and devices are spatially deployed in R2 according
to two independent homogeneous Poisson point processes (PPPs), denoted by Φ and Ψ with intensities λ

and µ , respectively. An unbounded path-loss propagation model is adopted such that the signal power
attenuates at rate of r−η , where r is the distance and η is the path-loss exponent. Wireless links are
assumed to undergo Rayleigh fading, where the signal of interest h and interference channel power g
gains are exponentially distributed with unit power gain. Full path-loss channel inversion power control
is adopted, which implies that all devices adjust their transmit powers such that the received uplink power
levels at the BS are equal to a predetermined threshold ρ [73].
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Figure 6.1: System setup involving a MEC host equipped with 5 VMs.

Offloading model

We consider a continuous time system where task arrivals at each device are modeled via an independent
Poisson process with rate λa tasks/ unit time [142, 143]. In a proactive manner, devices attempt to offload
generated tasks by sending instructions to the MEC host at the BS. In our system, grant-free access
is assumed, where each device attempt to transmit its task instruction (i.e., not the whole task) using
one of the available C uplink channels randomly and uniformly without a scheduling grant from the
BS [145]. Furthermore, let κ = µ

λC denote the average number of devices per BS per channel and Ts

be the transmission time of a given task’s instruction. A task instruction is successfully decoded at the
BS if its received SINR is larger than a predefined threshold, θ . The offloading success probability
of a generic device, which is denoted by O, quantifies the probability of successful task offloading as
O = P{SINR> θ}.1 In the case of decoding failure (i.e., NACK is received), the device opts to compute
its task locally. Accordingly, we adopt a coverage-based offloading feasibility criterion, in which the
offloading success probability O governs the offloading feasibility, thus, the offloading decision problem
and its underlying parameters are not considered and left for future work. Retransmissions at the devices
are not considered in the proposed model to lower the aggregate network-wide interference [146].

Computing model

The MEC host residing at each BS is equipped with a single physical machine that encompasses VMEC

VMs for parallel task computing. To account for resource sharing among the VMs (e.g., buses for
input/output (I/O), CPU, memory), I/O interference is observed within the physical machine at the MEC
host. Thus, the parallel-operating VMs interfere with each other, leading to a degraded computation
power [147]. For the case of a single VM deployment, the task’s execution rate is modeled via a Poisson
process with a rate of µo tasks/ unit time. However, to account for the I/O interference among the VMEC

VMs, the task’s execution rate of a given VM depends on the total number of VMs as follows

µMEC =
µo

(1+d)VMEC−1 , (6.1)

1acknowledgment (ACK) and non-acknowledgment (NACK) transmission latencies are ignored as they incur negligible
amount compared to Ts and the task’s execution time.
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where d is the computation degradation factor due to I/O interference among the VMEC VMs [142, 147].
For local computation of tasks, devices are assumed to be equipped with a local physical machine that
accommodates a single VM (i.e., Vloc = 1, thus, no parallel processing), where the local computation
rate is modeled via a Poisson process with rate µloc. Moreover, a task to be computed is blocked if no
VM is idle (locally or at the MEC host in case of offloading). To investigate the relative ratio between
the MEC and the local computation capabilities, we define µr = µMEC/µloc which denotes the relative
computation rate such that µr >> 1.

Failure & repair model

Due to possible hardware and software faults, the proposed model accounts for events of VM failures
and their repairment times [148, 141]. The failure (repair) rate of a given VM is modeled via a Poisson
process with rate F (R) failure (repairment) events/ unit time.2 VMs are prone to failure regardless of
being idle or occupied. A failed idle VM is labeled as out of operation and cannot admit future tasks.
Upon the failure of an occupied VM, the physical machine will handover the running task to an idle
VM, if one exists. If not, the running task is discarded and the concerned device is notified via downlink
signaling. The considered system model is visualized in Figure 6.1, where one can observe a plethora of
devices belonging to three categories, namely, idle, offloading and local execution devices. Focusing on a
selected cell that serves a number of offloading devices, a VM fails while being in service. Thus, the task
being served by this VM is transferred to an idle VM to resume its execution. Meanwhile, based on the
repair rate, the failed VM goes back into operation to serve newly incoming tasks.

6.2.3 Spatial System Analysis

Upon task generation, the task instructions are sent to the MEC host co-located with the BS by uplink
transmissions. Those instructions are correctly decoded, and hence the task is successfully offloaded,
if the received SINR is greater than θ . Otherwise, the device executes the task locally. To characterize
the offloading feasibility within the network, the offloading success probability of a randomly selected
device considering the network-wide mutual interference is

O = P

{
ρh0

∑yn∈Ψ\yo anPngn||yn − zo||−η +σ2 > θ

}
, (6.2)

(a)
= exp

{
−σ2θ

ρ

}
LIout

(
θ

ρ

)
LIin

(
θ

ρ

)
. (6.3)

where ho is the channel gain between the intended device and its serving BS located at zo, ||.|| is the
Euclidean norm, yn is the n-th device location in the network excluding the intended device Ψ\ yo, Pn is
its transmit power, gn is the channel power gain between this interfering device and the intended BS, σ2

is the noise power and an equals one if the n-th device is transmitting on the same channel as the intended
device, and zero otherwise. In addition, (a) results from the exponential distribution of ho combined
with the path loss inversion power control, where LIout(·) and LIin(·) represent the LT of the aggregate

2The Poisson model is adopted in our work for task-related parameters to provide a good compromise between practical
consideration of real-time events and mathematical tractability [142, 143].
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Table 6.1: State transitions z = (xI ,xO,xF) of the VMs.

Event Des. state Rate Condition
1- Task arrival and an idle VM is allocated (xI −1,xO +1,xF) λv xI > 0
2- Task execution at an occupied VM (xI +1,xO −1,xF) xOµv xO > 0
3- An idle VM fails (xI −1,xO,xF +1) xIF xI > 0
4- An occupied VM fails. Task is offloaded
to another idle VM (xI −1,xO −1,xF +1) xOF xO,xI > 0
5- An occupied VM fails and task is aborted (xI ,xO −1,xF +1) xOF xO > 0,xI = 0
6- A failed VM is repaired (xI +1,xO,xF −1) xFR xF > 0

intra-cell and inter-cell interference, respectively. To provide an uplink tractable analysis, we assume that
the spatial correlations between adjacent Voronoi cell areas are ignored, thus, the transmission powers of
the devices are independent and identically distributed [73, 35]. The aforementioned approximations are
validated in S subsection 6.2.5 against independent Monte Carlo simulations. In order to quantify the
total arrival rate of offloaded tasks at the MEC host, the offloading success probability of each device is
first calculated in the following theorem.

