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Abstract

Network providers are confronted with the optimisation or extension of existing net-
works. This leads to new challenges for simulation-based network dimensioning. The
first challenge is the realistic simulation of the existing network, where topology in-
formation and traffic measurements have to be considered. The second challenge is to
predict how changes of the existing network will affect its performance: link capaci-
ties, queue management algorithms etc. are subject to changes to adapt the network to
changing traffic requirements. The best strategy for enhancing or extending the network
under consideration can be found by comparing the resulting benefits and disadvantages
between the existing network and new alternatives.

The simulation of existing networks is an inverse problem: (i) the network descrip-
tion and some measurements are given from the network provider; (ii) the number and
the behaviour of clients must be derived from the given parameters. Considering this
problem was motivated by an industry project “ERNANI” funded by the “Deutsches
Forschungsnetz” (DFN) and the German Telekom.

The author proposes a new methodology to solve the inverse problem. First, an algo-
rithm for the allocation of clients is proposed. This algorithm efficiently controls the
average traffic intensity. Second, a method is developed for matching higher-order mo-
ments of the simulated traffic to measurements made in existing networks. Two higher
moment parameters were selected, that are of major importance in network engineering:
the coefficient of variation and the Hurst parameter.

Realistic network simulations are characterised by high complexity because internal
states of protocols must be stored for each connection. Therefore, memory requirements
and simulation speed are major issues in such simulations. One solution for this problem
is to reduce the number of clients by increasing the activity of each client in order to
keep the traffic characteristics unchanged. To asses the applicability and performance of
this solution, critical network parameters are estimated as a function of the number of
clients. The parameters considered are: average link load, loss probability, coefficient of
variation of the packet inter-arrival times, Hurst parameter and average end-to-end de-
lay. It is shown in this work that the number of clients, as well as the required memory,
could be reduced by a factor of 4−8 without significant impact on the studied parame-
ters. Reducing the number of clients by a factor of 8 the simulation speed increased by
approximately 33 %.

This work represents a major step towards realistic modelling and simulation of existing
networks. The simulation results based on the presented methodology are very promis-
ing. The successful increase of the simulation efficiency represents one step towards the
realistic simulation of current and future multi-Gbit networks.
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Zusammenfassung

Netzwerkbetreiber werden mit der Optimierung und Erweiterung von existierenden
Netzwerken konfrontiert. Dies führt zu neuen Herausforderungen für die simulations-
basierte Netzwerkdimensionierung: Die erste Herausforderung ist die realistische
Simulation des existierenden Netzes unter Berücksichtigung der Topologie und der
Verkehrsmessungen. Die zweite Herausforderung ist die Vorhersage, wie sich Verän-
derungen im existierenden Netz auf die Leistungsfähigkeit auswirken: die Kapazitäten
der Verbindungsleitungen, die Algorithmen der Warteschlangen etc. können verändert
werden, um den sich verändernden Anforderungen zu genügen. Der Vergleich der re-
sultierenden Vor- und Nachteile zwischen dem existierenden Netz und den Alternativen
dient der Entscheidungsfindung für das zukünftige Netzwerk.

Die Simulation von existierenden Netzen ist ein inverses Problem: (i) die Netzwerk-
Beschreibung und einige Messwerte sind bekannt; (ii) die Anzahl und das Verhalten der
Benutzer muss jedoch von den bekannten Parametern abgeleitet werden. Die Behand-
lung dieses Problems wurde durch das Industrieprojekt “ERNANI” angeregt, gefördert
durch Deutsches Forschungsnetz (DFN) und Telekom.

Der Autor stellt in dieser Arbeit eine neue Methodologie vor, um das inverse Prob-
lem zu lösen. Es wird ein Algorithmus vorgeschlagen, der die mittlere Netzlast effizient
über die Anzahl und Verteilung der Nutzer kontrolliert. Im weiteren wird eine Methode
vorgestellt, mit der höhere Momente der Verkehrsstatistik, hier der Variationskoeffizient
und der Hurst Parameter, gemessenen Werten angepasst werden können.

Realistische Netzwerk-Simulationen zeichnen sich durch eine hohe Komplexität aus, da
die Protokollzustände für jede Verbindung gespeichert werden müssen. Der Speicherbe-
darf und die Simulationsgeschwindigkeit überschreiten daher leicht kritische Grenzen.
Als Lösung wird die Reduktion der Anzahl der Nutzer durch Steigerung ihrer Aktiv-
ität vorgeschlagen. Zur Leistungsbewertung wurden folgende kritische Netzparameter in
Abhängigkeit von der Anzahl der Nutzer untersucht: mittlere Last, Verlustwahrschein-
lichkeit, Variationskoeffizient der Zwischenankunftszeiten und Hurst Parameter. Die An-
zahl der Nutzer, und damit der Speicherbedarf, konnte ohne signifikanten Einfluss auf
die untersuchten Parameter um den Faktor 4− 8 reduziert werden, wobei die Simula-
tionsgeschwindigkeit um bis zu 33 % zunahm.

Diese Arbeit repräsentiert einen wesentlichen Schritt in Richtung der realistischen
Modellierung und Simulation von existierenden Netzen. Die Simulationsergebnisse
basierend auf den hier vorgestellten Methoden sind vielversprechend. Die erfolgreiche
Steigerung der Effizienz der Simulationen bedeutet einen Schritt in Richtung der realis-
tischen Simulation von existierenden und zukünftigen Hochgeschwindigkeitsnetzen.
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Chapter 1

Introduction

Computer networks and especially the Internet are commonly used media for e-mail,
information retrieval, e-commerce, education and games. Furthermore, very significant
parts of the economy rely on communication via computer networks. The growing de-
mand for fast Internet access and new multi-media applications (e.g. video-conferencing)
lead to a steadily increasing demand for larger network capacity. The demand is cur-
rently fulfilled mainly by two technologies: Wavelength Division Multiplexing (WDM),
a recent optical fibre technology, provides a cost effective technology to satisfy the band-
width demand in the core, and Asymmetric Digital Subscriber Line (ADSL) supplies the
end-user with a fast Internet access.

However, it is not sufficient to provide enough capacity for the traffic: the user must be
provided with a certain Quality of Service (QoS). This could be assured by simple over-
provisioning methods. However, this means to provide a significantly larger capacity
than required, which is expensive. Dimensioning communication networks while fulfill-
ing the contradicting constraints of economics and QoS is a challenging task.

Analytical solutions for problems in this area would be advantageous: a lot of implemen-
tation work could be saved and the solution would not require complex simulations with
several seeds for confidential results. However, analytical solutions can only be found
for special cases of very simple network topologies, or under simplifying assumptions
which can not be used to model reality. Therefore, computer simulations are used here
for performance evaluations with realistic simulation models to predict the behaviour of
the network under consideration.

Computer simulation allows realistic performance evaluation of large communication
networks, as shown later in this work. The complexity of such simulations consists of a
significant implementation and optimisation effort on one hand, and large memory re-
quirements and long simulation durations on the other hand. Therefore, realistic network
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2 Chapter 1: Introduction

simulation can only be performed with powerful simulation tools and enough process-
ing power, e.g. with a Linux cluster. The complexity of such simulations is probably the
reason why this was not addressed before: most publications utilise rather small simula-
tion scenarios for packet level simulations, e.g. [LMS00, VKJ+98a, VKJ+98b, VFJ+99,
PKC96a]. More complex network scenarios are only used in a small number of studies,
e.g. [HWJL96, FGHW99], or when the simulation does not cover the packet level and
therefore not all details of e.g. the TCP protocol. However, to the best knowledge of
the author, there is no publication in the literature that considers the simulation of such
complex networks with full protocol details as shown and performed in this study.

Nevertheless, there is a need for complex network simulations in order to understand the
full dynamics of end-to-end measures and to predict the performance of e.g. a new proto-
col. A protocol designed for the Internet should be evaluated with competition between
different connections over several hops, not only for a single hop connection. Protocol
scalability issues could be identified with complex simulation scenarios, which could
possibly not be realised with a simple bottleneck scenario.

The author was confronted with the optimisation of an existing network for a network
provider. This task was performed in the industry project “ERNANI” funded by the the
“Deutsches Forschungsnetz” (DFN) and the German Telekom. This work, several pub-
lications of the author and the final project report [BSK01] (in German) are motivated
by this problem or use the knowledge and developed libraries initiated by this project
[KB02, ABK02]. The qualitative and quantitative assessment of new alternatives to the
current state of a network require a realistic simulation of the status quo as the first step
of the performance evaluation. Moreover, measurements of the network provider need
to be taken into account when setting up the simulation.

The simulation of existing networks is an inverse problem: the network description
(number of nodes, connectivity, capacities, routing) and some measurements (traffic ma-
trix, etc.) are given from the network provider. However, the number of clients and their
distribution over the network as well as their behaviour are in most cases unknown.
Therefore, the number and allocation of clients has to be derived from the network de-
scription and the measurements of the network provider. This inverse problem does not
necessarily have a unique solution, especially since the measurements of the provider do
not cover all relevant parameters. Therefore, this work provides a methodology to find
one plausible solution for the inverse problem.

An early state of the proposed iterative algorithm for the allocation of clients with coarse
estimations was presented in [BK02c]. This study focused on the iterations, since the
initial client allocation was not accurate enough. An improved estimation of the client
allocation with individual treatment of flows with different round-trip times was pub-
lished in [BK02a] and [BK02b]. An improvement of the throughput estimation for TCP’s
congestion-avoidance phase and a methodology for adjusting the Hurst parameter of the
traffic was presented in [BK03a]. The protocol overhead and the traffic from client to
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server was additionally considered in [BK03b], leading to further improvements in the
estimation accuracy. Furthermore, a methodology to reduce the simulation complexity
by reducing the number of clients was also presented in [BK03b]. An extensive article
summarising major findings of this work will be published in [BK04].

This work is structured as follows: a detailed description of the problem considered is
presented in Chapter 2. The source model used to generate the traffic is characterised in
detail in Chapter 3. The solution of the inverse problem of adapting the simulation to
measurements is detailed in Chapter 4. Configuration and implementation aspects of the
simulator and the network simulation models are described in Chapter 5. The simulation
results are shown and discussed in Chapter 6. The whole work is summarised and the
conclusions are presented in Chapter 7.





Chapter 2

Description of the Problem

The motivation and a detailed description of the problem considered and solved in this
work are presented in this chapter. The intrinsic features of the WWW traffic are the
user behaviour and the HTTP/TCP protocols. Therefore, it is important to use source
models that reflect this behaviour [FP01]. A simple example in Sec. 2.1 shows that an
aggregated traffic model based on the User Datagram Protocol (UDP) can not be used
to model WWW traffic: the reactivity of TCP is not captured by the aggregated model,
leading to completely wrong performance estimates.

The lifelike simulation of the current state of a network is treated in Section 2.2. More-
over, the problems associated with finding the appropriate parameters for the setup of
the simulation are discussed here. The parameters influencing the TCP throughput are
presented in Section 2.2. The estimation of the TCP throughput is required to adjust
the average load in the network. An approach for matching the higher order moments
of the traffic statistics is presented in Section 2.3. Convergence issues with workloads
following a heavy-tail distribution are discussed in Section 2.4.

2.1 Granularity of Modelling

Realistic simulations of large communication networks require a large amount of com-
puter resources. The simulation speed and the required memory for the simulation are the
key requirements that can render a realistic simulation impossible. The required mem-
ory is proportional to the number of clients in the implementation used in this work. The
simulation speed is mainly determined by the number of packets (or events) that are sent
across the network.

Being confronted with design, implementation and conduction of very complex network
simulations, the question arises whether or not to use aggregated source models, where
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6 Chapter 2: Description of the Problem

one aggregated source model replaces several hundreds or thousands of HTTP/TCP
clients. The aggregated approach has several advantages:

• The memory consumption of the simulation is reduced drastically since the state
information of the single connection is not taken into account.

• The configuration of a few aggregated source models is easier to perform for the
user than for thousands of individual sources.

• The run-time efficiency is higher for aggregated source models which manifests
itself in a higher simulation speed.

The advantages seem to be very convincing on one hand. On the other hand, the sim-
plicity of aggregated source models goes hand in hand with major disadvantages: no
feedback information about the congestion state of the network is taken into account
and the state information is not saved for each connection. The reactivity of the TCP
protocol is a key feature of the applications and protocols used in the Internet. The three
measurements in Tab. 2.1 underline that TCP is the most important protocol used in the
internet: more than 85 % of the packets and more than 93 % of the Bytes are created by
applications using the TCP protocol.

Table 2.1: Protocol usage of TCP and UDP, measurement April, 7th 2003,
http://ipmon.sprint.com/packstat/packetoverview.php.

Location Protocol Packets % Bytes %

nyc-21.0-030407 TCP 90.51 96.22
UDP 7.31 2.71

rly-23.0-030407 TCP 85.60 93.32
UDP 11.65 4.56

sj-28.0-030407 TCP 87.10 96.02
UDP 11.11 3.23

The application usage of the measurements in 2000 is summarised in Tab. 2.2: the major-
ity of the packets and the volume are produced by HTTP applications. The protocol us-
age did not change significantly in the last three years, but the application usage changed
substantially: packet and byte volume of Peer To Peer (P2P) traffic has increased signifi-
cantly. However, this study started in October 1998, when the vast majority of the traffic
was web traffic. Therefore, only web traffic was considered in this study.

Thedegree of overload of TCP traffic,which is required in the following, is defined as
follows: the degree of overload is the throughput that could possibly be achieved with a

http://ipmon.sprint.com/packstat/packetoverview.php
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Table 2.2: Usage of selected applications, August 9th, 2000,http://ipmon.
sprint.com/packstat/packetoverview.php.

Location Application Packets % Bytes %

sj-09.0-000809 HTTP 70.19 80.78
P2P 3.36 3.69
FTP 1.37 1.23

Email 3.13 2.68
Other TCP 14.44 8.36

sj-00.0-000809 Web 71.12 83.49
P2P 3.34 2.44
FTP 0.75 1.01

Email 2.44 1.58
Other TCP 7.46 4.63

sufficient link capacity divided by the throughput achieved with the current link capac-
ity. Example: the current throughput is 49 Mbit/s (for a capacity of 50 Mbit/s) and the
throughput increases to 78 Mbit/s (for a capacity of 100 Mbit/s) resulting in a degree of
overload of 159 %.

A very simple experiment, conducted with the so called bottleneck scenario, is described
in the following (see Sec. 5.6.1 for a full description of the bottleneck scenario). The ex-
ample supports the argument that the reactivity is a very important feature that needs to
be modeled for realistic simulations. The bottleneck model was configured with a link
capacity of 50 Mbit/s and 159 % overload: the utilisation wasρ ≈ 98 % and the loss
probability was approximately 7.3 %. The target link capacity is to be found such that
the link load conforms toρ≤ 80 %.

The traffic is modeled in three ways: with pure HTTP/TCP connections, with an aggre-
gated UDP traffic model [RL98, RL96, RN96] and with a mixture of both traffic variants.
The HTTP/TCP scenario is equipped with a typical web user model (average download
volume 60 KB and average off-time 40 s) and 12196 users. Both scenarios use power-
tail distributions to induce self-similarity and long-range dependence into the traffic. The
UDP source model was tuned to reach approximately the same loss probability in order
to establish a comparable situation for HTTP/TCP and UDP traffic at the starting point
(capacity 50 Mbit/s). The third variant was set up with a traffic mix of 50 % HTTP/TCP
and 50 % UDP traffic. The link capacity was increased by increments of 10 Mbit/s from
50 Mbit/s to 100 Mbit/s.

The simulation with UDP traffic is more than 6 times faster than the simulation of TCP
traffic and requires only 8.5 MB RAM while HTTP/TCP clients allocate 240 MB RAM.

http://ipmon.sprint.com/packstat/packetoverview.php
http://ipmon.sprint.com/packstat/packetoverview.php


8 Chapter 2: Description of the Problem

The third case with the traffic mixture is still 230 % faster than pure HTTP/TCP traffic
and requires 112 MB RAM.

The resulting link load and loss probability measurements for the three cases are visu-
alised in Fig. 2.1. It is obvious that the link load and loss probability match quite well for
50 Mbit/s. However, the values are diverging for larger link capacities: the HTTP/TCP
traffic reaches 80 % link utilisation at 100 Mbit/s link capacity whereas the UDP traffic
requires a link capacity of less than 70 Mbit/s to bring the utilisation down to 80 %. The
loss probability is also descending much slower with the link capacity for TCP traffic as
compared to with UDP traffic. The traffic load and loss probability in the case with the
traffic mix is closer to pure TCP traffic. However, it is still far away from reproducing
the behaviour of pure TCP traffic.

50 60 70 80 90 100
50

60

70

80

90

100

Link Capacity [Mbit/s]

Link Load [%]

TCP
UDP
TCP/UDP: 50:50

(a) Link Utilisation

50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Link Capacity [Mbit/s]

Loss Probability [%]

TCP
UDP
TCP/UDP: 50:50

(b) Loss Probability

Figure 2.1: Overloaded simple bottleneck with TCP and UDP traffic for increas-
ing link capacity.

The reason for the different characteristics of the three experiments is the reactivity of
TCP, that is lacking in UDP: the congestion avoidance mechanisms in TCP lead to an
adaption to the network state, preventing that the loss probability exceeds reasonable
limits over a broad range of offered traffic. Therefore, the link utilisation stays approx-
imately constant when the capacity increases until the offered load does not exceed
the link capacity anymore. This threshold is reached for approximately 70 Mbit/s in
Fig. 2.1 (a).

Obviously, the UDP traffic can not be used as a complete replacement of HTTP/TCP
traffic in order to speed-up the simulation and to reduce the complexity of the simula-
tion. The reactivity is one very important property of the major part of the Internet traffic.
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Nevertheless, it might be an option to replace a certain fraction of the TCP traffic by an
aggregate UDP traffic. The simulation results show, that the fraction must be signifi-
cantly smaller than 50 %, if the results should match the TCP traffic closely. However,
the gain of using aggregated UDP traffic is directly related to the fraction of UDP traffic.
Therefore, also the gain of using aggregated UDP traffic is small if the fraction of UDP
traffic is small. Additionally, the validation and parameterisation of other stochastic traf-
fic properties in the case of the traffic mixture is a task, which has to be accounted, when
the gain is judged.

More cases can be found where modelling of the reactivity of TCP is also important:

• performance evaluation of different active queue management strategies

• applications and higher layer protocols utilising TCP, where the throughput de-
pends on loss probability and end-to-end delay

• competition between different connections, fairness issues.

Since UDP traffic obviously can not be used for modelling the reactive traffic in the
Internet, the focus of this work is the simulation of pure HTTP/TCP traffic.

2.2 Generating Prescribed Traffic Intensities

The classical network simulation experiments build on the following setting: models
of network nodes are interconnected to form a certain network model. The nodes are
equipped with a routing table, a buffer with a certain capacity and management strat-
egy. A set of connections with a certain behaviour are connected to the network nodes.
The input variables of the simulation are the source model parameters and the network
model parameters as detailed in Fig. 2.2. The output parameters are (among others) the
following performance measurements: the traffic matrix (average throughput for each
flow from nodei to node j, e.g. Mbit/s), Hurst parameter, coefficient of variation of
packet inter-arrival times (IATs) and loss probability, as shown in Figure 2.2.

The optimisation of an existing network, e.g. by the network provider, poses a different
type of problem: the optimisation requires a realistic simulation of the current state of
the network as reference in the first step. The design alternatives to be considered are
then compared to the reference in the second step of the performance evaluation.

The simulation of existing networks is an inverse problem: the network description
(number of nodes, connectivity, capacities, routing) and some measurements (traffic ma-
trix, etc.) are given from the network provider. However, the number of clients and their
distribution over the network as well as their behaviour are in most cases unknown.
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− Protocols, behaviour

− Number of clients for all flows

Clients

− Distributions, parameters

− Throughput matrix

− Coefficient of variation IATs
− Loss probability

Performance Measurements

− Hurst parameter

Network

− Buffer capacity, scheduling
− Routing
− Link capacities and delays
− Nodes and connectivity

Figure 2.2: Classical simulation paradigm: source and network models are
given, the simulation is used for measuring the performance.

Therefore, the number and allocation of clients has to be derived from the network de-
scription and the measurements of the network provider.

This problem can be solved by assuming that a selected user model with the correspond-
ing parameters for the HTTP/TCP clients is valid for the network under focus. A user
model very similar to the one described in [CL99] is used here (see Sec. 3.1 for a more
detailed description). The solution of the inverse problem is then to find the appropriate
number of HTTP/TCP clients for all flows to establish the measured throughput matrix
(see Fig. 2.3).

A prerequisite for determining the number of clients for all flows is the estimation of the
average throughput of a single TCP connection. User models for generating WWW traf-
fic are characterised by an on/off behaviour: the client opens a connection and sends a
HTTP request to the server, the server responds with the requested data. The client enters
and idle period (reading time) after having received the data. Furthermore, the average
download volume is very small (around 60 KB [CL99]) leading to many short-lived TCP
connections.

The average throughput of a single connection can not be calculated with the simple
steady state equations for the TCP throughput [Mor00] since TCP does not reach the
steady state for such short-lived connections that are characteristic for WWW traffic.
Models for the TCP throughput (or for download times) for finite download volumes
are also existing [CSA98] but they are rather complex and require the knowledge of
the packet loss probability, which is not known and hard to estimate a priory. A simple
model for the TCP throughput of short-lived connections is developed in this work and
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− Throughput matrix

Performance Measurements

− Loss probability

− Hurst parameter
− Coefficient of variation IATs

− Protocols, behaviour

Clients

− Distributions, parameters
− Number of clients for all flows

Network

− Buffer capacity, scheduling
− Routing
− Link capacities and delays
− Nodes and connectivity

Figure 2.3: Inverse problem: network model and some performance measure-
ments are given, source model parameters and number of clients for all flows
are unknown parameters.

presented in Section 4.1. It is shown in Section 6.2 that the model is sufficiently accurate
for the purpose of finding the appropriate number of clients for all flows.

A unique solution is not necessarily existing for such an inverse problem. Especially
links with a utilisation close to 100 % pose a problem: it could be that the offered load
is also about 100 %; but an offered load of 150 % on the other hand would show very
similar utilisation values. The two cases can only be distinguished by inspection of fur-
ther measurements, like queueing delay or loss probability (see Sec. 2.1, p. 6 for the
definition of overload with TCP traffic).

Establishing an average traffic load in the simulation that is close to measured values is,
however, only the first step for a realistic simulation: the higher order moments of the
traffic statistics need to be matched as well to measurements from the real network. This
is essential since the performance of many QoS measures depend significantly on higher
order statistics, e.g. packet delay variations and packet loss probability. The matching of
the higher order statistical parameters Hurst parameter and coefficient of variation are
addressed in a Section 2.3.

2.2.1 Parameters Influencing TCP Throughput

A solution for the above mentioned inverse problem should take into account all parame-
ters that have a non-negligible influence on the average throughput of a TCP connection:
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• link utilisation (depends on given throughput matrix, routing and link capacities)

• round-trip time (depends on the number of hops, waiting times in the buffer, link
capacities and utilisation)

• number of competing TCP connections

• burstiness of traffic, coefficient of variation, Hurst parameter (depends on user
model and number of TCP connections)

• packet loss probability (depends on buffer capacity and scheduling, number of
connections, utilisation, coefficient of variation and Hurst parameter)

Network congestion is detected by TCP through the feedback via the acknowledgements
of the receiver; the sending rate is adapted accordingly. Packet losses are detected by
three duplicate acknowledgements of the receiver or by time-outs (cf. Sec. 3.2.4). The
currently mostly used TCP variant is called “NewReno”, the congestion control algo-
rithms (fast-retransmission and fast-recovery) are able to maintain an approximately sta-
ble throughput up to some percent of packet loss rate. There is one exception to this
behaviour: fast-retransmission can only be triggered when the congestion window size
is larger than three packets. Otherwise, if the congestion window is smaller or equal
to three packets, there are not enough duplicate acknowledgements that could trigger a
fast-retransmission and therefore TCP has to wait for a time-out. The duration of TCP
time-outs range from some hundred milliseconds up to 64 seconds. This can lead to a
crucial reduction of the average throughput, especially if the packet loss occurs in the
first and second round-trip, when there are not enough samples to perform a good esti-
mate on the round-trip time. Default time-out values of 6 and 12 s are used in the first
and second round-trip, respectively.

An example with two approaches for estimating the required number of connectionssi j

for the flow from nodei to node j illustrates the problem considered: the first, naive
approach is to assume that the number of connections is proportional to the prescribed
throughputt pi j : si j = const· t pi j . This approach is very simple, but nevertheless, the es-
timation of the multiplicative constant is still an open issue. The reference is the solution
developed in this work (see Sec. 4.1), called “advanced approach” in the following.

The simulation results from the two approaches are visualised in Fig. 2.4. A near opti-
mal solution for the multiplicative constant was derived with the advanced approach; the
same number of clients is used in both approaches, only the distribution over the flows
is different. The relative difference to the prescribed throughput values is depicted on
the ordinate and the flow identification on the abscissa. It is obvious that the difference
to the prescribed values is not acceptable with the naive approach in Fig. 2.4 (a). The
results achieved with the advanced approach match the target quite well: the maximum
deviation is approximately 8 %.
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Figure 2.4: Comparison of (a): naive approachsi j = const· t pi j versus (b): ad-
vanced approach.

