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Abstract: The imaging of non-conducting materials by scanning electron microscopy (SEM) is most
often performed after depositing few nanometers thick conductive layers on the samples. It is shown
in this work, that even a 5 nm thick sputtered gold layer can dramatically alter the morphology and the
surface structure of many different types of aerogels. Silica, polyimide, polyamide, calcium-alginate
and cellulose aerogels were imaged in their pristine forms and after gold sputtering utilizing low
voltage scanning electron microscopy (LVSEM) in order to reduce charging effects. The morphological
features seen in the SEM images of the pristine samples are in excellent agreement with the structural
parameters of the aerogels measured by nitrogen adsorption-desorption porosimetry. In contrast, the
morphologies of the sputter coated samples are significantly distorted and feature nanostructured
gold. These findings point out that extra care should be taken in order to ensure that gold sputtering
does not cause morphological artifacts. Otherwise, the application of low voltage scanning electron
microscopy even yields high resolution images of pristine non-conducting aerogels.

Keywords: mesoporous materials; aerogels; electron microscopy; gold sputtering; aggregation

1. Introduction

Aerogels obtained by sol-gel and dissolution-coagulation techniques and final super-
critical drying are solid functional materials of extremely high porosities and low densities.
These properties are utilized in a wide range of applications including advanced thermal
insulation, catalysis, manufacture of electrode materials, high-capacity adsorbents, drug
delivery and tissue engineering [1,2]. Functional aerogels are prepared from a large variety
of structural materials, such as inorganic oxides (e.g., silica, alumina, titania), carbohy-
drate polymers (e.g., cellulose, alginate, starch, chitosan, pectin), proteins (e.g., collagen,
casein, egg yolk), synthetic polymers (e.g., polyimide, polyamide, polyurea) or carbon (e.g.,
amorphous carbon, graphene) [3–12].

In general, aerogels obtained by supercritical drying feature the best preserved three-
dimensional structure of the precursor gel among all drying approaches. Hence, structural
elements, including variations in the geometry of the network forming entities down to
the nanoscale, can be differentiated. These differences in fine structure are related to the
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chemical composition of the source material(s) and the conditions of gel syntheses [13–16].
The archetypes of aerogels (silica, cellulose, alginate, polyurea, etc.) are either composed of
small globular primary units of a few to a few tens of nanometers in diameter, or cylindrical
fibrils of thicknesses in approximately the same size range [17–19]. However, some carbon
based and polymer aerogels consist of flake-like flat nanostructures [20–22]. The pore
systems of the aerogels in terms of void fraction, geometry, size distribution and degree
of interconnectivity is predetermined by the architectures of their solid backbones [14,23].
The pore sizes vary between the micropore and the mesopore range, and the shapes of the
pores can be spherical, cylindrical to slit-like.

The fundamental macroscopic properties (heat conductivity, compressive strength,
bulk density, accessible specific surface area, total pore volume, permeability of pores, etc.)
that determine the performances of the aerogels in practical applications are directly related
to their microstructures [24–27]. Evidently, understanding functionality related structure-
properties relationships are of key importance for designing new materials for specific
advanced applications [28–31]. Furthermore, the understanding of the microstructures of
aerogels enables high level theoretical simulations of their macroscopic properties [32,33].

Because of these reasons, significant efforts have been made to thoroughly character-
ize the nanostructured interior of these sensitive materials. Imaging the morphology by
scanning electron microscopy (SEM), and assessment of pore characteristics by nitrogen
adsorption-desorption porosimetry are key analytical procedures [34–36]. These tech-
niques, however, require extensive care to ensure that the results are representative for
the true interior of the materials, and exclude any possible artifacts. Erroneous conclu-
sions with regard to nanostructures and morphologies of aerogels would jeopardize or
even mislead time-consuming simulation efforts, and evidently, falsify structure-property
relationship theories.