Theorem 4. The offloading success probability for a generic device is given by

O ≈
exp
{
−σ2θ

ρ
− 2θPaκ

(η−2)2F1(1,1−2/η ,2−2/η ,−θ)
}

(
1+ θPaκ

(1+θ)c

)c

(η = 4)
=

exp
{
−σ2θ

ρ
−Paκ

√
θarctan

(√
θ

)}
(

1+ θPaκ

(1+θ)c

)c , (6.4)

where Pa = 1−e−(2Tsλa) is the device’s active probability within [−Ts,Ts], κ = µ

λC , 2F1(·) is the Gaussian
hyper-geometric function and c = 3.575. The approximation is due to the employed approximate
probability distribution function (PDF) of the PPP Voronoi cell area in R2.

Proof. Proof can be shown following similar steps that were conducted for Theorem 1 in Chapter 3,
while taking into consideration that Paκ denotes the portion of interfering device within the network. �

Once O is evaluated, we can now define and evaluate the related task execution KPIs for the case of
offloaded and locally executed tasks as explained in the following section.

6.2.4 Temporal Computational Analysis

As explained earlier, the offloading success probability provides an offloading feasibility assessment
via controlling the aggregate load of tasks at the MEC host. That is, the total average arrival rate of
tasks to be computed at the MEC host is λMEC =OλaE{Nd}= Oλaµ

λ
. On the other hand, the average

arrival rate of tasks to be locally computed is λloc = Ōλa tasks/ unit time, where Ō = 1−O. To analyze
the temporal occupancy of the VMs either locally or at the MEC host, we employ tools from queueing
theory. To construct the proposed CTMC, we first determine the system’s state space. A general state
of our model is represented by the tuple z = (xI ,xO,xF); where xi; i ∈ {I,O,F} represents the number
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of VMs that are idle, occupied and failed, respectively. Let Sv =
{

z|∑ j x j = Mv; j ∈ {I,O,F}
}

denote
the state space, where v ∈ {MEC,loc} denotes the MEC and local systems. The steady state equations
can be vectorized as τv = [τ1 τ2 · · · τℓ · · ·τ|Sv|], where τℓ is the probability of being in the ℓ-th state. For
full temporal characterization, we need to construct the state transition matrix Qv. For each system v,
Qv constitutes the transition rates associated with different states. To systematically construct τv, while
taking into account the different temporal events, Table I is utilized, which entails the transition rates and
conditions among different system states.Focusing in this work on the steady state solution, the steady
state probabilities are evaluated via solving

τvQv = 0, and ∑
z∈Sv

τv(z) = 1. (6.5)

Let 1 and I denote the all ones vector and the all ones matrix, with the appropriate sizes respectively,
then, τv equals

τv = 1(Qv +I)−1. (6.6)

Once the solution τv is obtained, several dependability-based KPIs can be assessed. First, we consider
the communication resources availability. This metric quantifies the probability that an incoming device’s
task, either locally managed or offloaded to the MEC host, finds a vacant computation resource. First,
let Nv = {z|xI = 0,z ∈ Sv} denote all states with no idle VMs. Then, the communication resources
availability, denoted as At , can be evaluated as

At =O

(
1− ∑

z∈NMEC

τMEC(z)

)
+ Ō

(
1− ∑

z∈Nloc

τ loc(z)

)
. (6.7)

Another important KPI that quantifies the degree of successful task execution, is the task execution
capacity. Let Cv = {z|xO > 0,z ∈ Sv} denote all states with at least a single occupied VM. This KPI
considers such states to evaluate the system’s capability to execute task successfully. Denoted by Ct , the
task execution capacity can be computed as

Ct =OµMEC ∑
z∈CMEC

xOτMEC(z)+ Ōµloc ∑
z∈Cloc

xOτ loc(z). (6.8)

Finally, we consider the task execution retainability, which is defined as the probability that a task, once
assigned to a VM, will be computed successfully without interruption [149]. In order to evaluate the task
execution retainability, let us first define the task execution forced termination rate, denoted by Fv, which
represents the ratio between the mean forced termination rate of ongoing tasks and the effective rate
in which a new task is assigned to an idle VM, denoted by Λv, which equals Λv = λv

(
1−∑z∈Nv τv(z)

)
.

Let Fv = Cv ∪Nv denote all states with at least a single occupied VM and no idle VMs. Tasks that
are interrupted in those states, because of VM failures, are dropped. Mathematically, Fv and the task
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Table 6.2: Simulation parameters for MEC-enabled dependable task execution.

Parameter Value
Average number of devices per radio channel (κ) 20
Number of VMs (VMEC) 5
Number of radio channels (C) 10
Uplink power control threshold (ρ) -90 dBm
Noise power (σ2) -90 dBm
Detection threshold (θ ) -10 dB
Task arrival rate per device (λa) 0.15 tasks/ unit time
Single VM execution rate (µo) 3 tasks/ unit time
Local execution rate (µloc) 0.1 tasks/ unit time
VM repair rate (F) 1 events/ unit time
VM failure rate (R) 0.1 events/ unit time
VM I/O efficiency (d) 0.1

execution retainability equals

Fv = F ∑
z∈Fv

(Mv − xF)τv(z), (6.9)

Rt =O
(

1− FMEC

ΛMEC

)
+ Ō

(
1− Floc

Λloc

)
. (6.10)

6.2.5 Numerical Results

This subsection aims to numerically evaluate the proposed task execution service dependability KPIs
focusing on the studied MEC-enabled network. Unless otherwise stated, the list of involved network
parameters are summarized in Table 6.2.

