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One-page summary Dissertation Daniel Chorzelski: “Simulation modelling in accounting 

and finance: current practices and advances in input modelling” 

This dissertation seeks to contribute to the understanding of simulation methods in Corporate 

Finance and Accounting with a focus on simulation input modelling. It is structured in six chap-

ters applying different methods to investigate simulation methods in the discipline.  
The first chapter uses bibliometrics to shed light on how simulation methods affected Finance 

and Accounting research, how they are used in the disciplines as well as quantifying the diffu-

sion across a wide range of research clusters via a citation and CoCitation network analysis. 

Key findings are that several research clusters in Finance research embraced simulation meth-

ods, with less adoption in Accounting – despite noteworthy exceptions. Further, the methods 

are used primarily instrumentally rather than conceptually, suggesting untapped potential for 

theory-building research. Finally, we observe that simulation crossed the ‘chasm’ into the meth-

odological mainstream in many research clusters in finance and is on the cusp of crossing this 

chasm for several accounting research clusters as well – notably around costing. The second 

chapter turns toward simulation input modelling and analyzes the state-of-the-art methods in 

simulation input modelling through a structured literature review of both the academic literature 

and practitioner publications. This is complemented in the third chapter through a unique per-

spective on simulation input modelling based on a series of in-depth semi-structured interviews 

with experts. The fourth chapter presents a simulation input modelling method based on Bayes-

ian Updating of prior distributions aggregating data and expert-based methods. Thereby the 

method addressed several challenges as demonstrated through a case study. The fifth chapter 

proposes and discusses a novel metric, Simulation Output at Risk (SOaR), that quantifies mod-

elling risk stemming from epistemic and aleatoric uncertainty of input modelling parameters in 

a single metric and thereby generalizes the method used in chapter 4. The sixth and final Chap-

ter builds onto chapter 4 by analyzing and discussing conditions under which Bayesian input 

modelling represents a viable alternative input modelling method along input modelling desid-

erata concluding that it represents a viable method. The results prove relevant for a readership 

in both academia as well as professional simulation modelers.   
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General introduction  

Simulation modelling has become a vital method in the field of accounting and finance, for 

researchers and practitioners alike. Its applications are myriad and its impact noticeable across 

the disciplines. Simulation is here understood per Kelton and Law (2000) as “models evalu-

ated numerically to estimate their true characteristics” and thereby aid decision-making in a 

variety of contexts. Researchers in accounting and finance, and beyond, apply simulation 

modelling for many purposes including lowering the need for infeasible or prohibitively ex-

pensive experiments, approximating or evaluating otherwise intractable systems (e.g. via eval-

uating partial differential equations) or by providing an additional angle to corroborate or 

challenge theoretical or empirical contributions or even develop theory altogether. The 

method, all but new, has seen growing usage across the field, as we will demonstrate below, 

thereby contributing towards the evolution of accounting and finance research. In the process 

simulation methods diffused into various accounting and finance research clusters – however 

to starkly varying extents.  

Use cases range widely including financial modelling, risk management and many others 

(Kelton & Law, 2000; Glasserman, 2003; Hertz, 1964). Simulation is a powerful method 

providing a quantitative perspective that complements experience and intuition in decision 

making. Yet the accuracy of these simulation models hinges upon the quality of the input pa-

rameters and distributions used (e.g. Vose, 2008; Rees, 2015). While a rich and structured re-

search dialogue around input modelling is evidenced for capital market finance by various re-

search clusters observed in the quantitative assessment of the discipline, this research dialogue 

appears to be less rich and differentiated for corporate finance and accounting research – 

thereby constituting a core motivation toward the second focus of this dissertation.   
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This research is motivated by the desire to fully grasp and quantify the methods impact on our 

field of inquiry as well as further advance simulation modelling in accounting and finance by 

contributing towards empirical analysis of simulation input modelling methods as well as the-

oretical contributions of input modelling and quantification of input modelling risk. The first 

objective of this dissertation, pursued in chapter one, is to provide a thoroughly quantified an-

gle towards how simulation methods affected the research agenda and analyze its diffusion 

across research clusters to derive fruitful avenues of future research. The second objective, 

pursued in chapter two to six, is to advance simulation input modelling – both empirically as 

well as theoretically and the quantification of input modelling uncertainty, specifically param-

eter uncertainty. 

In the following, each chapter’s contribution is briefly summarized before the main body of 

this dissertation follows. The first chapter applies bibliometrics to shed light on how simula-

tion methods affected finance and accounting research, how they are used in the disciplines as 

well as quantifying the diffusion across a wide range of research clusters in these two disci-

plines. The method used is a citation and CoCitation network analysis of the relevant research 

field. Key findings are that several research clusters in finance research embraced simulation 

methods, whereas accounting has seen much less adoption – despite note-worthy pioneering 

simulation-based research. Further, the methods are used primarily instrumentally rather than 

conceptually, suggesting untapped potential for theory-building simulation-based research in 

finance and accounting. Finally, we observe that simulation crossed the ‘chasm’ into the 

methodological mainstream in many research clusters in finance and is on the cusp of cross-

ing this chasm for several accounting research clusters as well – notably around costing. One 

of the findings, that also sparked further research interest was the lack of evidence for a struc-

tured research dialogue on simulation input modelling, especially in corporate finance. In 
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other words, of the many research cluster in simulation methods in accounting and finance, it 

appeared that remarkably little research focused on simulation input models beyond data-

driven econometric models based on financial market data – despite widespread agreement on 

the importance of this topic to simulation modelling in the wider simulation methods research 

community as we will argue in the next chapter. The second chapter turns toward simulation 

input modelling and analyzes the state-of-the-art methods in simulation input modelling 

through a structured literature review of both the academic literature and practitioner publica-

tions. Reviewing the literature broadly, including various methodological treatments on simu-

lation modelling in further disciplines such as operations research, we capture the consensus 

as well as disagreements on input modelling methods. Finally, we deduce a decision-tree for 

input modelling methods, that captures the consensus view of the input modelling methods.  

This is complemented in the third chapter through a unique perspective on simulation input 

modelling based on a series of in-depth semi-structured interviews with experts in applied 

simulation modelling in corporate finance and accounting and contrasts their point of view 

with the previously derived literature-based consensus. We find notable areas of agreement, 

though also divergent opinions on topics like aggregation of input sources and fundamental 

input modelling methods. Delving further into methods to aggregate input modelling sources, 

the fourth chapter presents a simulation input modelling method based on Bayesian updating 

of prior distributions aggregating data-based as well as expert-based methods in stochastic 

simulations. This method can address several challenges derived from the literature review 

and expert interviews whilst fulfilling several input modelling desiderata. Further, it is applied 

to an actual case study of a simulation model in a corporate finance context underscoring its 

relevance for practitioners. However, as this application to one case study does not provide 

proof of the superiority of Bayesian input modelling as the actual one-shot realization of the 
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modelled process is stochastic and thus no sufficient benchmark therefore it is not feasible to 

determine if Bayesian modelling is indeed superior to conventional input modelling methods 

in the sense of providing a mean parameter estimate closer to the “true” underlying parameter 

than other input modelling methods as this “true” parameter is not known. Yet, there is firstly 

a very strong theoretical argument, laid out in the chapter, for this methods validity, and in-

deed superiority, that should inspire confidence. Further, though it is possible to provide proof 

of the method’s desirable properties through an extension to the way uncertainty is modelled 

and understood that will emphasize the uncertainty reducing properties of Bayesian input 

modelling. This is the motivation and objective of the next chapter. 

The fifth chapter proposes and discusses a novel metric that quantifies modelling risk stem-

ming from stochasticity of input modelling parameters in a single metric. Stochastic simula-

tions tend to focus on either aleatoric uncertainty, inherent to the process modelled such as a 

coin toss, or epistemic uncertainty, uncertainty stemming from imperfect knowledge of the 

stochasticity of a variable – or modelers do not explicitly state which uncertainty is modelled. 

The metric discussed, Simulation Output at Risk (SOaR), allows for a straightforward joint 

modelling of aleatoric and epistemic uncertainty and thereby quantifies uncertainty in a novel 

way in a setting of Bayesian input modelling. Further, this method illustrates a key advantage 

of Bayesian input modelling by highlighting its uncertainty-reducing properties. 

The sixth and final chapter builds onto chapter 4 by analyzing and discussing conditions un-

der which Bayesian input modelling represents a viable alternative input modelling method 

along input modelling desiderata and challenges derived from the pre-ceding chapters. It con-

cludes that Bayesian updating for simulation input modelling represents a viable method for 
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applications meeting key assumptions that fulfills a majority of, though not all, modelling de-

siderata. Due to the plurality of methods used, each chapter contains a dedicated method sec-

tion. The appendix provides further clarifications, additional data and analysis. 

Chapter 1: Simulation methods in accounting and finance: A bibliometric study 

1.1: Introduction  

Scientific fields advance through the methods they apply (National Research Council, 2007). 

Simulation represents such a class of methods and is widely used in scientific fields as diverse 

as physics (Binder, Heermann, Roelofs, Mallinkrodt & McKay, 1993), genetics (e.g. De Jong, 

2002) or chemistry (e.g. Gillespie, 2007) by providing estimates of otherwise intractable sys-

tems or reducing the need for costly or infeasible experiments. We study the usage and diffu-

sion of simulation methods in accounting and finance research via the bibliometric methods of 

citation and cocitation analysis. This accomplishes a number of objectives, that we discuss 

here in turn. In finance, simulation is used extensively in select research clusters like stochas-

tic asset pricing. Other research clusters and simulation methods like agent-based-modelling 

remain small yet promising. In contrast, in accounting simulation methods are not widely used 

and cannot be considered a mainstream method.  

For accounting and finance, there appears to be broad scope for these methods. It is a versatile 

method to model uncertainty and complex systems, solve analytically intractable equations 

and models, yet it also helps researchers modelling human cognition and interactions through 

agent-based models (defined following Polhill et al. 2019; ABM henceforth) or model com-

plex systems via system dynamic simulation, the “computer-aided approach to policy analy-

sis” (System Dynamics Society, 2019). Several researchers underscore the potential of simu-

lation for theory-building applications (Balakrishnan & Penno, 2014; Axelrod, 1997; Davis, 

Eisenhardt & Bingham, 2007; North & Macal, 2007; Kelton et al., 2000). In this quantitative 
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literature review we use bibliometric and adjacent methods to analyze simulation methods’ 

diffusion in and impact on accounting and finance research as well as provide a high-level 

overview of topical research clusters and strands within simulation-based accounting and fi-

nance research. 

Methods can thoroughly affect a discipline. A good example are Ball and Brown (1968), who 

are acknowledged for contributing to shifting methodological paradigms in accounting re-

search from normative theory to data-driven empirical research (Ball & Brown, 2013). While 

case studies had been used for normative policy prescriptions, Ball et al.’s research (1968) 

was positive and based on ‘regular’ companies rather than, e.g. recent bankruptcies. In the 

Journal of Accounting Research, the ratio of normative theory prescriptions to empirical, ana-

lytical and normative theory prescriptions declined from 0.64 in 1963-66 to 0.09 in 1971-75 

underscoring the impact on methods used. Empirical, positive research continues to prevail in 

accounting and finance (Moser, 2012; Beattie, 2005; Ryan, 2002). Hopwood (2007) argues 

that, more recently, innovation in accounting research is partly held back by risk-aversion and 

methodological conformity as well as lacking intellectual curiosity, a sentiment mirrored else-

where (Moser, 2012) as well as for finance (Gippel, 2015). It would be of interest to observe 

how simulation fits into this methodological discussion as we will discuss below.  

From a frame of diffusion theory, the spread of empirical accounting research represents a 

case of swift and thorough diffusion through Rogers’ (2010) stages from innovators like Ball 

et al. through early adopters and eventually a majority of publications. Adopting a related 

frame, Polhill et al. (2019) analyze how ABM adoption could be furthered. Polhill et al. con-

clude that ABM is not yet part of the methodological mainstream in the disciplines surveyed 

that were subjectively chosen to include a “human decision-making element” like in sociol-
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ogy or economics. They put forth a set of guiding principles for the method to further ad-

vance. Among the critical factors for diffusion of scientific methods, they argue along (1) 

finding a niche, (2) building alliances, (3) defining the agenda and (4) deliver on promises. 

Whilst steps (2)-(4) are normative prescriptions and not straightforward to examine empiri-

cally it is possible to analyze which niche or research cluster simulation found, or put differ-

ently: which research clusters and applications adopted simulation methods? We follow a re-

lated frame though remain positive in analyzing in which research clusters the chasm has been 

crossed. We seek to uncover the field’s central simulation-based research strands through a 

bibliometric citation and cocitation analysis and contrast them with the core topics of the 

wider, non-simulation focused, accounting and finance literature to understand how the 

method has affected the discipline and what future trends might be. We find two contrasting 

states of diffusion of simulation between accounting and finance research. Simulation crossed 

the chasm into the methodological mainstream in stochastic asset pricing, term structure 

models and adjacent research clusters, to model stochastic assets in a method that is comple-

mentary to the prevailing data-driven empirical research paradigm per Gippel (2015). Yet 

simulation is not as well-established in other finance research clusters nor are simulation 

methods such as ABM or system dynamics. From a bibliometric perspective, the field’s evo-

lution can be described as that of a ‘normal science’ (Schäffer et al. 2011), sub-fields emerge 

around a differentiating core with gradually increasing network density. For accounting, fewer 

breakthrough applications appear to exist, although examples of pioneering simulation-based 

accounting research exist in our sample. We corroborate these results via approximating per-

centage shares of articles related to simulation in accounting and finance research clusters that 

indicate the state of diffusion per cluster. Our results imply that there is untapped potential for 
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simulation research in select research strands, especially in accounting, and points towards ar-

eas where simulation can be applied fruitfully. 

Our contribution is threefold. Via a broad, quantitative and non-selective literature review, we 

contribute to the dialogue around accounting and finance research clusters (Chenhall & Smith, 

2011; Gaunt, 2014; Meyer, Schäffer & Just, 2010; Schäffer, Nevries, Fikus & Meyer, 2011) 

and uncover which research clusters of general accounting and finance research are comple-

mented with structured simulation-based research. We show that instrumental (defined per 

Beyer, 1997) use, that is closely aligned with prevalent research paradigms, is most common 

thereby expanding on noteworthy prior research (Grisar & Meyer, 2015; Balakrishnan et al., 

2014; Labro, 2015). Secondly, we point to future research directions in simulation-based ac-

counting and finance research reflecting prevailing research paradigms and methodological 

discussions in the field. Finally, we contribute to a better understanding of diffusion of novel 

methods (Polhill et al., 2019) by quantifying diffusion across research clusters finding that 

several researcher clusters adopted simulation methods into their methodological mainstream 

– both in finance and to some extent in accounting, contrary to expectations of low adoption. 

Our analysis suggests that untapped potential remains in both disciplines for simulation meth-

ods and suggests promising opportunities for future research, such as more theory-building 

research. 