The reason why the naive approach fails, even with the same number of clients, is that
this approach does not consider the strong sensitivity of TCP to different round-trip
times. The next step would be to incorporate the round-trip time into the calculation.
However, another simple approach integrating the round-trip timertt i j as multiplicative
parametersi j = const· rtt i j · t pi j leads completely into the wrong direction as shown in
Fig. 2.5: all flows with a relatively large round-trip time experience a larger throughput
(positive value) and all flows with a small round-trip time a smaller throughput than the
prescribed value. The reason for this behaviour is that web transfers are typically on-off
processes: the client is active sending requests and receiving the web page and is idle
when the user reads the content. The transmission time depends on the round-trip time
but the passive time does not depend on the round-trip time. The derivation of model of
the throughput of a HTTP/TCP client and the required number of clients for all flows
satisfying the given traffic matrix (called “advanced approach” here) is presented in Sec-
tion 4.1.1.

2.3 Matching Traffic Statistics

In addition to adjusting the average throughput as discussed in the previous section, also
the higher order statistics in the simulation need to be matched to the measurements
from the network existing in the real world. Two very important higher order parameters
are discussed in this section: the coefficient of variation of the packet inter-arrival times
entering a queueing system (Sec. 2.3.1) and the degree of self-similarity, the Hurst pa-
rameterH (Sec. 2.3.2). The coefficient of variation describes the variability of the traffic
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Figure 2.5: Approachsi j = const· rtt i j · t pi j .

and the Hurst parameter describes the self-similarity and long-range dependence of the
traffic. These two parameters represent very important higher order traffic characteris-
tics.

2.3.1 Coefficient of Variation of Packet Inter-Arrival Times

The coefficient of variation of the inter-arrival time of packets entering the queueing sys-
tems is one measure of the burstiness of the traffic. It is defined as the standard-deviation
divided by the mean value

cv=
σ
µ
. (2.1)

The coefficient of variation depends on the link utilisation, the number of TCP con-
nections, the packet size distribution and the average download volume. A high link
utilisation leaves scarce room for traffic variability. Therefore, the coefficient variation
decreases when the traffic load increases. The multiplexing gain increases with the num-
ber of connections, resulting in a smoother traffic. Hence, the value ofcvdecreases when
the number of connections is increasing. Variable packet sizes introduce variability be-
cause the transmission time of large and small packets differ. This leads to a higher
variance of the inter-arrival times and therefore to a higher value of the coefficient of
variation. The average download volume also affects the coefficient of variation: a very
small download volume results in very short connection durations and a traffic that tends
to Poisson behaviour. Large download volumes on the other hand lead to a large com-
petition among the TCP connections. A strong competition leads to packet losses and
time-outs which increase the variability of the traffic.
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2.3.2 Self-Similarity

Network traffic is known to be self-similar since the famous Bellcore study [LTWW93].
The comparison of the counting process of Poisson traffic and self-similar traffic for dif-
ferent counting windows in Fig. 2.6 reveals some properties of the two traffic types: the
packet count for a time unit of 0.01 s (bottom) is similar for both types – the variabil-
ity is very high. But also a difference is visible: the Poisson traffic has no correlation
whereas the “hills” and “valleys” have larger width for the self-similar traffic, indicating
a correlation structure.

The variability of the Poisson traffic is reduced with each step of increasing the counting
window from 0.01 s to 100 s. The graph tends to a straight line with constant average
value and very small variance for a counting window of 100 s. This is not the case for
the self-similar traffic: spikes are visible on all scales and the variance is only reduced
marginally for large values of the counting window. Since the burstiness of the traffic
is very similar on all time scales (or aggregation levels) this traffic is called self-similar
traffic.

The definition of second order self-similarity and the associated properties based on
[LTWW93] is given in the following. The stochastic processX is defined as sequence of
numbers (e.g. inter-arrival times, counting process):

X(i), i = 0,1,2,3, . . . (2.2)

The aggregation of the stochastic processX is denoted byX(m)

X(m)(k) =
1
m

k·m

∑
i=(k−1)m+1

X(i), k = 1,2,3, . . . , (2.3)

that is, the aggregated process consists of sums non-overlapping intervals of sizem.

The Cumulative Distribution Function (CDF)F(x) describes the probability that the
value of the stochastic process is smaller or equal to the thresholdx:

F(x) = P{X ≤ x}. (2.4)

The Complementary Cumulative Distribution Function (CCDF)R(x), also known as re-
liability function, describes the probability that the value of the process is larger than the
thresholdx:

R(x) = 1−F(x) = P{X > x}. (2.5)
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Figure 2.6: Counting process (packets per time unit) of (a): Poisson traffic versus
(b): self-similar traffic [WTRW97].
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A class ofpower-taildistributed random variables with the property Eq. (2.6), also called
heavy-tailandlong-tail distributed random variables, can be used to produce self-similar
traffic [CB97, PKC96b].

R(x)∼ cx−α asx→ ∞, 0 < α < 2 (2.6)

Three cases for the shape parameterα can be differentiated:

• α≥ 2: the process has finite mean and variance (no heavy tail)

• 1 < α < 2: process has infinite variance and finite mean

• 0 < α < 1: process has infinite variance and infinite mean.

A stochastic process is calledexactly second order self-similar,if the Auto-Correlation
Function (ACF) of them-aggregated process is the same as for the original process:

r(m)(i) = r(i). (2.7)

The process is calledasymptotically second order self-similarif Eq. (2.7) holds only for
very large values ofm andi:

r(m)(i)≈ r(i) for m, i → ∞. (2.8)

Self-similar processes have the following three properties:

• Slowly decaying autocorrelation:

r(i)∼ i−β with 0 < β < 1. (2.9)

• Long Range Dependence (LRD): the sum of the autocorrelation is infinite:

+∞

∑
i=−∞

r(i) = ∞. (2.10)

• Slowly decaying variance (with increasing aggregation levelm):

Var{X(m)
k } ∼m−β with 0 < β < 1. (2.11)
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The last property, the slowly decaying variance, is the most salient feature of self-similar
processes: self-similar processes have a very large variability that manifests itself in
a slowly decaying variance. The variance of so-called “well-behaved distributions” (no
heavy tail, e.g. negative exponential distribution) followm−1, which decays considerably
faster thanm−β, with realistic values ofβ≈ 0.5 (cf. Sec. 2.4). The problem for commu-
nication networks stems from the fact that this large variability reduces the multiplexing
gain even for a large number of connections since the variations are not smoothing out
with the same speed as could be expected from e.g. Poisson traffic as visible in Fig. 2.6.

The degree of self-similarity of network traffic is described by the Hurst parameterH.
The parameterβ from Eq. (2.11), the shape parameterα from Eq. (2.6) and the Hurst pa-
rameterH have the following relationship, if the file size distribution is the only source
of self-similarity:

H = (3−α)/2 = 1−β/2 (2.12)

α = 3−2H = 1+β (2.13)

β = 2(1−H) = α−1. (2.14)

Various Hurst parameter estimators are available in the scientific literature. The Variance
Time plot (VT-plot) directly uses Eq. (2.11): the variance of the aggregated processes is
plotted against the aggregation level on a double logarithmic plot. The slope of a straight
line fitted into the curve determines the Hurst parameter. However, there are more re-
liable methods for estimating the Hurst parameter: it has been shown that the wavelet-
based so-called Abry-Veitch estimator outperforms all other Hurst parameter estimators
[AV98]. Therefore, this estimator is used in this work, see Appendix A.1 for a detailed
description.

The Hurst parameter can be adjusted with the shape parameterα of the heavy-tail dis-
tributed file sizes [PKC96a, CB97] and follows approximately Eq. (2.12). To be more
precise: the superposition of an infinite number of on-off sources with heavy-tail dis-
tributed on- or off-times and heavy-tail shape parameterα fulfil Eq. (2.12) [TWS97].

The Hurst parameter is also not independent of the target load on a specific link in a
network. There are mainly two effects that can be observed:

1. The Hurst parameter descends with increasing load, the traffic tends to Poisson
[CCLS01, PF95].

2. The Hurst parameter increases with increasing load due to the increased long
range dependence introduced by a larger probability of TCP time-outs (see Sec-
tion 6.4.3).

The significance and dominance of these effects is discussed together with the simulation
results in Section 6.4.2.
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2.4 Convergence Issues with Heavy-Tail Workloads

TheGeneralised Central Limit Theorem(GCLT) [Fel71, CL97], which includes heavy-
tail distributed random variables with infinite variance, describes the effect of addition of
random variables on the resulting distribution. The sumAn of n independent and identi-
cally distributed (iid) random variablesXi with meanµ, varianceσ2 and shape parameter
1 < α < 2 is

An =
1
n

n

∑
i=1

Xi . (2.15)

A distributionZn with mean zero can be defined as

Zn = n1−1/α (An−µ) (2.16)

with
Zn

d→ Sα, (2.17)

whereSα is a so-calledα-Stable distribution. The notationZn
d→ Sα means that the ran-

dom variableZn converges in distribution toSα (has roughly the same distribution for
largen). Theα-Stable distribution follows also a heavy tailed distribution with the same
shape parameterα but with a smaller standard deviation, see factorn1−1/α in Eq. (2.16).

For the case of finite varianceα = 2 the GCLT reduces to the well-knownCentral Limit
Theorem(CLT):

Zn = n1/2(An−µ) (2.18)

with
Zn

d→ N(0,σ2), (2.19)

whereN(0,σ2) represents the normal distribution with zero mean and varianceσ2.

Comparing the GCLT with the CLT it becomes obvious that the implication with heavy-
tailed random variables is, that the standard deviation of the process decreases much
slower for the GCLT according to 1/n1−1/α as compared to 1/n1/2 for the CLT (for real-
istic values ofα≈ 1.5). Moreover, the distributionSα is again a heavy-tailed distribution
and not the normal distribution, as in the case of the CLT.

The behaviour of the sum of random variables is visualised for different values ofn in
Fig. 2.7. The mean value is set to one for both cases. It is obvious that the width of the
exponential distribution at the left hand side decreases very fast with increasingn and
that the mean value is already consistent for small values ofn. In contrast, the width of
the heavy-tailed distribution at the right hand side is still large for large values ofn and
the mean value did not yet converge to the mean value ofµ= 1, even forn = 10,000.
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Figure 2.7: Histogram ofAn for different n for exponential (left) and heavy-
tailed (right) random variables, both with meanµ= 1 [CL97].

Consequently, simulations with heavy-tail distributed random variables experience a sta-
bility issue: the convergence to the mean value is very slow due to the fact that very large
values have a non-negligible probability of occurrence [CL97]. Heavy-tail distributions
are used here for the file size distribution (HTTP object size distribution).

Crovella and Lipsky have presented an estimation on how many samplesn are required
in order to reach an accuracy ofk digits for a variable value ofα, see (2.20) [CL97]. The
required number of samples for a two digit accuracy (k = 2) is shown in Table 2.3 for
selected values ofα.

n≥ c·10k/(1−1/α). (2.20)

The required number of samples increases non-linear and very fast for a stable mean
value, especially whenα ≤ 1.3. Since actual network traffic has a degree of self-
similarity in the range[0.6, 0.85] it is necessary to use values ofα ≥ 1.3 according
to Eq. (2.13), for which 4.6·108 samples are required to reach an accuracy of two digits
on the estimation of the mean value. Approximately 12· 106 file sizes are drawn in a
simulation of 600 s simulated time with the so-called B-WiN scenario (see Sec. 5.6.3
for a detailed description of the scenario). Therefore the sample size is large enough to
achieve a two digit accuracy forα≥ 1.4 for the mean value of the heavy-tail distributed
file size. However, some simulations are nevertheless performed with smallerα-values
in order to see the tendency for small shape parameter values. It is important to keep in
mind that the accuracy of the estimated mean is less than two digits in this case. The two
digit accuracy is not valid for the random numbers of each flow: the 12·106 file sizes
are the of sum all drawn files in the whole B-WiN consisting of 110 flows. Therefore,
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Table 2.3: Number of samples necessary to achieve two digit accuracy for the
mean value as a function ofα (Eq. (2.20) withc = 1).

α n

2.0 1.0·104

1.75 4.6·104

1.7 7.2·104

1.6 2.2·105

1.5 1.0·106

1.4 10·106

1.3 4.6·108

1.2 1.0·1012

1.1 1.0·1022

it could be expected that not all flows reach a two digit accuracy for the mean value,
especially for small values ofα.

A further increase in convergence speed was gained with two different strategies:

• using Truncated Power-Tail (TPT) distributions (see Fig. 2.8), where the tail of the
distribution fades out exponentially after a defined thresholdT1, or

• cutting the tail sharply after the defined threshold.

A combination of both methods is used in this work: the TPT distribution fades out ex-
ponentially after the first thresholdT1 and is cut sharply after a second thresholdT2.

A measurement of the tail of the CCDF of the TPT distribution implemented in the sim-
ulation environment Ptolemy withn = 1010 samples is shown forα = 1.3 andα = 1.5
in Fig. 2.9 in a double logarithmic plot. An average file size of 10 KB was used for
the simulations and the threshold was set toT1 = 20. The exponential fading starts after
approximately 60 MB forα = 1.3 and after 20 MB forα = 1.5.

The sharp cut is not performed in the measurements shown in Fig. 2.9. However, the
sharp cut is performed in the simulations at 108 = 100 MB, where the curve reaches a
probability of approximately 9·10−7 for α = 1.3 and 9·10−8 for α = 1.5. These settings
provide a file size distribution with a power-tail over more than three orders of magni-
tude above the mean, a small phase of exponential fade out (depending onα) and a sharp
cut at four orders of magnitude above the mean.
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It can be expected that the cutting strategy improves convergence for small values ofα:
the rare occurrence of very large values determines the convergence behaviour. Limiting
the value range improves the convergence behaviour. However, the heavy-tail is main-
tained for more than three orders of magnitude so that self-similarity can be observed in
the measurements. The power-tail is also limited in reality to some orders of magnitude
above the mean due to physically limited systems, e.g. limited buffer sizes, limited file
sizes on webservers, limited network capacity etc. Hence, this limitation increases the
convergence of the simulation and mimics the existing limits of real existing systems.





Chapter 3

Source Model

A detailed description of the source model including the on-off user behaviour with the
associated distributions (cf. Sec. 3.1) and the utilised protocols HTTP, TCP and IP are
presented in this chapter. An overview over the protocols HTTP, TCP and IP is presented
in Section 3.2. The HTTP protocol and the features modelled in this work are presented
in Section 3.2.1. The header formats of TCP and IP are sketched and the dynamics of
the TCP protocol are discussed. The bandwith limitations at different locations in the
network and the corresponding implications are discussed in Section 3.3.

An analytic model for WWW traffic, the so called TCP-modified Engset model
[HLN97], is described in Sec. 3.4. This model is based on a birth-death process that
models the connection arrival and departure process. It provides solutions for e.g. the
probability that j users are active at the same time, the average download time and the
average link load. This model is an analytic solution that claims to model reality. It is
presented here in order to be able to compare the simulation results with the results from
this analytic model.

3.1 On-Off Source Behaviour

The user model used in this work follows the studies in [CL99, PKC96a, CB97, PKC97].
The currently widely used HTTP 1.1 is implemented including pipelining. That is, the
full HTTP transfer volume is transmitted in one TCP connection, which is being closed at
the end of the transfer, see Fig. 3.1. The usage of parallel TCP connections for one HTTP
download is not modelled and implemented here. The additional effort for modelling and
implementation of parallel TCP connections is significant. Therefore the author decided
to develop a performant solution for HTTP with a single TCP connection, which can be
used to develop a solution for parallel connections in future studies.

25
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Figure 3.1: HTTP/TCP behaviour, no parallel connections.

The on-off behaviour is described in the following. The TCP connection is opened be-
fore data transmission via the three way handshake. The HTTP request for the main
object (i.e. a HTML file) is sent by the client directly after the third signalling packet.
The HTTP requests for the embedded objects (inlines, e.g. images) are sent from HTTP
client to server after receiving the main HTTP object. The TCP connection is closed
by the client after receiving all requested objects. The user spends a certain amount of
time reading after successful transmission (off-time). The whole process starts from the
beginning after the off-time has elapsed. Further discussion of the distributions and their
parameter fittings of the user model can be found in [CTB98, PKC97].

The HTTP object size is drawn from a Truncated Power-Tail (TPT) distribution with a
truncation levelT = 20 [GJL95, GGS97] (see Sec. 2.8 for a detailed discussion). The
major contribution to the self-similarity of the traffic comes from the distribution of the
file-sizes [CTB98, PKC97]. Therefore, a geometric distribution is used for the number
of HTTP inline objects and a negative exponential distribution is used for the off-time,
deviating from [CL99].

The average value for the HTTP download volume is approximately 60 KB [CL99]. TCP
fragments this volume into 42 packets when using a Maximum Segment Size (MSS) of
1460 Bytes which is typically used for Ethernet. The average connection is therefore
short-lived; TCP requires only seven round-trip times to transmit the average download
volume without packet losses. The download volume is split into a main object and sev-
eral inline objects (see Fig. 3.1). When the whole HTTP download volume is transmitted
in one TCP connection, as it is the case in this model, the differentiation between sizes
for main object and includes (as measured in [CL99]) is of minor relevance. Therefore,
the size of main object and includes is drawn with the same parameters from the TPT
distribution. The average number of HTTP objects was measured to be approximately 6
and the average off-time was 40 s in [CL99]. The average size of the HTTP objects was
set to 10 KB such that the resulting average download volume is 6·10 KB.

It was easier to keep the webserver very simple and to implement the distributions and
parameters at the client side, from an implementation point of view. Therefore, the client
transmits the size of the data object, that the server should send back to the client, with
the HTTP request (in this implementation).
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The complete on-off behaviour can be summarised as follows:

1. An off-time is drawn from the uniform distribution in[0, to f f ] in order to de-
synchronise the start of the clients.

2. The number of objects is drawn from the geometric distribution.

3. The size of the first object is drawn from the TPT distribution.

4. The client opens the TCP connection and sends the HTTP request for the first
object to the webserver.

5. The webserver sends the first object to the client.

6. The size for all remaining includes is drawn from the TPT distribution and the
requests are sent to the webserver after successfull receiving the first object.

7. The server sends the data for all remaining objects.

8. The client closes the TCP connection after successfully receiving all objects.

9. The client draws an off-time from the negative exponential distribution. The pro-
cedure starts again from 2 when the off-time is elapsed.

3.2 Protocol Overview

The Open System Interconnection (OSI) reference model and the TCP/IP protocol stack
are sketched in Fig. 3.2 [Tan02]. Ethernet and the Point to Point Protocol (PPP) are
the mostly used implementations of the “Physical” and “Data Link” layers of the OSI
protocol stack. The Internet Protocol (IP) serves as “Network” layer. The “Transport”
layer is implemented by the Transmission Control Protocol (TCP), which assures a reli-
able transmission, and the User Datagram Protocol (UDP), which offers only unreliable
transmission. The “Session” and “Presentation” layer of the OSI model are not present
in the TCP/IP layer model. The application level protocols used in the TCP/IP model are
HTTP, FTP, SMTP and others.

The source model discussed in Section 3.1 uses the Protocols HTTP, TCP and IP, which
are the mostly used protocols in the Internet. The data encapsulation is visualised in
Fig. 3.3. The application layer data (HTTP payload) is prepended with a TCP header
and an IP header. The TCP and IP header formats are discussed in Section 3.2.3 and
3.2.2, respectively. The Ethernet layer is neglected here since it plays only a minor role
when using the nowadays widely distributed switched Ethernets in the LAN where no
collisions can occur.
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Figure 3.2: (a) OSI reference model and (b) Internet protocol stack.
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Figure 3.3: Data encapsulation Internet protocol stack.

3.2.1 HTTP Protocol

The HyperText Transfer Protocol (HTTP) is used in the Internet as an application level
protocol (see Section 3.2, Fig. 3.2) for retrieval of WWW data, e.g. HTML pages. The
protocol has been improved over the time with the target of a better throughput and
smaller latency. Currently there are two major variants existing, HTTP 1.0 [BLFF96]
and HTTP 1.1 [FGM+97], both variants can be used with or without persistent connec-
tions.

The oldest variant, HTTP without persistent connections, opens a new TCP connection
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for the download of each HTTP object. The download of multiple objects was scheduled
serially, the download of the next object could be started only after the current object was
transmitted successfully and after closing the current TCP connection. Always closing
and re-opening the TCP connection introduces a large delay and signalling overhead.
TCP always has to start with minimum rate in slow-start in this case. This leads to poor
performance in terms of long delays and small throughput, especially when a download
consists of a large number of objects, as it is apparent for many web pages nowadays.

Therefore, persistent connections have been implemented for HTTP 1.0 to overcome
this performance problem (option keep-alive); HTTP 1.1 uses persistent connections by
default. The requests from the client and the responses from the server can be pipelined
in a single TCP connection when this option is enabled. Another option implemented
for both HTTP versions is the usage of parallel connections. This option does not neces-
sarily increase the download speed, but it always increases the load on server and client.
However, current web browsers use HTTP 1.1 with persistent and parallel connections.
Nevertheless, the source model implemented in this work uses persistent but no parallel
connections, as discussed already in Sec. 3.1.

3.2.2 TCP Protocol

The format of the TCP segment header is displayed in Fig. 3.4. The 16-bit source and
destination port are used to address special applications at the server side and to dif-
ferentiate several concurrently running client applications. The sequence number iden-
tifies the individual packet in the data flow of one connection. The receiver signals the
last successfully received packet with the acknowledgement number to the sender. The
“Window” field contains the number of bytes that the sender of this segment is willing
to accept, beginning with the number indicated in the acknowledgement field. The data
field is optional, it is not used for e.g. signalling. See [Tan02] for more information about
specific header fields of the TCP segment.

Destination PortSource Port

(Options) (Padding)

0 4 8 16 19 3124

Offset
Urg. PointerChecksum

(Data)

Res Code Window

Sequence Number
Acknowledgement Number

Figure 3.4: TCP segment.
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3.2.3 IP Protocol

Ethernet serves as the physical layer for computers connected to a Local Area Network
(LAN) and PPP is used for dial-up connections. This work concentrates on Ethernet
since most users in the German research institutes are connected via an Ethernet LAN to
the B-WiN network (see Section 5.6.3). It can be expected that all networks are switched
networks, without broadcast problems like collision detection. Therefore, the functional-
ity of Ethernet reduces to adding a header to the IP packet which can therefore be easily
considered by adjusting the bandwidth limitations accordingly.

The IP protocol is the lowest layer modelled in the simulations in this work. The main
tasks performed by the IP protocol are addressing, performed at client and server side,
and the routing of the packets, performed by a router module in the node model. Frag-
mentation of IP packets is very unlikely since most Internet devices support the maxi-
mum size of Ethernet packets of 1500 Bytes and e.g. PPP uses smaller maximum packet
sizes to increase the responsiveness of the connections due to the small bandwidth of e.g.
modem connections. The IP datagram header format is displayed in Fig. 3.5, the length
of the fields are displayed with bit-counts at the top. Source and destination address are
used for routing the packet through the network. The maximum size of an IP datagram
is 65535 Bytes. See [Tan02] for more information about specific header fields of the IP
datagram.

0 4 8 16 19 31

Flags

(Options) (Padding)
(Data)

Source Address
Destination Address

Header ChecksumProtoTime To Live
Identification Fragment Offset

Total LengthTOSLENVers

24

Figure 3.5: IP datagram.

3.2.4 Dynamics of TCP

The dynamics of the TCP protocol are very important in order to understand perfor-
mance problems in the Internet. There are several variants of TCP existing: Tahoe, Reno,
NewReno, RenoSACK, Vegas, etc. This work concentrates on the currently mostly used
TCP NewReno. The implementation TCP NewReno for Ptolemy was validated with the
simulator ns-2 [UCB].
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The dynamic behaviour can be separated into three main parts:

• Slow-Start (SS)

• Congestion Avoidance (CA)

• Time-Out / Fast Retransmission / Fast Recovery

The congestion window (CWND) denotes the number of bytes (or segments) the sender
is allowed to send without waiting for an acknowledgement from the receiver. The dy-
namic behaviour of the congestion window is depicted in Fig. 3.6. The CWND is nor-
malised here to the maximum segment size and the time representation is simplified as
a point process that has only events at integer multiples of the Round-Trip Time (RTT).
The congestion window is initialised to one segment before a connection is established.
Every acknowledgement received from the client, that indicates a successful delivery of
a packet, provokes a doubling of the congestion window in slow-start phase.

CWND [Segments]
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Time [RTT]

SS−Thresh.

SS−Threshold

SS−Thr.

SS CA CASS

Time−Out

Multiple Packet Loss

Single Packet Loss

Figure 3.6: TCP dynamics: congestion window (CWND) over time, slow start
(SS), congestion avoidance (CA) and time-out.

TCP migrates to congestion avoidance once the slow-start threshold (SSTH) has been
reached. The value of SSTH is initialised with the maximum congestion window size,
usually 65535 Bytes, before opening a connection. The threshold is reduced to half of the
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CWND for each detected packet loss. Packet loss can be detected by receiving three du-
plicate acknowledgements or by a time-out. Duplicate acknowledgements are acknowl-
edgements for a packet that has already been acknowledged; therefore three duplicate
acknowledgement mean four acknowledgements for the same packet.