Figure 6.2 shows the offloading success probability as a function of the decoding threshold θ for
different active probabilities Pa. The close match between the simulation and the proposed analytical
framework validates the analysis and justifies the considered approximations. For increasing values
of θ , the offloading success probability decreases due to higher requirement on the link quality. For
increasing values of Pa, the rate of task generation at the devices as well as their the probability to utilize
the same uplink channel increases, thus network-wide mutual interference increases, hence, leading to
lower achievable offloading success probabilities.

Focusing on the discussed KPIs in Section 6.2.4, Figure 6.3 showcases the system’s performance
for increasing values of θ with different system parameters. Generally, as θ increases, the offloading
success probability decreases, thus, owing to the coverage-based offloading criterion, more devices opt to
execute their tasks locally. Depending on O, which depends on θ among other parameters, the network
oscillates between an offloading-dominant and a local execution-dominant regime. In Figure 6.3(a),
we observe that the communication resources availability keeps increasing till a cut-off threshold (i.e.,
θ = −6,−7 and -8 dB for µr = 20,40,80, respectively). Operating above these threshold values, the
network transitions to the local execution-dominant regime. As µr decreases, the gap between the two
regimes decreases, since the computation capabilities of the MEC host and device become comparable.
Figure 6.3(b) presents the task execution retainability for different per-device task arrival rates. As λa
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Figure 6.2: OSP model verification.
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Figure 6.3: Steady state KPIs (a) computation resources availability, (b) task execution retainability, and
(c) task execution capacity.

increases, the contention on the radio and the computation resources increases, leading to degradation in
the task execution retainability. Figure 6.3(c) shows the task execution capacity for different densification
ratios (i.e., average number of devices per BS per channel). In the offloading-dominant regime, high
values of task execution capacity are achieved since the offloaded tasks leverage the computationally
capable MEC host. However, in the local execution-dominant regime, task execution capacity degrades
till it reaches zero. We observe also the effect of κ on the slope steepness of each curve.

The computation resources scalability is investigated via Figure 6.4 which shows the task execution
capacity as a function of the number of MEC host VMs VMEC and for three different values of the
computation degradation factor d. The optimal number of deployed VMs for each value of d, calculated
via Algorithm 3, which has a complexity of O(VMEC), is shown via red circles. It is worth mentioning
that the values present in Table 6.2 result in Pa = 0.25 and p = 0.83. Thus, around 83% of the active
devices will offload their generated tasks to the MEC host, thus, operating at the offloading-dominant
regime. Nevertheless, due to the I/O interference between the employed VMs at the MEC host, increasing
VMEC beyond a given value, depending on the value of parameter d, leads to degradation in µMEC till
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Figure 6.4: Task execution capacity as a function of number of VMs.

Algorithm 3 Optimal number of deployed VMs computation.

procedure (Pa,λa,λb,λd ,VMEC,Vloc, µo, µloc,d,R,F)
Set m = 1,C(0) =−∞, and compute C(m) ◃ R(m) implies computing C in (6.8) with VMEC = m.
while C(m)>C(m−1) do

Compute C(m) from (6.8).
Increment m.

end while
return VMEC

∗ = m and C∗ =C(VMEC
∗).

end procedure

the VM I/O interference dominates and the task execution capacity approaches zero. Such behavior also
explains why as d decreases, higher numbers of VMs are desirable. These performance results figure
provide network operators with important insights regarding dimensioning the network’s infrastructure.

Finally, Figure 6.5 shows the task execution retainability as a function of the repair rate R for
different values of failure rate F . For the extreme case of F = 0, the task execution retainability equals 1,
independent of R, since no VM will ever fail. As F increases, we observe the impact of the repair rate
on the task execution retainability, especially within the range R∈ [0,1]. For higher values of R, the task
execution retainability starts to saturate, owing to its superiority over F , which yields it insignificant with
respect to the task execution retainability.

In the following section, we will propose novel definitions of spatial and temporal availability and
reliability of a given wireless-based service. Such definitions can be utilized further within different
vertical segments (e.g., industrial and automotive).
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Figure 6.5: Task execution retainability as a function of repair rate.

6.3 Availability and Reliability of Wireless-based Services

6.3.1 Background and Contributions

Complementing on the computation-oriented KPIs adopted in the previous section and due to the
challenging service requirements posed by verticals aiming to exploit 5G systems, enhancing existent
KPIs and defining new ones is inevitable [150]. Two important performance requirements are the
reliability and availability of a running service, which need to be formally understood and quantified.
Consequently, a paradigm shift from the conventional network assessment is imminent [139]. Moreover,
timely task execution has been mainly evaluated by means of metrics such as packet error ratio, latency
and jitter [150]. These metrics, though fundamentally meaningful from the radio communication
perspective, need to be looked collectively with the service demands from a vertical-specific point of
view (e.g., availability of a service and reliability of its operation). Consequently, such service-specific
metrics need to be first well defined, understood and then mapped to the wireless system’s parameters,
prior to evaluating system-wide feasibility of the focused service/operation. Conceptually, this novel
system view aims to unlock the potential of running wireless services quasi-deterministically.

To the best of our knowledge, adopting definitions of service-tailored link availability and reliability
for wireless-based systems has not yet been expressed adequately. In [151], the authors propose a new
definition of spatial availability, as the ratio of the mean covered area to the geographical area of a given
BS. Nevertheless, an interference-free scenario was considered and no insights on the time evolution of
communication availability were provided. Additionally, in [152], the authors propose a reliability metric,
consisting of two components: the temporal availability and the probability to overcome a received
power threshold, however, for a single cell scenario. Furthermore, the authors in [153] summarize main
definitions from reliability theory [56], and present an automation-based use case exploiting multi-link
connectivity. Nevertheless, the spatial dimension of service availability was not considered at all. In
addition, authors in [139], provide a tutorial-like overview, introducing different challenges and solution
proposals for URLLC services. Although quite insightful, this work did not touch upon the concepts of
time and space availability.