1.2: Literature review 

Hertz (1964) has been credited with introducing simulation methods to finance (Hall, 1975) 

focusing on risk in capital budgeting. Since then the method has been applied broadly, notably 

in asset pricing (Boyle, 1977). At first, simulation was applied in corporate finance before be-

ing introduced to capital markets where it was broadly adopted to simulate stochastic assets 

(Boyle, Broadie & Glassermann, 1997). Similarly, the merits of simulation for accounting 



17 

 

were recognized early, e.g. to simulate budgeting spreadsheets (Mattessich, 1961; Murphy, 

1997). However, neither management (Labro, 2015; Wall, 2016; Grisar et al., 2015) nor fi-

nancial accounting, where just ~1% of articles in leading financial accounting journals use the 

method (Beattie, 2005), appear to have embraced simulation methods despite many use cases 

(Balakrishnan et al., 2014). Barriers to usage include the lack of familiarity of many research-

ers and their readers with simulation methods (Labro, 2015; Harrison, Lin, Carroll & Carley, 

2007) and the absence of universally agreed methodological standards (Lorscheid, Heine & 

Meyer, 2012). Thus, there appears to be a discrepancy between simulation’s adoption in ac-

counting and finance research with a clear application in finance though not in accounting. 

We set out to uncover if this discrepancy can be confirmed through a broad, quantitative and 

not selective research design encompassing accounting and finance analyzing which structural 

reasons may explain such a divergence.  

To understand simulation methods’ impact on research clusters in accounting and finance, we 

first review bibliometric and qualitative reviews of research clusters in the disciplines to 

gauge potential applications for simulation. Starting with accounting research, Chenhall & 

Smith (2011) provide a topical overview of the research foci across ten leading accounting 

journals. Beattie (2005) identifies research clusters in financial accounting with little overlap 

with the research clusters in Chenhall et al. (2011). Benson, Clarkson, Smith & Tutticci 

(2015) review recent accounting research with a geographic focus on the Pacific Basin. Gaunt 

(2014) analyzes articles published in accounting and finance and deduces the main research 

clusters. 
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# Beattie, 2005 Chenhall & Smith, 
2011 

Gaunt, 2014  Benson, Clarkson, 
Smith & Tutticci, 
2015 

Linnenluecke et al., 
2017b 

1 Normative  Capital budgeting Acc. education Auditing Acc. standards 
2 Financial behav-

ioral acc. research  
Incentives Auditing Acc. Education Environmental Acc.  

3 Market-based Acc. Mngmt. control sys-
tems 

Corporate govern-
ance 

Financial Analysis Earnings manage-
ment 

4 Disclosure incl. 
CSR and intangi-
bles  

Performance meas-
urement 

Financial accounting Financial Reporting Disclosure 

5 Other business re-
porting issues  

Budgeting Mngmt. Acc. Governance Conservatism  

6 Earnings mngmt.  Pricing/transfer pric-
ing 

Research methods / 
methodology  

Mngmt. Acc. Auditing  

7 Acc. choice Costing  Public Sector Acc. Impairment  
8 Economic conse-

quences  
Activity-based cost-
ing  

 Social and Environ-
mental 

Cost of capital 

9 Failure prediction  Informal controls  Taxation Corp. governance 
10 Standard setting MCS in inter-firm 

relationships  
   

12  Methodology    
Table 1 - Topical accounting research clusters in selected review publications (omitting "other" research areas) 

Within these research clusters, though seemingly disparate, several may yield applications for 

simulation methods, e.g. stochastic simulation in, costing or financial analysis, as well as 

ABM for governance topics or management accounting generally – as Chenhall et al. (2011) 

noted, research moved away from a “mechanistic view” embracing that it takes place within 

organizations with “complex interactions”, a setting conducive to ABM with its ability to cap-

ture human interaction.  

Analogous for finance we review research clustering from authoritative sources. Schäffer et 

al. (2011) analyze cocitation networks of four core finance journals. Further, we show the fi-

nance clusters from Gaunt (2014) and Benson et al. (2014). Linnenluecke, Chen, Ling, Smith 

& Zhu (2017a) analyze the contributions of the top 50 articles from the leading finance jour-

nals via bibliographic mapping. 
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# Schäffer et al., 2011 Gaunt, 2014 Benson et al., 2014 Linnenluecke, Chen, 
Ling, Smith & Zhu 
(2017a) 

1 Financial intermedia-
tion 

Financial institutions Financial institutions and 
markets 

Factor Models 

2 Asset pricing Asset pricing / valuation  Investments Asset pricing 
3 Term structure Derivatives Options, futures and 

other derivatives 
Conditional asset pricing  

4 Market microstructure Market microstructure  
Governance 

 Market micro-structure 

5 Agency conflicts Capital budgeting International finance  
6 Corporate diversifica-

tion and internal capital 
markets 

Capital structure, payout 
policy 

Special topics Anomalies & Empirical 
Regularities 

7 Initial public offerings  Incentives and compen-
sation 

Corporate finance  Corporate finance 

8 Mutual funds Mutual/hedge funds   
9  Behavioral finance   
Table 2 – Topical finance research clusters in selected review publications (omitting ‘other’ research areas) 

Within the seemingly slightly more homogenous research topics within finance, several topics 

such as asset pricing or derivatives lend themselves to stochastic simulation. Further fields 

such as Market microstructure, agency conflicts or governance might yield fruitful applica-

tions for ABM as human behavior and its impact is at their core. This review of non-simula-

tion focused research clusters in accounting and finance lays the groundwork, that we will 

cross-reference to understand where simulation methods are well-established in the disci-

plines thereby showing where simulation-based research has entered the methodological 

mainstream.  

We seek to build onto and go beyond the research discussed here. We achieve this through 

this broad quantitative literature review with a simulation-focused research strategy, which is 

so far lacking in the literature. As simulation-based research in accounting and finance is dis-

tributed across journals and geographies, we build a broad, non-selective yet simulation-fo-

cused sample to capture the relevant literature. Through this uniquely broad yet focused sam-

ple we aim to find clusters of pioneering simulation-based research in accounting and finance 

that might have remained subdued in previous research.  
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Next, we review literature on the type of usage of simulation methods in accounting and fi-

nance to gain a firmer understanding of the purposes for which simulation is used with the ob-

jective of specifying fruitful future research. From a technical perspective, simulation meth-

ods can be broken down into sub-methods, for example Kelton et al. (2000) classify simula-

tion models as either stochastic or deterministic, continuous or discretely-timed and static or 

dynamic – along to further prominent simulation methods like ABM, system dynamics or dis-

crete event simulations. Beyond the technique, it can be insightful to understand the purpose 

for which simulation is applied, a useful distinction here is ‘conceptual’ vs. ‘instrumental’ 

(Beyer, 1997; Pelz, 1978). Per Beyer instrumental use seeks to “apply results in specific, di-

rect ways” whereas conceptual use strives for “general enlightenment”. Instrumental use re-

fers to using information directly for decision-making such as simulating for asset prices with 

the aim of determining the ‘correct’ price. Conceptual use refers to using information to gain 

a better, deeper understanding, this entails theory-building via simulation. The prevalent re-

search paradigms in accounting and finance appear to be complementary to instrumental use 

focusing on empirical research rather than new theory development. Grisar et al. (2015) lend 

some support to this hypothesis by analyzing uses of simulation in German management ac-

counting research revolving around planning and risk management, thus instrumental uses. 

Through our sample we extend the analysis both to other geographies as well as to finance re-

search.  

To further quantify the field, we turn towards an in-depth analysis of the diffusion of simula-

tion methods. We briefly review two central contributions of the diffusion literature along 

which we will describe the method’s development in a similar vein as Polhill et al. (2019). 

Rogers (2010) is one of the central documents of the diffusion literature in which the stages of 
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adoption are described and parallels of diffusion processes for various innovations high-

lighted. Notably, innovations are adopted among minority innovators at first, then followed by 

early adopters before the early and late majority. Moore (1991) expands onto this framework 

through the analogy of “crossing the chasm” arguing, originally in a Marketing context, that 

the strategy to drive adoption depends on the state of diffusion of, in this case, a method. In-

novators and early adopters respond to similar incentives and ‘cracks’ between the two groups 

are bridged relatively swiftly as both groups are made up of “enthusiasts and visionaries”. 

There is, however, a harder to cross ‘chasm’ between early adopters and the pragmatic major-

ity where diffusion may not spread as swiftly.  

Based on a thoroughly quantified analysis of current simulation-based research practices as 

well as the method’s diffusion, we point toward potentially fruitful avenues of research. This 

discussion takes place against the backdrop of ongoing methodological discussions within the 

field of accounting and finance that we review here. Per Hopwood (2007) accounting re-

search’s innovation is held back for several reasons, notably a supposedly narrow set of meth-

ods that seeks to exploit available data to create publishable results yet with insufficient intel-

lectual curiosity or even detachment of practical relevance of research findings. Moser (2012) 

argues that parts of accounting research may show signs of stagnation in its choice of methods 

and perceived lack of innovation therein. Although both Hopwood and Moser provide further 

nuanced arguments, their focus on lacking methodological innovation raises the question if 

simulation could be considered among the methods contributing toward breaking this per-

ceived mold. Accounting scholars have mused about said perceived lack of usage of simula-

tion (e.g. Labro, 2015) and argued in simulation’s favor. Balakrishnan et al. (2014) provide an 

overview of applications of simulation including quantifying effect sizes, robustness checks 
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of analytic results, analyzing necessary and sufficient conditions for phenomena of cost ac-

counting systems or reducing “the set of factors (…) to consider”. Davis et al. (2007), argue 

cross-disciplinarily for the strength of simulation research to develop and shape theory as a 

method capable of “creative and systematic experimentation”.  

Analogously to methodological discussions among accounting researchers, there have been 

reflections on of finance research from within the field such as Gippel (2015) who invites re-

flections of leading mainstream finance researchers on their discipline. They argue that signs 

toward methodological stagnation are observable in finance research as well, going as far as 

asserting “we all use the same data, methods, and theory”. Gippel (2015) argues that finance 

research largely follows an empirical data-based paradigm, an assertion mirrored in other re-

views as well (e.g. Brooks, Fenton, Schopohl & Walker, 2019). Further, it is argued that theo-

retical contributions mostly test or moderate existing theory, rather than suggesting new theo-

ries with less than 1% of top three journal publications offering ‘pure’ theory (Gippel, 2013).  

They do not, however, mention simulation among the methods “not currently applied in the 

core”, thus either considering it part of the empirical data-driven paradigm or outside the 

scope of methods entirely. Further, it will be of interest to observe if simulation contributes to 

finance research also beyond the above-mentioned paradigm of empirical data-driven research 

as would be the case for theory-building finance research.  

1.3: Method and Data 

We analyze simulation’s adoption in the accounting and finance research mainstream via bib-

liometrics. According to Pritchard (1969) bibliometrics “shed light on the process of written 

communication and (…) development of a discipline”. Bibliometrics and particularly cocita-

tion analysis stand apart from methods like qualitative literature reviews as it incorporates 
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many experts’ judgments as opposed to a small group (Schäffer et al., 2011). A cocitation oc-

curs when one piece of research cites two earlier pieces of research. If two publications are 

cited together their content is likely closely related, the more they are cited together the 

stronger this link likely is. A key assumption is that a citation represents significance that the 

citing researchers attach to the cited material, for a critical discussion see Meyer, Waldkirch, 

Duscher & Just (2018). cocitation networks are built from cocitation links and constitute the 

‘intellectual base’ of a field (Persson, 1994) that is made up of the central publications. Fur-

ther Gmür (2003) posits that cocitation analysis is a “dominant method” of bibliometrics. Yet, 

it takes time for citations to accumulate, delaying visibility of trends (Meyer et al., 2009). To-

tal cocitation counts show how often publications are cited together resulting in simple net-

works. Yet the Matthew effect (Merton, 1968) leads to networks of documents that are cited 

frequently in general but may not be closely related – text books are among the most cited 

documents. Against this backdrop, Gmür (2003) analyzed different approaches to building 

cocitation networks and concludes that the most reliable results are achieved through cocita-

tion Scoring. Here each pair A and B of two publications gets assigned a score of its cocita-

tion strength: 

!"!#$!" =	 ($%&'()	+,	-+./010/+$2!")#
&/$/&%&(./010/+$2!;./010/+$2")∗&(1$(./010/+$2!;./010/+$2")

      (1) 

Networks based on cocitation Scores “demonstrate considerably higher robustness” than other 

methods without obvious restriction (Gmür, 2003). We construct networks with score above 

0.30. The resulting nodes and interconnections form clusters and networks that can be inter-

preted as representations of research strands. We follow Meyer, Lorscheid & Troitzsch (2009) 

and distinguish between clusters and groups. A cluster is defined as the set of all nodes that 

are connected via an unbroken chain of links and is thus determined solely via the strength of 

the links with other nodes. A group is defined via the Newman grouping algorithm and tends 
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to have a more narrowly defined topical scope (Newman, 2006); the alternative Louvain algo-

rithm delivered comparable results in a robustness check.  

Clusters usually represent a topic, method or research question within the broader context. 

Typically, the more interconnected a cluster or group is, the denser it is, the more straightfor-

wardly it can be assigned to a research strand (Iacobucci, 1994). In our qualitative analysis, 

we assign a name to each cluster that is intended to describe the overall topic covered in the 

publications that constitute the cluster nodes. Here we again follow Meyer et al. (2009) and 

start this analysis from the nodes with the highest degree centrality. Yet labelling clusters in 

cocitation analysis is not an exact science involving subjectivity. We chose the descriptor that 

most closely matches the topics of the nodes. To avoid bias, we discussed labels with several 

scholars in accounting and finance who provided feedback and confirmed labelling choices.  

In large data sets, the full detail cluster network can grow large thereby hampering readability. 

For a high-level perspective, we show a summarized network where clusters are shown as 

nodes that following Hauke, Lorscheid & Meyer (2017) are referred to as Intercluster net-

works and enhance understanding of network dynamics. The first focus is on the nodes in the 

subsequent networks that represent the topical clusters that we derive as described above. 

Here we can observe from a high-level perspective how topics evolve over time. The size of 

the nodes corresponds to the number of nodes in the clusters they represent. Thusly we can 

analyze how linkages between clusters develop following. Link strength is calculated as: 

'#()*+",-!" =	 ∑ -+-/0∗788	$
%&'

.+%$0($+9(2!)∗.+%$0($+9(2")
           (2) 

We only show links with a LinkScore above 1. Beyond readability, the Intercluster analysis 

also provides a perspective of the interrelation between clusters and reveals how groups of 
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clusters revolve around related topics. We apply the Newman grouping algorithm to distin-

guish “hyper-clusters”: groups of closely related cocitation network clusters that reveals con-

nections between clusters that remain subdued otherwise.  