In this study, we systematically evaluate the performance of SEM applied to image the
nanostructures of several different types of non-conducting aerogels (silica, silica hybrids,
calcium-alginate, polyimide, polyamide, cellulose). The investigation of non-conducting
materials commonly requires the deposition of a few nanometers thick conductive coating
on the surfaces of the nanostructured samples. Here, we present clear evidence that the
sputtering of gold onto the surfaces of non-conducting aerogels can significantly alter their
nanostructures, thus leading to erroneous conclusions with regard to their morphologies.
The imaging of pristine (uncoated) aerogel samples is also performed by using a special
microscopy setup, and the observed morphological features are correlated to structural
parameters derived from N2 adsorption-desorption porosimetry measurements [37].

Aerogel samples were characterized by Low Voltage Scanning Electron Microscopy
(LVSEM). The advantage of using LVSEM has been discussed since the end of 1980s [38].
Currently, even entry-level instruments can image at low kV (1–5 kV) without much effort.
This was not the case earlier. In addition, in the past, SEM instruments had significantly
lower imaging resolution at low kV. The solution to this—besides the Field Emission Gun
(FEG) source—are unique electron optical elements, as well as the annular in-column
detector system developed by Zeiss with the GEMINI column at the beginning of 1990.
This provides low kV with a very high probe current and maintains a very small probe
diameter that gives a very high resolution with great signal to noise ratio and minimal
sample damage. Today almost all SEM manufacturers apply these technical innovations in
order to expand the capabilities of their instruments. In the present paper, we implement
the newest results and innovations that are available on the market for a mainstream user.

2. Experimental
2.1. Preparation of Aerogels

Silica, silica-casein hybrid, silica-gelatin hybrid, Ca-alginate, polyimide, polyamide,
Ca(II) crosslinked polyamide and cellulose aerogels were prepared using recipes previ-
ously published in the literature [20–22,39–45]. The essential summaries of the synthetic
procedures are given in the Supplementary Meterials.
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2.2. Characterization of Aerogels

The main goal of the experiments was to investigate the effect of gold sputtering on
the morphologies of different aerogels. The investigation was performed in four steps. First,
each aerogel was imaged by SEM in its pristine form without gold coating. Second, a ca.
5 nm thick gold layer was deposited on the surfaces of the aerogels by using a conventional
sputtering instrument (BIO-RAD SEM Coating Unit PS3, BIO-RAD Laboratories Ltd.,
Hercules, CA, USA), and the sample was imaged again. The third and fourth steps were
repeating the deposition procedure in order to obtain thick, 16 nm and subsequently
32 nm coating layers before imaging. Gold deposition was carried out in 21 Pa of Ar
and the sputtering rate was 0.53 nm s−1. The deposition rate was precisely measured
in independent experiments on various substrates. The thickness of deposited gold was
verified by profilometer (AMBIOS XP-I) [46–50].

The samples were investigated using a ThermoFisher Scientific Scios 2 dual beam
microscope. The equipment is built with an acceleration tube, a unique in-lens Trinity
detector system, and a retarding-field option. Taking advantage of this setup, low voltage
scanning electron microscopy (LVSEM) technique was applied to make high-resolution
images of the different aerogel samples, as detailed in the next subsection. An acceleration
voltage of 1–2 kV and 2–5 mm working distance was typically used. The investigation of
the gold coated samples was carried out by using the same conditions as for the uncoated
(pristine) ones. The samples were fixed on vacuum-resistant carbon tape. Fresh fracture
surfaces were investigated far from the point of splitting the aerogel monolith.

Nitrogen adsorption-desorption porosimetry measurements were performed with a
Quantachrome Nova 2200e surface area and porosity analyzer Quantachrome Instruments,
Boynton Beach, FL, USA). All samples were degassed in vacuum at 60 ◦C for 24 h before the
measurements. Raw data was evaluated with the NovaWin 11.0 software (Quantachrome
Instruments, Boynton Beach, FL, USA). Total surface area was calculated according to the
Brunauer-Emmett-Teller (BET) model. Pore size distribution plots were constructed using
the Barret-Joyner-Halenda (BJH) method.

2.3. Low Voltage Scanning Electron Microscopy (LVSEM)

The nanostructures of the aerogel samples were investigated with a Field Emission
Scanning Electron Microscope (FESEM) [51,52]. Scanning electron microscopy operating at
electron energies below 5 keV is usually termed Low Voltage Scanning Electron Microscopy
(LVSEM) [53]. The advantages of low acceleration voltage derive directly from the energy
dependence of the electron-specimen interactions.