Motivated by the above, in this section, concentrating on both space and time domains, we make a
first attempt to bridge the gap between traditional radio-link KPIs and service-level KPIs by providing an
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Figure 6.6: System model consisting with heterogeneous devices. The shaded area represents the
connectivity region of a given BS.

insight on the availability and reliability of wireless links in 5G systems. The proposed framework aims
to indicate which locations in a given area would overcome a performance threshold over a specific time
window with a guaranteed level of confidence. In further detail, the contributions of this section are the
following; i) proposal the definition of a new, stochastic quantity to measure the spatial availability of
a wireless link given a service-specific confidence level, ii) capitalizing on the proposed definition of
spatial availability, we present a novel resource allocation approach dependent on the spatially available
area of a given BS and based on the concept of resource provisioning, and iii) we present numerical
evaluations, highlighting the different effects of system parameter values on spatial availability, as well
as on temporal availability and reliability. In addition, we show the relation between spatial and steady
state temporal availability.

6.3.2 System Model

A downlink wireless system is considered which consists of BSs that are spatially deployed in R2

according to a homogeneous PPP, denoted by Φ with intensity λ . Single-antenna BSs of equal transmit
power that are deployed over a two-dimensional bounded area Adep (e.g., a factory floor). Without loss
of generality, the proposed system model can be applied to different communication systems. Over the
assumed area, a multitude of devices, like personal tablets, control units, sensors or actuators, are being
served via wireless links, as shown in Figure 6.6. Each BS has access to C uplink resources that can
be used for data transmission, so as for the devices to fulfill their service requests. At the device side,
service requests form an arrival process which follows a Poisson distribution with an average arrival rate
denoted by λa packets/ unit time, whereas the service time of a service at the BŞ follows an exponential
distribution with an average service rate of µser packets/ unit time. A frequency reuse factor of one is
assumed in this work, which translates to the potential presence of inter-cell interference among all BSs.
From a joint deployment and connectivity point of view, the cell’s connectivity region (i.e., the shaded
area in Figure 6.6, also named as Voronoi cell) represents the geographical area in which a wireless
link can be established between a device and its closest BS. Equivalently, assuming that the path-loss
exponent is of the same value over the whole bounded area, Voronoi cells are shaped by applying a
BS-device connectivity rule based on a minimum path-loss criterion. Additionally, the SIR of a generic
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device located at point i and served by the j-th BS (i.e., j ∈ Φ) is computed as

SIRi, j =
hi, j||i− j||−η

∑k∈I j gi,k||i− k||−η
, (6.11)

where Pj is the j-th BS transmit power, hi, j, gi,k,k ∈ I j are the signal of interest and interfering channel
gains, || · || is the Euclidean distance and I j represents the set of all interfering BSs. Additionally, h and g
are exponentially distributed with unit gain and are assumed non-correlated among the various links.

One key enabler towards ubiquitous and reliable computation services delivery over wireless links is
to investigate the guaranteed performance of a given BS-device link. In this context, we introduce a new
binary evaluation metric, Ωi, j(θ ,ξ ,Φ), having as a decision criterion the probability for a wireless link
to achieve a given SIR threshold θ with a predetermined confidence level ξ for a given BS deployment
realization Φ.3 This quantity is mathematically expressed as follows

Ωi, j(θ ,ξ ,Φ) = 1(P[SIRi, j ≥ θ ]≥ ξ ). (6.12)

This metric will be exploited in what follows for defining the spatial, service-relevant availability of a
wireless link.

6.3.3 Availability Analysis: Spatial Domain

Utilizing the aforementioned metric, we aim now to project the well-established definitions of time-
domain availability and reliability to the spatial domain. Temporally, instantaneous availability of a
system is the probability of the system being operational at a given time instant [56], whereas, in the space
domain, as introduced in [151], the spatial availability As, defines the locations on a given Euclidean
plane, where the system is operational. The region of operation was modeled as a circular coverage area
in [151], due to the lack of interference from the surrounding BSs. We consider a new, service-related
definition of spatial availability, taking into account the confidence level of surpassing a predefined SIR
threshold. To formalize our contribution, we present the following definition:

(θ ,ξ )-availability. Any device located at i and served by an BS located at j is labeled as (θ ,ξ )-available,
if Ωi, j(θ ,ξ ,Φ) = 1, j ∈ Φ, i, j ∈ R2, and non-available otherwise.

Focusing on a given BS deployment Φ, and accumulating all devices possible locations z;z ∈ R2

which satisfy the spatial availability criterion Ωz, j(θ ,ξ ,Φ) when connected to an BS located at point j,
we obtain the following (θ ,ξ )-available region D j as follows

D j = {z ∈ R2|Ωz, j(θ ,ξ ,Φ) = 1, j ∈ Φ}. (6.13)

The presence of (θ ,ξ )-available region (i.e., D j) can be physically interpreted as the locations in which a
specific QoS (θ ) can be achieved with a given confidence level (ξ ). The defined QoS can be extended in
future work to accommodate further parameters. Accordingly, the spatial availability for an BS located at

3It is worth noting that ξ also represents the percentile of devices that achieve SIR≥ θ as explained in details in Chapter 4.
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j, can be defined as

As( j) = min
(

1,
Area(D j)

Area(V j)

)
= min

(
1,
|D j|
|V j|

)
, (6.14)

where the minimum operator accounts for cases where the (θ ,ξ )-available area is larger than geographical
area of the BS (in such cases As( j) = 1) and V j is the collection of points constituting the Voronoi cell of
the j-th BS. In addition, (6.14) can be expanded as

min
(

1,

∫
z∈R2 1{z∈D j}dz

1
2 |∑

g−1
ℓ xℓyℓ+1 + xqyq −∑

g−1
ℓ xℓ+1yℓ− xqyq|

)
, (6.15)

where g is the number of edges and (xℓ,yℓ) are the Cartesian coordinates of the ℓ-th vertex of the Voronoi
cell. The denominator in (6.14) is obtained by applying the well-known shoelace algorithm that computes
the area of a Voronoi polygon with g edges [151].