Several options are available to compile citation data. One can use citation data from specific 

publications or journals if they capture a complete or unbiased view of a field. Another ap-

proach is keyword search in data bases which is most promising if the relevant contributions 

are not concentrated in a small set of journals, as this is not the case here we use a key word 

search. Per Falagas, Pitsouni, Malietzis & Pappa (2008) SCOPUS contains a broader selection 

of journals than other databases like Web of Science and is preferable to Google Scholar that 

has only forward-looking citation data. Hence, we decided to use data from SCOPUS. To cap-

ture the field broadly and without bias, we searched all articles and conference Papers includ-

ing “simulation” or “Monte Carlo” classified as “Business, Management and accounting” or 

“Economics and finance” in SCOPUS. This set of articles still contains undesired articles out-

side our focus, we thus filter again by only including (1) journals with “finance” or “account-

ing” in their title, (2) journals titled with closely related terms (e.g. “auditing”, “credit”) and 

(3) additional journals from trusted lists1 of accounting and finance journals. As a validity 

check we screen all keywords of the selected papers, although this did not yield keywords 

warranting inclusion in our sample. In our sample there are 861 articles with a total of 22,571 

citations of 16,613 individual sources. These articles are published in 153 journals and pro-

ceedings, the Journal of Quantitative finance is most prevalent with 7.5% of articles. 84% 

were published in journals with the remainder published in conference proceedings. From the 

 
1 These include: the list published by the VHB (German Academic Association for Business Research, Beattie & Goodacre 

2010, Beattie & Goodacre 2004 and Bradbury, Weightman, Morgan & Turley 2009 
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cited publications, we exclude all documents with fewer than three citations as these are un-

likely to constitute the research core. At first, output grows slowly until a noticeable accelera-

tion in the mid-90s that further accelerates and peaks in 2010 at 100+ publications around 

which level it stabilizes. This suggests three distinct periods, ‘early growth’ (1977-2007), 

‘rapid growth’ (2008-2011) and ‘plateau’ (2012-2015). Although the periods are of different 

length, they are similarly sized in terms of citations (6,657 vs. 7,809 vs. 8,105). Output grew 

at 12.7% annually in the Scopus database and 10.9% in WoS. Per Bornmann & Mutz (2015) 

general scientific output grew between 8% and 9% per year in the period from 1945 to 2012 

putting our research field above average.  

Figure 1 - Number of articles in our sample per year and period 

 

1.4: Results  

1.4.1 Qualitative sample analysis 

To obtain a perspective on the research topics in our sample of SCOPUS documents, we ana-

lyze a randomized subsample covering 15% of the 861 citing documents qualitatively.  
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Figure 2 – Classification of articles in sub-sample2 

 

We follow Gaunt (2014) in using SSRN classifications and find capital market asset pricing 

and valuation dominate with over three quarters of articles wherein papers use simulation to 

model volatile assets. We provide further topical analysis of the subsample below. This cor-

roborates the literature review’s findings in that simulation has diffused in a focused research 

cluster in finance yet not in accounting research.  

1.4.2 Citation analysis 

Next, a citation analysis reveals journal, author and topical trends of our sample laying the 

groundwork for the cocitation network analysis. Journal articles (78%) and textbooks (19%) 

are cited most often with stable proportions over time - the remainder being working papers, 

conference proceedings etc. The most cited journals representing the mainstream are: 

 

 

 

 
2‘Other’ includes Behavioral and experimental finance, Corporate finance: capital structure & payout policy, Managerial 

accounting; Non-ssrn topics included simulation methodology, taxation, macroeconomics 
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Table 3 – Most cited journals and respective share of citations 

Rank Journal Citation share% 
1 Journal of finance 10,0% 
2 Review of Financial Studies 6,8% 
3 Econometrica 6,6% 
4 Journal of Financial Economics 6,2% 
5 Mathematical finance 4,2% 
6 Journal of Econometrics 4,1% 
7 Journal of Political Economy 3,0% 
8 finance and Stochastics 3,0% 
9 Management Science 2,5% 
10 Journal of Derivatives 2,5% 

For each period, we find the most cited documents, the “trending topics” among the top 15 

most cited sources to understand which topics were driving the research agenda at the time. 

Many of these sources focus on a set of core topics: 

Table 4 – Recurring topics of top 15 most cited sources per period (# of citations in brackets) 

Topic Period I Period II Period III 
Asset pricing - Black, 1973 (26) 

- Longstaff, 2001 (17) 
- Boyle, 1997 (18) 
- Barraquand, 1995 (10) 
- Cox, 1979 (10) 
- Press, 1992 (10) 
- Heston 1993 (9) 

- Longstaff, 2001 (35) 
- Black, 1973, (31) 
- Heston, 1993 (27) 
- Hull, 1987 (15) 
- Tsitsiklis, 1999 (13) 
- Carriere, 1996 (13) 
- Clément, 2002 (13) 
- Duffie, 2000 (13) 
- Press, 1992 (12) 

- Longstaff, 2001 (25) 
- Heston, 1993 (16) 
- Black, 1973 (15) 
- Merton, 1976 (12) 
- Tsitsiklis, 1999 (10) 
- Carriere, 1996 (9) 
- Andersen, 2004 (9) 
 
 

Term structure of interest 
rates 

- Cox, 1985 (15) 
- Vasicek, 1977 (10) 

- Cox, 1985 (18) - Cox, 1985 (13) 

Volatility and risk - Bollerslev, 1986 (12) 
- Engle, 1982 (10) 
- Artzner, 1999 (10) 

- Bollerslev, 1986 (20) 
- Engle, 1982 (20) 

- Bollerslev, 1986 (11) 
- Engle, 1982 (9) 
- Jorion, 2000 (9) 

Other - Glasserman, 2003 (13) 
- Boyle, 1977 (11) 
- Hull, 2000 (10) 

- Glasserman, 2003 (42) 
- Hull, 2000 (18) 
- Kloeden, 2000 (11) 

- Glasserman, 2003 (40) 
- Hull, 2000 (11) 
- Kloeden, 2000 (10) 
- Karatzas, 1991 (9) 

Perhaps surprisingly, it may appear that topical foci remain somewhat similar throughout the 

three periods. In the cocitation network analysis we will further examine if claims of topical 

stagnation can be supported.  

1.4.2 a) Simulation methods 

To obtain a better understanding of how simulation methods are used, we first analyze the 

specific methods applied followed by their purpose. Within the sub-sample 38% use dynamic 
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simulation methods with the remainder using static simulations. Furthermore, almost all simu-

lations rely on discrete or discretized time steps, instead of continuous time, and are stochas-

tic, instead of deterministic, with the respective shares at 99% and 98%. ABM accounts for 

4% of the articles with the earliest paper published in 2009, all in the finance literature, occu-

pying a narrow niche among simulation methods. We expect that instrumental usage prevails, 

particularly in asset pricing within the finance literature. Labro (2015) argues that the lower 

rate of simulation usage in accounting stems partly from the fact that “guidance from fields in 

which simulation methods are commonly used often does not translate straightforwardly, as 

these tend to have a more pragmatic focus” suggesting a higher share of conceptual simula-

tion research in accounting. In line with previous research, we find in the subsample that both 

disciplines use simulation more instrumentally (88 papers) rather than conceptual (42) by a 

wide margin thereby suggesting that simulation has so far been mostly used narrowly to ad-

dress specific research questions rather than broader theory-building sense. 

1.4.3 Cocitation analysis 

Across the three periods we observe that the density and interconnectedness of clusters shows 

a slightly increasing trend per the Newman modularity metric that rises from 0.581 to 0.6633 

indicating a solidifying research core. Emerging scientific subdisciplines can have high topi-

cal concentration signifying a narrow topical focus, we follow Schäffer et al.’s (2011) analysis 

of the network’s Herfindahl index measuring concentration of individual shares within a net-

work, concluding they are stable at ~0.1 suggesting low topical concentration.  

Period I’s (1977-2007) biggest cluster revolves around Early exercise option valuation, a sim-

ulation-based method to price non-European options before maturity, a case for which ana-

lytic methods are not applicable. Longstaff et al. 2001 is the most central node, introducing 

 
3 As measured at a CoCitation score of 0.00. 
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the method of Least-Squares-Monte-Carlo (LSM) connecting simulation methods with a re-

gression to obtain computationally efficient valuations. Option pricing and Bond and exotic 

options are closely related asset pricing clusters. A densely connected Value-at-risk cluster 

has an applied focus as the risk metric can be determined through simulation methods. It is 

worth noting, that these cocitation clusters revolve around instrumental simulations comple-

mentary to the empirical paradigm in finance research. Period I reveals the only accounting 

cluster on financial planning models, closely related to finance topics, prediction of account-

ing number as well as methodological contributions to aggregation of time-series accounting 

data, strikingly with publication dates between 1978 and 1993 – against expectation of grad-

ual adoption and potentially higher diffusion of the method in later periods. 
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Figure 3 - Period I – Cocitation networks based on a cocit score of 0.304

 

The six largest clusters of Period II (2008-2011) revolve around a central application of simu-

lation methods in finance, pricing stochastic assets. These clusters tend to focus on two dis-

tinct aspects, model volatility and methods to price assets. While the largest cluster, volatility 

 
4 Cluster labels in bold and an abbreviation for each cluster’s most central node in brackets 
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and risk, provides methods of modelling volatility, the second largest, simulation methods for 

option pricing, provides the technical methods to price assets. Further, Stochastic processes, 

Affine term structure models and GARCH volatility revolve around methods to model stochas-

tic assets or interest rates whereas Early exercise option valuation is applied. Value-at-Risk 

recurs sharing six nodes with the VaR cluster of Period I. Market efficiency and stock market 

behavior constitutes a paper from outside the core simulation research. The papers citing its 

nodes are focused on abnormal returns, one key discussion associated with the Efficient Mar-

ket Hypothesis. The field appears to be differentiating as we observe that topics captured 

through one cluster in Period I are addressed through multiple clusters on distinct aspects, e.g. 

the clusters on credit derivatives and executive stock options. The latter also addresses a topic 

from outside the core research agenda that took center stage due the Enron and WorldCom 

scandals (Hall & Murphy, 2003). Likewise, Risk modelling for financial institutions is likely 

driven by the financial crisis of 2008.  
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Figure 4 - Period II – Cocitation networks based on a cocit score of 0.30 

 

Period III (2012-2015) is characterized by both continuity with former periods as well as new 

topics. The first four clusters can be described analogously to the largest clusters of Period II 

as they provide theory and applications for pricing stochastic assets. The largest cluster re-
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volves around volatility and risk, followed by a cluster on volatility and option pricing and fa-

miliar topics of Early exercise option valuation and GARCH volatility, all sharing nodes with 

equivalents of the preceding periods. The continuity is further evidenced through Value-at-

risk and term structure clusters sharing nodes with preceding clusters and other recurring top-

ics. However, Period III also features clusters on new methods in Agent based modelling of 

markets, new applications in macro finance and commodity valuation or trends from outside 

the research field in Systemic banking risk and Contagion and interdependence. The latter two 

clusters reflect increased attention after the crisis of 2008 as simulation is used for stress-test-

ing under the Basel solvency rules (Peura & Jokivuolle, 2004). More generally, new clusters 

from outside the core paradigm can be interpreted as evidence against a strictly narrowing re-

search field (Schäffer et al., 2011). Further, the value-at-risk cluster illustrates how core litera-

ture develops as the size of the cluster decreases in size from 19 nodes to a core of 12. Early 

exercise option builds on the research cited in its previous manifestations reflecting the ad-

vances on this topic.  
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Figure 5 – Period III – Cocitation networks based on a cocit score of 0.30 

 

 

 

 



36 

 

1.4.3 a) Topical evolution 

We observe above, that many of the most cited papers in our sample can be grouped topically 

into what appear to be stable research clusters constant in time. This could be interpreted as a 

sign of perceived stagnation; however, the following examples refute on this interpretation:  

• Asset pricing: In Period I there are clusters on Options pricing via simulation and 

Early exercise option with papers on early-exercise options via LSM method. Nodes 

in the first cluster were on average published in 1986 and 1998 for the second, with 

articles in the latter building on the former reflecting the fields evolution. 

• Term structure of interest rates is present throughout all periods grouped around a 

central node (Cox, Ingersoll & Ross, 1985), although with evolving foci. These clus-

ters are Optimal consumption portfolios, Affine term structure models and Term Struc-

ture models. The research focus shifts from portfolio choice toward pricing of deriva-

tives on interest rates that follow term structure models.  

• Volatility and risk: Clusters evolve from Value-at-Risk toward modelling with 

GARCH-volatility. VaR clusters remain central throughout all periods, yet they shrink 

from 19 nodes in Period I to 13 and 12 in Period II and III evidencing an emerging 

core of the literature that specializes simultaneously. 

These examples illustrate how the research front evolves within its research clusters.  

1.4.3 b) Intercluster analysis 

Intercluster analysis reveals topical clusters’ proximity to one another and their evolution.  
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Figure 6 - Intercluster networks for periods I, II and III
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Period I’s network shows four distinct groups of methodological or applied clusters, such as 

the blue and yellow groups of clusters revolving around stochastic asset pricing. The green 

group of clusters presents theory of simulated processes, thus a methodological cluster. The 

turquoise group combine elements of applied and methodological clusters providing tech-

niques for modelling stochastic volatility as well as value-at-risk. Finally, we observe discon-

nected clusters on accounting and auditing topics and others. Period II is characterized by 

three groups of clusters. The largest, shaded in blue, has both applied clusters like value-at-

risk and credit derivatives as well as methodological ones such as volatility and risk and 

GARCH volatility. The group of clusters shaded in green revolves around application of simu-

lation for stochastic asset pricing. In contrast, the final group of clusters features methodologi-

cal topics and provides theory around stochastic volatility and interest rates. The isolated clus-

ter on risk modelling for financial institutions appears to be among the first clusters to emerge 

from the financial crisis of 2008 and will be followed by more differentiated perspectives in 

the next period. Again, three large groups are discernible centering on recurring topical foci. 

We observe a large group of clusters on the methods and theory of simulation with contribu-

tions to volatility and risk, asset returns and term structure models. A second group of clusters 

combines both methodical and applied clusters in addressing applied topics like early exercise 

options, derivative models or value-at-risk while also covering volatility pricing. The last 

group of clusters addresses commodity valuation, simulation in capital investment and volatil-

ity and option pricing, thus more applied. Period III is more differentiated with three individ-

ual topical clusters outside the core group. The Intercluster analysis highlights the proximity 

between the Contagion and interdependence and Systemic banking risk clusters and the isola-

tion of Agent-based models of markets. Observing the Intercluster networks over time, one 

can observe some differentiation despite overall continuity in research foci. As noted above, 
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closer examination is necessary to discern newly emerging trends and the evolution of the dis-

cipline.  

1.4.4 Comparative analysis of accounting and finance research 

In this section, we contrast simulation’s use between accounting and finance research across 

related research to show where the method has crossed the chasm into the mainstream. Data 

gathering aimed at neutrality between accounting and finance, yet a larger share of finance 

publications was expected – it is striking that ~95% of publications in our dataset were found 

via search terms more closely associated with finance.  

1.4.4 a) Finance 

We compare our cocitation networks with the networks from Schäffer et al. (2011) and Gaunt 

(2014) that focus on finance researches clusters generally. Schäffer et al. analyze bibliometric 

data from four leading finance journals between 1988 and 2007 divided into four periods. 