If the packet loss was detected by three duplicate acknowledgements, fast retransmis-
sion and fast recovery are used, which can effectively retransmit the lost packet(s) (cf.
Fig. 3.6, time 15). The throughput does not go down to zero, as for a time-out.

TCP experiences a time-out if too many packets are lost or if the congestion window
was too small such that three duplicate acknowledgements could not be received (cf.
Fig. 3.6, time 7). The duration of a time-out is variable, it depends on the RTT estimated
by Karn’s algorithm [KP87]. For the first round-trip, when no measurements of the RTT
are available, a default time-out value of 6 s is used. The value of 6 s from the first
round-trip is used to calculate the time-out for the second round-tip. The default value
for the RTT variance, for which no measurements are existing in the second round-trip,
lead to a time-out value of 12 s for the second round-trip. Real measurements are used
from the third round-trip on to estimate a useful value for the time-out. The default gran-
ularity for RTT and time-out calculations can be 500 ms or 100 ms, depending on the
implementation. The latter value is used in this work.

A time-out duration of several seconds leads to a crucial throughput collapse of the TCP
connection. Short-lived connections have a relatively larger probability to collapse than
long-lived connections, since their congestion window is rather small: the average HTTP
download volume of 60 KB is transmitted in 7 RTTs. A packet loss in the first two of
the seven round-trips leads to the collapse. Therefore, short-lived connections require a
small packet loss probability, otherwise the user has to wait for several seconds for a
download that could theoretically be finished in less than one second. See [SW01] for
more detail about TCP dynamics.

3.3 Bandwidth Limitation

In the real world there are several types of bandwidth limitations in the network:

• the capacity of the customer link (e.g. Modem, Integrated Services Digital Net-
work (ISDN), Digital Subscriber Line (DSL), Ethernet),

• the capacity of the webserver,

• the capacity of the webserver’s link to the Internet,

• the capacity of the links between the customers and the webservers network
provider.
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The limited customer capacity is implemented as a rate limitation at the IP layer. It is
possible in this implementation to adjust different limits for upload and download rate
such that ADSL can be modelled. The capacity limitation of the webserver itself is mod-
elled by a maximum number of acceptable connections and a throughput limitation.
Delays due to disk or database access in the webserver are not modelled yet, but could
be easily implemented. The capacity of the webserver’s link to the Internet, or of some
servers sharing this link, is modelled by a queue and server which model a switch or ac-
cess router with a limited outgoing capacity. The link capacities between the customers
and the webservers network provider are also limited, the implementation is discussed
in Section 5.4.

The speed of the core network is nowadays in most cases larger than a single connec-
tion can usually occupy. Therefore, it is important for the estimation of the throughput
of a single client to take into account the limitations on the edges (webserver and client
link). In most relevant cases, the webserver will also have a larger speed than the client
and therefore the clients access speed remains the important limitation of the throughput
per connection. The limiting effect on the client side is not only the limited bandwidth,
but also the delay introduced by i.e. a slow Modem line can be of importance when
estimating the throughput of a TCP connection.

This work is focussing on the B-WiN network model, as discussed in Section 5.6.3. It
is a model of a network connecting the research institutes in Germany. Most of the traf-
fic is generated by researchers (or students in a residential accommodation) connected
via Ethernet to the core. In this case it is sufficient to model the bandwidth limitation
– the delay in the local network is negligible as compared to the delay in the Internet.
Therefore, only the throughput limitation of a 10 Mbit/s Ethernet line is modeled. Never-
theless, the change of the parameters to incorporate lower bandwidth limitations is very
easy, the simulator is prepared for this task.

3.4 TCP-modified Engset Model

The TCP-modified Engset model was proposed by Heyman et. al. [HLN97] to provide
an analytical solution for WWW traffic, that is characterised by short transfer volumes
and idle periods. It describes the performance for a single bottleneck topology for the
case of a limited number of customers. The model is based on a birth-death process
which describes the number of simultaneously active users. Different queueing schemes
are considered such that also IP over ATM with e.g. early packet discard can be mod-
eled. The model assumes a fair share of the bandwidth between the TCP connections.
Furthermore, the model is insensitive to the distributions used for on- and off-phases,
that is, only the mean values are significant for the performance parameters. The model
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provides analytic solutions for the following performance parameters: steady state proba-
bility that j users are active at the same time, average download time, average throughput
on the bottleneck link.

A summary of the model with the focus on the case of First In First Out (FIFO) queues
is presented in the following. Furthermore, only the case of packet loss events as the loss
of the full packet are covered here, as opposed to when modelling e.g. ATM. The bottle-
neck scenario is sketched in Fig. 3.7. The capacity of the bottleneck link is denoted with
C and the propagation delay withD. A total of N TCP clientsS1 . . . SN are connected
through symmetrical, bi-directional links with capacityc and propagation delayd to the
bottleneck routerR1. The connection of the destinationsD1 . . . DN to the routerR2 are
not limited in capacity and delay. The destinations model the webservers here, which
usually have a high-speed connection to the internet and the main limitation is modeled
in the access lines of the user and the one bottleneck link in the internet.
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Figure 3.7: Single bottleneck, Engset model.

The ratio between access line capacity and bottleneck capacity describes the number of
users, that can be served without congestion on the bottleneck link

s=
⌊

C
c

⌋
. (3.1)

The normalised buffer capacityb can be specified with the buffer sizeB in packets, the
minimum RTT (empty queues) and the service time for a data packetτ = MTU/C as

b =
B

RTTmin/τ
. (3.2)

The user behaviour is characterised with the average idle time (e.g.to f f = 40 s)

to f f = 1/λ, (3.3)
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with the idle time rateλ, i.e. the number of idle-times per time unit. The average down-
load time without congestion 1/µ is defined similarly with the average download volume
v (e.g. 60 KB) as

1
µ

=
v
c
. (3.4)

The average efficiencyρ of the bottleneck captures the case that the number of packets
in the system are not enough to fill the link. A throughput degradation is occurring in
this case, due to e.g. buffer capacity which is not sufficient. The efficiency is defined as

ρ = 1−
(
1− 1

2 (b+1)
)2

b+1
, (3.5)

with the positive-part operator defined asx+ = max{x, 0}.

The assumption of a fair bandwidth share between all TCP connections leads to the rate
r( j) for j simultaneously active users

r( j) =

{
c for j ≤ s

ρ ·C/ j for j > s
. (3.6)

The slow-start behaviour of TCP is not captured here: the TCP connection starts with
one packet per RTT and doubles the number of packets per RTT if all packets have been
transmitted successfully.

The steady state probabilities of the birth-death processJ, where j is the number of
simultaneously active users, can be specified as

Pj = P0 ·
β0 ·β1 · · · · ·β j−1

δ1 ·δ2 · · · · ·δ j︸ ︷︷ ︸
γ j

, j = 1, . . . ,N (3.7)

with the birth rate

β j = (N− j) ·λ, j = 0, . . . ,N (3.8)

and the death rate

δ j =

{
j ·µ for j = 0, . . . ,s

ρ ·C/v for j > s
. (3.9)

The parameterP0 can be calculated with the fact that the sum of the probabilities is
always one

N

∑
j=0

Pj = 1 (3.10)
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as

P0 = 1/
N

∑
j=1

γ j . (3.11)

The solution forPj can now be calculated with Eq. (3.1)–(3.11). The steady-state solu-
tion Pj and the ratesr( j) are used in the following to derive the parameters describing
the performance of the network model.

The average number of active users can now be specified with the result ofPj as the
expectation value of the processJ (number of active users)

E[J] =
N

∑
j=1

j ·Pj . (3.12)

The total average throughput on the bottleneck link is then given by

E[J · r(J)] =
N

∑
j=1

j ·Pj · r( j). (3.13)

Finally, the average download time for a web page is the average volumev multiplied
with the average number of active users divided by the total average throughput:

ton =
v·E[J]

E[J · r(J)]
. (3.14)

The average throughput of a single user follows as average page size divided by the sum
of on- and off-time:

ravg =
v

ton+ to f f
=

v·E[J · r(J)]
v·E[J]+ to f f ·E[J · r(J)]

. (3.15)

The slow-start behaviour of TCP is not taken into account here, the throughput of a real
TCP connection does not start directly with ratec. Therefore, it can not expected that
short downloads are modelled accurately. Furthermore, TCP time-outs are not covered.
Hence, the accuracy for high packet loss probabilities might be limited.
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Algorithm for Simulation Setup

The solution for the inverse problem characterised in Chapter 2 is presented in this sec-
tion. The first part of the solution – the iterative algorithm determining the number and
distribution of clients – is presented in Sec. 4.1. The input parameters for the algorithm
are the target throughput matrix, the average HTTP transfer volume, the maximum seg-
ment size of TCP, the maximum bandwidth of the path from client to the first hop, the
link capacities, the propagation delays and the routing table. The second part – adjusting
the higher order statistics to prescribed values, especially the Hurst parameter and the
coefficient of variation – is addressed in Sec. 4.2 and 4.3.

The algorithm and equations presented in this chapter propose a solution for the inverse
problem of how to setup the simulation such that the simulation model produces re-
sults which closely match a corresponding network in reality. It does not claim to be
a complete model for the performance as the Engset model presented in Sec. 3.4. The
simulation results of scenarios configured with the equations presented in the following
are compared with the analytic results from the Engset model in Chapter 6.

4.1 Iterative Algorithm for Allocation of Clients

The algorithm determining the number of clients per flow, required for generating traffic
according to a prescribed throughput matrix, is described in this section. The number of
clients in the flow from nodei to nodej is denoted bysi j in the following. The outline of
the iterative algorithm for the allocation of sources is given as follows, see Algorithm 1.
An initial estimation of the required number of clients per flow is performed following
the equations given in Sec. 4.1.1. The first simulation is performed with the resulting
allocation of clients. The throughput matrix established in the simulation is compared
to the prescribed throughput matrix. An error measure must be defined to quantify the

37
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deviation of the two throughput matrices (cf. Sec. 6.2). Subsequent simulations are per-
formed, which reduce the error by correcting the number of clients based on the mea-
surements of the previous simulation, until the error is smaller than a certain prescribed
error limit ε or a maximum number of iterationskmax is reached. The maximum absolute
error of all flows is in the first iteration in most cases already below 10 % so that no
iterations might be required, depending on the error that one is willing to accept.

An early state of this algorithm with coarse estimation of the client populationsi j ,1 was
presented in [BK02c]. This study focused on the iterations, since the initial client popula-
tion was not accurate enough. An improved estimation ofsi j ,1, leading to smaller errors,
was published in [BK02a] and [BK02b]. An improvement of the throughput estimation
for TCP’s congestion-avoidance phase and a methodology for adjusting the Hurst param-
eter of the traffic was published in [BK03a]. The protocol overhead and the traffic from
client to server was additionally considered in [BK03b] leading to further improvements
in estimatingsi j ,1. Furthermore, a methodology to reduce the simulation complexity by
reducing the number of clients was also published in [BK03b]. An extensive article sum-
marising major findings of this work will be published in [BK04].

The equations for the estimation ofsi j ,1 are described in Sec. 4.1.1. The incorporation
of a bandwidth limitation at the client side into the estimation ofsi j ,1 is discussed in
Sec. 4.1.2. The equations describing how to adapt the number of clients per flow for
further iterations are described in Sec. 4.1.3.

1. The initial allocation of clientssi j ,1 is calculated based on the equations derived in
Sec. 4.1.1.

2. An initial simulation is performed with client matrixsi j ,k with k = 1.

3. The error measure is evaluated comparing measured and prescribed throughput
matrix.

4. While (error> ε AND k < kmax):

(a) Determine allocation of sourcessi j ,k+1 from si j ,k, based on the difference
of prescribed traffic matrix and the corresponding results of simulationk as
detailed with equations in Sec. 4.1.3.

(b) Perform simulationk+1 with si j ,k+1 to determine max. error.

(c) Determine the errorε of simulationk+1.

(d) Incrementk by one.

Algorithm 1: Algorithm for allocation of clients.
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4.1.1 Estimation of the Client Allocation

The traffic matrixTP is typically given by measurements, the elementst pi j denote the
throughput of the flow between nodei and nodej, e.g. in Mbit/s. The target is to estimate
a client allocationSwith elementssi j generating traffic according toTP. An estimation
of the average throughput of a single HTTP/TCP client is derived that can be applied
for all flows so that the client allocationScan be derived. The average throughput of a
single HTTP/TCP client in the flow from nodei to nodej is

rserver,i j =
v+o

ton,i j + to f f
, (4.1)

wherev ando represent the average HTTP transfer volume and the protocol overhead,
respectively. The parameterston,i j andto f f are the average HTTP on- and off-times in
seconds, respectively (download time and reading time). The distributions ofto f f and
v and their respective parameters are considered to be sufficiently secured by measure-
ments of the user behaviour [CL99].

The value ofton,i j depends on the download volumev and on the competition among
all connections about the resources in the network. Measurements of the user behaviour
have shown that the value ofto f f is much larger thanton,i j [CL99], so thatto f f andv
dominate Eq. (4.1). A simple estimation ofton,i j can already be sufficient in this case
for a good estimate of the average throughputrserver,i j . However, it might not be always
the case thatto f f is so much larger thanton,i j that the latter can be completely ignored.
Therefore,ton,i j can be calculated as

ton,i j = nRTT · rtt i j , (4.2)

wherertt i j is the average RTT andnRTT is the average number of RTTs required by
TCP to transmit the volumev. With the simplifying assumption of a uniform packet loss
probability for all flows, the parameternRTT does not depend on the flow. The average
number of RTTsnRTT can consequently be calculated as constant for the whole net-
work. The average round-trip timertt i j depends on the networks dynamics and can not
be known exactly in advance. Furthermore, the value ofrtt i j depends strongly on the
considered flow.

A lower bound for the RTT can be calculated by adding up the corresponding link propa-
gation delays for each flow. This lower bound is used as an approximation for the average
RTT here. The queueing delay can hardly be estimated, since the packet arrival process
can not be expressed as a simple Poisson process, for which the solution for queueing
systems are available.
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The number of required round-trip timesnRTT for the transmission ofv Bytes can be
calculated as follows:

nRTT = 1+nRTT,SS+nRTT,CA. (4.3)

The value 1 RTT in (4.3) represents the first two packets of the TCP connection estab-
lishment with the three-way handshake. The third packet of the three-way handshake
can be directly followed by the HTTP request, so that it should not be accounted for
in (4.3). The on-time is finished when the client receives the last data packet; the last
acknowledgement and the signalling packets for closing the connection are counted as
off-time here, since they do not contribute significantly to the throughput. The param-
etersnRTT,SSandnRTT,CA represent the number of RTTs that TCP requires to transmit
v Bytes in slow-start and congestion avoidance phase, respectively, including the HTTP
requests. The total number of packetsnP for transmittingv Bytes is

nP =
⌈ v

MSS

⌉
(4.4)

with the Maximum Segment Size MSS of TCP packets (the standard value ofMSS=
1460 Bytes for Ethernet is used here). All the packets and requests contain an overhead
of h Bytes and are acknowledged with the same overhead. Therefore the overhead is the
same for client and server. The protocol overhead in Eq. (4.1) can be calculated as

o = (4+nP +nReq) ·h, (4.5)

wherenReqrepresents the average number of HTTP requests andh stands for the header
size of each packet (h = 40 Bytes for TCP/IP packets). The constant value 4 in Eq. (4.5)
represents the number of packets required for connection setup and release.

Combining (4.1), (4.2), (4.3) and (4.5) the result for the average throughput in download
direction of a single HTTP/TCP client is:

rserver,i j =
v+o

(1+nRTT,SS+nRTT,CA) · rtt i j + to f f
. (4.6)

The throughput from client to server due to signalling, acknowledgements and HTTP
requests has the opposite direction to the download, which can be considered by trans-
posing the matrix. The throughput from client to server can be calculated as (please note
the swapped indices at the left hand side)

rclient, ji =
nReq·sReq+o

(1+nRTT,SS+nRTT,CA) · rtt i j + to f f
, (4.7)

with the average number of requestsnReqand the average size of a HTTP requestsReq.
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The maximum number of packets that can be transmitted in one RTT is the ratio of the
maximum congestion window and the maximum segment size:

nP,CWNDmax=
⌊

CWNDmax

MSS

⌋
. (4.8)

The maximum number of RTTs that TCP stays in slow-start phase (without losses, cf.
Sec. 3.2.4) is:

nRTT,SS,max= dlog2(nP,CWNDmax)e . (4.9)

The maximum number of packets that can be transmitted in slow-start, can be calculated
as

nP,SS,max= 2nRTT,SS,max+1−1 (4.10)

whereCWNDmax denotes the maximum TCP congestion window, the default value is
CWNDmax= 65535 Bytes. The number of RTTs in slow-start is given by

nRTT,SS=

{
dlog2(nP)e nP ≤ nP,SS,max

nRTT,SS,max nP > nP,SS,max
. (4.11)

The number of RTTs in congestion-avoidance phase can be written as the remaining
number of packets after slow-start phase divided by the average congestion window size:

nRTT,CA =

⌈
max

{
0, np−nP,SS,max

}
CWNDCA,avg

⌉
. (4.12)

The average congestion window in congestion-avoidance phase depends on the packet
loss probabilityploss [MSM97]

CWNDCA,avg =

⌊√
3

2· ploss

⌋
. (4.13)

However, since the actual loss probabilityploss is not known before carrying out a spe-
cific simulation, previous simulations have been evaluated. The packet loss probability
with pure HTTP traffic was in most cases for all three simulation scenarios smaller than
0.1 % (with a buffer capacity of 2500 packets). A packet loss probability of 0.1 % might
seem very small. However, the average connection duration is very small for HTTP/TCP
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connections. Already small loss probabilities can lead to severe performance issues in
this case, as opposed to e.g. long-lasting FTP connections. Usingploss = 0.001 yields
a value ofCWNDCA,avg = 38 packets for the average congestion window in congestion
avoidance phase.

The client allocation matrixSwith the elementssi j , representing the number of clients
for the flow from nodei to node j, can be calculated finally with Eq. (4.7) and (4.6) by
dividing the observed throughputt pi j by the average client download raterserver,i j for
each flow and rounding the resulting numbers :

si j = round

(
t pi j

rserver,i j
·
(

1−
rclient, ji

rserver,i j

))
= round

(
t pi j ·

(
nRTT · rtt i j + to f f

)
v+o

·
(

1−
nReq·sReq+o

v+o

))

= round

(
t pi j ·

(
nRTT · rtt i j + to f f

)
·
(
v−nReq·sReq

)
v+o

)
. (4.14)

The factor 1− rclient, ji/rserver,i j accounts for the throughput generated by the clients due
to acknowledgements and HTTP requests. The reverse direction of this traffic flow is
considered by swapping the indices indicating the flow direction from nodei to node j.
The factor is smaller than one since the download raterserver,i j is usually significantly
larger than the upload raterclient, ji (cf. (4.6) and (4.7)). Please note that it is necessary to
convert some units in (4.14) and other equations in order to get consistent results (e.g.
factor 8/106 from Bytes to Mbit forv, o andsReq).

4.1.2 Bandwith Limitation on Client Side

The bandwidth limitation on the client side can be taken into account by

• adapting the formula for the maximum number of packets that can be transmitted
in one RTT and

• adding the propagation delay of the client access lines to the RTT and

• changing the average throughput in congestion-avoidance to the download link
capacity.

The maximum number of packets that can be transmitted in slow-start in Eq. (4.8) has to
be modified in order to incorporate the download link capacityCclient,down as a limiting
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factor, because increasing the window does not lead to an increase of the sending rate
anymore when the link capacity is reached:

nP,CWNDmax= min

{⌊
Cclient,down

MTU

⌋
,

⌊
CWNDmax

MSS

⌋}
. (4.15)

The average RTT can be calculated in this case by adding the transmission time of a min-
imum sized packet (h= 40 Bytes for TCP/IP) in the upload direction and of a maximum
sized packet (MTU) in the download direction to the sum of the propagation delays in
the core network. The transmission time is negligible for e.g. 100 Mbit/s Ethernet ac-
cess lines but it could have a significant impact on the RTT for e.g. very slow modem
connections.

The full capacity of the download link can be reached in congestion-avoidance whenever
there is enough buffer in the router of the Internet access provider. The download link can
still be filled completely when the buffer contents bridges the time when a reduction of
the congestion window is triggered on the server side due to a packet loss. The required
router buffer capacity in packets per connection is the product of the minimum RTT and
the download capacity divided by the MTU, see Eq. (4.16). The maximum value that
the congestion window can reach in this case is twice the bandwidth delay product. The
window is halved upon packet loss when it reaches this limit. This means that the rate
falls down to exactly the download capacity. Therefore, TCP can completely fill a link of
capacityCclient,down if (4.16) is fulfilled under the condition that there is no other source
for a packet loss than the limited buffer under consideration.

B≥
RTTmin ·Cclient,down

MTU
. (4.16)

Table 4.1 lists Internet access technologies with typical values for the minimum RTT
and the derived buffer capacities according to Eq. (4.16). The minimum RTT value is
composed of a constant value representing a typical RTT between the ISP and the se-
lected webserver and the propagation delay from the client to the ISP, which depends on
the access technology. Several measurements with the tool traceroute have shown that
only very few connections exceeded a minimum round-trip delay of 150 ms between
ISP and webserver. A connection between a German ISP andwww.linux.org in the
Canada for example has an RTT of approximately 140 ms although it is routed over
24 hops. Longer delays can be experienced e.g. at connections from Germany to web-
servers in Taiwan (e.g.www.asus.com.tw with approximately 320 ms and 26 hops).
However, values larger than 150 ms for the minimum RTT between ISP and webserver
are not the standard case, but rather the rare exception. Therefore 150 ms was selected as
typical minimum RTT. A special case must be considered for the RTT of DSL connec-
tions: interleaving is used here if the wire quality is not good enough, leading to a larger
propagation delay.

www.linux.org
www.asus.com.tw
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Table 4.1: Required buffer capacity per connection at ISP Router for download
throughput at full link capacity.

Cclient,down [bit/s] MTU [Bytes] RTTmin [ms] B [Packets]

Ethernet:10·106 1500 151 126
DSL: 2·106/192·103 1500 180 30
DSL: 768·103/128·103 1500 180 12
ISDN: 128·103 1500 180 2
ISDN: 64·103 1500 180 1
ISDN: 64·103 576 180 3
Modem: 56·103/33·103 576 300 4

It can be expected that the router of an Internet Service Provider (ISP) has enough buffer
capacity to store at least four packets per connection. Therefore, it can be noticed that
clients with ISDN and modem connections can always achieve the full throughput of the
download capacity. DSL and Ethernet connections on the other hand are unlikely to be
filled completely, since the required buffer per connection is rather large and the server
might also not be able to send data with such a high rate, especially when loaded with
many other connections.

It can be summarised that Eq. (4.12) should be changed if the download capacity is
smaller or equal to 128 kbit/s withnP,CWNDmaxfrom Eq. (4.15) to

nRTT,CA =

⌈
max

{
0, np−nP,SS,max

}
nP,CWNDmax

⌉
. (4.17)

A DSL connection with 128 kbit/s upload and 768 kbit/s download capacity on the other
hand represents no significant limitation for an average HTTP connection with a down-
load volume of 60 KB: the required number of connectionssi j for such a DSL connec-
tion is only 2.8 % larger as compared to no bandwith limitation at the client side (for
to f f = 5 s). The slightly larger RTT is responsible for the larger number of required
connections in this case. However, for a large download volume and/or a very small off-
time the average (and peak) throughput increases such that the download capacity can
be reached.

4.1.3 Iterations Beyond the First Order Approximation

After the first simulation was driven with the client allocation described by the equations
above, the deviation of the simulation results from the given traffic matrix can be further
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reduced with iterations (cf. Algorithm 1, p. 38). It is assumed in the following that the
deviation between the throughput matrix measured in the first simulation and the target
throughput matrix is reasonably small. A linearisation of the non-linear relation between
number of clients and throughput is performed here.

The achieved throughput per flowt pi j ,k and the average client throughput per flowrsrc,i j ,k

need to be measured for every iteration step. The measurement of the achieved through-
put can be used to calculate the difference between the prescribed and the observed traffic
intensities:

∆t pi j ,k = t pi j − t pi j ,k. (4.18)

The difference matrix∆t pi j ,k and the average client throughput per flowrserver,i j ,k are
used to calculate the update for the client allocation∆si j ,k

∆si j ,k =
⌈

∆t pi j ,k

rserver,i j ,k

⌉
. (4.19)

The new allocation of sources can be calculated as shown in Eq. (4.20) with a constant
c < 1 to prevent strong oscillation:

si j ,k+1 = si j ,k−c·∆si j ,k. (4.20)

The ceiling function in Eq. (4.19) introduces a non-linearity, that could lead to con-
vergence problems together with the approximation by linearisation. Furthermore, it is
important that the steady state of the simulation for each stepk is reached to ensure con-
vergence. It is shown in Sec. 6.2.4 thatc= 0.6 is a good compromise between oscillation
and convergence speed.

4.2 Parameters Influencing the Hurst Parameter

Realistic traffic models have to incorporate the generation of self-similar traffic since
the self-similarity was measured in several studies in local area networks and in the In-
ternet [FGW98, FGHW99, LTWW93, CB97, PKC97]. The parameters influencing the
degree of self-similarity, the Hurst parameter, are discussed in this section in order to
gain control over it.