In order to compute the area of set D j, its boundary needs to be specified. In other words, focusing
on an BS, all the points satisfying the SIR threshold θ with confidence level ξ are sought. One can thus
expand (6.12), for a given spatial deployment (Φ is dropped for simplicity) as follows

Ω j,z(θ ,ξ ,Φ) = 1

{
P

{
h j,z|| j− z||−η

∑k∈I j hz,k||k− z||−η
≥ θ

}
≥ ξ

}
,

(a)
= 1

{
E

{
exp
( −θ

|| j− z||−η ∑
k∈I j

hz,k||k− z||−η

}
≥ ξ

}
,

(b)
= 1

{
∏

k∈I j

Mh

{
−θ

|| j− z||−η
Pk||k− z||−η)

}
≥ ξ

}
,

(a)
= 1

{
∏

k∈I j

1
1+ θ

|| j−z||−η ||k− z||−η)
≥ ξ

}
, (6.16)

where (a) follows since h is exponentially distributed and (b) is the moment generating function (MGF)
of an exponentially distributed random variable. Since the BSs transmit with equal power, the final
expression of Ωz, j(θ ,ξ ,Φ) is oblivious to the transmission power [21].

Expression (6.16) can be utilized to define the boundary of Area(D j) by substituting inequality by
pure equality. However, since this boundary is hardly tractable in closed form, to obtain quantitative
results, we resort to a bisection-based algorithm to approximate the size of this area to be then used in
(6.14). A visualization of the computed regions is shown in Figure 6.7, where different combinations
of (θ ,ξ ) are considered for a given BS. It is observable that in Figure 6.7(b), the (−10 dB,0.8) region
is not convex, due to the interference imposed by the closest interfering BS, which reveals that, along
with (θ ,ξ ), the number and location of deployed and, consequently, interfering BSs is expected to highly
affect the spatial availability. A thorough investigation on the effect of (θ ,ξ ) on spatial availability for
random BS deployments will be presented in subsection 5.3.5.

As one would expect,the selected parameter values highly affect the achieved spatial availability,
thus, to ensure an average insight over all possible BS locations, spatial averaging over a large number of
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(a) (b)

Figure 6.7: (θ ,ξ ,Φ)-available regions for a deployment with Φ = 0.1 focusing on a generic BS (its
Voronoi border drawn in black) (a) θ = 0 dB and ξ = (0.7,0.8,0.9) and (b) θ = (−10,0,10) dB and
ξ = 0.8.

deployments was conducted. In Figure 6.8, we highlight the effect of parameters θ and ξ along with the
BS’s intensity on the spatial availability. First, in Figure 6.8(a), the spatial availability As of a randomly
selected BSs is plotted as a function of θ for different confidence levels, ξ . As expected, for increasing
values of θ (or ξ ), the spatial availability of that BS decreases, as the equivalent (θ ,ξ )-available region
reduces.

Second, in Figure 6.8(b), As is shown as a function of λ over the fixed deployment area for two
different confidence levels, when θ=0 dB. The monotonically increasing fashion of As as a function of
Φ for a given value of ξ is explained as follows: as the system becomes more densified with BSs, the
Voronoi area of each BS decreases, since the BSs become geographically closer. Also the accompanying
(θ ,ξ )-available region shrinks, due to the higher interference received from other BSs. However, the
latter region is less affected compared to the former, due to the stochastic nature of the region forming
criterion together with the applied bisection-based approach for computing the (θ ,ξ )-available regions.

6.3.4 Availability Analysis: Temporal Domain

Having analyzed the spatial availability metric in the previous section, and since our objective is to
propose a unified, space-time availability framework useful to URLLC systems, in this section we
concentrate on the time domain. As explained in Section 6.2.2, each BS has Rt channels that can be
accessible by the devices in its Voronoi region. To account for the spatial availability As as defined in
subsection 6.3.3, we propose a spatial availability-proportional channel allocation scheme. According to
this scheme, since As decomposes the Voronoi region of an BS located at point j into two regions, the
number of channels to be utilized by devices located in the (θ ,ξ )-available and non-available regions of
this device can be, respectively, written as

Ca( j) =
⌈
As( j)C

⌉
, Cn( j) =C−Ca( j). (6.17)
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Figure 6.8: Spatial availability as a function of (a) (θ ,ξ ) parameters (b) number of BSs for θ = 0 dB.

As a result of the proposed policy, assuming that service requests arrive uniformly in space, when the
spatial availability ratio As is low, a few channels will be allocated to the few evolving requests coming
from the (θ ,ξ )-available region, while, the majority of channels will be allocated to the (possibly many)
requests coming from the (θ ,ξ ) non-available region.

In order to model the resources status at a generic BS over time, we resort to a CTMC model that
captures the number of idle/ occupied channels as time evolves. To also capture the decomposition
of service requests into two sets (i.e., coming from spatially available/ non-available areas), a two
dimensional CTMC is utilized, where one dimension represents the number of devices being served
within the (θ ,ξ )-available region of the BS, and the other dimension represents the number of devices
in the rest of the coverage region. Figure 6.9 visualizes the proposed framework, where na and nn are
generic numbers of devices being served in the two mentioned regions. Such a model leads to a finite
birth/ death Markov process, where the total number of states is limited by the total number of channels
and all possible partitioning options. Thus, for a given channel allocation, the set of feasible states is
represented as

Q={(na,nn)| 0 ≤ na ≤Ca, 0 ≤ nn ≤Cn, Ca +Cn =C}, (6.18)

where the total number of states is |Q| = (Ca + 1)(Cn + 1), as a number of n channels will lead to
n+1 states. Based on the above described model, the temporal availability is defined as the probability
of at least one channel being available for a new request. As a result, the set of temporally available
states for the (θ ,ξ )-available and non-available regions are Aa = {(na,nn),na = {0,1, · · · ,Ca − 1}}
and An = {(na,nn),nn = {0,1, · · · ,Cn− 1}}, respectively. The state equations can be vectorized as
τ(t) = {τ1(t),τ2(t), · · · ,τ|Q|(t)}, where τℓ(t) is the probability of the system being in the ℓ-th state at
time instant t. Resorting to the matrix notation and using the Kolmogorov forward equations [56], the
state probabilities can be computed by solving the following equation

d
dt

τ(t) = τ(t)Q, (6.19)
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Figure 6.9: Resource partitioning based on As along with part of the two dimensional birth/death Markov
process.