Among the resulting clusters, we expect parallels with overlapping nodes to the most preva-

lent clusters observed in our sample revolving around research on asset pricing, Term struc-

ture of interest rates and volatility/risk and this is in fact the case. The overlapping clusters 

from Schäffer et al. are labelled Term structure of interest rates, asset pricing and their anom-

alies and methodological issues as shown in table 4. For some clusters in Schäffer et al. all 

nodes are present in the clusters of our data set (e.g. Term structure of interest rates in 1998-

2002). Over time the number and relative share of nodes present in both data sets grows from 

7% of nodes in Schäffer’s data in the first period to 19% in the last – we interpret this as an 

emerging core literature. In these research clusters, simulation has entered the methodological 

mainstream. Next, we cross-reference research clusters identified by Gaunt (2014) where 

many of the finance topics feature amongst the clusters in our cocitation networks: Banking & 

financial institutions, asset pricing / valuation, derivatives, Corporate finance: valuation and 
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capital budgeting & investment policy, incentives and compensation thereby confirming the 

methods diffusion in these research clusters. Yet again, other research strands do not have 

equivalents in our networks: Behavioral / experimental finance, Capital markets: market mi-

crostructure, Corporate finance: capital structure & payout policy, Corporate finance: gov-

ernance, corporate control & organization, Governance and Mutual funds, hedge funds & in-

vestment industry underscoring a lack of diffusion in other research clusters. To aggregate the 

analyses of Gaunt (2014) and Schäffer et al. (2011) we match the topics by proximity and 

show the overlap with the topical clusters of our data set in Table 4. Gaunt classified topics 

per SSRN subjects whereas Schäffer et al. assign labels, leading to imperfect matching. 
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Table 5 – Topical clusters and overlapping nodes between Gaunt (2014), Schäffer et al. (2011) and this data set (number of overlapping nodes in brackets) 
Gaunt, 2014 Schäffer et al., 2011 Period I Period II Period III 
Banking & financial institutions Financial intermediation       
Behavioural and experimental finance N.A.        
Capital markets: derivatives 

Asset Pricing (Macro Factors, gen-
eral models, anomalies) 

Optimal consumption 
portfolios (1) 
Stochastic volatility II 
(1)  
Estimation methods for 
inference and cont. 
Time processes (1) 

Volatility and risk I (3) 
GARCH volatility (1) 
Macro Asset pricing (2) 
Stochastic volatility (1) 
Stochastic  
processes (3) 

Term Structure models 
(4) 
Asset returns (1) 
Volatility and  
option pricing (4) 

Capital markets: asset pricing and valuation 

  Term structure 
Optimal 
consumption portfolios 
(3) 

Stochastic  
processes (3) 
Affine term  
structure models (4) 

Term Structure models 
(4) 

Capital markets: market microstructure Market microstructure       
Corporate finance: capital structure & payout 
policy 

N.A.        

Agency conflicts (Market for control, 
Ownership, Capital Structure) 

      
Corporate finance: governance, corporate con-
trol, organisation       

Corporate finance: valuation, capital budgeting 
& investment policy 

Corporate Diversification and inter-
nal capital markets       

N.A. Initial public offerings (Underpricing, 
Long Term return)       

Governance, incentives and compensation N.A.        

Mutual funds, hedge funds & investment industry Mutual Funds       
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Strikingly, all overlapping nodes belong to the Asset Pricing and Term structure clusters from 

the networks identified by Schäffer et al. Both research clusters apply models built around 

stochastic partial differential equations that can become intractable mathematically, though 

have numeric solutions via simulation. We interpret this finding in the sense that for these re-

search clusters, simulation is applied complementarily to the prevailing research paradigm of 

data-driven empirical research (Gippel, 2015) with the resulting structured research dialogue 

and cocitation clusters. Outside this core, there is evidence for simulation-based research as 

we will show below jointly for accounting and finance clusters, though not to the extent that 

notable cocitation clusters arose. However, the question remains if structured research dia-

logue exists that shows how simulation can help breaking the methodological mold pertaining 

to the data-based empirical paradigm. First suggestive evidence comes in the of clusters on 

Contagion and interdependence and Systemic Banking Risk researched through simulating 

systemic risk and contagion in financial markets providing evidence for research dialogue em-

ploying methods outside the established core on research foci closely connected to the global 

financial crisis. While representing noteworthy examples of methodological diversity, these 

applications do not stride far from stochastic modelling, thus instrumental use. Yet, the cocita-

tion cluster on Agent-based models of markets is cited by papers using ABM to research fi-

nancial stability thereby showing how the research community uses progressive simulation 

methods conceptually as well. Finally, we shortly review how system dynamics simulation is 

applied within our sample. In contrast to ABM, with dedicated clusters and various examples 

of published research, System dynamics shows fewer examples such as Ding, Zhu & Xu 

(2013) to model decisions within companies.  

In summary, this constitutes evidence that finance researchers took up methods outside their 

core paradigm. Simulation crossed the chasm into the methodological mainstream in distinct 
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finance research clusters, though not in others. Simulation appears to work as a complemen-

tary method to the positive, empirical research paradigm, in addition, notable examples exist 

of conceptual theory-building simulation research in finance.  

1.4.4 b) Accounting 

The equivalent analysis for accounting research paints a contrasting picture as overlaps with 

our networks are scarce. Meyer, Schäffer & Just (2010) share topical clusters on Executive 

compensation, though they do not share any nodes. The cluster on executive stock options 

from our data set is methodologically close to Asset pricing as it values stock options as part 

of executive compensation through simulation whereas Meyer et al.’s nodes revolve around 

agency conflicts and performance measurement. Major research strands from Meyer et al. like 

Earnings research, Disclosure, Accruals or accounting systems and Data are not present in 

our data set. Auditing services represents the only exception. Cross-referencing the research 

clusters obtained with Chenhall et al. (2011), only two are among the cocitation clusters from 

our data set: capital budgeting, which can be considered part of finance, and Incentives. Two 

other, Costing and ABC-costing increasingly profit from simulation methods, as we show fur-

ther below, though without being represented through cocitation clusters in our data set. Simi-

larly, the clusters identified by Beattie (2005) share almost no overlap with our data set, ex-

cept for Market-based accounting research that shares some overlap as it relates to valuation. 

Based on this lack of overlap we conclude, that simulation-based accounting research is not 

part of the mainstream of accounting research. As expected, Linnenluecke et al.‘s (2017b) 

clusters, that align well with Beattie (2005), do not show overlap with those from the simula-

tion-based literature reviewed here. As a further robustness check we also scan all cocitation 

networks for ‘emerging’ clusters of two nodes or clusters with fewer connections than nodes, 
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criteria that lead to exclusion. This showed, however, that also all emerging clusters belonged 

to finance research rather than accounting.  

1.4.4 c) Research cluster diffusion 

As noted above, the absence of cocitation clusters does not preclude the existence of notewor-

thy simulation-based research in a given cluster as we show in a further two-pronged analysis. 

Firstly, we approximate diffusion shares among research clusters beyond our sample and, sec-

ondly, cross-reference this with examples of pioneering simulation-based research from 

within our sample.  

We approximately quantify the diffusion of simulation across clusters following the method 

put forth by Polhill et al. (2019) as the ratio of simulation articles pertaining to a research 

cluster to the total number of articles in the Scopus database. As Polhill et al. noted, this 

method entails inaccuracies as it is based on search terms risking false positives and nega-

tives. It does, however, provide a high-level perspective on how far simulation diffused in 

each research cluster to cross-examine results from the preceding section. Research clusters 

are defined here as either research clusters identified by Schäffer et al. (2011), Gaunt (2014), 

Meyer et al. (2010) and Chenhall et al. (2011) or research clusters in this article (with more 

than 10 nodes) thereby covering both a general as well as a simulation-focused perspective. 

Per research cluster, e.g. Management control systems from Chenhall et al., we extract the 

number of articles in the Scopus database as well as the share of those articles containing the 

terms “simulation”, “Monte Carlo” or “numerical experiment” to calculate approximate 

shares of simulation research per research cluster. The first group of research clusters stems 

from the general finance literature, thus the cocitation clusters and research clusters per 

Schäffer et al. and Gaunt. Here we expect both research clusters with low levels of adoption 

as well as outliers such as term structure or asset pricing with higher adoption. The second 
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group of research clusters stems from the general accounting literature, thus Gaunt, Meyer et 

al. and Chenhall et al., where we expect relatively low adoption with few outliers. Finally, the 

third group of research clusters consists of cocitation clusters with at least 10 nodes identified 

in this research paper; here we expect by far the highest level of adoption as the research de-

sign focuses on the intersection of simulation-based research in accounting and finance. We 

exclude several research clusters if their label will lead to 100% diffusion per definition (e.g. 

Least Squares Monte Carlo), if their label is broad and thus likely to contain a large propor-

tion of false positives / negatives (e.g. research clusters like informal controls or governance) 

or if analogous research clusters are represented.  

Figure 7 - Relative spread of simulation per research cluster, diffusion percentage shown on the horizontal axis; calculated as num-

ber of published articles per research cluster containing "simulation", "Monte Carlo" or "numerical experiment" divided by total 

number of articles per research cluster (additional research clusters shown in table in the appendix) 

 

As expected, we observe groups of low-adoption clusters from accounting sources on the left-

hand side where simulation can be characterized as an emerging method used by innovators. 

We can also confirm the above observation that simulation diffused in distinct finance re-

search clusters whereas it shows low adoption in others. Simultaneously, we observe a second 
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cluster on the right-hand side of the distribution stemming from the clusters of this research 

paper where simulation, as expected, crossed the chasm into the methodological mainstream. 

Per Rogers, the cut-off between e.g. ‘early adopters’ and ‘early majority’ are defined as stand-

ard deviations from the mean of a Gaussian distribution. Interpreting cut-offs strictly, simula-

tion has crossed the chasm into the mainstream for research clusters related to Value-at-risk, 

complex/exotic option pricing and stochastic volatility with more than ~16% adoption. How-

ever, due to the plurality of methods used even in research clusters where simulation is most 

advanced it is unrealistic to expect anything close to ‘full’ adoption, i.e. 100% of research 

publications using simulation. Even if simulation would be fully ‘diffused’ there will still be 

empirical and theoretical research applying a plurality of other methods. Thus, we argue for a 

range of research clusters, that simulation has crossed the chasm into the methodological 

mainstream, including derivatives, option pricing, term structure, asset pricing, capital budg-

eting and volatility & valuation from finance, as well as costing and activity-based-costing, 

from the accounting literature, with shares of simulation publications close to or above 5%. 

The research cluster valuation is both part of the finance as well as accounting literature and 

thus constitutes another outlier on the right-hand side of the distribution. Otherwise, most ac-

counting research clusters exhibit low adoption, additional research clusters not shown to im-

prove readability, typically had low adoption as well. This analysis provides further support-

ive evidence of the claim that finance has been more thorough in its adoption of simulation 

methods than accounting research.  

Yet, even low-adoption clusters of both fields, have notable examples of simulation-based re-

search suggesting substantial potential for the method. In table 6 we show evidence of pio-

neering simulation-based research in our sample within the same set of research clusters pic-

tured in figure 7 there are examples of simulation-based research. We analyze all abstracts 
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within the sample publications to find simulation-based research for an explorative perspec-

tive into pioneering simulation research:  

Table 6 - simulation based research for research clusters from Figure 7 

Source / 

discipline  

Research cluster 

(percentage diffu-

sion) 

simulation-based research in accounting clusters  

Account-
ing: Gaunt 
(2014), 
Meyer et 
al. (2010), 
Chenhall 
et al. 
(2011) 

Costing (5.3%); 
activity-based 
costing (6.5%) 

Simulation of cost accounting systems sparked pioneering research like 
Labro & Vanhoucke (2007) or Balachandran, Balakrishnan & Sivarama-
krishnan (1997) who simulate costing systems and their errors; Kee & 
Matherly (2013) simulate target costing with “product and production inter-
dependencies” 

Management con-
trol systems 
(0.9%)/  

Fritsche & Dugan (1997) use simulation in a comparative analysis of errors 
in accounting and internal rate of return calculations 

accounting re-
search method 
(4.3%) 

Leitch & Chen (1999) simulate monthly accounting data where only annual 
data is available for use in empirical time-series accounting research  

Auditing services 
(1.0%) 

Grimm & White (2014) use simulation to analyze the influence of regulation 
on audit processes; Chen & Leitch (1998) simulate financial statements to 
analyze accuracy of “prediction and error detection” of auditing procedures; 
Krauskopf & Prinz (2011) use simulation to test econometric results of tax 
compliance audit research  

Disclosure (0.4%) Koh & Reeb (2015) research disclosure of R&D investments and apply sim-
ulations to “evaluate methods of dealing with missing R&D in empirical re-
search” 

Executive com-
pensation (2.5%) 

Several research papers in our sample apply simulation methods to value ex-
ecutive stock options (e.g. Cheung & Corrado 2009; León & Vaello-Sebastià 
2009; León & Vaello-Sebastià 2010), however these papers use simulation 
methods from the stochastic asset pricing paradigm 

accounting Sys-
tems & Data 
(2.1%) 

Amen (2007) simulates different system of accounting for budgeting of un-
funded defined benefit pension plans, similar simulation-based research was 
conducted by Morrill, Morrill & Shand (2009); Bikker & Vlaar (2007) use 
simulation to analyze pension plans in the Netherlands; Ouksel, Mihavics & 
Chalos (1997) investigate accounting information systems’ effect on organi-
zational learning through an agent-based simulation model  

Incentives (2.0%) Bargain (2012) uses simulation to research the effects of incentives like tax 
and benefit changes on the labor market  

Financial account-
ing (0.8%)  

Various simulation papers address solvency requirements, adjacent account-
ing rules and their implications in financial markets, particularly to stress-
test financial institutions (Alm, 2015; Bauer, Reuss & Singer, 2012; 
Hermsen, 2010; Joshi, 2010; Peura et al., 2004; Rodriguez & Trucharte, 
2007; van den End, 2012; Valencia, Smith & Ang, 2013) 

Earnings manage-
ment (0.6%) 

Friberg & Ganslandt (2007) simulate forex risk’s stochastic impact on earn-
ings and earnings management  

accounting Educa-
tion (1.3%) 

simulation is widely used in accounting Education as evidenced by a range 
of publications in our sample (Albright, Ingram & Lawley, 1992; Everaert & 
Swenson, 2014; Galitz, 1983; Miller & Savage, 2009; some educate via 
Monte Carlo simulation: Kelliher, Fogarty & Goldwater, 1996) – it has to be 
noted however that educational simulations are not necessarily in the scope 
of simulation-based accounting research as they aim at education rather than 
furthering advances in the science of accounting 

Finance: 
Schäffer et 

Agency conflicts 
(0.7%) 

Monte Carlo methods are applied by Siddiqi (2009) to model capital struc-
ture that minimized agency costs of debt; Levesque, Phan & Raymar (2014) 
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We exclude research clusters that showed substantial cocitation clusters around them, such as 

asset pricing, term structure models, valuation and derivatives as these would show large 

amounts of simulation-based research. Yet, some low-adoption research clusters from Figure 

7 appear not to exhibit simulation-based research in our sample, these include, from finance, 

internal capital markets and corporate diversification and, from accounting, transfer pricing, 

corporate governance, performance measurement, managerial accounting (though sub-topics 

of managerial accounting are represented).  