A first approximation is described here, in which it is assumed that the major con-
tribution to the self-similarity are the power-tail distributed file sizes. The Hurst pa-
rameter depends on the shape parameterα of the power-tailed file size distribution
[PKC96a, CB97]. The shape parameterα determines the slope of the power-tail (cf.



46 Chapter 4: Algorithm for Simulation Setup

Section 2.3.2). The aggregated traffic from an infinite number of on-off sources with
power-tail distributed on and/or off times followsH = (3−α)/2 [TWS97]. The assump-
tion that this relation holds approximately also for a limited number of TCP connections
is verified in Sec. 6.4.2. Therefore, we assume that

H ≈ (3−α)/2. (4.21)

This is, however, not the only effect that influences the Hurst parameter. It has been
shown in [GCM01] that the loss probabilitypL has an impact on the Hurst parameter of
TCP traffic:

H = (3− log2(
1

2pL
))/2. (4.22)

The region where the loss rate has an impact on the Hurst parameter can be calculated
from Eq. (4.22) by simple transformations. The result (4.23) shows that this effect is
only important for very high loss probabilities of more than 12.5 %. All the simulations
are performed at significantly lower loss rates and therefore this effect can be neglected
in this work.

pL ≥ 2−(α+1) ≥ 0.125 (4.23)

Riedi et al. [RW00] have discovered that the Hurst parameter follows Eq. (4.24) if the
distribution of the rates of the connections on a link is a power-tail distribution with
shape parameterβ (α is the shape parameter of the file size distribution).

H =
β−α+1

β
(4.24)

In the case ofβ = 2, i.e. finite variance of the connection rate distribution, Eq. (4.24) re-
duces to Eq. (2.12). Note that the Hurst parameter is smaller forβ < 2 as compared to the
case of finite variance for a constant shape parameterα. Therefore, the power-tail of the
rate distribution tends to cancel out the effect of the power-tailed file size distribution.

The traffic load has also an impact on the Hurst parameter. Packet inter-arrival times and
counting process show self-similarity and long-range dependence for small utilisation
values. It has been shown that the long-range dependence fades out and the distribution
of packet inter-arrival times tends to an exponential distribution when the load increases
[CCLS01]. However, the simulation studies performed in this work also identify a case
where the Hurst parameter increases with the traffic load. An extensive discussion about
this phenomenon is presented in Sec. 6.4.3.
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4.3 Parameters Influencing the Coefficient of Variation

The coefficient of variationcv= σ/µ is studied in this work for the inter-arrival times of
packets entering a queueing system. The value of variance and mean of Poisson traffic
are one and therefore alsocv= 1. Values larger than one characterise a higher variability
and values smaller than one a lower variability as compared to Poisson traffic.

The average traffic load has an impact on the value ofcv: the room for variability is
reduced when the traffic load approaches the link capacity. The number of connections
responsible for a fixed amount of traffic also have an impact oncv, since the statistical
multiplexing of a large number of connections leads to a smoothing effect, where the
variance is reduced when the number of connections is increased. This effect is not so
pronounced for self-similar traffic, but nevertheless, it is also present in this case (cf.
Sec. 2.3.2 and 2.4).

Other important factors for the value ofcv are the network layers 1 – 3: whether or not
the IP packets are segmented at the sender and reassembled at the receiver affects the
variance of the traffic as well as any additional delay introduced by these network layers,
e.g. caused by collisions on a broadcast medium.

In ATM networks for example, one IP packet of size 1500 Bytes is segmented and trans-
mitted in 32 ATM cells of fixed size (53 Bytes with 48 Bytes payload). Each packet on
IP layer leads to a burst of ATM packets which has an influence on the variance of the
traffic. Therefore, it can be expected that the value controlling the maximum packet size
in TCP, the Maximum Segment Size (MSS), and the distribution of the actual packet
sizes have an impact oncvas well.

The average download volume has also an impact oncv: TCP operates with a small con-
gestion window. That is, only few packets are sent per RTT, resulting in significantly
lower correlation and variance as compared to large download volumes with large con-
gestion window sizes.

Among all discussed parameters, the link load is no free parameter of the simulation.
But the MSS/MTU distribution and the exact average download volume of the users in
the considered network might not be known. Therefore, the MTU distribution could be
used to tune the value ofcv, if it does not match the measured values in the real network
(see Section 6.4.1).





Chapter 5

Simulation Methodology

This chapter covers the simulation methodology developed and followed in this work.
Configuration and implementation aspects are presented in this chapter as well as the
optimisation of the simulator regarding simulation speed and the memory requirements.
The requirements on the simulation environment leading to the selection of Ptolemy are
discussed in Sec. 5.1. Further, the basic principle of discrete event simulation is described
in Sec. 5.2.

The tools developed in this work for an automatic configuration that easily scales up to
several ten thousands of clients are presented in Sec. 5.3. The implementation and opti-
misation of the simulation models is discussed in Sec. 5.4 and 5.5. The optimised simu-
lation model structure requires less memory and achieves a higher simulation speed. The
three network simulation models used in this work are described in Sec. 5.6.

5.1 Simulator Requirements

The requirements on the simulator leading to the selection of Ptolemy are briefly dis-
cussed in this section. The simulator had to fulfil the following requirements at the time
when the decision had to be taken:

• Graphical User Interface (GUI)

• Object oriented programming language

• Object oriented design of simulation entities

• Easy extensibility of existing code, preferably open source code

• Fast simulation

49
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• Concept for automatic scaling of the number of sources

• Protocols to be simulated: HyperText Transfer Protocol (HTTP), File Transfer Pro-
tocol (FTP), Transmission Control Protocol (TCP), Internet Protocol (IP), ATM
Adaptation Layer 5 (AAL5) and Asynchronous Transfer Mode (ATM).

The GUI was required in order to allow students to use existing blocks by just connect-
ing and configuring them without the need to program. An object oriented programming
language should ease the programming and code maintenance in a group of PhD stu-
dents. Another important feature of object oriented programming, the inheritance, was a
very important feature for the simulation of communication networks: a Random Early
Drop (RED) queue could be derived from a generic queue. Packet classes as well as
TCP variants can be implemented easier using the concept of inheritance with generic
prototypes. The demand for easy extension of existing code and preferably open source
code can be justified by the experience of earlier projects: it was many times helpful
to look at the source code of the simulator to find a solution for a problem. Further, to
understand the performance bottlenecks of the simulator and to find solutions to avoid
the performance bottlenecks is easier with open source software.

Since the target was the simulation of large networks, it is clear that a fast simulation is
one of the very important reasons. This was the reason against simulators implemented
in Java. The concept for automatic scaling of the number of sources is one principle
that was already implemented in Ptolemy with the so called “Higher Order Functions”
(HOF) . This principle allows to connect a source to such a HOF block and to specify
the number of replications of the source. The re-wiring and configuration can be avoided
and the number of sources is very variable. The protocols mentioned above were needed
in the project called ERNANI [BSK01].

All requirements except of the very last one (set of protocols required) were fulfilled by
Ptolemy classic [PCB]. Ptolemy classic is written in C++ and distributed with source
code and precompiled binaries for many platforms by the university of California at
Berkeley together with extensive documentation [Ber97a, Ber97b, Ber97c]. The other
candidates, mainly ns-2 [UCB], did provide more protocols than Ptolemy. But ns-2 had
weaknesses in the other requirements like a missing GUI and a missing concept for scal-
ing the number of clients, at the time where the decision had to be taken. Therefore
Ptolemy was selected as the base framework for the simulations. The TCP/IP stack was
implemented and verified against ns-2.

5.2 Discrete Event Simulation

Discrete event simulation is a major simulation principle used for the simulation of com-
munication networks. Discrete event simulation can be used to simulate asynchronous,
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non-periodic data transmission and is therefore well suited for simulation of communi-
cation networks. The principle is based on the existence of a global scheduler with an
attached global event list. An event consists of a time stamp, the data to be transmitted
to the receiver block and a reference to the receiver block. Actors can generate and con-
sume events. The global event list is sorted according to the time stamps of the events.
The event with the smallest time stamp is selected by the scheduler and the correspond-
ing receiver block is being executed by the scheduler. The time stamp has a high floating
point resolution. The time between two consecutive events can be arbitrarily large or
small. Also simultaneous events with exactly the same time-stamps are possible. The
simulation time does not necessarily advance in fixed time units as it is the case in other
models of simulation used for e.g. digital signal processing.

A schematic of the scheduler and three blocks is sketched in Fig. 5.1: the global event
queue holds sorted events with a time stamp and destination block ID. The next event is
to be processed at time 2.1, destined for block C. A feedback event of block A follows at
time 3.2. The last event is scheduled for time 7.9 at block B. Whenever one of the three
blocks generate a new event it is stored in the event queue in a way that the sorted order
is conserved. The simulated time advances to the value with the smallest time stamp in
the global event queue when the execution of the block has been terminated.

B

C
A

EventQ
Scheduler

3.2,A
2.1,C

7.9,B

Figure 5.1: Discrete event simulation principle.
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5.3 Tools for Automatic Configuration

A method for the automatic configuration is needed in order to implement and verify the
solution for the problem of finding the appropriate number of clients for all flows, as de-
scribed in Section 2.2. Perl (Practical Extraction and Report Language,www.perl.org)
was selected for configuration, parsing and statistical evaluation of the results since it is
fast (compiled at run time) and very well suited for parsing text files.

The following parameters need to be configured for the client module representing all
clients attached to one node. The parameters are subject to changes whenever the number
of clients is changing:

• number of clients for all flows

• client IP address

• webserver (destination) IP address

• enable or disable a feature only for a certain percentage of clients, e.g. Explicit
Congestion Notification (ECN) for TCP

• enable or disable the aggregated UDP traffic model for a fraction of the traffic
volume for each flow.

The architecture sketched in a Unified Modelling Language (UML) sequence diagram in
Fig. 5.2 was designed to form a solution for the automatic configuration. The Perl script
generate-config.plloads the simulation topology described in a Perl scriptsimConfig.pl
(actual file names for the topologies are:bottleneckConfig.pl, parkingLotConfig.pland
bwinconfig.pl). The Perl scriptconfigTools.plimplements a library of methods for the
configuration and statistical evaluation of the results. The configuration scriptgenerate-
config.plwrites the text fileconfigbwin.txtand returns the control to Ptolemy. The text
file configbwin.txtis read and parsed by the C++ template classPtet6Config(see Sec-
tion 5.3.1) that loads all the data into static memory so that it is accessible in all blocks
of the simulation. The main simulation run starts, after finishing the described setup part.
The simulation data is written to text files within the simulation time and at the end of
the simulation time.

The configuration data is organised in matrices, a string key distinguishes different ma-
trices. The three data types integer, floating point and string are supported. The row index
of the matrices corresponds to a node in the network and the column index is linked to
one instance at the corresponding node. The values stored in the matrices can be e.g. IP
addresses (string), delay and rate values (floating point) or the number of clients at one
node (integer). The fileconfigbwin.txtis organised as follows (see Fig. 5.3): each line
starts with the data type (int/double/string), the key follows after a blank. The matrix

www.perl.org
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Ptolemy

generate-config.pl

configbwin.txt

simulation data«create»

setup

run

«create»

configTools.pl

simConfig.pl

Figure 5.2: UML sequence diagram of configuration setup and simulation.

row and column number can be appended to the key, separated by dots (i.e. “delay.1.0”).
The row and column numbers start from zero. The matrix reduces to a scalar if row and
column number are omitted. A complete matrix row can be specified on one line with
blank separated values if the column value is omitted. The matrix can contain rows with
variable lengths.

The process of parsing the simulation results, one of the major reasons why Perl was
selected, is sketched in the UML sequence diagram in Fig. 5.4. The scriptget-results.pl
loads the description of the simulation topology fromsimConfig.pl(see description for
generate-config.plabove) and the libraryconfigTools.pl.Furthermore, it reads the text
file configbwin.txtand the simulation output data stored in text files. It writes summaries
to text files and some Matlab scripts (.m-files). Matlab executes the generated scripts in
order to produce figures in the format Joint Picture Expert Group (JPEG), Encapsulated
PostScript (EPS) and the matlab figure format FIG. Matlab returns the control toget-
results.plwhich generates a LATEX file (.tex). LATEX is called, which reads the.tex file
and the EPS figures and creates PostScript (PS) and Portable Document Format (PDF)
documents (with help of the toolsdvipsandps2pdf). The JPEG figures are included in
the HTML overview pages generated by the scriptget-results.pl.

5.3.1 C++ Classes for Configuration

The C++ template classes used for storing the configuration data are described and vi-
sualised with UML diagrams in this section. The overview is presented in Fig. 5.5: the
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# ATTENTION: File automatically generated by
# ’generate-config.pl’
#
string configScript bwinconfig.pl
#
int numSpecifiedSources 475
int MSS 1460
int MTU 1500
#
int sourceDistr.00 0 2 1
int sourceDistr.01 2 0 3
int sourceDistr.02 1 5 0
#
double throughputMat.00 0.0 7.2 5.5
double throughputMat.01 5.8 0.0 11.1
double throughputMat.02 4.6 15.8 0.0
#
string srcAddr.0 1.2.0.1 1.2.0.2 1.2.0.3 1.2.0.4
string srcAddr.1 2.1.0.1 2.1.0.2
string srcAddr.2 3.1.0.1 3.1.0.2 3.2.0.1

Figure 5.3: Example for configbwin.txt.

template classesPtet6Config, GenericMatMap, GenericMatandGenericVecare derived
by the template classPtet6BaseClass, a class that provides an interface for test methods
as well as warning and aborting the simulation with an error message. The template class
Ptet6Confighas three members of the template classGenericMatMap, one for each type
integer, double and string which hold the configuration data. The template classGener-
icMatMap has one or more members of the template classGenericMat. The template
classGenericMatholds one or more members or the template classGenericVec.

A detailed UML diagram of the template classGenericVecis shown in Fig. 5.6. The
class owns a private membervector<T> from the Standard Template Library (STL) and
three public methods for copying the contents of the array to Ptolemy’s array states for
the types integer, double and string.

The template classGenericMatowns three private members (cf. Fig. 5.7): one STLvec-
tor of typeGenericVec<T>, an optional scaling factor stored in a double and a boolean
indicating whether or not to invert the value. The last two members can be used to specify
the values in a format more appropriate for the user and to use the scaling factor and in-
version (1/X) to transform it to the units required by the simulator. Example: a minimum
packet inter-arrival time is specified instead of a maximum link capacity; the capacity
can be calculated with a scaling factor and inversion asC = const/IAT. There are three
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get-results.pl

configbwin.txt

simulation data

Matlab

LaTeX

text files

.m-files

«create»

«create»

JPEG EPS, FIG«create»«create»

PS, PDF «create»

HTML«create»

configTools.pl

simConfig.pl

.tex«create»

Figure 5.4: UML sequence diagram of parsing the simulation results.

methods implemented calledcopyCol()for copying matrix columns into Ptolemy state
arrays, in addition to the copy methods ofGenericVec.

The template classGenericMatMapholds an STL map that connects string keys with
objects of typeGenericMatas private members, as shown in Fig. 5.8. Several matrices,
accessible via the string key, can be saved in an object of this class. The public method
keyExists()can be used to verify the existence of a matrix with a specific key. The public
methodgetMat()returns a pointer to the matrix associated with the key and thus gives
full access to the matrix contents.
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Ptet6Config
T

GenericVec
T

GenericMat
T

GenericMatMap
T

Ptet6BaseClass
+test(ostr:ostream &, ...): int
#warn(const char *, ...)
+abortRun(const char *, ...)

1..*

1

1..*

Figure 5.5: UML diagram class overview.

GenericVec
-vector<T>
+copy(IntArrayState)
+copy(FloatArrayState)
+copy(StringArrayState)

T

Figure 5.6: UML diagram of the classGenericVec.

The template classPtet6Confighas one private and static member of the template class
GenericMatMap(see Fig. 5.9). The member is static to ensure that the data exists only
one times in memory, even if many interface classes of typePtet6Configare allocated.
The public methodsreadConfig()andparseKeyAndIndex()are used to parse the filecon-
figbwin.txt, generated by the Perl script as described above. Three objects of the template
classPtet6Configare used in the simulation, one for each of the types integer, floating
point and string.
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GenericMat
-vector<GenericVec<T>>
-scalingFactor: double
-inversionFlag: bool
+copyCol(IntArrayState)
+copyCol(FloatArrayState)
+copyCol(StringArrayState)
+copy(IntArrayState)
+copy(FloatArrayState)
+copy(StringArrayState)

T

Figure 5.7: UML diagram of the classGenericMat.

GenericMatMap
-map<string, GenericMat<T>>
+keyExists(key:const string &): bool
+getMat(key:string &): GenericMat<T> *

T

Figure 5.8: UML diagram of classGenericMatMap.

5.3.2 Ptolemy Base Star

Ptolemy is structured in analogy to the objects in the solar system: the basic block is
called star, stars and galaxies can form a galaxy and the universe is composed of stars
and galaxies. A universe is a simulation unit that can be executed.

The UML class diagram forPtolemyBaseStaris depicted in Fig. 5.10. The class mem-
bers are present in all inherited stars:

• starId: a string identifier that is prepended in each line written to the log file

• logDir: the destination directory for the log files

• verbose: the verbosity level of debug output, values in the range[0, 3]

Ptet6Config
-static GenericMatMap<T>
+readConfig(fileName:const string): int
+parseKeyAndIndex(str:string &): int

T

Figure 5.9: UML diagram of the classPtet6Config.
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• usePtet6Config: a boolean indicating whether or not to use the configuration stored
in Ptet6Config

• Ptet6ConfigDefaults: a string array state for specification of which state should be
filled with which values fromPtet6Config; a pair of state name and key plus the
matrix row and column index.

• intCfg, dblCfgandstrCfg: static members of the template classPtet6Config<T>
for the three types int, double and string to allow easy access within each derived
star.

Ptet6BaseStar
+starId: string
+logDir: string
+verbose: int
+usePtet6Config: bool
+Ptet6ConfigDefaults: StringArray
+intCfg: Ptet6Config<int>
+dblCfg: Ptet6Config<double>
+strCfg: Ptet6Config<string>
+setPtet6Config()
+registerSetup()
+unregister()

Figure 5.10: UML diagram of the starPtet6BaseStar.

The starPtet6BaseStarwas developed to manage the following issues for all inherited
stars:

• Opening and closing of files for writing log messages: The methodsregisterSetup()
andunregister()allocate one file (Ptolemy ostream,pt_ofstream) per class at run
time in order to save file handles. The same file handle is used by all instances of
the same class. This is used to save file handles which are limited by the operating
system. The Linux kernel typically allows up to 1000 files to be opened per pro-
cess. An easy access for writing to this file is provided by the macroSTARLOG(X),
including the automatic prepending of thestarId in each line that identifies each
class instance.

• User defined automatic configuration: the methodsetPtet6Config()evaluates the
contents of the string array statePtet6ConfigDefaults. The state contains value
pairs: the first value is the state name of which the value should be replaced by a
value from the global configuration dataPtet6Config<T>. The second value spec-
ifies the key and (optional) row and column index of the data (cf. Fig. 5.3).
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5.4 Implementation of Simulation Models

The structure of the simulation scenarios implemented in this work is described in this
section. One simple model, the so called bottleneck scenario, is depicted in Fig. 5.11; it
servers as demonstration object to explain the architecture and functionality in the fol-
lowing. A more detailed discussion of the network aspects of this model can be found in
Section 5.6.1. The scenario consists of the starPtet6Config, which mainly implements
an actor for the classPtet6Configdescribed in Section 5.3.1, and two different galaxies:
thecoreNode(labels S1 – S6) and theclientNode(labels R1 and R2).

Ptet6Config

busbus busbus

clientNode

clientNode

clientNode

clientNode

clientNode

clientNodecoreNode coreNode

S2 R2R1

S1

S3

S4

S6

S5

Figure 5.11: Universebottleneck.

The core node implements a router with an output queueing system as displayed in
Fig. 5.12. The output queueing system is implemented via the galaxyrouterPort and
Ptolemy’s comfortable scaling facility: the Higher Order Function (HOF) star called
MapGr reads the number of replacement blocks (for the connected blockrouterPort)
from the width of the bus connecting the HOF star to the router, such that adding an out-
put port to the router can be done by simply changing the value of the bus width marker.

The galaxyrouterPort contains a queue, a server and a delay as shown in Fig. 5.13.
The queue implements the First In First Out (FIFO) discipline and measures the prob-
ability density function of the queue arrival occupancy via a histogram and is therefore
calledHistFifoQueue. The Inter-Arrival Times (IAT) can be also measured by the queue.
The so calledStatServermeasures the statistics of the Inter-Departure Times (IDT). The
throughput is measured via a counting process which counts the number of bytes for a
fixed time frame. TheDelaystar models the propagation delay between this port and the
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MapGr

bus

IPRouter

routerPort

Figure 5.12: GalaxycoreNode.

next node. The output of theStatServeris fed back to thedemandinput of the queue.
This implements the feedback that informs the queue that the server is free to serve the
next packet.

demand

inData outData

size overflow

StatServer

HistFifoQueue

Delay

Figure 5.13: GalaxyrouterPort.

A node equipped with network clients, the so calledclientNode, is shown in Fig. 5.14.
The difference betweencoreNodeandclientNodeis that the latter is equipped with the
client galaxy and a HOF starMapGr connected to the router viaBusSplitandBusMerge
stars. The number of client galaxies can be controlled by the bus widths of the connection
wires.

The client galaxy in Fig. 5.15 consists of the two starsHTTPSourceandTCPSocket,
which implement HTTP, TCP, and IP layer for the client. The HTTP source actually acts
as client or server for a single connection, a state value determines the actual behaviour.
The IP layer is also implemented in the starTCPSocket, since it requires only a marginal
extension of the functionality but is more efficient as opposed to an implementation in a
separate star, see Section 5.5.
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Figure 5.14: GalaxyclientNode.
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Figure 5.15: Galaxyclient.

5.5 Optimisation of Simulation Speed and Memory Re-
quirements

The simulation experiments with the node architecture described in Section 5.4 have
shown that memory consumption and simulation time is a severe issue: a simulation with
24430 sources requires about 2660 MB of memory and is approx. 9400 times slower
than real-time. A new architecture for theclientNodewas developed which is presented
in this section in order to overcome the abovementioned performance problems. The
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clientNode(cf. Fig. 5.14) was replaced by the so calledclientServerNodeas displayed in
Fig. 5.16. The galaxy webservers and the starMultiHttpTcpClientimplement the func-
tionality that was implemented before in the HOF starMapGr and theclientgalaxy. The
starHTTPSourcein the old design acts as client and server, depending on a state value.
The functionality of server and client is implemented separately now. The server and
queue stars are used as rate limiters for the input of the clients and webservers. The im-
plementation of HTTP and TCP was completely moved into separate classes such that
the starMultiHttpTcpClientcan allocate a vector with an arbitrary amount of HTTP/TCP
clients.

bus

etc.

distribute collect

MapGr

BusMerge

bus

routerPort

bus

bus

IPRouter

MultiHttpTcpClient

buswebservers

BusSplit

StatServer

StatServer

HistFifoQueue

HistFifoQueue

Figure 5.16: GalaxyclientServerNode.

The galaxywebserversis presented in Fig. 5.17. It contains aConnectionDistributorthat
distributes the incoming IP packets with a modulo operation on the senders IP address
to theHTTPServer. This type of load-balancing ensures that all packets of one connec-
tion are forwarded to the same server. However, it can not be guaranteed that the load
is distributed uniformly over all webservers in the pool. The number of HTTP servers
can be adjusted via the HOF starMapGr. The HTTP server is able to handle an arbitrary
amount of TCP connections with a vector of TCP socket classes. The output bandwidth
of the server pool is limited by the queue and the server. Each webserver has a limited
capacity of 100 Mbit/s and the complete pool is connected via a 1 Gbit/s line to the
router. A separate line with 1 Gbit/s connects all clients to the router.

The savings gained with the new design are summarised in Table 5.1. The values in the
columns “Speed” contain the speed factor, the factor that the simulation is slower than
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Figure 5.17: Galaxywebservers.

real time. A gain of up to 436 % in the required memory and up to 278 % in simula-
tion speed could be gained with the new design. Furthermore, the new design allows
simulations with a larger number of clients and thus a more realistic simulation of large
networks with the same amount of available memory.

Table 5.1: Comparison of simulation speed and memory requirements of origi-
nal and optimised architecture.

# Sources RAM1 RAM2 Speed1 Speed2 RAM Gain Speed Gain

682 73 33 181.5 101.4 221 % 179 %
2107 205 83 424.0 153.5 247 % 278 %
24430 2660 610 9400.0 4700 436 % 200 %

It can be concluded from this experience that it is advisable to avoid using the HOF stars
for thousands of galaxies/stars in Ptolemy since this goes along with a large memory
overhead. Furthermore, stars with a small functionality should be avoided in order to
prevent generating too many events for the scheduler, especially if these events could be
saved and replaced by a direct function call. The functionality should be rather imple-
mented in C++ classes such that the star acts as a handler for several classes like different
protocols or several instances of the same protocol.