where the infinitesimal generator (i.e., transition rate) matrix is denoted by Q, with dimension |Q|× |Q|.
To compute the system’s temporal availability, one needs to solve (6.19). We adopted a similar approach
as in [152], based on the uniformization method [154], where the solution of (6.19), for a given initial
state probability (i.e., t = 0), denoted by τ(0), can be rewritten as

τ(t) = τ(0)eQt = τ(0)
∞

∑
i=0

(Qt)i

i!
,

(a)
= τ(0)e−qt

∞

∑
i=0

(qt)i

i!
Jn, (6.20)

where (a) follows from the introduction of J = I|Q|×|Q|+
1
qQ, I|Q|×|Q| is the identity matrix and q is a

number satisfying q ≥ max(qii), where qii are the diagonal elements of Q. To numerically solve (6.20),
the summation must be truncated at level Nc as shown in [152]. In order to obtain the temporal availability
of a generic BS at a given time instant t, one needs to consider all the available states as follows

At
u(t) = ∑

i∈Au

τ i(t), u ∈ {a,n}, (6.21)

where index u ∈ {a,n} represents the (θ ,ξ )-available and non-available regions, respectively.

Reliability Analysis

Another important metric for the temporal analysis is the system’s temporal reliability R(t) [153], which
is defined as the probability that the system is operational during time interval [0, t]. Such a definition
can be employed in the studied CTMC model, by forcing the system to remain in an unavailable state
once it reaches one. In other words, the transition rate from any unavailable state is set to zero. Such
a modification leads to a modified infinitesimal generator matrix Q̂ and (6.19) can be re-expressed as
d
dt τ̂(t) = τ̂(t)Q̂, where τ̂(t) corresponds to state probability of the modified CTMC. Accordingly, the
system’s temporal reliability is computed as

Rt
u(t) = ∑

i∈Au

τ̂ i(t), u ∈ {a,n}. (6.22)

As it will be numerically shown later, the system reliability is always upper bounded by its time availability
(i.e., At(t)≥Rt(t)), since for a repairable system, transition rates from a failed state are non-zero.



6.3 Availability and Reliability of Wireless-based Services 107

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Time

(a)

Aa
t (t) An

t (t)
Ra(t) Rn(t)

100 101 102
0

0.2

0.4

0.6

0.8

1

increasing As

Y

A
a t

(b)

Figure 6.10: (a) Temporal availability and reliability of (θ ,ξ )-available and non-available regions for
As = 0.7 (b) Steady state time availability for increasing values of spatial availability (As) ranging from
0.1 to 1.

Steady State Analysis

Another interesting metric relevant to temporal analysis is the steady state time availability, which is time
independent and can be interpreted as the average operating time [56]. Mathematically [153], it can be
represented as

At
u = lim

t→∞
At

u(t) = ∑
i∈Au

τ i = ∑
i∈Au

Y
i!

(
1+

Cu

∑
l=1

Y l

l!
,
)

, (6.23)

where u ∈ {a,n} and Y = λa
µser

represents the arrival to service rate ratio. Based on the presented metrics,
we investigate, in what follows, the temporal availability and reliability for the proposed access scheme. In
Figure 6.10(a), the system’s transient analysis is presented for As = 0.7. Due to the spatially-dependent
channel allocation proposed in (6.17), the time availability, At

a(t) (reliability Rt
a(t)) for a request

originating from the (θ ,ξ )-available region should be higher than the time availability At
n(t) (reliability

Rn(t)) of the (θ ,ξ )-non available region. This is explained due to the larger number of channels that can
be utilized for the spatially available region. It is noticeable that at t = 0, all channels are available, thus,
leading to time availability and reliability equal to one. Additionally, numerical results confirm that the
time reliability is upper bounded by time availability, as well as that such a bound is time-dependent since
it loosens over time till a maximum performance gap is reached which is then fixed as time evolves.

In Figure 6.10(b), the steady state analysis is illustrated for varying values of the arrival to service
ratio Y . As Y increases, the steady state temporal availability decreases; this occurs due to the fact that
the available channels are less in such regimes. Also, as explained earlier, as a result of the adopted
channel access scheme, larger values of spatial availability lead to higher time availability. It is, therefore,
concluded that Y is a fundamental performance limitation factor, as for extremely large values of it, even
a 100% spatial availability is unable to be translated to high time availability.
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Figure 6.11: Steady state time availability as a function of spatial availability for varying numbers of
channels (C = (10, 20, 30)).

6.3.5 Spatiotemporal Joint Analysis

Finally, in Figure 6.11, the relationship between the steady-state time availability and the spatial avail-
ability is presented for different total channel numbers, C. First, we observe a symmetric time availability
performance for a fixed Rt between the (θ ,ξ )-available and non-available regions, due to the proposed
channel allocation scheme. For As = 0.5, the number of channels allocated to each region will be the
same, hence, leading to an identical time availability performance, as requests arrive uniformly in space.
Additionally, fixing the value of As, time availability increases together with C. This result intuitively
emphasizes the role of redundancy and provisioning in wireless systems. Equivalently, through our
proposed space-time analysis, the minimum total number of channels needed to achieve a targeted
temporal availability level can be identified. To further highlight this, a steady state time availability
requirement of 0.8 is marked for NumberULchannels = 20 and NumberULchannels = 30 curves. As
expected, the range of As meeting the imposed requirement is larger in the latter case. This means that, a
sufficient amount of resources can guarantee the time availability performance of multiple service classes.

6.4 Conclusion

Focusing on successful task execution and the availability of a given service within wireless-based
systems, in this chapter, novel definitions of dependability attributes for communication and computation
services are provided. First, a spatiotemporal framework is proposed to characterize the network-wide
task completion from a dependability perspective considering that devices employ a coverage-based
offloading criterion. Modeling tools are utilized to derive closed form expressions of the offloading
success probability and a number of novel defined task execution dependability-relevant metrics, such
as communication resources availability, task execution retainability and task execution capacity. To
yield the framework practical, models of VMs failures and repairing are considered. Numerical results
showcase regimes where the system transitions from the offloading-dominant to the local execution-
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dominant regime. Different system parameters such as task arrival rate, device spatial density and VM
computation capabilities, are presented to obtain a complete understanding of system behavior. Finally,
we show that assuming a given system parameterization, there exists an optimal number of VMs, which,
when deployed, maximizes the task execution capacity.