The relative absence of ABM in accounting research is the exception that proves the rule: 

even where simulation is used in accounting, it tends to be stochastic numerical simulation ra-

ther than agent-based-models, thereby confirming the analysis of Polhill et al. (2019) – there 

is however noteworthy ABM research in accounting (e.g. Davis, Hecht & Perkins, 2003), 

though not represented in our sample. Yet for researchers in the field, these are encouraging 

al. (2011), 
Gaunt 
(2014) 

model CEO’s investment decision into R&D in relation to their bonus pay-
ments and solve intractable analytic models via simulation; 

Initial public of-
fering (0.5%) 

Mispricing of initial public offerings is investigated by Koop & Li (2001) 
with, among other methods, simulation  

Capital structure 
(1.3%) 

To circumvent problems of statistical inference in empirical capital structure 
research, Chang and Dasgupta apply simulation instrumentally to approxi-
mate the data-generating process under varying management behavior  

Financial inter-
mediation (1.3%) / 
Banking/Financial 
institutions (1.4%) 

simulation-based research on bank stress-testing has been noted above in the 
section on financial accounting; Serguieva, Liu & Date (2011) use ABM to 
model contagion during financial crises and Georg (2013) model an inter-
bank market including a central bank via ABM showing stabilizing effects 
of central bank actions on interbank contagion; Upper (2011) reviews the lit-
erature on simulation-based analysis of contagion in interbank markets 
broadly; Prorokowski (2013) models contagion of financial institutions via 
simulation of asset price time-series  

Mutual funds 
(1.9%) 

Terhaar, Staub & Singer (2003) use simulation instrumentally improve fund 
valuation of non-traded assets; simulations of active fund management are 
used by Dichtl & Drobetz (2009) to evaluate performance of forecasting-
based tactical asset allocation; further examples of simulation-based research 
around mutual and pension funds within our sample include Morton, Popova 
& Popova (2006); Kumara & Pfau (2013) and others  

 Behavioral fi-
nance: 2.9% 

Stochastic and historic simulations are used by Dichtl & Drobetz (2011a) to 
explain preference of portfolio insurance and investment timing decisions 
(Dichtl & Drobetz, 2011b) for investors in a context of prospect theory  

 Market micro-
structure: 7.2% 

To model salient properties of the 2010 ‘Flash Crash’, Paddrik et al. (2012) 
deploy ABM models to accurately analyze market microstructure’s impact; 
Mizuta, Izumi & Yoshimura (2013) address Market microstructure through 
ABM 



49 

 

prospects. We observe low adoption though promising research, thereby suggesting potential 

to build on current efforts. The clear implication for the practice of research is to consider ap-

plying simulation methods more broadly in the research clusters where we already observe re-

search output based on simulation. It is worth pondering, cautiously, if even the research clus-

ters with no simulation research in our sample might have fruitful avenues for simulation 

methods; examples could be ABM-based research in corporate governance or simulation to 

assess the impact of stochasticity of costs on transfer pricing.  

We conclude in this comparative analysis, that finance research has shown greater adoption of 

simulation methods, both quantitatively as well as qualitatively, notably with relatively more 

research outside its core paradigm applying pioneering simulation methods conceptually. For 

accounting, despite the absence of evidence for a differentiated core literature, there is simula-

tion-based research in several research clusters, for some simulation may already have crossed 

the chasm in the methodological mainstream with promising research opportunities.  

1.5: Discussion and conclusion 

We analyzed the citation and cocitation data of simulation-based research in accounting and 

finance, the type of simulation research conducted as well as quantified approximate diffusion 

shares of the method in each discipline’s research clusters. Through this research we contrib-

ute to quantitative studies in simulation-based accounting and finance research, avenues for 

future research against the backdrop of methodological discussions in the field as well as its 

diffusion. We discuss these contributions here in turn.  

Over the time period observed, simulation-focused accounting and finance research exhibits 

several noteworthy properties. All but one cocitation cluster stem from finance, rather than ac-

counting research. Large and dense cocitation clusters are observable around asset pricing and 
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adjacent topics, specifically under risk and uncertainty, where simulation is applied comple-

mentarily to prevailing paradigms in finance. Fewer and smaller cocitation clusters exist for 

research clusters less closely associated with this domain. Moreover, the field exhibits several 

traits of a ‘normal’ science in that it grows more differentiated over time, shows low topical 

concentration and research topics evolve by building onto previous research and incorporate 

trends from outside the core of the discipline. Simulation methods had an impact on account-

ing and finance, though uneven, that will continue to affect the discipline’s evolution. Despite 

this level of adoption, there is little application of relatively newer methods such as ABM or 

other simulation methods such as system dynamics that may be less complementary to pre-

vailing empirical research, though conducive to theory development. This research also pro-

vides a unique topical overview of research clusters and strands across simulation-based re-

search in accounting and finance. A key takeaway here is the perceived low level of research 

dedicated to simulation input modelling, especially in a context different from capital market 

research, the only dominion with notable input modelling research clusters. We find that in 

both accounting and finance in our sample, simulation is mostly used instrumentally indicat-

ing that Davis et al. (2007) and Balakrishnan et al.’s (2014) suggestions for theory-building, 

conceptual simulation research in accounting and finance show untapped potential. Stochastic 

simulations used to model asset prices and adjacent topics fit well into the empirical data-

driven paradigm and diffused widely there, whereas less established simulation-based re-

search such as ABM, system dynamics and generally conceptual, theory-building simulation 

research represent divergence from this paradigm thereby explaining the relatively lower level 

of adoption. It is, however, noteworthy that finance research exhibits substantially more ex-

amples of conceptual, methodologically innovative simulation research in our sample than ac-

counting research which showed lower adoption across the all realms of simulation research.  
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Quantifying the method’s diffusion in the disciplines research clusters, we find an uneven dis-

tribution with higher shares for research clusters more closely associated with finance, espe-

cially those closer to risky asset pricing, rather than accounting research, however various ex-

ceptions prevail. Unlike Polhill et al. (2019), who observe no niches with high adoption of 

their method of interest, we observe several research clusters in which we argue that simula-

tion crossed the chasm into the methodological mainstream. Despite concerns about lacking 

methodological creativity (Hopwood, 2007; Gippel, 2015), pioneering simulation-based re-

search is present in finance and accounting. Notably in costing, an exception to low-adoption 

accounting clusters, simulation is on the cusp of crossing the chasm into the methodological 

mainstream. ABM could be used to capture behavioral and social influences within account-

ing that per Dyckman & Zeff (2015) are among the discipline’s most salient though some-

times overlooked aspects. 

Finally, we discuss avenues for future research by reviewing promising applications of simu-

lation research specifically in research clusters without widespread use of simulation methods. 

We show that even low-adoption research clusters have scope for simulation methods as evi-

denced by various examples within our sample. Further, we point to areas of research where 

simulation can be applied fruitfully, e.g. to model human behavioral components via ABM or 

complex systems via system dynamics.  

Bibliometric research is at no point completed (Cooper, Hedges & Valentine, 2009) but rather 

a snapshot, thus it will be insightful to observe how the method will continue to shape ac-

counting and finance research, both where it is already widely diffused and where it is not and 

describe its effect on prevailing paradigms. Further, it would be of interest to delve deeper 

into the qualitative question of why accounting researchers, especially in areas like costing 

where promising research takes place, have been more cautious to adopt simulation methods. 



52 

 

Is this driven by lacking familiarity with the method due to overly similar educational curric-

ula, as suggested by Hopwood (2007) or are there more structural reasons, that as well can be 

overcome as has been put forth by Labro (2015). Analogously, for finance research the most 

exciting question surrounds the slow adoption of ABM where a more qualitative analysis of 

research opportunities may be promising to support or refute our claims.  

Chapter 2: A structured review of the literature on simulation input modelling in 

corporate finance and accounting 

2.1: Introduction 

After obtaining a robust picture of the research clusters and strands in simulation-based research 

in accounting and finance, this chapter now turns towards a core research focus of this disser-

tation: simulation input modelling. This chapter aggregates and presents the state-of-the-art ap-

proaches to simulation input modelling, also referred to as simulation model parameterization, 

in corporate finance and accounting (CF&A hereafter). Through a structured literature review 

this chapter provides a comprehensive treatment of simulation model parameterization that 

crosses disciplinary borders illustrating the state-of-the-art simulation input modelling. We 

commence with a review of the academic literature and then review the practitioner literature 

combining two distinct though interlinked viewpoints. We present a comprehensive review of 

the state-of-the-art in simulation input modelling. As simulation input modelling is context de-

pendent, this chapter first reviews the question where or when simulations shall be used in 

CF&A and, secondly, which risk factors shall be modelled. The following chapter 3 comple-

ments this through expert interviews. We find that the methods discussed in the academic and 

practitioner literature are well-aligned for the most part, though with different emphases. The 

review suggests that simulation shall be applied to core functions of CF&A such as Capital 

Budgeting, Profitability or Portfolio analysis. On risk assessment, the process of mapping risks 
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an organization faces prior to simulation, we find that both academics as well as practitioners 

use various frameworks and categorizations to structure risk factor, though remain vague when 

determining well-defined cut-off criteria. We derive a ranking of preferred input sources and 

find that aggregation methods that combine different information sources are not recommended 

widely nor discussed in detail in large parts of the literature. 

Long after the merits of simulation-based financial management were established by Hertz 

(1964), corporate decision-makers still use less sophisticated methods as we discuss in a sepa-

rate section. One may argue that practitioners require time to adapt to the state-of-the-art rea-

soning and methods advocated by academics as methods take time to spread in practice. While 

simulation is applied extensively by practitioners in financial markets it is much less widely 

applied in corporate settings (e.g. Boyle, Broadie & Glassermann, 1997; Verbeeten, 2006; 

Grisar & Meyer 2015). Yet many academics agree on the merits of simulation methods to sup-

port decision making in settings characterized by uncertainty and volatility. A significant 

amount of research has analyzed how practitioners use simulation for capital budgeting, risk 

management and others (e.g. Farragher, Kleiman & Sahu, 1999; Graham & Campbell, 2001; 

Verbeeten, 2006; De Andres, De Fuente & San Martin, 2015; Horn, Kjærland, Molnár & 

Stehen, 2015; Linder & Torp, 2014; Grisar et al., 2015; Moore & Reichert, 1983). While it has 

been shown that usage varies across industry, organization size and other factors it is widely 

found that adoption is relatively low, although increasing slightly over time. Notably many of 

these studies conclude that simulation methods are found complex and resource intensive de-

spite recognition of their merits. We argue that some barriers to usage of simulation have come 

down through progresses in the method and technological advances in computing power and 

software. In this chapter, we seek to address one of these barriers by analyzing the state-of-the-

art method. Both the technical benefits and the acceptance of simulation models are driven by 
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their accuracy. Barring computational or structural model errors, simulation accuracy is driven 

by input modelling as illustrated by one of the most well-known proverbs regarding simulation 

modelling: “Rubbish in, rubbish out” (Anderson, 2004; Damodaran, 2012). The pivotal im-

portance of input modelling has wide support (e.g. Cheng, 1994; Law, McComas & Vincent, 

1994; Vose, 2008; Damodaran, 2012). This may suggest a large body of research and practical 

guidance on input modelling. However, publications specifically addressing input modelling 

for the context of CF&A are scarce. Despite input modelling’s vital importance, their theoretical 

underpinning remains less solidly footed in CF&A publications on simulation than in other 

disciplines, notably operations research. We thus also review publications that treat simulation 

more generally and stem largely from operations research.  

Despite a well-developed theoretical underpinning on the selection of input parameters for sim-

ulation models in general many CF&A publications advocate pragmatic solutions. We aim to 

provide an approach balancing academic rigor and pragmatism. Throughout this chapter, we 

will refer to parameters and distributions used as input to simulation models as simulation 

model parameterization or simulation input modelling (e.g. see Law & McComas, 1996). 

In this chapter, we seek to provide an overview of the state of the art of simulation input mod-

elling for the most important applications of simulations and risk factors in CF&A. An im-

proved understanding of how various groups of input parameters shall ideally be derived sup-

ports both the accuracy of results as well as the level of acceptance of the method. Prior to 

addressing the key objective of this chapter, we derive which type of simulation is most com-

monly used and which parameters are required for these as input modelling is context-depend-

ent (Johnson & Mollaghasemi, 1994). This chapter addresses three questions. Firstly, which 

applications and methods for simulation are considered most important in CF&A (RQ1)? This 

lays out the context in which input modelling is conducted and is critical to ensure a clear scope 
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for the ensuing research foci. Secondly, which risk factors shall be modelled explicitly and how 

shall be decided what to include in the risk assessment (RQ2)? Finally, we approach the ques-

tion of which input modelling methods are propagated for these applications and risk parame-

ters per the leading experts in the field (RQ3)? The major interest is RQ3. We lay the ground-

work to address this question through RQ1 and RQ2. We build on a parallel triumvirate from 

Johnson et al. (1994) where simulation input modelling is structured along Models/Applications 

and Data (risk factors) that in turn determine optimal input modelling methods. This chapter is 

organized as follows, firstly the research method is presented, secondly, the central applications 

of simulation in CF&A are derived and, thirdly, it is reviewed which risk factors should be 

modeled explicitly and finally we discuss the state-of-the-art methods to derive parameters for 

simulation models that are intended to serve as reference to simulation modelers.  

2.2: Method  

We derive our findings based on a review of academic literature across scientific disciplines 

that we complement with the practitioner perspective. We follow the structure of a meta-anal-

ysis of insights and methods developed both from academics and practitioners (Cooper, Hedges 

& Valentine, 2009). We pursue this approach to aggregate and contrast both perspectives. While 

practitioners as well as academics recognize the perennial challenge of determining input pa-

rameters (Winter simulation conference, Fox et al., 1990), it has been argued that there is a 

discrepancy between the views of academics and practitioners (Johnson et al., 1994) and we 

seek to contrast the opinions present in both realms via this research design.  

Our results are to be understood in a positive sense while we follow a method that captures a 

normative perspective. Put differently, we capture the normative perspective of how simulation 

input modelling shall be conducted, although we do not evaluate the adequacy of the responses 
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and rather assess these in a positive sense. Notably we seek to establish a consensus on the 

recommendations for simulation input modelling and not the most common practices. 

2.2.1 Review of the academic literature  

This literature review comprises of textbooks and journal articles and serves as a starting point 

for the review and contrasting comparison of the academic literature with practitioner publica-

tions and expert interviews in chapter 3. The objective of this literature review is to achieve 

progressive coherence of academic literature as defined in (Golden-Biddle & Locke, 2007). To 

this end and to avoid bias we follow the methods of a structured literature review by Tranfield, 

Denyer & Smart (2003). Several steps were taken to ensure an unbiased sample: 

• A broad set of textbooks on CF&A was reviewed and relevant discussions of the top-

ics of interest were taken into the sample. This includes general textbooks from lead-

ing scholars on CF&A as well as specialized literature on simulation methods in fi-

nance. Among the most cited general corporate finance textbooks there are Brealey, 

Myers, Allen & Mohanty (2012) with over 15,000 Google Scholar citations as of 

March 2019 and Damodaran (2012) with almost 4,000. We complement this with two 

somewhat less cited textbooks with the objective of achieving a diverse set of opinions 

among these textbooks by including Vernimmen, Quiry, Dallocchio, Le Fur & Salvi 

(2014) and Hillier, Ross, Westerfield, Jaffe & Jordan (2010) with about 282 and 222 

citations respectively. Of the specialized Simulation textbooks, many had to be ex-

cluded as they focused exclusively on financial market topics such as derivatives and 

asset pricing and not on CF&A. Again, we use two of the most cited textbooks in 

Glasserman (2003 over 4,800 citations) and Jackel (2001; 749 citations) and one ran-

domly selected less widely cited textbook that nonetheless maintains a general scope 

(Brandimarte, 2014; 65 citations). To our knowledge no textbooks exists that is fully 
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dedicated to simulation input modelling in CF&A. we include textbooks as, firstly, we 

are interested in the consensus among academics that can be well-represented in text-

books and, secondly, we are seeking broad and holistic treatments as opposed to more 

focused/specialized journal articles. 