The penetration depth of the impinging electrons decreases with decreasing energy
due to the reduced electron range, that is, the excitation volume shrinks in the speci-
men. The secondary electron (SE) yield increases because of the reduced electron range.
The SEs that are generated near the surface can easily escape, which increases the SE yield.
Because of the increasing SE yield, there should be a critical acceleration voltage for a
given specimen where the amount of the incoming and the emitted electrons are balanced,
and consequently, the specimen current equals to zero. This means that at this particular
electron energy, no electric conductivity of the specimen is required. Ideally, imaging of
electric insulators without conductive coating becomes possible. Further considerations on
LVSEM technology are given in Supplementary Meterials.

3. Results and Discussion

Selected key structural parameters of the set of inorganic, biopolymer, organic and
hybrid aerogels investigated in this study are complied in Table 1. The results of the N2
gas porosimetry characterization of the different types of aerogels are summarized in the
form of specific surface area (SBET), mean pore size and total pore volume. The complete
porosimetry reports are given in the Supplementary Meterials. It is clearly seen from
Table 1, that the studied aerogels are significantly different from each other not only
regarding their structural materials, but also in the sense of very distinct morphologies.
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Table 1. Structural parameters derived from N2 gas adsorption-desorption porosimetry data.

Parameter Silica Silica-
Gelatin

Silica-
Casein

Ca-
Alginate

Poly-
Imide

Poly-
Amide

Poly-
Amide
(Ca(II))

Method

Specific
surface area (m2 g−1) 898 742 750 544 297 245 251 BET

Mean pore
size (nm) 15 14 17 42 3.8 3.4 4.3 BJH
Total pore

volume (cm3 g−1) 7.5 3.2 3.2 7.8 0.8 0.8 0.7 BJH
C-constant 109 62 71 - 55 45 59 BET

Microscopy images of pristine (uncoated) and gold coated silica aerogel samples are
presented in Figure 1. Sputtering even a thin, 5 nm gold layer results in the formation of
artificial structural elements on the aerogel surface, and a 16 nm thick layer significantly
modifies the morphology of silica aerogel. The initial snowflake-like network of pristine
silica aerogel disappears under the Au coating [54]. Globular Au nanoparticles similar
in size to the primary silica globules develop on the surface after sputtering 5 nm thick
gold (Figure 1b). Following a second round of sputtering, the Au particles are considerably
larger due to nucleation, and they completely hide the pristine structure of silica aerogel
(Figure 1c) [46–48]. The same phenomenon was observed in the case of other silica-based
aerogels, such as silica-casein and silica-gelatin hybrids (Figures 2 and 3).

Figure 1. Low Voltage Scanning Electron Microscopy (LVSEM) images of silica aerogel samples. (a)
Pristine, uncoated. (b–d) Sputter coated with 5 nm, 16 nm, 32 nm thick Au layers, respectively.

Figure 4 shows representative LVSEM images of pristine and gold coated Ca-alginate
aerogel samples. It is clearly seen that the original nanostructure of Ca-alginate aerogel
is drastically altered by the sputtered gold layer. The original open framework of the
Ca-alginate aerogel is composed of short fibrils of 20–25 nm of thickness. Coating by
5 nm thick gold layer results in the appearance of globular Au nanoparticles on the
junction of the fibrils. After a second round of sputtering, the concentration and the
size of the nanoparticles increase, and the structure of the pristine Ca-alginate aerogel is
completely hidden.
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Figure 2. LVSEM images of silica-casein aerogel samples. (a) Pristine, uncoated. (b–d) Sputter coated
with 5 nm, 16 nm, 32 nm thick Au layers, respectively.

Figure 3. LVSEM images of silica-gelatin aerogel samples. (a) Pristine, uncoated. (b–d) Sputter
coated with 5 nm, 16 nm, 32 nm thick Au layers, respectively.