A further increase in simulation speed can be gained by inspecting the implementation
of the TCP timers. Three options are possible:

• one timer per connection, timer is active even when TCP connection is closed

• one timer for all connections handled by the same star instance

• one timer per connection, only active when TCP connection is open.
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All three possibilities are associated with advantages and disadvantages. The first vari-
ant is the easiest for implementation but the overhead is very large, especially when the
off-time is much larger than the on-time, as it is the case for the WWW user model. In
this case the number of timer events while the connection is closed can reach (or even
exceed) the same order of magnitude as the number of necessary timer events plus the
number of events for sending and receiving packets. In other words: it is very inefficient
when the off-time is large.

The second variant is also simple to implement but it could lead to significant errors
when the packet loss rate is higher: all TCP connections that have encountered a time-
out in the same time-slot (defined by the granularity of the TCP RTT timer, e.g. 100 ms
used here) would start the retransmission at the same time. This could lead again to mul-
tiple losses and therefore to a behaviour that is completely different from reality, where
the clients have uncorrelated timers. However, if the buffer capacity is large enough or
if the network utilisation is low this option can be used to speed-up the simulation. The
speed increase of the second method versus the first method amounts to a factor of 10
for 24430 clients.

The third variant is more complicated to implement since it is necessary to know the
state of the connection when restarting a timer. However, this strategy does not intro-
duce errors with respect to reality and the simulation speed is only reduced by approx.
10 % with respect to the second method.

The second method was used in all simulations since the third method was not stable
when the simulations had to be scheduled. In most cases the loss probability was lower
than 0.1 % so that it can be assumed that the error introduced by a common timer for
all TCP connections is very small. The results of some simulations, where the result was
unexpected, have been validated by a simulation with individual timers (e.g. high Hurst
parameter values for high link utilisation in Sec. 6.4.3).

5.6 Network Simulation Models

Three simulation scenarios are used in this work: an advanced version of the well-known
bottleneck scenario (Sec. 5.6.1), a so called parking-lot model with four main links and
different RTTs and hop-counts for the flows (Sec. 5.6.2) and the B-WiN model, a large
network model that is representative of an existing backbone (Sec. 5.6.3, see also the
technical report [BSK01]). The three scenarios can be characterised as follows:

• The 6 flows in the bottleneck have three different round-trip times but the same
hop-count and share all the same bi-directional link. The target traffic matrix is
uniform, 11 Mbit/s per flow. The total throughput is 66 Mbit/s, the maximum link
utilisation is 66 %.
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• The 16 flows in the parking-lot scenario have different round-trip times, different
hop-counts and do not share all the same link. The target traffic matrix is uni-
form, 8.5 Mbit/s per flow. The total throughput is 136 Mbit/s, the maximum link
utilisation is 68 %.

• The 110 flows in the B-WiN have different round-trip times, hop-counts and dif-
ferent routes. The target traffic matrix is completely non-uniform, the values are
ranging from 0.44 Mbit/s to 126.78 Mbit/s. The total throughput is 1.44 Gbit/s,
the maximum link utilisation is 98.4 %.

The sketch shown in Fig. 5.18 shows other aspects of the same scenario shown already
as schematic of the Ptolemy universe in Fig. 5.11. The representation with a sketch for
the network scenarios is used in the following because it allows an easier overview and
presents more information describing the network properties than the Ptolemy plots.

The connection of subnets to the core network is modelled as follows: every node is
equipped with two internal links with a capacity of 1 Gbit/s and propagation delay of
0.1 ms to which the local clients and webservers are connected, respectively. Each web-
server has a throughput limitation of 100 Mbit/s.

5.6.1 Bottleneck Scenario

All flows share the same link between two routers R1 and R2 in the bottleneck scenario
shown in Fig. 5.18. Different link delays are configured so that the flows experience
different minimum RTTs: the capacity of the bottleneck link (“R1<->R2”) was set to
50 Mbit/s and the propagation delay to 8 ms. These values are denoted as “50/8” in
Fig. 5.18. The client nodes S1, S2 and S3 are connected via links of capacity 100 Mbit/s
and propagation delay 1 ms, 5 ms and 10 ms, respectively. The installed flows are de-
picted as dashed lines. The target traffic matrix is set to 11 Mbit/s for each flow re-
sulting in an average utilisation of 66 % of the bottleneck link in both directions. Each
clientServerNode is equipped with two webserver modules.

5.6.2 Parking-Lot Scenario

The parking-lot scenario visualised in Fig. 5.19 has the advantage of being already com-
plex enough to show the effect of different RTTs, hop counts and loss rates but still being
simple enough to provide fast simulations and an easy interpretation of the results. All
links between the source nodes S1 – S12 and the router nodes R1 – R5 are configured
with a rate of 1 Gbit/s and a propagation delay of 1 ms so that there is no bottleneck
there. The routers are connected via links with 50 Mbit/s. The links from R1 to R2 and
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Figure 5.18: Topology of the bottleneck simulation model (annotationC/D: link
capacityC in Mbit/s and propagation delayD in ms).

R4 to R5 have a propagation delay of 8 ms, the remaining two links are configured with
a propagation delay of 24 ms. 2 webservers are allocated per clientServerNode.
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Figure 5.19: Topology of the parking lot simulation model (annotationC/D:
link capacityC in Mbit/s and propagation delayD in ms).

The specified traffic matrix for the parking-lot scenario is again very simple: all flows
should achieve a throughput of 8.5 Mbit/s which results in a maximum average link load
of 68% (between R2 and R4). Although this traffic matrix is simple, it is nevertheless not
trivial to find the corresponding number of clients for all flows: due to TCP’s sensitivity
to different round-trip times and packet loss probability values, the six-hop connections
can not achieve the same throughput as the shorter connections, so that relatively more
sources are required for longer flows.
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5.6.3 B-WiN Scenario

The B-WiN scenario is very complex (cf. Fig. 5.20) and the simulation speed is signifi-
cantly lower than for the bottleneck and parking-lot scenario. Moreover, it is sometimes
hard to interpret the results because it is not easy to get an overview over 110 competing
flows in the meshed network. The B-WiN is a model (of an early state) of the network
that connects all German universities and research institutes. A complete traffic matrix
was measured by the provider “Deutsches ForschungsNetz” (DFN).
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Figure 5.20: Topology of the B-WiN simulation model (annotationC/D: link
capacityC in Mbit/s and propagation delayD in ms).

The results of simulations with this model can be regarded as a test case to evaluate
real network behaviour. The model consists of 11 nodes connected via 18 bi-directional
links with a total capacity of 3.9 Gbit/s and a total measured throughput of 2.17 Gbit/s
(1.44 Gbit/s routed over several links). The link capacities range from 53 Mbit/s to
167 Mbit/s and the link delays from 0.5 ms to 18.5 ms. 20 webservers are allocated
at node “US”, 10 web servers at node “F” and 5 web servers at all remaining nodes.
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Flows from all nodes to their respective neighbour nodes exist, which results in a total of
110 flows. The routing was optimised in order to keep the traffic load below 70% on all
links except for those connecting the USA (node “US/11”) with the German part of the
network. These links were allowed to have a load over 90%; the maximum link load was
measured on link “US->K” withρ = 98.4%. The provider realised that the utilisation
could not be kept below 70 % on those links: whenever the capacity was increased by
the provider, an increase of the traffic volume was observed in the next months, driving
the utilisation soon again close to the capacity of the links.

The measured traffic matrix (average throughput per flow over one month in Mbit/s) is
depicted in Fig. 5.21. The range of values is very large, the minimum value is 0.44 Mbit/s
and the maximum value is 126.78 Mbit/s. Further, the flows with the largest throughput
are the flows from node “US” to all other nodes and the flows originating at node “F”.
The majority of the traffic are downloads from the USA and from other servers located
outside the B-WiN, reachable via the cross-interchange point in Frankfurt (node “F”).
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Figure 5.21: Measured traffic matrix of the B-WiN, Jan/Feb 2000.
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Simulation Results

The simulation results are collected and discussed in this chapter. All common simu-
lation parameters are listed in Sec. 6.1. The performance evaluation of the algorithm
for the allocation of clients used for matching the average traffic load is presented in
Sec. 6.2. The convergence speed of the iterations used to increase the accuracy is dis-
cussed in Sec. 6.2.4. The assessment of the matching of higher order moments of the
traffic statistics to measurements, the coefficient of variation and the Hurst parameter, is
presented in Sec. 6.4. One special case of high Hurst parameter values at high link loads
is discussed in Sec. 6.4.3.

The evaluation of reducing the simulation complexity by reducing the number of clients
is presented in Sec. 6.5. The simulation study shows the change in the measured values
for the average traffic load, the loss probability, the coefficient of variation, the Hurst pa-
rameter and the end-to-end delays in dependence on the number of clients. The potential
of the optimisation results are discussed and the conclusions are presented.

6.1 Common Simulation Parameters

The common simulation parameters of all simulations are listed in Table 6.1; deviations
from the parameter values in the table are mentioned explicitly in the respective section,
if any. The simulation time was set to 700 s and the measurements were re-initialised at
time t = 100 s to eliminate the measurements of the transition phase, before the simu-
lation reaches a more or less steady state. Therefore, the effective simulation time was
10 minutes (700 s minus 100 s initialisation phase).

69
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Table 6.1: Common default parameters of all simulations.

HTTP Revision 1.1
Persistent connections yes
Parallel connections no
Request packet size distribution const.
Request packet size, average 360 Bytes
Object number distribution geometric
Object number, average 6
Objects size distribution TPT
Object size, average 10 KB
Object size, shapeα 1.5
Object size, truncation levelT 20
Object size, min 10 Bytes
Object size, max 100 MB
Off-time distribution neg. exponential
Off-time, average 40 s

TCP Revision NewReno
MSS 1460 Bytes
CWND_MAX 65535 Bytes
Slow-start threshold init 65535 Bytes
Receive window 65535 Bytes
Slow timer granularity 100 ms

IP MTU 1500 Bytes
Router buffer 2500 Packets

General Sample interval, counting process 2.5 ms
Simulation time 700 s
Reset time for measurements 100 s
Maximum IP Throughput per connection 10 Mbit/s
Maximum IP Throughput all clients per node 1 Gbit/s
Maximum IP Throughput all webservers per node 1 Gbit/s

6.2 Generating Prescribed Traffic Intensities with HTTP/TCP
Sources

The performance of the algorithm for allocation of clients introduced in Sec. 4.1 is dis-
cussed in this section. The deviation of the traffic from the target traffic matrix for the
B-WiN scenario is shown in Fig. 6.1. The absolute deviation∆ = t pi j ,given− t pi j ,measured
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and the relative deviationδ =
(
t pi j ,given− t pi j ,measured

)
/t pi j ,given to the target traffic

matrix t pi j ,given (cf. Fig. 5.21), are shown in Fig. 6.1 (a) and (b), respectively. The
absolute deviation range is[−3.92, 1.46] Mbit/s and the relative deviation range is
[−6.49, 16.89] %.
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Figure 6.1: (a) Absolute deviation∆ and (b) relative deviationδ from the given
traffic matrix, B-WiN,v = 60 KB, to f f = 40 s andα = 1.5.

Comparing Fig. 6.1 (a) and (b) it becomes obvious that the flows with a large absolute
error (node “US”) have a small relative error and the flows with a large relative error have
a small absolute error. This is induced by the large range of the values in the target traffic
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matrix: it is very likely that a flow with a very small target throughput of e.g. 0.4 Mbit/s,
where the traffic will be generated by few connections, has a large relative error. A time-
out of a single connection could provoke already a large change in the throughput of this
flow. However, this error has a very small contribution to the overall network traffic and
can thus be neglected. If the target throughput of a flow is very large on the other hand,
e.g. 126.8 Mbit/s, it is more likely to achieve a large absolute error. The relative error
in this flow is rather small since many connections contribute to the throughput and it is
normalised by a large value.

The absolute and relative deviation are evidently not very good parameters to judge the
quality of the traffic match. Therefore, three error measures are introduced:

• the sum of the differences normalised to the sum of the throughput matrix values
∆sum[%]:

∆sum= 100·∑
i, j

(
t pi j ,sim− t pi j ,given

)
/∑

i, j
t pi j ,given, (6.1)

• the sum of the absolute differences normalised to the sum of the throughput matrix
values∆sum[%]:

∆sum,abs= 100·∑
i, j

∣∣t pi j ,sim− t pi j ,given
∣∣/∑

i, j
t pi j ,given, (6.2)

• and the maximum absolute error in percent of the given throughput∆max,abs:

∆max,abs= max
i, j

{
t pi j ,sim− t pi j ,given

}
/t pi j ,given. (6.3)

The measure∆sum is an indication whether the total number of clients matches the total
given throughput. Two cases must be considered, if∆sum is close to zero:

• the deviation between prescribed and measured throughput matrix could be close
to zero or

• positive and negative errors add up to a value close to zero.

The total traffic volume and therefore the total number of clients is in both cases close to
the optimal value, but the distribution of the clients over the flows might not be close to
the optimum in the second case.

The measure∆sum,abs characterises the overall deviation between prescribed and simu-
lated throughput matrix. The parameter∆max,abs shows the largest absolute error in the
whole network. These two error measures∆sum,absand∆max,abshave the potential to fully
characterise the quality of the solution.
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The performance evaluation is carried out for all combinations of the parameters down-
load volumev = {60, 100, 150, 200} KB and off-timeto f f = {10, 20, 40} s for several
seeds of the random number generator. The parameter pairv = 60 KB andto f f = 40 s
is of major importance here, since it matches approximately a measured user model
[CL99]. However, it can be expected that the average download volumev is increasing
over time, according to the increase of the Internet access bandwidth of the users. It can
be expected that the error is larger for a large download volume: TCP operates more in
congestion-avoidance phase than in slow-start phase in this case, but it is still not likely
that it reaches steady state. Therefore, a larger deviation from the estimated throughput
can be expected.

The influence of the off-timeto f f on the accuracy is two-fold: the sum of on- and off-time
in Eq. (4.1) is dominated by the off-time and thus larger values of the off-time should
lead to a smaller impact of estimation errors of the on-time. On the other hand, smaller
values of the off-time go hand in hand with more on-off cycles that can be measured in
the same simulation time. Therefore, the simulation converges faster for small off-time
values. However, it is not clear which of the two effects is dominating and under which
condition.

It is assumed in the following that the average values of simulation results with different
seeds follow approximately a normal distribution. The assumption is reasonable since the
simulation results from different runs (with different seeds) are uncorrelated. Further, the
difference of independent average values is likely to follow a normal distribution.

The distributions of the resulting measurements are visualised with boxplots (cf.
Fig. 6.2): the box contains 50 % of the measurement values, the average is depicted
with a ’+’ symbol and the horizontal line in the box represents the median value. The
number of samples is annotated to the right of the box. Theconfidence intervals of the
average valueare represented by dashed horizontal lines following the equation

ciavg,± = m± t95 ·
s√
N

, (6.4)

wheret95 is the student-t distribution value forN degrees of freedom,N is the number
of samples,m represents the estimated average value

m=
1
N
·

N

∑
i=1

xi , (6.5)

ands is the unbiased estimate of the standard deviation

s=

√
1

N−1

N

∑
i=1

(xi −m)2. (6.6)
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The upper and lower horizontal lines (“whiskers”), which are connected with vertical
lines to the box, represent the 95 %confidence interval for the value rangeof the mea-
surement values (width of the distribution). That is, 95 % of all measured values are
expected to fall in this range:

ci± = m± t95 ·s. (6.7)

The minimum and maximum values are marked with a ’+’ if the corresponding value is
outside the confidence interval for the value rangeci±.

All parameters are kept constant when the evaluation is performed for different seeds.
Also the allocation of clients is the same for all seeds with the same parameter set. There-
fore, the performance of the client allocation algorithm (described in Sec. 4.1) should be
judged by the average and median value. The width of the confidence interval is an in-
dication of the quality of the random number generator and of the convergence of the
simulation, but it is not an evidence for the accuracy of the estimated number of clients.
The average and median value are an indication of a potential bias caused by an over- or
underestimated number of clients and are thus meaningful quality measures.

The tolerable error bounds need to be discussed: very tight error bounds are always wel-
come. However, a simulation study for performance evaluation of design alternatives for
a network provider would take some months to be completed and the average throughput
changes every month. Even if the simulations for the final decision in the study would
take the latest data, e.g. the average throughput matrix of the previous month, it can be
expected that the current month’s throughput differs by some percent and therefore the
simulation is always behind the times. Reasonable error bounds for the considered prob-
lem under the circumstances described above are∆sum,abs≤ 5 % and∆max,abs≤±10 %
for the average value of all seeds.

6.2.1 Bottleneck Scenario

The boxplots of the absolute overall error measure∆sum,abs (cf. Eq. (6.2)) are visualised
in Fig. 6.2. The average absolute error is in all cases below 5 % and in most cases even
below 3 % indicating that the bias of the estimated number of clients for all flows is very
small in the bottleneck scenario. The smallest error occurs forv = 60 KB in Fig. 6.2 (a);
the error increases with larger download volumes (cf. Fig. 6.2 (b)-(d)) as expected.

The two oppositional effects determining the accuracy depending on the off-time –
the larger number of samples for small off-times on one hand and the higher con-
vergence speed for large off-times on the other hand – play an important role for
v = {150, 200} KB (Fig. 6.2 (c) and (d)): the effect of the convergence speed dominates
the accuracy and therefore the error is larger for large values ofto f f . The two effects are
balanced for small download volumesv = {60, 100} KB, no clear tendency is visible.
The average error is also higher forto f f = 40 s andv = {150, 200} KB than in the other
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Figure 6.2: Sum of absolute errors in percent of throughput sum, Bottleneck,
α = 1.5.

cases, which seems to indicate a bias in the estimation leading to a slightly larger error
for large off-time values and large download values.

The boxplots of the maximum absolute error∆max,abs (cf. Eq. (6.3)) are depicted in
Fig. 6.3. The average throughput of a single connection is in most cases slightly under-
estimated – most error values are positive values with the exception ofv = 60 KB and
to f f = {10, 20}. However, the average of the maximum error is in all cases smaller than
±10 % and therefore it can be concluded that the accuracy requirements are met by the
estimated number of connections for the bottleneck scenario.
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Figure 6.3: Maximum deviation from prescribed throughput matrix, Bottleneck,
α = 1.5.

6.2.2 Parking-Lot Scenario

The quality of the traffic match is very similar for the parking-lot scenario shown in
Fig. 6.4 as compared to the bottleneck scenario. The average of∆sum,abs is approximately
constant forv = 60 KB, but the error measure increases for larger values ofv as well as
for increasing values ofto f f in qualitatively the same manner as already discussed for
the bottleneck. Also the absolute values of the average∆sum,abs are very similar, there
is only one exception: the average value of∆sum,abs reaches 6 % forv = 200 KB and
to f f = 40 s and therefore exceeds the error threshold∆sum,abs≤ 5 %.
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Figure 6.4: Sum of absolute errors in percent of throughput sum, Parking-Lot,
α = 1.5.

The average of the maximum absolute error of the traffic match in Fig. 6.5 is in gen-
eral larger for the parking-lot as for the bottleneck. Many values are very close to
the 10 % threshold and the threshold is exceeded in two cases (v = {150, 200} KB
and to f f = 40 s). The average of the maximum error is always positive as in most
cases the bottleneck, which is indicating that the average throughput per connections
is slightly under-estimated and thus too many clients are allocated to produce the pre-
scribed throughput.
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Figure 6.5: Maximum deviation from prescribed throughput matrix, Parking-
Lot, α = 1.5.

6.2.3 B-WiN Scenario

The results from the B-WiN scenario simulations shown in Fig. 6.6 reveal smaller aver-
age values for∆sum,absas compared to the results of bottleneck and parking-lot scenario.
Also the confidence interval for the average and the box width are smaller and in all
but one case even the confidence interval for the value range does not exceed 5 %. This
indicates that the overall traffic match is significantly better than for the bottleneck and
parking-lot scenario.
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Figure 6.6: Sum of absolute errors in percent of throughput sum, B-WiN,α =
1.5.

The average of the error shown in Fig. 6.7 is also lower than in the parking-lot scenario
(cf. Fig 6.5). The average value is very small and negative forv = 60 KB indicating a
small over-estimation of the average throughput in this case. Also the confidence inter-
vals are very small in this case. The average of∆max,absand the value range increases for
larger download volumesv. The average exceeds the threshold of 10 % in three cases for
to f f = 40 s,v = {150, 200} KB and forto f f = 20 s andv = 200 KB.

The error values are in most cases smaller than for the bottleneck and parking-lot sce-
nario. The opposite was expected, since the complexity of the B-WiN scenario is sig-
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Figure 6.7: Maximum deviation from prescribed throughput matrix, B-WiN,
α = 1.5.

nificantly higher than those of the two other scenarios. The reason for this result is that
the relatively large relative errors of the flows with a small target throughput have only
small influence on the error measures∆sum,absand∆max,abs. Further, the number of flows
is very large in the B-WiN such that the error of a single flow has only a small impact on
the overall error.

Another reason for this behaviour could be that the total number of samples drawn from
the TPT distribution is much smaller for bottleneck and parking-lot scenario as compared
to the B-WiN, as discussed in Sec. 2.4. Therefore, the reason for the unexpected result
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could be that the random numbers for the file sizes did not reach the same convergence
state for the different scenarios.

6.2.4 Convergence of Iterations

Iterations can be used according to the algorithm described in Section 4.1 in order to
increase the accuracy of matching the prescribed traffic matrix. The performance of the
iteration – in terms of convergence to the specified values – is shown in this section.

The accuracy after several iterations is limited by the variability of the results of each
simulation, as illustrated in the previous sections: the resulting deviation from the tar-
get throughput differs to some extend for different seeds but for the same allocation of
clients (the height of the confidence intervals). Therefore, if a simulation in iteration step
k results in a smaller throughput as the target value for one flow, the update for next iter-
ationk+1 will increase the number of clients for this flow. This reaction is wrong, if the
smaller throughput was not a result of an error in the estimation of the required number
of clients, but caused by the large variability of the results. The result is that the error is
oscillating after a certain number of iterations around zero. The oscillation amplitude is
determined by the variability of the results with the same seed. The weighting constant
c in Eq. (4.20) smoothes the oscillation at the expense of slower convergence.

The convergence behaviour is evaluated for three different settings:

• The parameters responsible for the largest errors in Sec. 6.2 (download volume
v = 200 KB andto f f = 40 s) are used to show how far the error can be reduced
with iterations. The dependency of the convergence on the shape parameterα, the
weighting constantc and the simulation time is shown in Fig. 6.8.

• The convergence behaviour for realistic parameter settingsv = 60 KB, to f f = 40 s
and two different values for the buffer capacity is depicted in Fig. 6.9.

• One case with a “very bad starting situation” is considered as the worst case: a
small buffer capacity of only 20 packets and an off-time ofto f f = 20 s is used
for the client allocation algorithm but the clients were configured for an off-time
of to f f = 40 s. This setting is used to show the convergence behaviour when the
initial client allocation is far away from the optimum (see Fig. 6.10). This case is
selected to visualise the convergence in a case, where all estimations match very
badly, much worse than ever experienced in all simulation studies performed by
the author.

The convergence is visualised with four plots where the abscissa represents the step
countk of the iteration. The total number of clients (a), the total throughput difference
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∆sum(b), the total absolute throughput difference∆sum,abs (c) and the maximum absolute
error∆max,abs (d) are shown in Fig. 6.8.
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Figure 6.8: Convergence of iterations, parking-lot, buffer capacityB = 200
packets,v = 200 KB, to f f = 40 s.

The total throughput difference∆sum is in all cases positive for the first step of the iter-
ation, declines in the following steps and oscillates around zero (cf. Fig. 6.8 (b)). The
oscillation amplitude depends on the shape parameterα: the traffic is only short-range
dependent forα = 2 and long-range dependent forα = 1.5. The smaller the value of
α, the more oscillations can be expected for a constant simulation time (cf. Sec. 2.4,
[CL97]). The curves withc = 0.9 are converging faster but with a stronger tendency to
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oscillations as compared to the curves withc= 0.6. The iterations with a simulation time
of 1400 s (twice the amount as the other simulations, performed withc = 0.9) indicates
that a longer simulation time results in more stable values, as expected.

The behaviour of the absolute error∆sum,abs in Fig. 6.8 (c) displays that the two curves
with α = 1.5 are so instable that the oscillation leads to states with a larger error than
the initial state. The absolute error value is still tolerable but the iterations are of no use
in this case. The iterations can improve the results forα = 2.0 and the long simulation
with c = 0.9. The simulations withc = 0.6 show again the best convergence behaviour.
The maximum absolute error∆max,abs depicted in Fig. 6.8 (d) gives one more evidence
that the iteration converges only forα = 2 to smaller error values and thatc = 0.6 and
long simulation times can avoid turbulent oscillations.

The evaluation with realistic parameter settings (v= 60 KB, to f f = 40 s) and for a buffer
capacity ofB = 200 packets, depicted in Fig. 6.9, reveal that the oscillations have a
significantly smaller amplitude than forv = 200 KB in Fig. 6.8. The simulations with
c = 0.6 also converge slower and with less pronounced oscillations. The simulations
with a smaller buffer capacity ofB = 20 packets experience a packet loss probability of
approx. 2.3 %. The packet loss probability is not estimated and taken into account by
the algorithm for allocation of clients (see Sec. 6.2). Nevertheless, already the second
iteration step yields satisfying results.