• Complimentarily we review published scientific articles to capture the debate, latest 

findings and viewpoints. To this end, multiple variations of key words were used to 

identify disparate though connected literature streams (e.g. Simulation input model-

ling, model parameterization, Input Data Modelling etc.) in different databases like 

Google Scholar, Web of Science and Scopus.  

• Further sources were obtained from the references through the method referred to as 

constrained snow balling (Lecy et al. 2012). 

• To avoid bias from exclusion of unpublished articles, we include conference proceed-

ings in the academic literature review as suggested by Tranfield et al. (2003). Sources 

used stem from reputable sources, notably the panel discussions at the Winter Simula-

tion Conference. 

• Experts interviewed for Chapter 3 were asked for literature to be included as suggest 

by Tranfield et al. (2003). 

Hence, we create a transparent and reproducible body of literature and limit the risk of omitting 

central works of scholarship with relevance for this review.  

2.2.2 Practitioners publications 

Focusing on publications and theory from practitioners may seem counterintuitive. Oftentimes 

theoretical advances are developed in academia from where they spread to practitioners and are 

customized to their respective needs. Yet many scholars proclaim a divide between the views 

of academics and those of practitioners, particularly in management science (Buckley, Ferr, 
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Bernardin & Harvey, 1998; Rynes, Bartunek & Daft, 2001). There is a trade-off between accu-

racy and effort regarding simulation methods as evidenced by findings that knowledge of sim-

ulation’s benefits is more widespread than usage, which is often considered too complex to 

implement (e.g. Verbeeten, 2006; Horn et al., 2015). Practitioners take pragmatic short-cuts to 

avoid the most cumbersome methods. Our research methods thus rests on the attempt to under-

stand what practitioners consider relevant theory and applications and which new methods they 

contribute to the body of knowledge. Our objective is to establish the state-of-the-art recom-

mendations in model parameterization by aggregating practitioners’ advice. To this end, we 

analyze recommendations from simulation software providers, associated consultants, simula-

tion professionals and industry associations.  

The analysis of the practitioner literature follows the structure common literature review used 

in academic studies (Creswell, 2013). One difference is that the literature under review is aimed 

at practitioners and thus may take a different, more applied angle at many of the topics ad-

dressed. Notably a lot of material tends to be application focused thus furthering our research 

objective of providing a distinct perspective. We provide a quantitative angle to this literature 

analysis by reviewing the frequency with which various points of view are expressed through-

out the literature. This method results in a structure that we build onto in the next chapter, 

beginning with research question 1 (RQ1) from the academic and practitioner perspective, fol-

lowed by RQ2 and RQ3, both reviewing first the academic and then the practitioner literature.  

2.2.2 a) Empirical research on simulation in corporate finance and accounting  

In the following section, we shortly review the quantitative research on how companies use 

simulation methods and what drives this usage. We review the positive literature on where it is 

applied before reviewing the normative literature on where it should be applied in the next 

section. This preceding review will provide a solid positive context to the normative question 
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of where simulation modelling shall be applied. As we will show there are results from this 

research that are relatively consistent across studies that typically follow a questionnaire design. 

One central result is that despite growing adoption of advanced valuation methods many large 

and sophisticated companies use basic methods to decide about significant capital investments. 

A second central finding is that there is a growing level of adoption of simulation that is con-

firmed across studies, yet the absolute level of adoption is still considered low (De Andres et 

al., 2015; Horn et al. 2015; Linder et al., 2014; Farragher et al., 1999; Graham et al. 2001; 

Hasan, 2013; Baker, Dutta & Saadi, 2011). Notably many recognize the benefits of advanced 

methods yet choose not to implement them. This result is crucial as it illustrates the willingness 

to use advanced methods and hints at barriers to usage due to complexity and effort. 

Two caveats are noteworthy when discussing this empirical research. Firstly, it is largely ques-

tionnaire based and thus subject to risk of misreporting due to various sources of error such as 

having the questionnaire filled out by ill-informed staff or by receiving responses biased by 

recall or social desirability biases (Krosnick & Presser, 2010). Secondly, the studies in our re-

view are independent of one another and do not follow the same questionnaire design hamper-

ing comparability of results. A panel data study with a fixed set of companies and research 

design over time would be more insightful on trends over time.  

We first review simulation usage among finance professionals. Moore & Reichert (1983) are 

among the first to review sophisticated capital budgeting techniques, they find an unexpectedly 

high level of usage at above 30% of frequent users of simulations among large American firms. 

Due to the design of the questionnaires it is not necessarily comparable across studies due to 

differences in wording of questionnaires and varying sample composition. In one of the most 

widely cited of studies on this subject Graham et al. (2001) conduct a large survey on the capital 

budgeting methods and methods used through a survey of almost 400 CFOs. This survey takes 
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a particularly broad angle at the decisions on a CFO’s agenda and thus serves well to illustrate 

their use of simulation methods. They find that about 14% of CFOs use value-at-risk or other 

simulation techniques in their capital budgeting processes. Financial leverage and industry 

seem to drive the use of simulation in the capital budgeting process which appears to be used 

primarily as a risk management method. Farragher et al. (1999) review three earlier studies of 

corporate capital budgeting processes and find adoption of Monte Carlo simulation to vary be-

tween 10% and 13%. More recent studies investigate the use of advanced capital budgeting 

techniques. These studies show that the use of simulation has spread notably in the last decade. 

Verbeeten (2006) analyzed the use of sophisticated capital budgeting techniques that go beyond 

a simple NPV calculation among a sample of Dutch companies. This includes simulation tech-

niques, real option analysis and game theoretic approaches. They find that firm size and capital 

intensity of the industry have a positive effect of adoption. Notably financial uncertainty is a 

strong predictor while social, market and input uncertainty are no strong predictors. Further-

more, Verbeeten’s research suggests that most companies that adopt advanced methods use 

their results to supplement simpler methods that continue to be used5. In a yet more recent study 

De Andres et al. (2015) show that 28.5% of Spanish non-financial firms “always” use simula-

tion analysis in their investment decision process. This relatively high percentage of simulation 

users is notable though the specific way in which simulation is defined is not specified making 

it hard to compare this result across other studies that show far lower adoption. Horn et al. 

(2015) focus their research on real options and simulation6 and find that roughly 6% of large 

Nordic companies use this capital budgeting method. Among non-users 70% are aware of the 

 
5 Some survey research results suggest that companies do engage in scenario analysis (base case vs. best case vs. worst case). 

Although this is akin to a simplified simulation analysis we do not consider this basic level of scenario analysis to 

constitute simulation. 
6 Despite the focus on real options they survey the use of simulation in real option analysis which can be understood as proxy 

for simulation analysis more generally. 
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technique and apply it non-formally thus confirming their acknowledgment of the benefits. 

Complexity in implementation is given as the prime reason not to implement it more formally. 

Consistent results are furthermore reported by Hasan (2013) and Baker, Dutta & Saadi (2011) 

who find low adoption of simulation in finance departments in their respective samples.  

The empirical literature on the adoption of simulations in accounting is less extensive. Linder 

et al. (2014) show that in line with findings in capital budgeting that simulation is used infre-

quently in their large sample of Danish companies although the method is well-known. In sim-

ilar vein Grisar & Meyer (2015) survey the use of Monte Carlo simulations in the management 

accounting departments of companies in German-speaking countries. They find that the use of 

Monte Carlo simulation is not yet widespread despite knowledge of the method among the 

companies surveyed, yet adoption is growing quickly. Again, industry and organization size 

factors are shown to have predictive power. Strikingly this research stream confirms that prac-

titioners recognize the benefits of simulation analysis to a much larger extent than they use the 

method in practice.  

Despite a growing level of adoption by practitioners across both finance and accounting we 

conclude that the literature supports the claim of a theory-practice gap in the application of 

simulation in finance and accounting. 

Per Rees (2015), key drivers of simulation modelling are complexity and number of decision 

variables, scale / size of the decision, opportunity to drive mitigation measures, corporate gov-

ernance requirements, the need to support decisions with quantitative analysis and the need to 

reflect risk tolerances. Throughout the expert interviews (see chapter 3), there were several 

further drivers. These are internal and external uncertainty affecting organization performance 
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and entrepreneurial flexibility/existence of real options7. Vose (2008) provides a brief overview 

on the reasons for “risk analysis”, thereby already underscoring the perceived focus on model-

ling risk in his approach to simulation modelling.  

2.3: Results 

2.3.1 Applications for simulation in corporate finance and accounting 

Here we take a normative perspective and review the state-of-the-art views are on where simu-

lation should be applied. Monte Carlo simulation can be applied to a variety of tasks in corpo-

rate finance and accounting to support decision making through a holistic assessment of volatile 

and uncertain situations. We set out to analyze which applications exist for Monte Carlo simu-

lation and where this method should be applied.  

Firstly, based on the academic literature we derive where simulations should be applied in 

CF&A. Secondly, we review what practitioners recommend. This allows us to aggregate the 

academic and practitioner’s views. 

2.3.1 a) Review of academic literature 

Hertz (1964) already discussed the potential benefits of evaluating major capital investments 

through simulation models long before large parts of today’s state-of-the-art understanding of 

simulation modelling and the related real option theory had been conceived. These benefits still 

stand today and suggest that simulations shall be used in a variety of decisions made in the 

finance departments of large firms or entities. 

Textbooks 

In their classic textbook Brealey and Myers introduce simulation analysis and apply it to a 

capital budgeting decision without treating other applications. Similarly, there is a compact 

 
7 the opportunity to affect the outcome of decisions after an initial commitment has been made; this flexibility can also be 

created strategically in response to a certain risk 
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treatment of simulation by Damodaran (2012) where simulation is discussed as a method of 

coping with effects of “continuous risks”. Vernimmen et al. (2014) discuss a short example of 

a Monte Carlo simulation for a profitability analysis. Hillier et al. (2010) also provide an exam-

ple of a Monte Carlo simulation for a capital budgeting decision. Here it is also discussed that 

the method is not widely used in practice despite having been introduced in the field many years 

ago; it is argued that this is due to complexity. Such relatively short treatments of simulation 

are common across general corporate finance textbooks. There is a more in-depth treatment of 

simulation in textbooks on financial engineering and textbooks more closely focused on simu-

lation methods directly. Glasserman’s (2003) leading textbook on simulation in Financial En-

gineering focuses on applications in financial markets and derivatives thereby offering fewer 

insights on where Monte Carlo simulation should be used in CF&A. Similarly, McLeish (2011) 

and Jäckel (2001) discuss simulation and its applications in depth yet largely for financial mar-

kets, not corporate finance.  

The discussed textbooks are primarily concerned with corporate finance applications and much 

less with management accounting. Labro’s new monograph (Labro, 2019) on costing is a note-

worthy addition to the accounting literature as it strongly builds on simulation methods and is 

written by an accounting scholar deeply rooted within the simulation research community. 

While this contribution builds on simulation-based research, it does not specifically discuss 

simulation-methods in accounting, research or practice.  

Among the publications surveyed few textbooks focus on simulation in CF&A in depth. Par-

ticularly an in-depth treatment of simulation input modelling was lacking. This scarcity has 

been noted for textbooks in operations research (Schmeiser, 1999). Thus, we would conclude 

that the academic textbook literature does not offer complete guidance on where simulation 

shall be applied in CF&A.  
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Academic journal publications 

Examples abound in publications that highlight the merits of simulation analysis for various 

applications in CF&A. Notable examples include:  

• Salazar & Subrata (1968) provide one of the earliest applications as they describe a 

simulation model for capital budgeting under uncertainty  

• Spedding & Sun (1999) illustrate how “Discrete Event Simulation may be used to eval-

uate activity-based costing” of manufacturing companies 

• Rode, Fischbeck & Dean (2001) discuss valuation through simulation of financial flows 

of a power plant  

• Gatti, Rigamonti, Saita & Senati (2007) apply simulation to analyze project finance par-

ticularly from the equity holder’s point of view  

• Labro & Vanhoucke (2007) simulate costing systems to draw inferences of interaction 

effects of costing errors 

Such a list could be continued; however, it is not straightforward to infer a consensus on the 

most central applications for simulation in CF&A from the number or quality of published re-

search papers. The number of research papers dedicated to one application is not necessarily 

indicative of its importance but rather suggests an ongoing debate. To find the consensus on 

where simulation should be applied in CF&A we need to look beyond this literature and focus 

on literature less determined on uncovering new methods and findings but rather tailored to 

simulation modelers overcoming their challenges and offering concrete guidance.  

2.3.1 b) Practitioner publications 

Practitioners publications are expected to provide pragmatic yet methodologically sound advice 

on where to use simulation methods in CF&A. Yet we are unaware of publications that claim 
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to offer a comprehensive prioritized list of applications, methods and tools of simulation anal-

ysis in CF&A. We thus take a different approach by aggregating the topics discussed in various 

publications and gain understanding through their joint contributions. In this section, we focus 

on practitioner publications that approach the topic from a technical angle through the lens of 

the simulation modeler in leading software environments. To this end, we review several pub-

lications focused on simulation modelers and aggregate which applications and purposes for 

simulation are discussed.  

Software providers and simulation professionals 

Several companies have developed tailored software solutions for Monte Carlo simulations that 

are designed for practitioners. Klein (2010) offers a comprehensive review of leading software 

including Crystal Ball, @Risk, ModelRisk and Risk Solver. Although MATLAB is not re-

viewed in Klein (2010) and tends to be used even more ubiquitously for applications in quanti-

tative finance we still include it here8. Our interest is not the adequacy of the software environ-

ment, but how these software providers advise their users on where to use simulation. As these 

companies engage in a dialogue with practitioners their advice can offer a perspective into the 

applications simulation modelers are most concerned with. We attempt to condense the pro-

vided advice to provide insight into industry best practices. For completeness, we review the 

offering of each of these above-mentioned providers on financial modelling in their software.  

• Crystal Ball: Charnes (2012) provides a guideline for financial modelling with simula-

tion in Crystal Ball. The general approach to building simulations for financial model-

ling is explained through theory and applied examples serving as introduction to some 

of the most common applications. We take the applications treated here as starting point 

 
8 Notably R is used extensively in quantitative finance for example to compute valuations of derivatives or similar applica-

tions; our focus is CF&A where it is less widespread 
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of our analysis. Charnes suggests that income statements and balance sheets are the most 

widely used financial models though also highlighting other applications.  

• @RISK: Rees (2015) gives a recent comprehensive perspective via a practically fo-

cused and carefully argued treatment of simulation as business decision support tool. 

This treatment goes beyond basic guide to simulation modelling and provides compre-

hensive advice on simulation. 