Figure 4. LVSEM images of Ca-alginate samples. (a) Pristine, uncoated. (b–d) Sputter coated with
5 nm, 16 nm, 32 nm thick Au layers, respectively.
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The morphologies of aramid polymer (polyimide and polyamide) aerogels are distinct
from those of silica and biopolymers. Representative LVSEM images of polyimide aerogel
samples are shown in Figure 5. The pristine polyimide aerogel is a loose network of
polymer fibrils (struts) of ca. 28 nm thickness. After gold sputtering, the apparent thickness
of fibrils significantly increases. Sputtering 16 nm coating causes the escalation of this
phenomenon, that is, the apparent diameter of the fibrils doubles to ca. 50 nm.

Figure 5. LVSEM images of polyimide aerogel samples. (a) Pristine, uncoated. (b–d) Sputter coated
with 5 nm, 16 nm, 32 nm thick Au layers, respectively.

Representative LVSEM images of polyamide aerogel samples are shown in Figure 6.
The three-dimensional structure of polyamide aerogel is composed of separated flat poly-
mer strands that vary in size from a few nanometers to 100 nm. Gold deposition causes
significant changes in the morphology, that is, small Au nanoparticles appear on the sur-
faces and on the edges of the strands. The deposition of thick gold coating causes the
aggregation of the polymer strands and the formation of Au islands that eventually cover
the whole polymer surface. It is notable that the original polymer strands are flat, while
the covered strands are cylindrical.

Figure 6. LVSEM images of polyamide aerogel samples. (a) Pristine, uncoated. (b–d) Sputter coated
with 5 nm, 16 nm, 32 nm thick Au layers, respectively.

The Ca(II) crosslinked polyamide aerogel shows unique morphological changes as a
result of gold sputtering (Figure 7). In the case of the Ca(II) crosslinked polyamide aerogel,
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the formation of Au nanoparticles does not take place, instead the polymer strands are
uniformly covered by a continuous layer of Au even when sputtering a thin 5 nm gold
coating. Eventually, the polymer strands aggregate due to their coverage by gold similarly
to the behavior of the polyamide aerogel.

Figure 7. LVSEM images of polyamide-Ca(II) aerogel samples. (a) Pristine, uncoated. (b–d) Sputter
coated with 5 nm, 16 nm, 32 nm thick Au layers, respectively.

The SEM images of the polyimide, polyamide and polyamide-Ca(II) aerogels (Figures 5–7)
were evaluated using image analysis. Approximately 20 manual measurements were per-
formed on the images of the pristine and the coated samples in order to determine the thickness
of the primary fibrils and pore size. The results are given in a tabulated form in Supplementary
Meterials. The numerical results are in very good agreement with the visual observations made
on the SEM images. It is evident that fiber diameter dramatically increases as a consequence of
gold coating in all polymer aerogels. Furthermore, pore sizes are dramatically altered in the
case of the polyimide and polyamide-Ca(II) aerogels.

Images of the cellulose aerogel sample 1.0%CL/1.0%CL-P are shown in Figure 8a
before and after Figure 8b plasma coating. The image in Figure 8c was obtained in low
vacuum (70 Pa) and it depicts the pristine sample. The image in Figure 8d was obtained in
high vacuum and it depicts the coated sample. The comparison of the images reveals the
partial destruction of the interconnected regenerated cellulose network and the formation
of globular Au particles on the surface caused by the coating procedure. The morphology
of these cellulose aerogels have been investigated by small-angle X-ray scattering (SAXS).
The results were reported in our previous publication [55]. The diameter of the fibrillar
(cylindrical) network forming primary particles is ca. 4 nm in the pristine aerogel. In con-
trast, the size of the globular units visible in the LVSEM images of the coated samples
exceed 50 nm. Thus, the significant discrepancy between the morphologies derived from
the SAXS results and visible on the LVSEM images of the coated sample clearly show the
detrimental effect of gold sputtering.

In general, the observed morphological alterations of the very different types of aero-
gels are evidently caused by the sputtering of a metallic gold layer on their surfaces [46–48].