The convergence behaviour for the “bad starting point” is shown in Fig. 6.10. The sim-
ulations with correct starting point and buffer capacityB = 20 packets shown already
in Fig. 6.9 are plotted here again as reference. The curve denoted with ’*’ in the legend
corresponds to the artificially bad starting point.

The curves with bad starting point experience an initial error of approx. 50 % as could
be expected by specifying an off-time of 20 s instead of 40 s. However, the iterations
converge fast towards an error of zero and the simulation reaches a region with tolerable
error values in the third step forc = 0.9 and in the fifth step forc = 0.6.

The results of the iterations can be summarised as follows: the iterations are converging
successfully and fast if the variability of the traffic is low. This can be achieved by setting
α = 2 for the iterations. Smaller values forα can be used after the iterations, once the op-
erating point has been reached. The average download volumev also has an influence on
the variability, as already mentioned above: the variability is much lower forv = 60 KB
as compared tov= 200 KB. This was reflected by a smaller oscillation amplitude during
the iterations. Furthermore, long simulation runs improve the convergence.

Therefore, the following strategy for using iterations to increase the accuracy of the traf-
fic match can be derived from the measurements:

• The first simulation should be used evaluate whether or not iterations should be
used at all to improve the match of the prescribed traffic.
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Figure 6.9: Convergence of iterations, parking-lot,v = 60 KB, to f f = 40 s.

• The iterations should be performed with a reduced variability of the power-tail
distributed random variables (e.g.α = 2) to increase convergence and reduce os-
cillations.

• The weighting constant should be set to a value close to one (e.g.c = 0.9) for
large deviations andc should be reduced when reaching smaller error values to
avoid strong oscillations.

• Increasing the simulation time reduces the number of iterations required to reach
a given error threshold. However, the simulation has to terminate within a reason-
able time; a compromise has the be found here.
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Figure 6.10: Convergence of iterations, parking-lot,v = 60 KB, to f f = 40 s, ’*’
denotes the simulations with a “bad starting point”.

• The number of clients for all flowsci j ,k of the last iteration conforming to certain
error bounds can be used to drive simulations with full variability of all random
variables, e.g.α < 2 (see also Sec. 4.1.3).

However, in most situations the estimations of the algorithm for allocation of clients are
accurate enough so that the first simulation shows already sufficiently small errors; no
iterations are required in this case.
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6.3 Comparison with the TCP-modified Engset Model

The simulation results are compared here with the TCP-modified Engset model [HLN97]
described in Sec. 3.4. Moreover, the estimation results based on the algorithm for allo-
cation of clients presented in Sec. 4.1 are given and discussed with the simulation re-
sults and the results of the TCP-modified Engset model. The performance comparison
is presented for the average download rate of a single client given in Eq. (3.15) for the
algorithm for allocation of clients and in Eq. (4.6) for the TCP-modified Engset model.
The algorithm for allocation of clients is referred to as algorithm and the TCP-modified
Engset model is called Engset model in this section for convenience.

The Engset model provides solutions for a single bottleneck model with homogeneous
round-trip times and fair bandwidth sharing between the connections. The solutions for
the Engset model are provided for the weighted average of the round-trip times since the
round-trip times are not homogeneous in the considered scenarios:

RTT= ∑n
i=1Ni ·RTTi

∑n
i=1Ni

. (6.8)

The number of flows is denoted byn, the number of clients in flowi by Ni and the
minimum round-trip time in flowi by RTTi (sum of propagation delays). Further, some
selected links are treated as if they were isolated from the rest of the scenario for the
B-WiN in order to analyse to which degree the results from Engset model can be used
in this way to predict the performance in a more complex network. The valuersim is the
weighted average of the average download rate of all clients with a connection routed
over the considered link

rsim = ∑n
i=1Ni · r i

∑n
i=1Ni

, (6.9)

with the average download rate of each clientr i in flow i (average over all seeds).

The comparison is performed for the bottleneck and for the B-WiN scenario (four se-
lected links) for the parameter setsto f f = {10, 40} s, v = {60, 200} KB and the four
possible combinations. The deviation from the average throughputrsim measured in the
simulation is presented as relative deviation

δEng = 100· (rEng− rsim)/rsim (6.10)

for the Engset model and

δalg = 100· (ralg− rsim)/rsim (6.11)

for the algorithm presented in Sec. 4.1.
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The results for the bottleneck scenario are given in Tab. 6.2. The relative deviation be-
tween the simulation results and the algorithmδalg is in the range[−2, 1.81] %. The
relative deviation between the simulation results and the Engset modelδEng is in the
range[−4.74, 0.30] %. Further, the deviation is in three of four cases larger for the En-
gset model than for the algorithm.

Table 6.2: Average throughput per clientrsim [kbit/s], bottleneck scenario,c =
10 Mbit/s,MTU = 1500 Bytes,B = 2500, link capacityC [Mbit/s], RTT [ms],
avg. page volumev [KB], to f f [s], target link loadρtarg [%].

Link C ρtarg RTT v to f f N rsim δalg δEng

R1->R2 50 66 40.57 60 40 2484 12.58 -2.00 -4.74
R1->R2 50 66 40.57 60 10 635 48.43 -0.28 -1.42
R1->R2 50 66 40.57 200 40 774 41.58 -1.77 -4.23
R1->R2 50 66 40.57 200 10 198 156.69 1.81 0.30

The results for four selected links of the B-WiN scenario are given in Tab. 6.3. The rela-
tive deviations are in the rangeδalg ∈ [−2.72, 4.39] andδEng∈ [−5.82, 2.42]. Moreover,
the maximum deviation of the Engset are larger than those of the algorithm. Further, the
Engset model provides better solutions for small off-time values than for large off-time
values and the quality of the estimations seems to be independent of the volume. How-
ever, the algorithm shows opposite behaviour: the deviation is larger for small off-time
values and for large volume values.

It can be concluded that TCP-modified Engset model and the algorithm for allocation
of clients provide estimations of the average throughput of a single HTTP/TCP client
which are quite close to the simulation results. However, the algorithm for allocation of
clients yields better estimations. Further, a link with flows experiencing different RTTs
can be modelled by the TCP-modified Engset model with the weighted average values
for the RTT, as presented above. However, the model can only describe the situation of
the bottleneck and the average of all clients. It is not possible to get information about
the different characteristics of the flows sharing the bottleneck from the Engset model.

6.4 Matching Traffic Statistics

This section deals with the problem of matching the higher moments of the traffic statis-
tics to measured values. Two traffic parameters are under focus in this section: the coeffi-
cient of variation of packet inter-arrival times and the Hurst parameter of a byte counting
process which are of major importance for communication networks (see also Sec. 4.2
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Table 6.3: Average throughput per clientrsim [kbit/s], B-WiN scenario,c =
10 Mbit/s,MTU = 1500 Bytes,B = 2500, link capacityC [Mbit/s], RTT [ms],
avg. page volumev [KB], to f f [s], target link loadρtarg [%].

Link C ρtarg RTT v to f f N rsim δalg δEng

K->US 167 30.3 39.05 60 40 4105 12.31 0.16 -2.60
K->US 167 30.3 39.05 60 10 833 47.02 2.81 1.62
K->US 167 30.3 39.05 200 40 1117 40.78 0.20 -2.31
K->US 167 30.3 39.05 200 10 287 153.76 3.88 2.42

F->Ka 74.2 67.4 4.23 60 40 3857 12.69 -2.21 -5.59
F->Ka 74.2 67.4 4.23 60 10 967 48.97 1.12 -2.47
F->Ka 74.2 67.4 4.23 200 40 1186 42.29 -2.72 -5.82
F->Ka 74.2 67.4 4.23 200 10 298 158.81 3.36 -0.94

US->M 155 81.6 39.78 60 40 9941 12.36 -0.24 -3.07
US->M 155 81.6 39.78 60 10 2536 48.28 0.08 -1.10
US->M 155 81.6 39.78 200 40 3041 41.59 -1.78 -4.23
US->M 155 81.6 39.78 200 10 778 156.79 1.80 0.31

US->K 167 98.4 39.07 60 40 13029 12.05 2.32 -0.58
US->K 167 98.4 39.07 60 10 3324 46.97 2.92 1.32
US->K 167 98.4 39.07 200 40 3972 40.04 2.05 -0.80
US->K 167 98.4 39.07 200 10 1015 152.99 4.39 1.86

and 4.3). The variability of the traffic can be characterised by those two values. The sim-
ulation based measurements of the coefficient of variation are discussed in Section 6.4.1
and the Hurst parameter measurements are illustrated in Section 6.4.2.

Please note that the simulation results withα ≤ 1.3 show a larger variance, since the
number of samples is not sufficient to guarantee a two digit accuracy on a mean es-
timation, as discussed already in Sec. 2.4. However, it might still be useful to detect
the tendency of the parameters under consideration for very small values of the shape
parameterα.

6.4.1 Coefficient of Variation

The coefficient of variation is defined as the ratio of standard deviation and mean value:
cv= σ/µ. The coefficient of variation of the packet inter-arrival time was measured at
the input of the queues at the output ports of the routers. It is a measure of the bursti-
ness of the traffic on the link. Traffic with negative exponentially distributed inter-arrival
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times (i.e. Poisson traffic) has a coefficient of variation of one – the standard deviation
and the mean value have the same value. Values larger than one indicate a larger traffic
variability, which requires also larger buffers as compared to buffers dimensioned for
Poisson traffic. The coefficient of variation is approximately constant for the three off-
time valuesto f f = {10, 20, 40}. Therefore, the dependency on the off-time is not shown
and discussed here.

The boxplots from the inter-arrival times of selected queues of the bottleneck scenario
are shown in Fig. 6.11 forto f f = 40 s andα = {1.1, 1.25, 1.5, 1.75, 2}. The queues cor-
responding to the measurements shown in Fig 6.11 (a)–(c) carry traffic with increasing
RTT (cf. Sec. 5.6.1) but with a low utilisation of approximately 11 %. The coefficient of
variation is in the range[1.4, 1.7] in this case, indicating a significantly larger variability
as compared to Poisson traffic. The core link carries the aggregate traffic and has an av-
erage utilisation of approx. 68.5 %; the coefficient of variation of approx. 1.15 is much
lower in the core, see Fig. 6.11 (d). The coefficient of variation is in all cases approxi-
mately constand forα ≥ 1.5 and approaches slightly higher values for lower values of
α, i.e. higher degree of self-similarity.

The influence of the link load and the RTT on the coefficient of variation can be sum-
marised by comparing the four figures:

• Larger RTT values lead to smaller values of the coefficient of variation – TCP
reacts slower and the traffic is therefore less bursty.

• The coefficient of variation decreases with increasing utilisation – the variabil-
ity is limited when the instantaneous throughput reaches the link capacity fre-
quently (cf. Fig. 6.11 (a) and (d)). The coefficient of variation reaches in the case
of Fig. 6.11 (d) approximately the value one, indicating that the traffic has approxi-
mately the same variability as Poisson traffic. The correlation degree and structure
is not measured by the coefficient of variation. Hence, the traffic might still be
somewhat different from Poisson traffic when looking at e.g. buffer requirements.

The measurements corresponding to the links from R2 to S4, S5 and S6 are shown in
Fig. 6.12.The three flows from S1 to S4, S2 to S5 and S3 to S6 are all routed over the
bottleneck link “R1->R2”. Therefore, the traffic flow in Fig. 6.11 (a) and Fig. 6.12 (a) is
the same, except that it has passed the bottleneck link in the latter case. The same holds
for Fig. 6.11 (b) and Fig. 6.12 (b) and for Fig. 6.11 (c) and Fig. 6.12 (c). One interest-
ing effect becomes visible when comparing the measurements in Fig. 6.11 with those in
Fig. 6.12: the astonishing fact is that the coefficient of variation is very similar before
and after passing the bottleneck, although the coefficient of variation is much smaller in
the bottleneck. It seems as if the multiplexing in the router does not have an impact on
the coefficient of variation, which is surprising.
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Figure 6.11: Coefficient of variation of IATs at queue input, bottleneck.

At least two different cases can lead to this effect: First, if the utilisation would be so
small that the buffer is not used at all, then it could be expected, that the independently
generated processes do not correlate in the bottleneck. Hence, the coefficient of variation
would be the same before and after the bottleneck. However, an average buffer size of
more than 15 packets was measured which indicates that this is not the case here.

Second, it is clear that mean valueµ and standard deviationσ are affected by the multi-
plexing in the router. However, it can be always expected that the mean value is the same
after demultiplexing if very few losses occur in the router buffers, as it is the case here.
Due to the fact that the coefficient of variation is the same after demultiplexing, it can be
deduced that also the standard deviation must be the same before multiplexing and after
demultiplexing. Therefore, the effect of multiplexing and demultiplexing on the standard
deviations discussed in the following.
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Figure 6.12: Coefficient of variation of IATs at queue input, bottleneck.

The packet stream of each flowi forms a stochastic process with random variablesTi ,
i = 1, . . . ,n. The random variablesTi consist of the packet inter-arrival time between two
successive packets of all packets with the same source and destination. The multiplexing
can be analytically modelled by the addition of the random variables. The mean value of
the sum of random variables is given by [LG89]:

µs =
n

∑
i=1

µi . (6.12)
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The variance of the sum of random variables is [LG89]

σ2
s =

n

∑
i=1

σ2
i +2·∑

i 6= j

COV
[
Ti , Tj

]
. (6.13)

The covariance of statistically independent random variables is zero. Furthermore, the
covariance in Eq. (6.13) is responsible if the demultiplexed streams would have a differ-
ent coefficient of variation as compared to before multiplexing. However, if the streams
are not completely independent, but if the covariance values are very small compared
to the variances, then it can be expected that the influence of multiplexing and demulti-
plexing on the coefficient of variation is small. For the case that the covariances are very
small (or zero) compared to the variances, the coefficient of variation of the multiplexed
process can be approximated by

cvs =
σs

µs
(6.14)

≈

√
∑n

i=1σ2
i

∑n
i=1µi

. (6.15)

For the case that all flows have the same mean valueµ and the same varianceσ the
resulting coefficient of variation of the multiplexed stream (for small covariances) re-
duces withn according to the Generalised Central Limit Theorem (GCLT) presented in
Sec. 2.4 to

cvs≈
1

n1−1/β ·
σ
µ
. (6.16)

The parameterβ represents the shape parameter of the heavy-tailed inter-arrival time
processes before multiplexing.

The inter-arrival times were saved for one bottleneck simulation in order to evaluate
whether or not the covariance values are small compared to the variances forα = 1.5,
v = 60 KB andto f f = 40 s. A special case with homogeneous round-trip times was se-
lected for this case because otherwise the values ofcvi andαi differed significantly due
to the different round-trip times (cf. Tab. 6.4). Each of the three flows per direction con-
tains more than 1.5·106 values. The measurements of mean valueµi , standard-deviation
σi , coefficient of variationcvi and shape parameterαi are are shown in Tab. 6.4 for the
three flows and the multiplexed flow. The covariance values where in all cases smaller
than 3.68·10−9 for all three flows, more than two orders of magnitude smaller than the
variance values. Therefore, the streams can be treated as approximately independent,
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which is the reason why the values ofcv before multiplexing and after multiplexing are
approximately the same.

Table 6.4: Stochastic parameters of inter-arrival times, bottleneck,α = 1.5, v =
60 KB andto f f = 40 s.

S1->R1 S2->R1 S3->R1 R1->R2

µi 4.589·10−4 4.493·10−4 4.402·10−4 1.498·10−4

σi 6.965·10−4 6.912·10−4 6.783·10−4 1.536·10−4

cvi 1.518 1.538 1.541 1.025
αi 1.73 1.62 1.56 1.71

The shape parameter valuesαi are unfortunately slightly different for all three flows.
However, small shape parameter values are dominating with the heavier tail of the dis-
tribution. Further, inserting the values in Eq. (6.16) with the the average ofcvi yields

cvs =
1

31−1/1.56
·1.532= 1.032,

which matches closesly the value of 1.025 measured for the multiplexed stream on the
link “R1->R2”.

Therefore, it can be concluded that this multiplexing effect can be explained with the
GCLT and the fact that the covariance values are more than two orders of magnitude
smaller than the variances: the small variance values are responsible for the fact that the
coefficient of variation is approx. the same before multiplexing and after demultiplexing
and the GCLT describes the coefficient of variation of the multiplexed traffic.

The coefficient of variation of selected locations of the parking-lot scenario is shown in
Fig. 6.13. The access links are even more over-provisioned as compared to the bottle-
neck case – the average link utilisation in Fig. 6.13 (a)–(c) is approximately 1.5 % and
consequently the values achieved for the coefficient of variation are larger than in the
bottleneck. The coefficient of variation covers the range[1.15, 2.15] for the parking-lot.
The core link is similarly loaded as in the bottleneck case (ρ ≈ 70 %) and therefore
coefficient of variation is also very close to one, see Fig. 6.13 (d).

The measurements of the coefficient of variation for the B-WiN scenario are depicted in
Fig. 6.14. The biggest value of the coefficient of variation of the IATs was measured at
the queue of the link from node K to node F (cf. Fig. 6.14 (a)). The link carries traffic
flows routed within the German part of the network, the flows experience a small RTT.
The link was utilised to approximately 27 % and the coefficient of variation was ap-
prox. 1.75. The boxplots of the measurements at the link with the highest utilisation of
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Figure 6.13: Coefficient of variation of IATs at queue input, parking-lot.

approx. 97 % (Fig. 6.14 (b), “US->K”) indicate a coefficient of variation of about 1.27
and a very small range of the values in contrast to Fig. 6.14 (a).

The coefficient of variation of two links originating from node M with destination node
S (within Germany, small RTT values) and US (USA, large RTT values) is shown in
Fig. 6.14 (c) and (d), respectively. The link utilisation is approximately 64 % in the first
case and 34 % in the second case. Among the two competing effects on the coefficient
of variation (utilisation and RTT, s.a.) the RTT has the stronger impact in this case: the
average and the range of the coefficient of variation is larger in Fig. 6.14 (c) than in
Fig. 6.14 (d).
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Figure 6.14: Coefficient of variation of IATs at queue input, B-WiN.

The influence of the Maximum Segment Size (MSS) value of TCP is shown in Fig. 6.15:
the coefficient of variation is much larger for small values of the MSS if the link load
is small, see Fig. 6.15 (a). However, the influence of the MSS on the bottleneck link in
Fig. 6.15 (b) is negligible; the higher link load seems to dominate strongly such that the
effect of the MSS is hardly visible in the bottleneck.

The influence of the average download volume oncv is shown in Fig. 6.16: a download
volume ofv = 200 KB (Fig. 6.16 (a)) results in a significantly higher coefficient of vari-
ation as compared to a download volume ofv= 60 KB (Fig. 6.16 (b)). The reason is that
the correlation and burstiness introduced by TCP are weak for very short connections
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Figure 6.15: Coefficient of variation of IATs for different values of MSS, bottle-
neck.

due to a small congestion window. But the correlation is stronger for longer connec-
tion durations with a large congestion window. Therefore, the coefficient of variation
increases with the connection duration (or download volume).
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Figure 6.16: Coefficient of variation of IATs for (a):v = 200 KB and (b):
v = 60 KB, bottleneck withα = 1.5, S1->R1.

However, the effect on the measurements on the bottleneck link in Fig. 6.17 indicate
that the effect is only marginal here: the values forv = 200 KB in Fig. 6.17 (a) and for
v= 60 KB in Fig. 6.17 (b) are approximately the same. The same tendency was observed
also for different MSS values. The reason is that the coefficient of variation is dominated
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by the link utilisation; parameters like the average download volume and the MSS have
only an impact oncv for small link loads.
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Figure 6.17: Coefficient of variation of IATs for (a):v = 200 KB and (b):
v = 60 KB, bottleneck withα = 1.5, R1->R2.

Recent measurements of inter-arrival times conducted in [IPL02, NZI00] show very sim-
ilar coefficients of variation as compared to our simulation results. The measurements
on a 100 Mbit/s link in year 2000 [NZI00] with an average load of approx. 7 % showing
a coefficient of variation ofcv≈ 1.26. The second measurement [IPL02] was performed
in year 2002 on an OC-48 link (2.4 Gbit/s) with an average utilisation of approx. 36 %
and the result wascv≈ 1.01. The range of the measurements with the B-WiN simula-
tions was[1.175, 1.752] for an average download volume of 60 KB, depending on the
selected link and the link utilisation. This confirms that the simulations match the real-
ity quite well and that there is no special need to tune this parameter. Nevertheless, the
parameter could be further tuned by e.g. changing the average download volume or the
MSS, as shown above.

6.4.2 Hurst Parameter

The Hurst parameter measurements are based on simulations with 10 different seeds
for each value of the shape parameterα of the HTTP object size distribution. The av-
erage HTTP download volume was set to 60 KB and the average off-time was set to
to f f = 10 s for this experiment. Qualitatively the same behaviour was also observed for
an off-time of 40 s. However, the larger memory and simulation time requirements did
not allow to drive simulations with the same number of seeds forto f f = 40 s. Estimated
Hurst parameters are ignored if the Abry-Veitch Hurst parameter estimator (described
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in Appendix A.1) reports a bad quality of fit. Therefore, the number of samples for the
boxplots is not always 10 in this section.

Mainly three different cases could be identified evaluating the plots for all 36 links of
the B-WiN:
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Figure 6.18: Hurst parameterH versus shape parameterα of the HTTP object
size distribution, B-WiN.

• The Hurst parameter follows approximatelyH = (3− α)/2 as shown in
Fig. 6.18 (a) and (b) (cf. Sec. 4.2).
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• The Hurst parameter shows a large variability and the values are sometimes sub-
stantially lower than expected fromH = (3−α)/2 (cf. Fig. 6.18 (c)).

• The Hurst parameter remains high for large values ofα, even forα = 2, as apparent
in Fig. 6.18 (d).

The average Hurst parameter values show a behaviour as expected in Fig. 6.18 (a) and
(b). Obviously the traffic within Germany, that experiences very small RTTs, adds some
variability to the Hurst parameter values (cf. Fig. 6.18 (c)). The last case, high Hurst
parameter values even forα = 2 in Fig. 6.18 (d), is discussed detailed in the following.

6.4.3 Hurst Parameter for High Link Load

The Hurst parameter estimations for the B-WiN show an interesting behaviour for one
link with a very high traffic load ofρ ≈ 97 %, see Fig. 6.18 (d): the estimated values
for the Hurst parameter are generally larger than those for the low load case; especially
α = 2 still results in a high Hurst parameter ofH ≈ 0.84 (cf. Fig. 6.20 (b)). This result
was completely different from what was expected. The traffic was expected to tend to
Poisson behaviour when the load increases [CCLS01]. Furthermore, the process requires
some variability to establish self-similarity: the property “slowly decaying variance” of
self-similar processes in Eq. (2.11) can only be fulfilled when the variance of the pro-
cess is sufficiently large. However, a completely filled link, where the packets follow
each other without any gap, would have a variance of zero. Therefore, it was expected
that the Hurst parameter is very small already for link loads close to 100 %.

However, the measurements on link “US->K” shown Fig. 6.18 (d) with a traffic load of
ρ ≈ 97 % show a high Hurst parameter for a very high link load even forα = 2. Qual-
itatively the same phenomenon – high Hurst parameter values for high link utilisation
– was observed for a larger number of connections (with an off-time of 40 s). A test
with different buffer sizes revealed that the phenomenon is also not related to a specific
buffer size. A simulation with individual timers for each TCP connection showed the
same behaviour (see discussion about TCP timers in Sec. 5.5), therefore the simplified
timer handling is also not responsible for the phenomenon.

Simulations with the parking-lot scenario and high link load support the findings, al-
though the indicated Hurst parameter values are aroundH ≈ 0.7, smaller than in the
B-WiN, see Fig 6.19 (a). However, the Hurst parameter was also significantly larger,
as if a lower target load was selected. A similar qualitative behaviour of the Hurst pa-
rameter is visible for the bottleneck scenario in Fig. 6.19 (b): the Hurst parameter stays
at H ≈ 0.67 for α = 2. However, the increase of the Hurst parameter for smaller val-
ues ofα is different in bottleneck and parking-lot as compared to the B-WiN (compare
Fig. 6.19 (a) and (b) with 6.18 (d)).
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Figure 6.19: Hurst parameter as a function of the shape parameterα, (a):
parking-lot, R2->R3, (b): bottleneck, R1->R2.

The presence of the phenomenon for different scenarios and various settings indicate that
the phenomenon is not related to a special setting or bug in the simulation. It shows that
this is a new phenomenon that was not discovered before, to the best knowledge of the
author. An intuitive understanding of the phenomenon of high Hurst parameter values
for high utilisation (and high values ofα) is developed in the following.

The counting process of the B-WiN scenario (bytes counted per 2.5 ms, scaled to Mbit/s)
for α = 2 is shown in Fig. 6.20 (a). The link utilisation is high, but there are also some
very deep “dips” which are responsible for the variability and long-range dependence
of the process that becomes obvious in high Hurst parameter values, as visible in the
logscale diagram in Fig. 6.20 (b). The slope of the logscale diagram is used by the Abry-
Veitch Hurst parameter estimator to estimate the Hurst parameter. The ordinate repre-
sents the energy of the wavelet coefficients (second moment). The small time scales (or
octaves) 1≤ j ≤ 7 represent the short-term behaviour and the valuesj ≥ 8 represent the
long-range scaling behaviour. See Appendix A.1 for a more detailed explanation of the
Abry-Veitch estimator and the logscale diagram.