• ModelRisk: Vose (2008) is among the most widely cited guides on quantitative risk 

analysis that offers practical advice on solid academic footing with applications and 

examples.  

• Risk Solver: Solver offers a comprehensive technical guide focused on implementing 

simulation in this software. 

• MATLAB: Anderson (2004) takes a similar approach and introduces the reader to ad-

vanced simulation methods in finance and accounting. Here also some of the most cen-

tral tasks of any firm’s finance and accounting departments are addressed.  

We focus on the above set of core publications for two reasons. Firstly, we focus on publications 

that address both simulation methods and the application of these methods in CF&A. Thereby 

we explicitly exclude part of the literature that addresses simulation in a financial market con-

text thus achieving a more insightful sample. Secondly, we show that the applications covered 

exhibit increasing conformity across publications thus indicating that we reach a saturation 

point through coverage of the sources mentioned (Charmaz 2006). This is evidenced as only 

few or no additional applications emerge through the addition of further sources. Only three of 

the five sources reviewed include unique applications. These add informational value though 

are not considered core applications due to their rareness. These applications include simulation 
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modelling in Real estate finance, Asset depreciation and Revenue management; all applications 

that are not mentioned in the above discussion of Simulation methods in textbooks. 

In table 7 we show the frequency with which applications are treated and thereby capture their 

perceived importance. We show all applications discussed in the practitioner literature that is 

mentioned at least twice in the literature: 

  
  

Charnes 

(2012) 

Rees  

(2015) 

Vose  

(2008) 

Solver  

(2010) 

Anderson  

(2004) 

1 Income statement / Profitability  x x x x x 
2 Asset / risk portfolios x x x x x 

3 
Net present value (NPV) / Capital 
Budgeting 

x x x x x 

4 Correlations x x x x x 
5 Real options x x   x x 
6 Credit analysis and risk x x x 

 
x  

7 Financial options / derivatives x x   
 

x 

8 
Risk management (e.g. Value at 
risk) 

x x x     

9 Internal rate of return (IRR) x   x x 
 

10 Balance sheet x   x     
11 Cash flow statement x   x     

12 
Insurance risk (i.e. risk the insurer 
assumes) 

  x x     

13 Project finance / Project costs     x  x 
 

Table 7 – Most discussed applications of simulation in CF&A 

Cash Flow statements and balance sheet simulation tend to be discussed more rarely despite the 

paradigm of integrated financial management which recommends a joint analysis of all finan-

cial statements. However, the analyses of profitability and other oft-mentioned applications 

have basic financial statements at their core and these are thus not mentioned. Per Charnes 

(2012), simulating balance sheets is likely one of the most common application, though it is not 

mentioned here explicitly, potentially reflecting the fact that the balance sheet may be run in 

the back ground of an e.g. real options or profitability analysis. Few applications of simulation 

from management accounting are mentioned.  

In summary, the most frequently discussed applications of simulation center around Profitabil-

ity analysis, Capital budgeting, which can be considered part of management accounting as 
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well, and Portfolio analysis with less discussion of applications purely rooted in management 

accounting.  

2.3.2 Risk assessment and prioritization  

After discussing which applications and situations in simulation modelling in CF&A can be 

considered most central, we now review how simulation modelers should decide which specific 

risks shall be modelled and which risk factors to simulate. Risk factors describe granular groups 

of risks such as operational risks, price volatility of production inputs and demand volatility. 

This process is typically referred to as risk assessment or risk-breakdown. It consists of quanti-

fying magnitude, likelihood and interrelation or correlation between risk factors. This can then 

be complemented via identifying potential countermeasures to individual risk factors (Lam 

2014, Ch. 23). Lam defines risk assessment as “to identify, quantify, and prioritize an organi-

zation’s key risks”. Put differently a risk assessment framework helps simulation modelers de-

cide which risk factors are sufficiently important to warrant inclusion in simulation models and 

the risk management process and which can be considered negligible. Resource constraints for-

bid explicit modelling of all existing risk factors. Particularly small risk factors that do not have 

strategic importance or low visibility are typically excluded from simulation analyses.  

2.3.2 a) Review of the academic literature  

To understand the academic perspective on risk assessment frameworks we commence our lit-

erature review in the risk management literature. A significant part of this literature revolves 

around risk management for financial institutions and the surrounding regulations. As we are 

researching how non-financial services organizations use simulation we exclude this literature. 

Much of the literature on risk management revolves around reducing the “variability of firm 

value or cash flows” (Stulz 1996), yet more recent approaches acknowledge the benefits of risk 

taking and build frameworks taking this perspective into account. Nocco & Stulz (2006) argue 
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that companies shall not seek to minimize risk but rather “optimize the firm’s risk portfolio by 

trading off the probability of shortfalls and the costs with the gains” that can be achieved 

through taking on risks. 

Companies start their risk identification processes via a bottom-up or top-down approach 

(Nocco et al., 2006). Both approaches then proceed to categorize risks along a framework or 

categorization scheme. For historic reasons, financial institutions tend to categorize risks into 

market, credit and operational risks. However, this classification does not necessarily reflect 

the requirements in other industries well (Nocco et al., 2006). Simple frameworks for non-

financial institutions include the categorization per environmental, industry and organization 

intrinsic variables as presented in Miller (1992) or market, operational, credit, and reputational 

risks (Nocco et al., 2006) which again mirrors practice from financial institutions. In a recent 

review article from Dionne (2013), corporate risks are categorized into pure risk, market risk, 

default risk, operational risk and liquidity risk. Other frameworks exist that for instance cate-

gorize risks analogously to the classification common in financial markets as pertaining to mar-

ket, credit, and operational risks (Lam 2014, Chapter 4). Lam also discusses a detailed risk 

categorization scheme that includes a list of risk categories including: Credit risk, Market risks 

and hedging, Stock price risk, Investment risks, hedging risks, Secondary risks, Operational 

and Insurable risks, Catastrophic failures, Business risk, Cultural risks, Pension risks, Outsourc-

ing and Reputational risks. Yet another categorization scheme (Chapman 2011) makes a high-

level division between internal process and business operating environment with many subdi-

visions. This illustrates that many different well-argued approaches coexist for risk assessment 

and categorization. The categories are usually further broken down in a next step into individual 

risk factors of increasing degree of specificity. Miller (1992) offers one of the early examples 

of such a framework. This categorization step in the risk assessment process is also commonly 
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referred to as risk taxonomy (Lam 2014, chapter 23). Although these shortly presented catego-

rizations are distinct they all present approaches that cover the major risks pertaining to an 

organization. Categorization schemes do not affect which risk groups an organization faces 

specifically risks. This insight and the level of interrelated risks across categorizations led to 

the emergence of Enterprise risk management (Stulz 1996).  

The decision which risk factors to simulate, is considered in a process commonly referred to as 

risk prioritization. In this process risk factors, can be structured around properties such as prob-

ability of occurrence, severity of impact on the entity and effectiveness of controlling measures 

(Lam 2014, chapter 23). These can then be used as inputs to risk matrices or heat maps that 

illustrate the risk profile of the entire entity along said dimensions that represent the axes of 

such matrices. In the next step the organization’s risk appetite, key risk indicators and the over-

all risk profile’s impact determine the response. Risk prioritization via matrices, risk radars or 

heat maps are limited for several reasons: 

• Within heatmaps or matrices there is usually no clear criteria to define cut-off points 

and thresholds for inclusion. Thus, enabling the simulation modeler to prioritize the 

importance of risk factors yet not answering the question which risks including in a 

simulation model. This method has merit prioritizing risk factors under scarce resources, 

thus in a scenario where not all risk factors can be assessed and modeled.  

• Factors like risk appetite or key risk indicators (KRIs) remain inherently hard to quantify 

and thusly a matter of subjective decisions. Yet one of the core ideas in simulation mod-

elling is quantitative decision-making with little room for subjectivity.  

In short, risk prioritization lacks clear cut-off criteria for risk modelling decisions thus remain-

ing subjective. Stulz (1996) argues for inclusion based on whether a risk factor “affects the 

firm’s ability to implement its strategy”. Chapman (2011) analogously states that risks shall be 
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organized along the threat they pose toward an organization’s goals without specifying how to 

assess if this condition is met.  

Hence, despite the advantages of risk assessment and prioritization there is a lack of well-

grounded quantitative reasoning to decide which risks should be modeled prior to their quanti-

fication. For lack of clear guidance in the academic literature we turn to the practitioner com-

munity in the following section.  

2.3.2 b) Practitioner literature 

Like the academic literature, Vose (2008) also categorizes risk classes or groups, though con-

cedes that such prompt lists are never exhaustive mainly serving as a check list of risks to in-

clude yet not offering decisive guidance on which variables to analyze and manage. Likewise, 

Kaplan & Mikes (2012) view compartmentalized thinking in risk modelling critically as organ-

izations can be threatened by “combinations of small events that reinforce one another”. 

Thereby they mirror core arguments of enterprise risk management. Instead of a categorization 

of risks by source or mapping by expected severity they put forward a categorization by its 

optimal response. The first group describes preventable risk factors that should be managed and 

prevented through the rules and processes of an entity. Secondly, strategic risks an entity will-

ingly and rationally assumes to achieve its objectives in line with its risk tolerance, here entities 

shall actively work on containment strategies. Thirdly, external risks from outside the organi-

zation should be managed through risk identification and mitigation. However, challenges re-

main as this classification still leaves up to the modeler to decide which magnitude of risks to 

simulate explicitly. 

Including all risks that threaten an organization’s strategy or its survival has been voiced as a 

rule of thumb among practicing risk managers (Stulz, 1996). A broader definition supported by 

industry associations includes factors that may impair an organization’s ability to reach its goals 
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(Ballou, 2005). We argue that these heuristics turn the risk assessment process on its head as 

the threat risk factors pose to an organization’s survival or goals can only be assessed via a 

holistic risk management analysis rather than being its input. Put differently, risk analysts need 

to analyze a risk factor before its impact can be confidently judged. Rees (2015) supports our 

argument. ‘A priori’ risk exclusion is deemed inappropriate as inclusion decisions hinge upon 

context- and objective-dependent criteria. Further, exclusion of individual risk factors leads to 

an understatement of total risk and to the potential omission of mitigation measures. We fully 

support this argument, though concede that for practical purpose it can be necessary to prioritize 

and exclude risk factors. Below, we condense the risk factors analyzed in this set of practitioner 

literature that offers more granularity than the academic literature:  

  
  

Charnes 

(2012) 

Rees  

(2015) 

Vose  

(2008) 

Solver  

(2010) 

Anderson  

(2004) 

1 Variable production costs (COGS) x x x x x 

2 
Purchasing price / cost of inputs (e.g. 
commodities) 

x x x x x 

3 Demand  x x   x x 
4 Sales prices (incl. discounts) x x x x   

5 
Production output / operational / 
technical factors 

x   x   x 

6 Market share x x x     
7 Fixed costs / SG&A  x x x     
8 Stock returns x       x 
9 Interest rates x       x 

10 Market size x   x     
11 Sales / Revenue x       x 
12 Product quality   x     x 
13 Exchange rate   x x     
14 Personnel fluctuations   x x     
15 Policy changes   x x     

Table 8 - Frequency of specific risk factors modelled the publications reviewed mentioned at least twice 

Most frequently discussed are central variable determinants of the income statement or profit-

ability analysis reflecting the applications discussed above. Further, there is a wider range of 

risk factors in line with our expectations as risk factors stem from diverse sources. Risk factor 

as defined above can contain various volatile input factors for simulation models.  
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In addition, several industry associations of accountants and risk managers publish on risk as-

sessment and prioritization that complement the practitioner literature.  

The Institute of Management Accountants (Shenkir & Walker, 2007) provides yet a new per-

spective on categorizing risks into financial, strategic, hazard and operational risks while ac-

knowledging the importance of linking these categories back towards enterprise risk. A risk 

mapping approach is suggested for prioritization of risk factors with impact and likelihood as 

dimensions, the typical heatmaps discussed above. The Professional Risk Manager’s Interna-

tional Association, another leading industry association, follows the framework of market, 

credit and operational risk likely rooted in risk management of financial institutions (PRMIA 

2011). Hence it appears that the industry associations are well-aligned in their advice with the 

broader practitioner literature. Similarly, they provide various frameworks for structuring and 

prioritizing risks yet the central question where to place the cut-off for inclusion is not directly 

addressed.  

2.3.3 Parameterization of simulations in CF&A 

This section addresses the major research question of this chapter: state-of-the-art simulation 

input modelling and model parameterization.  

Various methods for simulation input modelling exist and can be categorized into a new frame-

work that we devise to provide structure to the discussion. Input modelling methods can be 

distinguished and groped into a classification of input modelling methods by data source as 

these are distinctive of each modelling method. This simple classification is mutually exclusive, 

as no method belongs to more than one category, and collectively exhaustive, as all methods 

found in this review can be categorized into one of these classes. We distinguish the following 

methodical groups:  

- Data driven methods: parameters from empirical data 
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- Expert driven methods: parameters from expert opinion 

- Theory driven methods: parameters based on theory 

- Aggregation methods9: parameters from a mix of the above methods, also including 

combining multiple expert opinions and the use of fundamental models that attempt to 

replicate the full DGP (as opposed to the resulting parametric distribution as done in 

theory driven methods) and resulting distribution 

Within the academic and practitioner literature review this section is structured along these 

classes. Other frameworks for structuring sources of input parameters for simulation in CF&A 

exist that use other traits and properties of methods for classification. These frameworks or 

treatments though typically comprise of the above-mentioned categories (e.g. Rees, 2015) and 

are thus consistent.  

2.3.3 a) Review of the academic Literature  

Again, we review wide-ranging sources including both the generalist simulation literature on 

parameter selection as well as the CF&A-focused literature.  

Data driven methods 

For simulation input modelling in general the standard work of Law et al. (2000) is a good 

starting point that focuses on data-driven methods. Law stipulated three ways to obtain stochas-

tic input parameters that assume access to historic data: 

1. Trace-driven: this entails using actual past data from the process modelled. This 

method is also called bootstrapping for its similarity to bootstrap sampling (Cheng, 

1994). This method faces limitations as many simulations are driven by the properties 

 
9 This is not to be confused with the research method of mixed methods as discussed in e.g. Creswell 2013 
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of the input distribution’s tails that represent extreme events and are not regularly ob-

served thus might be missing finite sample of empirical data (Kelton & Law, 2000). 

Capital market finance applies this regularly to back-test portfolios (Morgan, 1996). 

2. Empirical distribution: Actual data is used to define an empirical distribution from 

which to draw random variables (Kelton et al., 2000). Discrete or continuous distribu-

tions are derived directly along empirical data. This method can involve adding tails to 

the empirical distribution to allow for sampling of values outside the observed range 

(Cheng, 1994). This then constitutes an aggregation method as the information for the 

appended tails requires a distinct source.  

3. Fitted standard theoretical distribution: Statistical techniques are used to find the 

best-fitting theoretical distribution to the observed values: this approach entails approx-

imating the empirically observed data via the best fitting theoretical distribution. This 

is also referred to as the “parametric bootstrap” (Cheng, 1994). The statistical fitting 

procedure is typically based on least-squares, method of moment or maximum likeli-

hood estimation (Leemis, 1995; Kelton et al., 2000). In this process the modeler fits an 

initial distribution to the data. Unless there is a perfect fit between empirical and theo-

retical distribution the modeler decides if the discrepancy is due to sampling error or 

represents key characteristics of the distribution that need modelling (Leemis, 1995). 