The characteristic size of the new morphological features formed on the aerogels after
Au sputtering is a few tens of nanometers. The interaction volume for energy dispersive
X-ray (EDX) analysis is much larger than the dimensions of these objects, because the
penetration depth of electrons at 4 kV (necessary overvoltage to generate an EDX signal
from Au) is ca. 160 nm according to Monte Carlo simulation performed with CASINO
software [56]. Therefore, EDX mapping is not possible in the required resolution. In order
to illustrate the distribution and localization of elements on a gold sputtered Ca-alginate
aerogel sample surface, a SEM image is presented in Figure 9 that is a combination of the
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as-obtained in-lens SE and BSE signals. This image shows atomic number contrast: the
brighter regions correspond to higher atomic numbers. Since the aerogel consists mainly of
low atomic number elements (C, O, H, Ca) the bright globules in Figure 9 are Au particles.

Figure 8. LVSEM images of cellulose aerogel samples. (a,c) Pristine, uncoated. (b,d) Plasma coated
for 2.5 min.

Figure 9. Images showing the combination of the as-obtained in-lens secondary electron (SE) and back scattered electron
(BSE) signals of the 32 nm sputter coated Ca-alginate sample. The contrast correlates with atomic number: brighter regions
correspond to higher atomic numbers. The aerogel consists of low atomic number elements, the bright spots are Au particles.
The two images are identical, displayed in different color planes: (a) black/white and (b) red/white.

Gold atoms condense to the surface during the deposition and form clusters of Au
nanoparticles, which is driven by the reduction of the surface energy of the system. The de-
position of thin metallic films could take place by different mechanisms (e.g., Volmer-Weber,
Frank-Van der Merwe or Stranski-Krastanov models) and strongly depends on the sub-
strate as well as the deposition conditions (pressure, atmosphere, temperature, gas flow,
applied power, chemical composition, nanostructure and purity of the target material) [57].
Barna and Adamik reported a general model of film growth [58]. In brief, the process starts
with the nucleation and island growth of the sputtered material which is followed by the
coalescence of islands and the formation of polycrystalline islands. Due to the ripening
of the formed islands, an even film forms and the thickness of the thin layer increases. It
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has been reported earlier that the deposition of gold on the surfaces of non-conducting
aerogels results in the formation of porous gold films with similar structures to those of
the substrate aerogels. It is reasonable to assume that the phenomenon observed in the
present study is of the same origin as the one resulting in the formation of these porous
gold films [59]. Finally, ion-bombardment during sputtering could also have a significant
effect on the structures of aerogels [60].

4. Conclusions

Experimental evidence is presented in this work unambiguously proving that gold
sputtering changes the native morphologies of several different types of non-conducting
nanostructured aerogels. The results are of considerable significance since the application
of gold sputtering is part of the routine of scanning electron microscopy (SEM) imag-
ing; however, this practice can lead to the misinterpretation of the morphologies of the
nanostructured samples.

The structures of silica-based aerogels are dramatically altered when a sputtered con-
ductive Au layer is deposited on them to facilitate SEM imaging. The original snowflake-
like three-dimensional network of silica-based aerogels is covered by globular Au nanopar-
ticles. The original fibrillar building blocks of the Ca-alginate backbone can erroneously be
misinterpreted as globules when a thick layer of gold is sputtered on the sample. In the case
of aramid polymer aerogels, the initial morphologies of polymer strands are still visible
after gold sputtering, but the diameter of the strands can increase significantly, even by a
factor of 2. The fine-structure of cellulose aerogel is partially destroyed as a consequence of
gold sputtering.

The utilization of low voltage scanning electron microscopy (LVSEM) is strongly
advised for investigating non-conducting aerogels, because this technique enables the
acquisition of high-resolution images of representative pristine (uncoated) samples. These
erroneous conclusions regarding the nanostructures and morphologies of aerogels evi-
dently falsify characterization efforts, and ultimately falsify structure-property relationship
theories. Therefore, the utilization of low voltage scanning electron microscopy (LVSEM) is
strongly advised for investigating non-conducting aerogels, because this technique enables
the acquisition of high-resolution images of representative pristine (uncoated) samples.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
360/13/4/588/s1, Additional considerations on microscopy theory and experiment; experimental
details on aerogel preparation; nitrogen porosimetry reports. Results of image analysis of LVSEM
pictures of pristine and sputter coated polyimide, polyamide, polyamide-Ca(II) aerogel samples
presented in Figures 5–7.
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