The dips are caused by TCP time-outs. Especially for very short-lived TCP connections,
like it is the case for WWW traffic, it is likely that a time-out occurs when there are not
enough samples for a good RTT estimation such that default time-out values are used.
Those values are very large, 6 s and 12 s for the first and the second RTT, respectively
(cf. Sec. 3.2.4). Another possibility for large time-out values is when consecutive time-
outs occur. The time-out duration is doubled for each time-out in this case. The time-outs
introduce long-range dependence into the process: the time-out duration of several sec-
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Figure 6.20: (a): Counting process, (b): logscale diagram Abry-Veitch wavelet
estimator, B-WiN, US->K.

onds is very large compared to packet transmission times and RTT values. Further, the
connection duration is also extended by the time-out. The fact that it is likely that sev-
eral connections are suffering from time-outs at the same time, due to buffer overflow,
introduces further correlation that is persisting over a longer period and thus supports
the long-range dependence.

To further support the understanding, an artificial sequence is produced that shows sim-
ilar features. The so called Cantor set [Sta98, p. 181 ff] is a famous construct appear-
ing in many books on chaos and fractals. It forms a purely deterministic process with
implicit self-similarity. It can be constructed with the recursive Algorithm 2 (see also
Appendix A.2 for the Perl code). The algorithm of the Cantor set is described here with
the special interpretation as a byte counting process. The average traffic load of such
a counting process is very low, since many count values are set to zero. However, the
inverse process is defined asvinv,count = max(vcount)−vcount has a very high traffic load
and can be compared with the simulation data.

The resulting Cantor set counting process for a simulation time of 600 s and a counting
window of 2.5 ms for a link with a capacity of 167 Mbit/s created with Algorithm 2
is shown in Fig. 6.21. The threshold for the termination was set to 30 because a very
similar average load as in the B-WiN setting was reached with this value. The smallest
sub-intervals, where the values are constant, contain therefore at least 30 values. These
intervals contain the peaks that are translated into dips by the inversion. The time du-
ration of the dips is therefore 30· 2.5 ms= 75 ms. The length of the vector and the
threshold value should be a multiple of three in order to avoid strange artefacts.
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1. Start with a vectorv of lengthl , v represents the counting process. Set all counting
values to the maximum byte-count (link capacity multiplied by time unit used for
counting window).

2. Set all values in the interval[l ·1/3, l ·2/3] to zero, wherel is the maximum index
of the vector.

3. Divide the intervals remaining from the previous steps into three sub-intervals of
the same size and set all values in the middle interval to zero.

4. Repeat step 3 recursively until the remaining sub-intervals have a size smaller or
equal to a certain threshold. The thresholdThr determines the finest time scales
for which the scale invariance holds (cf. Fig. 6.22). Setting the threshold to one
results in scale invariance on all scales of the process.

5. Build the “inverse process” by setting all values to the maximum byte-count minus
the previously calculated value:vinv,count = max(vcount)−vcount.

Algorithm 2: Creation of a Cantor set.

The counting process of the Cantor set in Fig. 6.21 looks only a little similar to the
measured counting process in the B-WiN Fig. 6.20, since the Cantor set has a com-
pletely deterministic and regular shape. Nevertheless, the Hurst parameter estimation
with the wavelet estimator (see Appendix A.1) in Fig. 6.22 (a) shows a Hurst parameter
of H = 0.79 for α = 2 and looks similar to Fig. 6.20 (b), especially the rangej ≥ 8.

The shape of the curve in Fig. 6.22 (a) with a threshold value of 30 depends for small
octavesj = 1−5 on the stopping criterion of the algorithm. That is, setting the threshold
to a smaller value results in a more consistent slope of the curve also for small octaves
(see Fig. 6.22 (b) with a threshold value of 3). The average traffic load on the other hand
increases for a smaller threshold value (ρ = 99.15 % for a threshold value of 3).

The dips are limiting the maximum throughput on the network providers links and thus
have an impact on the network providers income. If there are some long-lived connec-
tions, e.g. FTP downloads, which are not modelled in this work, these connections could
fill up the dips as well.

A new graph type is introduced in the following to improve the understanding of the
relation between Hurst parameter and link load: the correlation between link load and
Hurst parameter value is shown in a plot, where the x-axis represents the link load in per-
cent, the y-axis represents the Hurst parameter value and a diamond is drawn for each
measured value pair.
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Figure 6.21: Counting process derived from Cantor set, average loadρ =
97.44 %, thresholdThr = 30.
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Figure 6.22: Wavelet estimation of Cantor set, (a): thresholdThr = 30, (b):
thresholdThr = 3.

The correlation plot for the bottleneck with max. load ofρ≈ 66 % is shown forα = 1.25
andα = 2 in Fig. 6.23 (a) and (b), respectively. The theoretical Hurst parameter values
areH = 0.875 forα = 1.25 andH = 0.5 for α = 2 (cf. Eq. (2.12)) for the case that the
file size distribution is the only source of self-similarity. The figures show two clouds,
one cloud aroundρ≈ 11 % for the links between the source node and the second cloud
aroundρ≈ 66 % for the measurements at the core link. The Hurst parameter values are
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around 0.875 for α = 1.25, as expected. The Hurst values forα = 2 are mostly larger
than 0.5; the effect that TCP introduces some self-similarity becomes visible.
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Figure 6.23: Correlation between Hurst parameter and link load, bottleneck.

The measurements are significantly different for the bottleneck under high load (ρ ≈
95 %), as shown in Fig. 6.24: the spreading of the values is significantly larger for
α = 1.25 (Fig. 6.24 (a)) than for Fig. 6.23 (a). Further, the Hurst parameter values are sig-
nificantly larger forα = 2 in Fig. 6.24 (b) as compared to Fig. 6.23 (b). Moreover, high
Hurst values are measured for the core as well as for the lightly loaded links. The reason
for this is, that the self-similarity, introduced by high load at the bottleneck, is trans-
ported from TCP to the other links carrying the same traffic flows as well [VKMV00].
That is, the stochastic properties of the traffic inserted at the core propagate through the
network, such that the complete path is affected. The correlation plots for the parking-lot
do not show any new behaviour, they are not shown here.

The correlation plots between link load and Hurst parameter are shown in Fig. 6.25 for
the B-WiN scenario. The large number of links with different link loads between 25 %
and 98 % are represented by clouds with a larger horizontal spreading, as compared to
the bottleneck case. The majority of Hurst values for link loads below 90 % are consis-
tent with the theoretical values (s.a.). However, the Hurst parameter values for link load
values above 90 % are significantly larger than for lower link load values. Further, the
correlation plot forα = 2 in Fig. 6.25 indicates that the very high Hurst parameters are
correlated with high link load values.

A comparison with UDP traffic is shown in the following in order to assess the role of
TCP for the Hurst parameter values at high link loads. The UDP traffic was generated
by an aggregated source model called SupFRP [RN96, Hug97] withα = 1.25 andα≈ 2
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Figure 6.24: Correlation between Hurst parameter and link load, bottleneck,
high load.
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Figure 6.25: Correlation between Hurst parameter and link load, B-WiN.

(α = 2 is not possible with the SupFRP). The correlation plot in Fig. 6.26 reveals that the
high Hurst parameter values for high link loads are caused by TCP: the Hurst parameter
values are approximately independent of the link load for both values ofα. Therefore,
the correlation induced by TCP is responsible for the high Hurst parameter values for
high link loads.

It can be concluded that the coexistence of very high link load and self-similarity with a
high Hurst parameter is possible. The majority of the estimated Hurst parameter values
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Figure 6.26: Correlation between Hurst parameter and link load with UDP traf-
fic, B-WiN.

is smaller than 0.65 forα = 2 for all three simulation scenarios for low link load values.
The estimated Hurst parameter reaches values up to 0.92 for high link load values with
α = 2. The long-range dependence of the traffic, visible in high Hurst parameter values,
is embedded in the dips and not in the peaks as usually reported.

However, the relevance of this form of self-similarity for the Quality of Service (QoS) is
rather low: the dips do not cause any additional delay or packet loss, the dips only limit
the maximum throughput on the link. Therefore, it can be concluded that it is not enough
to do a Hurst estimation and use this value as the degree of long-range correlation for
QoS issues, since this special type of long-range correlation has no impact on the QoS.
Moreover, the source of the high Hurst parameter value must be known, when the impact
of self-similarity is judged.

6.5 Reducing the Simulation Complexity

The impact of reducing the complexity of the simulations by reducing the number of
clients is evaluated here. The average traffic load is kept approximately constant by in-
creasing the activity of the clients via a reduction of the off-time. Efficiency is gained for
the simulations by scaling down the number of clients, as discussed in Sec. 2.1. Mainly
two parameters are affected: the required memory and the simulation speed. Simulations
are performed for each of the combinations of off-timeto f f = {1, 2, 5, 10, 20, 30, 40}
andα = {1.3, 1.5, 2} with several different seeds of the random number generator.
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A formula for the average number of active connections is derived in Sec. 6.5.1. The
efficiency of the simulations in terms of memory requirements and simulation speed is
discussed in Sec. 6.5.2. Further, the changes associated with the reduction of the number
of clients are evaluated based on measurements of the following parameters: the average
traffic load (Sec. 6.5.3), the coefficient of variation of the inter-arrival times (Sec. 6.5.5),
the Hurst parameter (Sec. 6.5.6) and the average end-to-end delay (Sec. 6.5.7).

The discussion presented in the following focuses on the measurements of selected links
or flows, showing characteristic behaviour for other measurements not shown here. Most
figures show measurements forα = 1.5 because this leads to a degree of self-similarity
of H ≈ 0.75 which is a realistic value [LTWW93]. Figures forα = 1.3 or α = 2.0 are
only shown when they show unexpected or very interesting results.

6.5.1 Average Number of Active Connections

The average number of active connections can be calculated by multiplying the num-
ber of connections (cf. Eq. (4.14)) with the activity ratio (on-time divided by on- plus
off-time, see Eq. (6.17)). The average number of active connections is approximately in-
dependent of the off-time and therefore remains constant when the off-time is reduced:

si j ,active = si j ·
ton,i j

ton,i j + to f f

= round

(
t pi j ·

(
ton,i j + to f f

)
v+o

·
(

1−
nReq·sReq+o

v+o

))
·

ton,i j

ton,i j + to f f

≈
t pi j · ton,i j

v+o
·
(

1−
nReq·sReq+o

v+o

)
. (6.17)

The average number of active connections is shown in Fig. 6.27 (a) for all flows and
in Fig. 6.27 (b) for all links in the B-WiN scenario. The graphs visualise that the aver-
age number of active connections is also very non-uniform as could already be expected
from the non-uniform traffic matrix. Most active connections produce dataflow from
node “US” to all other nodes. The average number of active connections of several links
within Germany is smaller than 10. This is one reason why the statistical traffic param-
eters cover a broad range of values for all links in the B-WiN, like e.g. the coefficient of
variation of packet inter-arrival times.

The effect of rounding on the average number of active connections is visualised in
Fig. 6.28 for different off-time values. The result of rounding is an oscillation around the
solution without rounding and the impact is very large for a small target throughput value
(0.44 Mbit/s in Fig. 6.28 (a)). The oscillation amplitude is negligible forto f f ≥ 20 s and
increases for small values of the off-time.
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Figure 6.27: Average number of active connections (a) for all flows and (b) for
all links for the B-WiN scenario,v = 60 KB.

The oscillation is still apparent for a target throughput of 10 Mbit/s in Fig. 6.28 (b) or
126.78 Mbit/s in Fig. 6.28 (c), but the impact is much lower since the offset (average
value) is much higher. The two extreme cases of 0.44 Mbit/s and 126.78 Mbit/s are
the minimum and maximum throughput values measured in the B-WiN, respectively.
However, the oscillation amplitude is always the same, as can be seen in Fig. 6.28 (d) for
126.78 Mbit/s. But the constant oscillation amplitude becomes negligible when the aver-
age value is large enough. Therefore, the selected range for the ordinate in Fig. 6.28 (a)–
(c) is appropriate for judging the effect of the oscillations on the accuracy.

The rounding is a result of the fact that only an integer number of client models can
be connected to the network. Therefore, the accuracy of reaching the target throughput
value depends on the following parameters:

• The rounding leads to errors if the number of clientssi j in one flow is small, e.g.
si j = 10 results in a maximum rounding error of±5 %.

• The rounding results in errors in the average number of active connections if the
target throughput and the off-time are small. The error can be significant for very
small target throughput values (cf. Fig. 6.28 (a)).

• The variability of the traffic is likely to be higher if the average number of simulta-
neously active connections is small. On the other hand, solutions with on average
more than e.g.si j ,active≥ 5 active connections per link are expected to produce
more stable results (see Fig. 6.28 (b)). However, the average number of active
connections in on several links of the B-WiN smaller than 5, cf. Fig. 6.27 (b).
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Figure 6.28: Average number of active connections for different target through-
put values andv = 60 KB.

A threshold can be defined as a conclusion of the discussion above for an accurate mod-
elling of all flows: the limiting case for reducing the number of clients by reducing the
off-time is reached, when the flow with the smallest number of clients reaches the thresh-
old of si j ≥ 10. The rounding leads to a significant error for the number of clientssi j for
this flow if the condition is not fulfilled. Since the average number of active connections
is approximately constant (neglecting from the rounding artefacts discussed above), it
can be expected that the first moments of the measured parameters are also approxi-
mately constant.
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The threshold ofsi j ≤ 10 clients is reached for one of the 110 flows of the B-WiN at
to f f = 10 s. Further, already 7 flows have less than 10 clients forto f f = 5 s. However, it
is not likely that one of 110 flows changes the overall behaviour, but it can be expected
that for to f f ≤ 5 s the network behaviour starts to change since more than 6 % of the
flows are below the threshold in this case.

A direct conclusion from the discussion above is that the accuracy depends strongly on
the smallest values oft pi j (see Eq. (4.14)) and therefore a more uniform traffic matrix
would allow a larger reduction of the number of clients than the completely non-uniform
throughput matrix of the B-WiN (see Fig. 5.21). Therefore, it is clear that also the accu-
racy of the simulation results shown here are bound by the given traffic matrix and the
rounding. The deviations are not necessarily an indication of inaccuracy of the algorithm
for allocation of clients in Sec. 4.1.1.

The basis for consistent measurements with a reduced number of clients is that the aver-
age traffic load is constant, independent of the number of clients, as discussed in Sec. 6.2.
Otherwise, it can not be expected to see consistent measurements of e.g. the average
end-to-end delay for a reduced set of clients. The quality of the match depends on the
accuracy of the estimation of the on-timeton,i j . The relation between on- and off-time is
also very important, because the sum determines the accuracy of the estimated through-
put in Eq. (4.1): an estimation error in the on-time results only in a small error in the
estimated throughput if the off-time is very large and vice versa.

6.5.2 Simulation Efficiency

The relationship between off-time, total number of clients and the measured memory
required by the simulator is displayed in Tab. 6.5. The memory savings for smaller off-
times are of major importance since the current 32-bit computer systems do not allow
processes to use a larger address space than 3 GB. The theoretical limit of the address
space of 32-bit systems is 4 GB, but Linux and Windows reserve 1 GB for the kernel
[LML03, MSM03].

The empirical upper bound on the required memory for the simulations in Tab. 6.5 was
found to be a linear relation Eq. (6.18). The simulation core allocates about 10 MB and
each client requires approximately additional 20 KB:

Mreq [MB] ≤ Nclients·0.02+10. (6.18)

The maximum gain in simulation speed is smaller than 50 % (in this implementation),
which is a rather small profit compared to the reduction of the memory usage. This can
be explained as follows: keeping the traffic load approximately constant means that the
number of generated events in the simulator is also approximately constant. Event-driven
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Table 6.5: Total number of clients and measured memory requirements as a
function of the off-time.

Off-time [s] # Clients RAM [MB]

40 108139 2090
30 81212 1591
20 54279 1027
10 27346 536
5 13893 278
2 5819 123
1 3119 73

simulators spend a significant amount of time for scheduling and sorting the generated
events. Therefore, the simulation speed remains approximately constant, too. It is likely
that the observed increase in speed is a result of smaller operating system overhead
(memory allocation and deallocation) and more cache hits in the CPU caches for the
processes with lower memory utilisation.

6.5.3 Average Link Load

The average traffic load measured in the simulations with decreasing client population is
compared with the target traffic load in this section (see also Sec. 5.6.3). The target load
value is calculated as the sum of all measured flow throughput values from Fig. 5.21
that are routed over the corresponding link, divided by the link capacity. Although the
estimation of the required number of clients based on Eq. (4.1) tries to keep the load
constant at the measured values (Fig. 5.21), some deviations from the ideal behaviour
can be observed.

The error in matching the link load consists of the sum of the errors of all flows travers-
ing the link under consideration. Therefore, it depends on the sign of the error values
and their distribution whether the error for the link is larger or smaller than the error
per flow. However, it can be expected that the error is large for the case of very high
link utilisation (e.g. link “US->K” with ρ ≈ 98.4 %), since the throughput of the flows
measured in the simulation is in this case always smaller than the estimated throughput
(sum of error values with the same sign).

Some characteristic measurements of the average link load forα = 1.5 are depicted in
Fig. 6.29. The first three graphs (a)–(c) show a good match with the target load (dashed
line) for to f f ≥ 5 s with less than 5 % error. The link “US->K” has a very high target
load ofρ = 98.4 %, the measured link load is shown in Fig. 6.29 (d). It is harder to give
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a good estimate on the number of clients required to produce this traffic load, since the
throughput depends on parameters that are highly non-linear with respect to very high
traffic loads. The error is nevertheless smaller than 5 % forto f f ≥ 5 s, but the target load
is never reached, as opposed to the other three cases.
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Figure 6.29: Average traffic load in dependence on off-time,α = 1.5.

All four curves have in common that the average link load decreases with decreasing val-
ues of the off-time after a threshold of approximatelyto f f = 5 s is reached. This effect
is more pronounced when the target load is high (Fig. 6.29 (a) and (d)). The reason for
this behaviour is that the throughput degradation is larger with fewer connections when
a packet loss or a time-out occurs. The rounding effects discussed in Sec. 6.5.1 are not
responsible for this error: the average number of active connections is larger than 15 for
all flows originating at node “US” (cf. Fig. 6.27).
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The measurements in Fig. 6.30 at link “US->M” and “US->L” with a target load of
81.6 % and 72.2 %, respectively, show a significantly better result: the average traffic
load is noticeably closer to the target value as compared to Fig. 6.29 (d). This is an in-
dication that the problem is not present for normal load situations; it is only related to
overload situations with very high link load values (ρ > 90 %).
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Figure 6.30: Average traffic load in dependence on off-time,α = 1.5.

The measurements depicted in Fig. 6.31 indicate that the value ofα = 1.3 is associated
with larger variations in the measurements due to the stronger tail in the power-tail dis-
tribution as compared toα = 1.5. The deviations from the target load are larger in this
case. Nevertheless, the average values differ also in this case by less than 5 % from the
target values forto f f ≥ 5 s.

The traffic is less bursty and correlated forα = 2, leading to a smaller variance in the
measurements and also to slightly smaller deviations from the target utilisation, as can be
seen comparing Fig. 6.32 with Fig. 6.29. However, the measurements forto f f = {1, 2}
still deviate significantly from the target throughput.

The question whether the problem of the throughput degradation at link “US->K” for
small off-time values could be solved with the TCP-modified Engset model (see Sec. 3.4)
is discussed in the following. Unfortunately, this model provides no solution for the num-
ber of required clients for a given throughput (inverse problem). Therefore, the number
of clients used for simulation is used as input for TCP-modified Engset model and the
resulting link load estimation is given in Tab. 6.6.

The comparison with the link load results of the simulationρsim reveals that the TCP-
modified Engset model points into the wrong direction: the estimated link loadρEng is
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Figure 6.31: Average traffic load in dependence on off-time,α = 1.3.
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Figure 6.32: Average traffic load in dependence on off-time,α = 2.

increasing for smaller off-time values with the given number of clients, while the sim-
ulation results show that the average loadρsim is decreasing in fact. For the case of
to f f = 1 s, the TCP-modified Engset model estimates that onlyN = 378 clients would be
required for a link load ofρ = 98.4 % even though the simulation shows thatN = 412
clients can produce a load of onlyρsim = 87.1 %.

Therefore, it can be concluded that the solutions of the TCP-modified Engset model can
not solve the problem of estimating the correct number of clients for very high link load
values. Further, the algorithm for allocation of clients presented in this work provides
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Table 6.6: Average link load, simulation resultρsim and TCP-modified En-
gset modelρEng in dependence on the number of clientsN, link “US->K”,
v = 60 KB, α = 1.5, c = 10 Mbit/s, C = 167 Mbit/s, ρtarget = 98.4 % and
RTTmin = 39.07 ms.

to f f N ρsim ρEng

40 13029 95.19 93.44
20 6558 95.61 93.87
10 3324 95.20 94.73
5 1706 94.12 96.22
2 735 90.80 98.97
1 412 87.10 99.95

better solutions than the TCP-modified Engset model. The reason for this result is that
the algorithm for allocation of clients considers the slow-start behaviour of TCP more
accurately.

The influence of the buffer capacity, the simulation time and the utilisation of the ceil-
ing function instead of rounding in Eq. (4.14) for determining the number of clients
is visualised for link “US->K” in Fig. 6.33. The original behaviour is shown again in
Fig. 6.33 (a). The Figures 6.33 (b)–(d) show simulation results for a reduced set of off-
times.

The comparison of 6.33 (a) and (b) shows the expected behaviour: the link load decreases
with a smaller buffer capacity due to a higher loss probability. The results from longer
simulation runs in 6.33 (c) show slightly higher link load values than for the shorter
simulations. This is an indication that the simulation was already considerably close to
steady state fort = 700 s, since the differences are quite small. Using the ceiling function
instead of rounding to determine the number of clients results also in slightly higher link
utilisation values, as can be observed in Fig. 6.33 (d). However, the figures show that the
problem is not caused by too short simulations or the problem of rounding. It is rather a
problem related to the very high target link load.

It can be concluded that the average traffic load is approximately constant forto f f ≥ 5 s
with only few exceptions, where the target link load is higher than 90 %. The utilisation
matches almost the measurements in the real world network. Thus, a reduction of the
number of modelled clients by reducing the off-time from 40 s to 5 s is feasible in order
to reduce memory requirements and simulation time. The result is a reduction of the total
number of clients and of the memory requirements by a factor of approximately 8; the
simulation speed increases by approx. 33 % at the same time.
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Figure 6.33: Average traffic load on link “US->K” for different simulation time
valuest, buffer capacitiesB; (a)–(c): rounding and (d): ceiling function used for
determining the number of clients.

6.5.4 Packet Loss Probability

The packet loss probability with a buffer capacity of 2500 packets was in all cases below
0.1 %, even for the links with high utilisation over 95 %. Therefore, no figures are shown
for this parameter, since the differences are marginal with respect to the region of packet
loss probability where the throughput of TCP connections is affected significantly.

A set of simulations with varying buffer capacity was carried out in order to evaluate the
sensitivity of the TCP throughput of short-lived connections to packet losses, as shown
in Fig. 6.34. The absolute error measure∆sum,abs in Fig. 6.34 (a) and the maximum ab-



6.5: Reducing the Simulation Complexity 117

solute error∆max,abs in Fig. 6.34 (b) are approximately constant if the buffer capacity is
at least 500 packets. The average value of the maximum loss probability for different
seeds reaches 0.66 % for a capacity of 250 packets. The error exceeds the thresholds of
∆sum,abs≤ 5 % and∆max,abs≤ 10 % only for a buffer capacity ofB = 100 packets which
is associated with a loss probability of approx. 1.25 %. Therefore, it can be concluded
that the algorithm for allocation of clients reaches a sufficient accuracy up to a packet
loss probability of at least 0.66 %.
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Figure 6.34: Error measures and packet loss probability in dependence on the
buffer capacity,α = 1.5, to f f = 10 s.

A subset of the simulations with variable off-times was performed also for a buffer ca-
pacity ofB = 500 packets, as shown in Fig. 6.35. The error thresholds of∆sum,abs≤ 5 %
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and∆max,abs≤ 10 % are also not exceeded forto f f ≥ 5 s, even though the loss probabil-
ity does depend on the off-time, or better on the number of clients in the network, see
Fig. 6.35 (c).
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Figure 6.35: Error measures and packet loss probability in dependence on the
off-time, buffer capacity 500 packets,α = 1.5.

The reason for the dependency of the packet loss probability is given as follows: the loss
probability in a system with temporal overload depends on the burstiness of the traffic.
The burstiness, however, is no parameter associated with average values. The average
number of simultaneously active connections is the same for all off-time values, see
Sec. 6.5.1. But the losses are likely to occur when the number of active connections is
temporarily significantly larger than the average. Packet losses are related to the variance
and tail probabilities in the number of active connections, which are surely not constant
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when reducing the total number of clients. Therefore, it can unfortunately not be ex-
pected that the loss probability of a simulation with a reduced set of clients is consistent
with the original set of clients.