Additionally, we present a unified framework characterizing the temporal and spatial availability for
a service-agnostic wireless-based system. A novel, service-relevant definition of spatial availability is
introduced taking into account the probability to achieve a targeted SIR threshold with a given confidence
level. Temporal availability is investigated considering a novel, space availability-driven channel access
scheme based on the concept of channel provisioning, bringing up the coupled relation between spatial
and temporal availability and reliability. The study is supported by numerical evaluation results which
underline the impact of different system parameter values on space/ time availability and time reliability,
as well as the coupled nature of these metrics.



Chapter 7

Conclusion and Future Work

This chapter summarizes the technical contents presented throughout the previous chapters and discusses
future research directions. In Section 7.1, the main contributions and key observations and conclusions
will be highlighted. Possible future research directions that are building on this thesis will be presented
to finalize this dissertation in Section 7.2 .

7.1 Conclusion

Throughout this thesis, large scale IoT networks were modeled and studied for different use cases and
network deployment variants. The thesis was based on two main pillars: namely, the communication and
computation pillars. The motivation, background and a tutorial-style preview of the mathematical tools
and key enablers that are utilized throughout this thesis were discussed in Chapters 1 and 2, respectively.
To provide a contained summary of the technical chapters, our findings can be summarized as follows:

• Communication pillar: Utilizing stochastic geometry and queueing theory to characterize the
macroscopic (i.e., network-wide mutual interference) and microscopic (i.e., device traffic dynamics)
scales of the network, we presented different spatiotemporal frameworks that aim to analyze large
scale uplink IoT networks. In details, Chapter 3 investigated the co-existence of prioritized multi-
stream traffic generated at the device side via a tractable and scalable vacation-based model. The
developed spatiotemporal model was used afterwards to assess and compare three priority aware
channel allocation strategies; namely dedicated-equal allocation, dedicated weighted allocation
and shared allocation strategy. A major key result of this chapter was the reported superiority of
the shared channel allocation strategy over the dedicated ones, as the former offers higher pool
of channels, enabling interference diversification. In addition, various KPIs, such as transmission
success probability, average queue length, average-delay, delay distribution, and PAoI were derived
and discussed for each priority class. Leveraging the presented framework, interesting insights
regarding heterogeneous traffic co-existence, QoS requirements and cost of traffic prioritization
were presented.

Focusing on timely status updates and information freshness within large scale uplink IoT networks,
we focused in chapter 4 on the impact of time-triggered and event-triggered traffic from the PAoI
perspective. In contrast to the spatially averaged performance, we leveraged tools from stochastic
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geometry to analyze the location-dependent performance, taking into consideration the impact
of the aforementioned traffic models. In essence, we showed that both the time-triggered and
event-triggered traffic models can be captured via a unified queueing analysis, However, in large
scale networks, both traffic patterns lead to different network-wide mutual interactions between
the coexisting IoT devices, which was captured via our proposed framework. The presented
results unveiled the counter-intuitive superiority of event-triggered traffic over the time-triggered
traffic, when it comes to the PAoI. Such a result was attributed to the higher temporal interference
correlations of the time-triggered traffic. By virtue of the spatiotemporal perspective, the Pareto
frontiers that characterize stable operation of the devices within the network were derived and
discussed.

• Edge-computing pillar: Leveraging MEC deployment within the large scale IoT networks, advents
of MEC gains, such as reduced experienced latency within heterogeneous and vehicular networks,
dependable task execution and more computation power, were the highlight of our research within
this pillar. In Chapter 5, the problem of cell association was studied for heterogeneous networks,
that entailed radio and computation disparity between the different tiers. It was shown that, when
compared to state-of-the-art association criterion, the proposed rule offers up till 60% reduction in
the experienced one-way latency. Our main finding in this chapter was the need to have an adaptive
association criterion that takes not only the radio aspect, but also the computation perspective, when
designing advanced cell association rules. In addition, improving the timeliness of collective road
awareness via MEC deployment, concentrating on the vehicular VRU use case was investigated. It
was shown that the proposed overlaid deployment of MEC hosts offers up to 80% average latency
reduction, as compared to the conventional network architecture. Furthermore, for a number of
network parametrization, the network-wide PAoI of the conventional system architecture can be
reduced by nearly 61% when a MEC-enabled architecture is deployed.

In addition, dependable and ubiquitous computing services within wireless networks were consid-
ered in Chapter 6, to understand the feasibility of wireless-based networks to meet the futuristic
requirements of future services. A novel spatiotemporal framework was presented that utilizes
stochastic geometry and continuous time Markov chains to jointly characterize the communication
and computation performance of MEC-enabled wireless systems, while considering the influence
of various system parameters on dependability metrics such as (i) computation resources availabil-
ity, (ii) task execution retainability, and (iii) task execution capacity. We showed that there exists
an optimal number of virtual machines for parallel computing at the MEC host to maximize the
task execution capacity. Additionally, since wireless links are characterized by fluctuating quality,
we provided a first attempt to quantify the spatial and temporal availability of a service and its
reliability via utilizing tools from dependability theorem. In the space domain, we characterized
spatially available areas consisting of all locations that meet a performance requirement with given
confidence. In the time domain, we proposed a channel allocation scheme accounting for the
spatial availability of a given cell. With the aim to reveal the incurred space-time performance
trade-offs, numerical results were presented. In addition, the effect of different system parameters
on the achievable service availability and reliability were discussed and highlighted.
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7.2 Future work

Owing to the conducted analysis throughout this thesis, different future research directions are envisioned.
From the spatiotemporal modeling, future and current deployment scenarios create complex topological
structures, especially from the devices point of view, that cannot be captured by the adopted PPP.
Accordingly, there is an utter need to develop spatiotemporal models that utilize other point processes.
In addition, since equal resource allocation was considered throughout this thesis, advanced resource
allocation schemes, such as, Markov decision processes, can be utilized in order to provide smarter
and efficient resource utilization among the active devices with different QoS requirements. Further
considerations of different queueing disciplines, rather than the FCFS¸ , might be interesting for specific
applications (e.g., last come first serve in sensors measurement reporting).

