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Gelatin phantoms are frequently used in the development of surgical devices and medical imaging techniques. They exhibit
mechanical properties similar to soft biological tissues [1] but can be handled at a much lower cost. Moreover, they enable a
better reproducibility of experiments. Accurate constitutive models for gelatin are therefore of great interest for biomedical
engineering. In particular it is important to capture the dependence of mechanical properties of gelatin on its concentration.
Herein we propose a simple machine learning approach to this end. It uses artificial neural networks (ANN) for learning from
indentation data the relation between the concentration of ballistic gelatin and the resulting mechanical properties.
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1 Introduction

One of the most popular methods to identify material parameters is to compare experimental results with computer simu-
lations of the same set-up and to adjust the material parameters in the simulations iteratively until the difference between
experiments and simulations becomes minimal [2]. This method has, however, also some well-known disadvantages [2, 3].
To overcome these disadvantages, alternative approaches have been proposed. For example, [4] suggested using ANN for
constructing inverse functions mapping measurement data such as the force-depth curves of spherical indentations directly
onto material parameters. Here we extend this idea so that it will allow us to predict the mechanical properties of gelatin from
its concentration even if no experimental data are available for the specific gelatin of interest.

2 Methods

We conducted spherical indentation experiments at an indentation velocity of 0.01 mm−1s with gelatin cylinders of varying
gelatin mass concentrations α ∈ {5, 6, 7.5, 10, 12.5, 15, 17.5, 20 %}, Figure 1a. The measurements for the 6 % gelatin
where withhold for validation. The proposed approach is based on two ANN [5] implemented using the software library
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Fig. 1: (a) Experimental setup of the displacement-driven spherical indentation. (b) Schematic representation of our machine learning
architectures: the network ANNc maps the gelatin concentration α to its material parameters c1 and c2. The second network ANNF maps
the material parameters and a given indentation depth u on the indentation force F̂ .

TensorFlow [6]. Our machine learning architecture is illustrated in Figure 1b. In this architecture, the first network ANNF is
trained with data from finite element simulations of the fictitious indentation experiments. For these simulations we simulated
the gelatin as a hyperelastic, incompressible Mooney-Rivlin material with strain energy Ψ = c1(I − 3) + c2(II − 3), with
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2 of 2 Section 6: Material modelling in solid mechanics

I and II the first two invariants of the right Cauchy-Green tensor C. Previous to each simulation the material parameters c1
and c2 are randomly drawn from a range representative of the mechanical properties of typical ballistic gelatin. Thus, every
simulation yields a force-depth curve along with the related material parameters as training data for ANNF. After training, this
network is able to predict from a given indentation depth and Mooney-Rivlin material parameters the associated indentation
force. The training of the network ANNF can be performed without any experimental data.

The second network ANNc maps gelatin concentrations on the associated material parameters. It is trained with exper-
imental force-depth curves of gelatin with varying concentrations α while keeping the weights of ANNc constant. For the
training of both ANN, the sum of squared differences between the predicted indentation force and the correct one (known
from simulation or experiment) is minimized.

3 Results

After training is completed, the combination of ANNc and ANNF cannot only resemble the constitutive behavior of the gelatin
samples provided for training. In addition, it can also predict the material properties of gelatin with a mass concentration
different from any represented in the experimental training data, and it can predict for such gelatin also the whole force-
depth curve to be expected during an indentation experiment. These results are illustrated in Figure 2. Note, that the 6 %
concentration, highlighted in red in Figure 2, was withhold for validation of our trained ANN.
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Fig. 2: Comparison of predicted and experimentally obtained force-depth curves for all considered gelatin mass concentrations. All but the
6 % concentration, which is highlighted in the legend in red, have been used to train ANNc.

4 Conclusions and Discussion

The present work demonstrates how a combination of machine learning and computational mechanics renders it possible to
predict concentration-specific material parameters of gelatin. In this contribution the gelatin was assumed to behave hypere-
lastically. An extension to the more realistic assumption of viscoelastic material behavior will be addressed in future work.
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