Quantitative results are added in the following to the qualitative reasoning to explain the
effect in more detail. Suppose that the number of active connections follow a Bernoulli
process: each client draws a random number and the value determines whether or not
the client is active in this slot. This is a simplified model that does not model the real
situation closely. However, the same effect can be shown qualitatively with this simple
model. The average number of active clients is

µ= N · p, (6.19)

with the total number of clientsN and the probability that the client becomes activep.
Further, the variance of the number of active connections is

σ2 = N · p· (1− p) . (6.20)

The coefficient of variation of the number of active clients can be specified with
Eq. (6.19) and (6.20) as

cv=
σ
µ

=

√
N · p· (1− p)

N · p
. (6.21)

The fact that the average number of active connections is constant for all considered
cases (cf. Sec. 6.5.1) leads withp = µ/N and some transformations to

cv=

√
N−µ
N ·µ

. (6.22)

The values ofcv are listed for the link “US->K” (link with highest load and loss proba-
bility) in Tab. 6.7. The last column contains the deviation of the coefficient of variation
compared to the value associated withto f f = 40 s in percent. It is obvious, that the co-
efficient of variation of the number of active clients decreases withN. The tendency
is correct, but the change in the values is rather small, compared to the change of the
loss probability in Fig. 6.35. However, the same evaluation with the TCP-modified En-
gset model provides worse estimates (not shown here) and the qualitative behaviour is
captured correctly with the Bernoulli model.

However, if the simulation scenario is too complex to use a realistic set of clients, errors
due to approximations have to be accepted. The strategy behind the reduction of clients
used in this work leads to consistent average values for all measured parameters, ex-
cept of the loss probability. Unfortunately the loss probability does not depend on those
average values but rather on higher moments, which are not captured correctly by the
reduced set of clients. However, also aggregated traffic models can not promise more
consistent loss probability values that match measurements in real networks, as shown
in Sec. 2.1.



120 Chapter 6: Simulation Results

Table 6.7: Coefficient of variationcv of number of active clients Bernoulli pro-
cess in dependence on the number of clientsN, avg. number of active clients
µ= 88.48,δ: deviation fromcvat to f f = 40 s in percent, link “US->K”.

to f f [s] N cv δ [%]

40 13029 0.1059 –
20 6558 0.1056 0.34
10 3324 0.1049 1.00
5 1706 0.1035 2.30
2 735 0.0997 5.89
1 412 0.0942 11.08

6.5.5 Coefficient of Variation

The coefficient of variation is defined ascv= σ/µ, with standard deviationσ and mean
valueµ. The coefficient of variation is a measure of the relative dispersion. It is used
here to evaluate the variability of the packet inter-arrival times. The inter-arrival times
are measured at the input of the queueing module that is used to limit the bandwidth of
the links. The queueing module is located at every outgoing port of the router.

The behaviour of the coefficient of variation for different off-times (number of clients)
is shown in Fig. 6.36 forα = 1.5. All four graphs have in common that the values show
a very small variance, which is reflected by boxplots with a very small height. Further-
more, the coefficient of variation is in all cases significantly larger than one, indicating a
larger variability as compared to Poisson traffic. The first two graphs, Fig. 6.36 (a) and
(b), represent measurements corresponding to two links where the coefficient of varia-
tion is approximately constant, independent of the off-time. Also the absolute value is
approximately the same for those two links, although the utilisation isρ = 95.6 % in
Fig. 6.36 (a) andρ = 38.6 % in Fig. 6.36 (b). Figure 6.36 (c) on the other hand has a
similar traffic load as compared to Fig. 6.36 (b) but the coefficient of variation is larger
and is only approx. constant forto f f ≥ 5 s.

This phenomenon can be explained as follows: Fig. 6.36 (b) corresponds to the link
from node N to node M. On the backward path, from node M to node N, the utilisation
is higher (ρ ≈ 63.9) and some flows from node US are also routed over the backward
link. Therefore, the traffic on link “N->M” is shaped by the other flows on the back-
ward path, as opposed to the case in Fig. 6.36 (c). The first three figures show approx.
constant graphs, or graphs where the value ofcv decreases with smaller off-time val-
ues. Figure 6.36 (d) shows a slightly increasing coefficient of variation with decreasing
off-time. However, the differences are very small and not significant.



6.5: Reducing the Simulation Complexity 121

1 2 5 10 20 30 40
1

1.5

2

2.5

6 6 6 6 6 6 6

Client Off−Time [s]

Coeff. of Variation, α=1.5, ρ≈95.6 %, US→K

(a)

1 2 5 10 20 30 40
1

1.5

2

2.5

6 6 6 6 6 6 6

Client Off−Time [s]

Coeff. of Variation, α=1.5, ρ≈38.6 %, N→M

(b)

1 2 5 10 20 30 40
1

1.5

2

2.5

6 6 6 6 6 6 6

Client Off−Time [s]

Coeff. of Variation, α=1.5, ρ≈27.1 %, K→F

(c)

1 2 5 10 20 30 40
1

1.5

2

2.5

6 6 6 6 6 6 6

Client Off−Time [s]

Coeff. of Variation, α=1.5, ρ≈67.0 %, M→Ka

(d)

Figure 6.36: Coefficient of Variation over off-time,α = 1.5.

It can be concluded that the coefficient of variation of the inter-arrival times is nearly
not affected by changing the number of clients in the system, the changes are very small
(less than 5 % for all off-time values) and the absolute values are in ranges confirmed by
recent measurements (see Sec. 6.4.1).

6.5.6 Hurst Parameter

The Hurst parameter values estimated from the byte counting process are subject to large
variations for different seeds, as can be observed forα = 1.5 in Fig. 6.37. The Hurst pa-
rameter of the traffic on link “F->HH” depicted in Fig. 6.37 (a) shows the expected
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behaviour: the average value is slightly lower than 0.75, which is the theoretical value
(cf. Sec. 4.2). The average value is changing with the off-time but the change is not large
with respect to the estimation accuracy.
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Figure 6.37: Hurst parameter over off-time,α = 1.5.

The Hurst parameter values on link “US->K” shown in Fig. 6.37 (b) have a more or
less consistent, but higher average value forto f f ≥ 5 s (see discussion about high Hurst
parameter at high link utilisation in Sec. 6.4.3). The inconsistency forto f f < 5 s could
be caused by the fact that also the average link load is not constant in this range (cf.
Sec. 6.5.3).

Figure 6.37 (c) and (d) indicate a high variability of the average Hurst parameter for
different seeds (large confidence intervals) and for different off-time values. This be-
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haviour is independent of the utilisation as shown with Fig. 6.37 (c) withρ ≈ 27.1 %
and (d) withρ ≈ 67 %. However, there is no evidence that this behaviour is correlated
with the off-time, it seems to be rather a sign of an intrinsic high variability.

6.5.7 Average End-To-End Delay

The average end-to-end delay is a very important measure since it has a major impact
on the user perceived Quality of Service (QoS). The average end-to-end delay of the
data packets was measured and averaged over all clients in the same flow, i.e. clients
with same source and destination node (not over all connections that share one link, as
the other measures before). The end-to-end delay was measured on different layers, the
lowest layer (IP) measurements are shown here. The average end-to-end delay depends
strongly on the average queue size and therefore also strongly on the average link load.
It can be expected that the average end-to-end delay is not constant in cases where the
link load is not constant for different off-times (cf. Sec. 6.5.3).

The average end-to-end delay of flow “K->US” is approximately constant for all off-
time values, as can be seen in Fig. 6.38 (a). The utilisationρ ≈ 30.3 % denoted in the
title of the graph refers to the maximum utilisation on all links that the packets follow on
the route from source “K” node to destination node “US”. The measurements on many
other flows show very similar characteristic.

However, the measurements in the opposite direction with a maximum utilisation of
95.6 % (flow “US->K”, Fig. 6.38 (b)) show a strong dependency on off-time: the aver-
age end-to-end delay is only approximately constant forto f f ≥ 20 s here. A very similar
curve is shown in Fig. 6.38 (c) for the flow “US->HH” with maximum utilisation of
ρ ≈ 93.4 %. The same characteristic as in Fig. 6.38 (b) and (c) was observed for the
flows “US->H”, “US->N” and “US->S”.

A completely different characteristic was measured at flow “US->M” in Fig. 6.38 (d)
with maximum utilisation of 78.7 %: the end-to-end delay is nearly independent of the
off-time. The same characteristic was observed for the flows “US->B”, “US->L” and
“US->Ka”.

This phenomenon can be explained as follows: the two classes formed by the measure-
ments are characterised by the fact, that they are all routed over two links “US->K” and
“US->H”. Both links have a target load larger than 95 % and the matching with the tar-
get load was not very accurate (cf. Sec. 6.5.3). That is, the load was not constant for
different off-times; the dependency of the link load on the off-time was significant al-
ready forto f f ≥ 5 s, see Sec. 6.5.3. Therefore, the decreasing average end-to-end delay
for small off-times is a direct result from the deviations from the ideal behaviour of the
link load on these two links. The second set of flows (“US->M”, “US->B”, “US->L” and
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Figure 6.38: Average end-to-end delay over off-time,α = 1.5.

“US->Ka”) experiencing average end-to-end delays nearly independent of the off-time
are routed over links with smaller target link load.

The measurements of some flows show an unexpected characteristic as visualised in
Fig. 6.39: the average end-to-end delay decreases for large values of the off-time and
therefore for larger number of clients. However, the difference is rather small as com-
pared to e.g. Fig. 6.38. Furthermore, it is not critical when the end-to-end delay is slightly
larger than in reality, since this leads to a conservative decision regarding QoS dimen-
sioning issues.

It can be summarised that the average end-to-end delay is approximately constant for
to f f ≥ 5 s with the exception of some flows routed over two links with a target utilisation
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Figure 6.39: Average end-to-end delay over off-time,α = 1.5.

over 95 %. It could be shown that this exception was caused by a problem in reaching a
constant link load for the whole range of off-times, which is only apparent for very high
link loads, as in this case.

6.5.8 Potential of the Complexity Reduction

The successful complexity reduction of the simulation allows to simulate even larger net-
work models. The B-WiN model was scaled up in order to evaluate a simulation close
to the physical limits of current 32 bit computer systems. All link capacities were set
to 1.5 Gbit/s resulting in a total capacity of 54 Gbit/s. A uniform target traffic matrix
with 140 Mbit/s was used for all flows (traffic from all nodes to all neighbour nodes). An
off-time of to f f = 5 s was used for a total of 146,846 client modules. The total average
throughput was 25.96 Gbit/s (15.4 Gbit/s from all clients/webservers routed over several
hops).

The resulting throughput of all flows is depicted in Fig. 6.40. The target of 140 Mbit/s
was approximately reached. However, this simulation really touched the limits: the sim-
ulation required 2853 MB RAM and the simulation of 20 s real time lasted for 15.7
days and nights on a Pentiumc© III with 1 .4 GHz. This is about 107 times slower than a
B-WiN simulation with the standard settings forto f f = 40 s with 108,000 clients (and a
total throughput of only 2.17 Gbit/s); the simulation of 700 s real time took 4.3 days and
nights in this case (on the same computer). Further, the simulation of the B-WiN with
standard settings andto f f = 5 s was already finished after 3.2 days and nights. These
numbers make clear that the simulation of network models of this size is really a com-
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plex task. However, the price development allows to build economically priced Linux
clusters capable of performing such complex simulation tasks.
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Figure 6.40: Average throughput of all flows, B-WiN with higher link capacities
and uniform target traffic matrix.

6.6 Conclusion

It can be concluded that the algorithm for allocation of clients presented in Sec. 4.1 suc-
cessfully estimates the required number of clients for the given throughput matrix and
network scenario. The maximum error for all flows in the B-WiN is smaller than 4 % for
realistic parameter settings (to f f = 40 s andv = 60 KB). The deviation from the target
increases for smaller off-time values and larger download volumes. However, the error
is in most cases still acceptable.

It has been verified with an extensive simulation study that a reduction of the number of
clients by a factor of 8 was possible without significant changes of the average values of
the link load, coefficient of variation, Hurst parameter and end-to-end delay.

One issue was identified: a link utilisation very close to 100 % causes problems for es-
timating the required number of clients, since the end-to-end delay and loss probability,
and therefore also the TCP throughput, follow a non-linear behaviour in this region. The
result was, that the number of clients could be only reduced by a factor of 4 in this case
instead of 8 with the same error bounds.
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However, link loads close to 100 % are problematic due to several reasons: the conges-
tion avoidance mechanism of TCP reduces the throughput when faced with packet losses
or time-outs. Therefore, it can not easily be identified whether the high load situation is
the result of e.g. an offered traffic of approx. 100 % of the link capacity or an overload
situation of 180 % of the link capacity (see Sec. 2.1, p. 6 for the definition of the degree
of overload for TCP traffic). Considering this fact, it becomes clear that such an overload
situation results in more degrees of freedom for the solution. Further, it is not trivial to
determine the degree of overload from other measurements like the average queue size
– which were not available for the B-WiN.

Average link utilisation values of more than 90 % represent a bad operating point, since
they go hand in hand with bad QoS (delay and packet loss) for the user. Nevertheless,
if such a situation is existing, as in the B-WiN, a solution must be found, and therefore
it might be necessary to simulate this current overload situation of the network. This
is possible with the given solution. However, the errors are larger in this case and it
could be that the degree of overload is not captured correctly, since the corresponding
measurements might be unknown, as in the case of the B-WiN.

As a result of the successful reduction of the number of clients an equivalent of 1.2 mil-
lion clients can be simulated (forto f f = 5 s) instead of 150,000 (for to f f = 40 s) for
a memory limitation of 3 GB. The average throughput of a source with a small RTT
in the B-WiN scenario is approximately 13.3 kbit/s for to f f = 40 s and approximately
99.1 kbit/s forto f f = 5 s. The total average throughput of a simulation withto f f = 5 s can
therefore reach up to 15.4 Gbit/s as compared to a maximum of 2 Gbit/s forto f f = 40 s
(cf. Sec. 6.5.8).





Chapter 7

Conclusions

The main focus of this work is the realistic simulation of communication networks. The
optimisation of an existing network poses a new problem for the simulation: a realistic
simulation of the current state of the network is required for the qualitative and quanti-
tative assessment of new alternatives to the status quo. Moreover, measurements of the
network provider need to be taken into account when setting up the simulation. The
simulation of existing networks is an inverse problem: the network description (number
of nodes, connectivity, capacities, routing) and some measurements (traffic matrix, etc.)
are given from the network provider. However, the number of clients, their behaviour
and distribution over the network are in most cases unknown. Therefore, the number of
clients has to be derived from the network description and traffic measurements.

A methodology was developed in this work that provides a solution for the inverse prob-
lem. This methodology allows for realistic simulations of existing networks. The average
traffic intensity is controlled by the iterative algorithm for allocation of clients, presented
in Sec. 4.1. The iterations convergence fast but the resulting error oscillates around zero,
as shown in Sec. 6.2.4. However, it has been shown that the algorithm’s estimation accu-
racy is in most cases sufficient, so that no further iterations beyond the first simulation are
required. It has been shown that the proposed algorithm yields more accurate estimations
than the TCP-modified Engset model [HLN97] (cf. Sec. 3.4). Furthermore, a method-
ology is provided in this work, describing how higher moments of the traffic – Hurst
parameter and coefficient of variation – can be matched to corresponding measurements
in the real network (cf. Sec. 4.2 and 4.3).

Realistic network simulations have a high complexity, the required memory and the sim-
ulation speed are a major issue in this area. Therefore, the reduction of the complexity is
treated in this work. Two alternatives for the complexity reduction have been discussed:
the usage of aggregated traffic models and the reduction of the number of clients by in-
creasing the activity of the single client. It has been shown in Sec. 2.1 that aggregated
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traffic models can not be used to solve the performance problem: one of the most impor-
tant features of web traffic – the reactivity of TCP – is not captured by aggregated traffic
models.

Reducing the number of clients is a feasible solution for the complexity reduction, as
shown in Sec. 6.5: the activity of each client can be increased by reducing the off-time
so that less clients are needed to generate the same average throughput. This strategy
leaves the on-time unchanged. Therefore, the complete dynamic behaviour of the client
(distributions, protocols, etc.) remains the same. Furthermore, it has been shown that the
average number of active connections remains constant, independent of the reduction.

An extensive simulation study was performed to validate the correctness of this approach
for reducing the simulation complexity. To asses the applicability of this solution, critical
network parameters are estimated as a function of the number of clients. The parameters
considered are: average link load, loss probability, coefficient of variation, Hurst param-
eter and average end-to-end delay. It has been shown in Sec. 6.5 that the measurements
are approximately constant for a wide range of off-time values. The number of clients
could be reduced by a factor of 4−8 (off-time 10 s or 5 s instead of 40 s) without having
significant impact on the measured parameters. The required accuracy, the complexity
and the maximum link utilisation of the network scenario are the factors determining
whether a factor of 4 or 8 can be gained. The simulation speed was increased by up to
33 % when using the reduced client set (to f f = 5 s versusto f f = 40 s).

The results reveal the potential for even larger simulation models than the ones presented
in this work: a maximum of 150,000 clients can be allocated with the fixed memory limit
of 3 GB of current 32-bit systems. The average throughput per client in the B-WiN sce-
nario is approx. 13.3 kbit/s for an off-time of 40 s. This results in a total throughput
of approx. 1.44 Gbit/s for the B-WiN with approx. 108,000 clients requiring 2090 MB
RAM. The potential of the complexity reduction by a factor of 8 is that a maximum
of 150,000 clients (for 3 GB RAM) can generate a traffic of up to 15.4 Gbit/s with an
off-time of to f f = 5 s, an equivalent of 1.2 · 106 clients with to f f = 40 s, as shown in
Sec. 6.5.8.

It can be concluded that this work represents a major step in research towards a realis-
tic modelling and simulation of complex simulation models of existing networks. The
solutions for matching average traffic load, coefficient of variation and Hurst parameter
to measured values in the real network are promising and can be used as basis for fur-
ther studies. The successful increase of the simulation efficiency gained by decreasing
the client population represents one step towards the realistic simulation of current and
future multi-Gbit networks.



Appendix A

Tools for Estimation and Generation of
Self-Similar Traffic

One of the most powerful Hurst parameter estimators, the Abry-Veitch estimator, is de-
scribed in Sec. A.1. The Perl source code for generating a synthetic self-similar series
following a recursive scheme called Cantor set is presented in Sec. A.2.

A.1 Abry-Veitch Wavelet Hurst Parameter Estimator

The Abry-Veitch Hurst parameter estimator [VA99, AV98, AFTV00] is based on the dis-
crete wavelet transform. It has been shown that this estimator outperforms most other
Hurst parameter estimators in the aforementioned publications. The non-parametric
Abry-Veitch estimator has a very good performance in terms of computational com-
plexity and accuracy of the results.

The coefficients of the discrete wavelet transformdX( j,k) are used for the estimation of
the Hurst parameter. The variablej represents the scaling index andk the time index. The
frequency can be calculated from the scaling index withf = 2− j ·ν0. The base frequency
ν0 depends on the so called mother-wavelet, that is selected for the wavelet transform.
The mother wavelet is the core of the wavelet transform. The properties of the trans-
form can be adapted to the requirements by selecting the appropriate mother wavelet.
The Daubechies wavelets [Dau88] are used as mother wavelet here since they represent
a very good compromise between time domain and frequency domain resolution for the
wavelet transform. The time can be calculated from the indexk with t = 2 j ·k.
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The second moment of the wavelet coefficientsE{dX( j,k)2} is used to estimate the
Hurst parameterH

E{dX( j,k)2} ∼ 2 jα, j →+∞, (A.1)

with

α = 2H−1. (A.2)

The second moment of the wavelet coefficients (the energy) is plotted on a double-
logarithmic plot versus the scaling indexj. A slope estimation of the part forming a
straight line of the double logarithmic plot can be used to estimate the Hurst parameter
with Eq. (A.2), cf. Fig. A.1. The vertical lines represent 95 % confidence intervals for
the estimated second moment. Small scalesj represent the short-time behaviour of the
process (left hand side of Fig. A.1) and large scalesj represent the long-term behaviour
(right hand side of Fig. A.1).
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Figure A.1: Wavelet estimation of a Fractional Gaussian Noise (FGN) series,
length 131072,H = 0.8. A: estimated second moment, B: approximated straight
line for range 3≤ j ≤ 14.
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The plot of synthetic traffic with pure self-similar characteristic (like FGN in this case)
exhibits an approximately linear behaviour over all scalesj. Real measurements expe-
rience a constant slope usually only over a limited amount of scales. The larger scales
are important when judging the Hurst parameter, the degree of long-range dependence.
However, the accuracy of the estimation decreases for large values ofj, as can be ob-
server by the increasing size of the confidence intervals with increasingj in Fig. A.1.
Therefore, the region used for estimating the Hurst parameter should be chosen as fol-
lows: the smallest scales should be skipped unless they have already consistent slope
with the larger scales. Some few of the largest scales should be skipped, since the large
confidence interval results in a weak estimation of the slope. Therefore the middle and
large scales should be used for estimation of Hurst parameter (approx. rule of thumb for
the range: fromd jmax/3e to jmax−2).

A.2 Source Code for Generating Cantor Set

The source code of the Perl scriptsyntheticTraceSelfSimHighLoad.plis listed in the fol-
lowing.

#!/usr/bin/perl -w

use strict;

use Getopt::Std;
&getopts(’t:’);
use vars qw/

$opt_t
/;

# vector cv with counting process, 2.5 ms, counting window, 600 seconds total
# number of samples = 600 / 2.5e-3 = 240000
my @cv = ();
my $cw = 2.5e-3; # counting window 2.5 ms
my $st = 600; # 600 seconds simulation time
my $ns = $st / $cw; # number of samples = simulation time / counting window
my $lc = 167e6; # link capacity in Mbit/s

# maximum value of counting process, capacity [Mbit/s] / 8 * count-window:
my $maxCount = $lc / 8 * $cw;

# initialize vector:
for (my $i = 0; $i < $ns; $i++) {

$cv[$i] = $maxCount;
}

# produce a synthetic self-similar trace similar to a cantor set
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# (refer to book "High-Speed Networks, TCP/IP and ATM Design Principles"
# William Stallings, Prentice Hall, 1998, ISBN 0-13-525965-7, p. 181 ff.)

my $ord = 3;
my $minInd = 0;
my $maxInd = $ns - 1;
my $recursions = 0;
my $thresh = $opt_t || 30;

&buildCantorSet(\@cv, $ord, $ns, $minInd, $maxInd, $thresh);

# build "inverse counting-process":
for (my $i = 0; $i <= $#cv; $i++) {

$cv[$i] = $maxCount - $cv[$i];
}

# calculate load:
my $valSum = 0;
for my $val (@cv) {

$valSum += $val;
}
my $load = 100 * $valSum / ($maxCount * $ns);

my $outfile = "syntrace" . $thresh;
open(OUT, "> $outfile") or die "\n Could not open $outfile for writing!\n";
for my $val (@cv) {

print OUT $val, "\n";
}
close OUT;

print STDERR "\n wrote vec to file: $outfile";
printf STDERR "\n link capacity: %g Mbps, maxCount: %g, %d samples"

, $lc / 1e6, $maxCount, $ns;
print STDERR "\n recursions $recursions, threshold: $thresh, load: $load %";

my $of = "syntrace" . $thresh . ".m";
&printMatlabScript($of);
print STDERR "\n wrote Matlab script: $of\n";

system "matlab -nodesktop -nosplash < $of; gzip -9f $outfile";

exit 0;

# --------------------

sub buildCantorSet() {
my ($vec, $ord, $ns, $minInd, $maxInd, $thresh) = @_;

if (($maxInd - $minInd) <= $thresh) { # finished, nothing to do anymore
return;

}
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# zero out middle third:
my $seg = int(($maxInd - $minInd) / $ord);
for (my $i = $minInd + $seg; $i < ($maxInd - $seg); $i++) {

$cv[$i] = 0;
}
$recursions++;

&buildCantorSet($vec, $ord, $ns, $minInd, $minInd + $seg, $thresh);
&buildCantorSet($vec, $ord, $ns, $maxInd - $seg, $maxInd, $thresh);

}

sub printMatlabScript() {
my ($of) = @_;

my $loadString = sprintf("%5.2f", $load);
open(OUT, "> $of") or die "\n Could not open $of for writing!\n";
print OUT <<EOM

a = load(’$outfile’);
x = [0:$st/$ns:$st-$st/$ns];
plot(x, a / $maxCount * $lc / 1e6);
ylabel(’Throughput [Mbit/s]’);
xlabel(’Time [s]’);
title(’Synth. Trace, Counting Process, \\rho=$loadString %, Thr=$thresh’);
mfont(’helvetica’, 21, 1);
grid on;
saveas(gcf, ’syntrace-cantor-set-self-sim-highload-seq-$thresh.fig’, ’fig’);
print(gcf, ’-depsc2’, ’syntrace-cantor-set-self-sim-highload-seq-$thresh.eps’);

clf;
[Hwav, alphaest, cfCest, cfest, Cest, Qwav, j1opt] = mywavest(a);
titleString = [’Synth. Trace, Wavelet Est., H=’, ...

sprintf(’%3.2f’, Hwav), ’, Thr=$thresh’];
title(titleString);
mfont(’helvetica’, 21, 1);
saveas(gcf, ’syntrace-cantor-set-self-sim-highload-$thresh.fig’, ’fig’);
print(gcf, ’-depsc2’, ’syntrace-cantor-set-self-sim-highload-$thresh.eps’);

EOM
;
close OUT;

}

# end ...
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