Moreover, the trend of technology evolution is towards more intelligent services and applications
within the network, which will require a more reliable, efficient, resilient, and secure connectivity. When
the connected objects are more intelligent it becomes difficult to deal with their complexity by using the
communication network in a static, simplistic and rigid manner. To fully address this foreseeable shift, the
employment of machine learning and artificial intelligence, leveraging the computation power provided
by MEC deployment, is attractive from cost, enhanced QoS and scalability perspectives. Research
directions regarding the impact of network deployments and network architecture on the effectiveness of
distributed learning is gaining attention. Under the same scope, federated learning refers to the notion of
multiple network nodes training a shared model in a distributed fashion. The main idea is that user devices
in a network will collaboratively learn a shared prediction model without the raw training data leaving
the device. This is motivated from several perspectives; limitations in uplink bandwidth, limitations in
network coverage, and restrictions in transferring privacy-sensitive data across the network.

Finally, several vertical segments (e.g., V2X and industrial automation) are characterized by stringent
requirements that require novel methods to assure the determinism of operation. Further research on
mechanisms to achieve high dependability, reliability, availability and liability, is necessary. As a crucial
prerequisite for such service-critical segments, it is important to include an in-depth analysis of the
potentials and limitations of cross-layer technologies such as communication-control co-design and
more involved spatiotemporal network design. The dependability-based framework presented in this
thesis serves as a starting point to more in-depth research possibilities in this timely and technologically
challenging domain.
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Appendix A

A.1 Proof of Proposition 1

In order to fully characterize the vacation period for a given priority class, the aggregate busy periods of
higher priority queues need to be characterized. For the highest priority class (i.e., i = 1), its transition
matrix P1 is that of a simple birth-death process. Consequently, its busy period, denoted as V1 is
represented via the following absorbing Markov chain

V1 =


ᾱ1 ¯Ps,1 +α1Ps,1 α1 ¯Ps,1

ᾱ1Ps,1 ᾱ1 ¯Ps,1 +α1 p α1 ¯Ps,1
. . . . . .

ᾱ1Ps,1 ᾱ1 ¯Ps,1 +α1

 . (A.1)

Let ṽ1 = [ᾱ1Ps,1 0q1] ∈ Rq1−1×1 denotes the absorption vector. Through V1 and ṽ1, one can fully
characterize the transitions when a first priority packet arrives as well as its successful departure (i.e.,
absorption). The second priority queue can be modeled as Geo/PH/1 queue, where the PH type distribution
models the busy period of the first priority queue. Consider then the case of serving second priority
packets, if a first priority packet arrives, an initialization vector v1 = [1 000q1] is required to characterize
the states distribution and the probability of their occurrence χ1. Since the queue is initialized as empty,
χ1 =α1. The analysis for a generic i-th priority class is extended and with some mathematical adaptations,
the lemma is finalized.

A.2 Proof of Theorem 1

For the dedicated access scheme, a packet belonging to the i-th priority queue will only experience
aggregate interference from packets belonging to the same priority class.This packet will be granted
transmission only if all the higher priority queues are empty. The portion of interfering device for the
i-th queue at the BS is µJi, where Ji = ∑

qi
zi=1P{(0,0, · · · ,0,zi)} is the joint probability of having idle

i-1 priority queues and non-idle i-th priority queue. Additionally, the adopted grant-free transmission
scheme among the devices imposes a differentiation between the experienced interference into intra-cell
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and inter-cell interference, thus (3.15) is written as

Ps,i = exp
{
− σ2θ

ρ

}
LIout,i

(
θ

ρ

)
LIin

(
θ

ρ

)
. (A.2)

Since full channel inversion power control with threshold ρ is employed, two main results hold: (i)
received power from the devices at a given BS equals ρ (ii) interference power from the neighboring
devices is strictly lower than ρ . Following [73, Theorem 1], the LT of the aggregate intra-cell interference
at the serving BS for an i-th priority packet is

LIout,i(s)≈ exp
(
−2πµJis

2
η EP

[
P

2
η

]∫ ∞

(sρ)
−1
η

y
yη +1

dy
)

, (A.3)

where the approximation is due to the assumed independent transmission powers of the devices (Approx-
imation 1(i)). The LT of the inter-cell interference can be evaluated as [35, Lemma 1]

LIin(s)≈ P{N = 0}+
∞

∑
n=1

µn(λc)cΓ(n+ c)
(1+ sρ)nµ +λc)n+cΓ(n+1)Γ(c)

, (A.4)

where Γ(·) is the gamma function, N is a random variable representing the number of neighbors and
c = 3.575 is a constant defined to approximate Voronoi cell’s PDF in R2. Plugging (A.3) and (A.4) into
(A.2) and following [35, Lemma 1], the theorem is derived.

A.3 Proof of Lemma 3

The b-th moment of the TSP can be derived from eq.(4.13) as

Mb = E!
ri,Pi,ro

 ∏
ωi∈Φ̃T

(
1

1+ θrη(1−ε)
o
ρωi

)b∣∣∣∣Φ̂,Ψ

 , (A.5)

where, the uplink transmission power Pi of the i-th device is a random variable due to the employed
fractional path-loss power control [23]. In (A.5), the average is first conditioned on ro then evaluated via
the probability generating functional of the PPP with the intensity function λ̃T (ω). The distribution of
ro is given by fro(r) = 2πλ re−πλ r2

. With some mathematical operations following [79], the lemma is
proved.

A.4 Proof of Lemma 6

Based on [74],[29], Rn is the minimal non-negative solution to the quadratic equation Rn = A0,n +

RnA1,n +R2
nA2,n. Let x0,n and x1,n be the solution to

[
x0,n x1,n

]
=
[
xi,n xi,n

][ B C
A2,n A1,n +RnA2,n

]
. (A.6)
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Since A0,n is rank 1, Rn can be rewritten as

Rn = A0,n(IT −A1,n −A2,nGn)
−1, (A.7)

where Gn is the minimal non-negative solution to Gn = A2,n+A1,nGn+A0,nG2
n. Following [29][Chapter

5.9], the lemma can be proved.
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