Fitting standard theoretical distributions to data is supposed to overcome key weak-

nesses of trace driven distributions, in that they can fall short of adequately capturing 

the properties of a distribution’s tails. Barton (2002) argues that also parametric distri-

butions can be susceptible to this problem and may lack sufficient realism. Further, a 

fully specified theoretical distribution can create a false sense of security.  
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If the data to be simulated, follow a theoretical distribution (3) reasonably closely the fitted 

standard distribution “will generally be preferable to using an empirical distribution (2)” (Kel-

ton et al., 2000). Theoretical distributions smooth empirical irregularities inherent to samples 

of limited sizes for approaches 1 and 2. Additionally, empirical data observations tend to be 

discrete while the underlying distributions are continuous, leading to unrealistic distributions if 

observation periods are short. Another major advantage of this technique is that it is general-

izable and allows for manipulation of its parameters. In addition to the above approaches, Kel-

ton et al. (2000) also mention theoretical derivation of distributions, however these may suffer 

from shortage of information.  

Cheng (1994) provides a tutorial focused on the statistics of fitting theoretical distributions to 

the data. Cheng posits that fitting standard distributions is also the most commonly used method 

among simulation modelers. Law provides an extensive treatment of theoretical distributions 

and their statistical properties. Though he does not provide guidance on which classes of vari-

ables shall be used or how one shall decide if the statistical fitting procedure is inconclusive.  

In a similar vein Leemis (1995) provides detailed examples of using maximum likelihood esti-

mation to approximate a Weibull distribution addressing some of the major challenges. 

Bratley (1987), a leading simulation textbook, expresses preference for data driven input mod-

elling methods. Conceding that absence of perfect data is common, it presents experts opinion 

as a fallback option if fitting data cannot be found. Bratley favors using empirical distribution 

if the theoretical shape of a variate’s distribution is not known and cannot be inferred from the 

data alone as statistical tests for fitting distributions have low power to reject the fit, potentially 

leading to a false sense of certainty regarding the choice of a distribution’s shape. He also points 

to the general difficulty of estimating distribution’s tails precisely from limited data sets and 
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the conditions under which it is reasonable to append a theoretical distribution to cover the tail 

of an empirical distribution. The difference in viewpoints with Law is noteworthy.  

Biller & Nelson (2002) address frequent questions in simulation input modelling and again 

consider deriving distributions from data to be the preferred option, advising on the use of ex-

perts only where data is not available. Interestingly, they prefer theory driven methods and 

advise to choose a distribution if there is a “strong physical basis” for it even if its goodness of 

fit measure is not the best.  

Johnson et al. (1994) review simulation input modelling methods for operations research how-

ever, the depth and scope of the discussion merits inclusion. Here, again the need to start from 

empirical data is stressed. Various methods of deriving distributions and parameters from data 

are discussed as well as shortcomings of data like disadvantageous formatting like grouping. 

Johnson et al. also briefly mention expert-based methods though only if data is not available 

and dismiss them largely on the grounds of cognitive biases. Expert input may function as a 

“veto power” to reject implausible distributions. Vincent (1998) discusses input modelling in 

OR and expresses preference for data driven methods. Data driven methods are considered op-

timal despite the assertion not to take data “too seriously” for the risk of imperfect data quality. 

Deriving distributional characteristics from the data with dedicated software is discussed in-

depth. In a related publication, Vincent & Law (1991) discuss a simple method to use software 

for distribution fitting in the absence of data where it shall be fit to data points such as the 

minimum, mean or maximum that may be known, however it is not elaborated from which 

sources these should stem. Preference for data over expert opinion is further supported in Fox 

et al. (1990) among a panel of leading simulation researchers. In summary, it appears that the 

perspective from operations research is strongly data driven with less scope for expert-based 

and theory-driven methods. 
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In addition to preference for data based-methods, most dedicated simulation literature places 

substantial focus on selecting the right distributions and discusses various methods of deriving 

distributions from data and assessing their goodness of fit. The dedicated chapters in Vincent 

(1998), Bratley (1987) and Kelton et al. (2010) and the references therein offer detail on these 

methods. It is noteworthy, that the discrimination between candidate distributions is based on 

reason rather than strict rules (e.g. Vincent 1998).  

However, other simulation scholars differ and argue against the use of empirical data. Schruben 

argues (Barton 2012) that “most simulation studies desire to learn what would happen if we 

were to change a system”. Moreover, Schruben & Schruben (2001) discuss the limitations of 

data that can be “distorted, dated, deleted, depleted or deceptive” thus rendering methods to 

derive input modelling parameters from data problematic. Schruben concludes that real-world 

data is “not important to the success” of simulation studies in dynamic environments.  

Analogously to the previous sub-section we commence the review of parameterization of sim-

ulations in finance and accounting with the leading corporate finance textbooks. Vernimmen et 

al. (2014) advise on risk assessment and parameterization by recommending to “identify influ-

ential factors” and “to look at available information to determine the uncertainty profile” with-

out further specifying the information’s source. Damodaran (2012) introduces simulation sug-

gesting two methods. Firstly, the use of historical data for macroeconomic and comparable data; 

thus, implicitly assuming constant stochastic parameters. Secondly cross-sectional data of e.g. 

comparable organizations shall be used for more specific variables.  

Expert-based methods 

Law et al. (2000) discuss approaches to be used in the absence of historical data that rely on 

estimates of SMEs. Law also discusses the limitations of SMEs and potential biases without an 
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in-depth discussion of de-biasing techniques. Law also argues in favor of using theory to un-

derstand which family of distributions a process could follow based on preexisting knowledge 

of the process. Henderson (2003) addresses the topic of uncertainty about the true value of a 

stable input parameter as opposed to known fluctuations of a stochastic parameter. A further 

level of uncertainty is introduced through the uncertainty about the level of volatility of input 

parameters. Throughout this chapter, we assume that the non-observable parameters of distri-

butions are fixed and can be known – however, this assumption is relaxed for the chapters 

revolving around Bayesian input modelling. Biller et al. (2002) view expert-based methods as 

a back-up option if data is unavailable. It is worth noting, that they point toward simple de-

biasing methods that shall be applied to derive probability distributions from experts’ state-

ments. Although Vincent (1998) points to the difficulty to detect “deviations from stability” of 

distributions, he does not directly argue for obtaining insights from experts who may have ac-

cess to data that allows them to make forward looking statements.  

The textbooks reviewed (Brealey et al. 2012, Vernimmen et al. 2014, Damodaran 2012, Hillier 

et al. 2010) do not discuss expert-based methods in-depth. However, insight can be gleaned 

from the discussion in the corporate finance literature. Damodaran (2012) suggests making as-

sumptions about the distribution if data is not available or of inferior quality also pointing to-

ward some of the difficulties of selecting consistent probability distributions when parameter-

izing models without solid data access but does not discuss more general challenges of expert 

elicitation such as cognitive or organizational biases. Brealey et al. (2012) dedicate a short par-

agraph to the selection of probabilities which in this case represents their treatment of simula-

tion input modelling. In the example, they elicit expert input from the marketing department of 

the example organization. In Hillier et al. (2010) market share is estimated based on expert 
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input. Market size is estimated based on external data from an industry publication combined 

with judgment from the simulation modeler, thus an aggregation method.  

In summary, the simulation-focused literature views eliciting distributions from experts as a fall 

back option if data is not available and does not discuss the advantages and drawbacks in depth. 

There is however a literature on expert elicitation with relevance for simulation modelling. 

Cooke (1991) constitutes a broader perspective on expert opinions under conditions of uncer-

tainty. Although the discussion is not specifically aimed at simulation modelling in CF&A it 

touches on many aspects of importance in this context. The book covers topics from probabil-

istic thinking and biases to elicitation and scoring of expert opinion to methods of combining 

divergent expert opinions. These situations are analogous to situations faced by simulation input 

modelers. We do not review the methods in depth, yet this is advised for applied modelers 

looking for a robust elicitation guidance.  

Theory driven methods 

By Theory Driven Methods we refer to those that harness the theoretical foundation or under-

standing of the DGP to derive input parameters or distributions for simulation models. This 

approach is also referred to as the scientific or conceptual approach (Rees 2015). Law et al. 

(2000) discuss hypothesizing on distributions based on theoretical arguments yet concede that 

in practice “we seldom have enough prior information” for this approach to be precise. In a 

similar vein, Barton (2002) affirms that there is rarely a strong theoretical argument for a spe-

cific distribution thus arguing in favor of empirical distributions. Johnson et al. (1994) mention 

the appeal of theory-driven distributions like the Bernoulli for a Coin toss, though do not discuss 

when to use this method. They use the term of “physical plausibility” for input parameters that 

are derived from information about the DGP. Their discussion suggests preference for data 

driven methods. Biller et al. (2002) argue in similar vein for the theory driven methods. In 
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summary, the academic literature advocates this class of input modelling methods, though 

doubts their practical applicability.  

Aggregation Methods 

By aggregation methods we refer to those using a combination of the discussed methods to 

derive parameters. The reviewed textbooks that do cover simulation input modelling (Brealey 

et al. 2012, Vernimmen et al. 2014, Damodaran 2012, Hillier et al. 2010) do not discuss aggre-

gation methods in depth.  

While Cooke (1991) discusses combining expert opinions at length, there is no discussion of 

combining information sources of different formats such as combining expert opinion and em-

pirical data. We argue that a broader discussion of combining different information sources 

would be beneficial for two reasons. Firstly, there is no generally agreed and theoretically de-

rived hierarchy of preferred input sources in dynamic modelling environments as became evi-

dent in this literature review and is supported as well by simulation experts interviewed in the 

next chapter who do not exhibit consistent preferences. Secondly, simulation input modelling 

challenges can be characterized by a lack of data and well-fitting experience for the specific 

situation to be modelled (Barton et al. 2002) as simulations are often applied in dynamic cir-

cumstances.  

As we will show in the following chapter through expert interviews, aggregation methods are 

important for simulation modelers as situations with lacking data sources or theory and diver-

gent expert opinions commonly arise. Leading simulation modelers routinely combine data 

sources typically in pragmatic ways.  
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2.3.3 b) Practitioner publications 

Below we provide an overview of the most commonly advanced opinions amongst practitioner 

publications on simulation input modelling. Rees (2015) supports practitioners through an over-

view of academic and pragmatic approaches that provides a deeper background into the reason-

ing for simulation modelers than most other sources. We review this in the subsection on hier-

archy of input modelling methods. 

Data driven methods 

Palisade (Rees 2009) offers a pragmatic framework on input distributions; similar guidance is 

provided in Rees (2015, Chapter 9) who also represents Palisade. Anderson (2004) discusses 

importing data into a simulation model for parameter estimation as the default case underscor-

ing the central role of data driven methods. Beyond these publications there is a range of sec-

ondary sources like Charnes 2012 who presents two methods: data-driven methods or “other” 

methods such as experts. Like the treatment in Law et al. (2000) a clear distinction is made 

between different approaches like using actual historical data via bootstrapping or fitting dis-

tributions to data. Historical data for distribution fitting is advised if available thereby display-

ing preference for data over experts. Despite the purported advantages of historical data some 

caveats are offered. Data may not be available or sufficiently recent to be accurate, moreover 

data may be biased, or that the DGP changes over time. In such situations Charnes (2012) ad-

vises on using input from experts. 

Moreover, several software packages offer distribution fitting applications that provide the best 

fitting distribution based on historical data. This is evidently a practical way to parameterize a 

distribution if historical data is available and parameter drift is unlikely (Charnes 2012). Nota-

bly to our knowledge none of the software packages offer tools specifically designed to address 

structural breaks.  
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In summary, the practitioner literature appears well-aligned with the academic literature in that 

it prioritizes deriving distributions from data over experts.  

Expert-based methods 

Vose (2008) reviews methods for eliciting subjective probability distributions from experts. 

Non-parametric distributions are highlighted in this section as being especially adept at model-

ling expert opinion. The quality of expert’s assessments is crucial for the simulation and aggre-

gation process because objective information or historical data are often unavailable or costly 

(Vose 2008).  

We borrow the term pragmatic distributions from Rees (2015) for distributions that approxi-

mate real-life processes and distributions while being straightforward to communicate and pa-

rameterize. Per the accuracy-complexity trade-off, practitioners apply “pragmatic or easy to 

communicate” distributions (Charnes; 2012; Rees, 2015; Vose 2008). Pragmatic approaches 

include uniform, triangular or PERT distributions. PERT10 is a distribution intended to raise the 

realism of triangular distributions if limited knowledge about the distribution is available.  

Through the prevalent cognitive biases some parameters and distributions may be more prone 

to biases than others. Vose (2008) discusses some of the challenges of extracting expert input 

with respect to the distribution used. Some non-parametric distributions such as the triangular 

or uniform distribution are straight-forwardly captured though few intuitive parameters. In this 

context, non-parametric distributions are understood as distributions without an underlying 

probability model (Vose 2008). In other words, non-parametric distributions do not make any 

assumptions about the DGP and can therefore be defined with great flexibility. Furthermore, 

many commonly used parametric distributions do not have upper and / or lower bounds, 

 
10 This distribution stems from the Program Evaluation and Review Technique approach where distributions of project 

lengths had to be estimated without prior experience. The estimation of a PERT distribution requires the minimum, 

mode, maximum and a shape parameter that determines the peakedness, and thereby the curvature, of the distribution. 
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whereas boundedness is more common in non-parametric distributions (Vose, 2008). Among 

the most flexible distributions is the “relative” or “custom” (Charnes, 2012) distribution con-

sisting of an array {x} of values and an array {p} of the respective probabilities with full flexi-

bility. Vose (2008) thus advocates the use of non-parametric distributions when eliciting distri-

butions from experts as they may lack familiarity with abstract parameters of existing distribu-

tions. This includes drawing distributions or specifying their density across their range in small 

intervals. Sampling from this distribution can be achieved in common modelling software en-

vironments (Charnes, 2012) although no general closed-form solutions exists for its descriptive 

statistics.  

While these methods may be common in elicitation of expert opinion, the extracted information 

is then typically transformed into a parametric distribution (Gigerenzer et al., 2003; expert in-

terviews, 2016). Vose argues to leave this step out and use a non-parametric distribution di-

rectly. Yet, combining multiple non-parametric estimates is not directly addressed in Vose 

(2008).  

In summary, the practitioner publications are again well-aligned with the academic literature. 

Significant attention is directed toward the intricacies of eliciting subjective probabilities. 

Theory driven methods 

Rees (2015) posits that theory-based methods are the most accurate way to derive input param-

eters that is based on knowledge of the DGP. Such models must be individually derived for 

each process (Rees, 2009) thus requiring extensive customization. Gleißner et al. (2014) de-

scribe a scenario of “complete information” of the modeled process as the ideal basis for pa-

rameter derivation. This can be likened to a theoretical understanding of a process that results 

in complete knowledge of the modeled parameters. This scenario is discussed as a textbook 

case without in-depth discussion of how it could occur in realistic settings. 
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In summary, we again find analogous viewpoints as both practitioners and academics view 

theory driven methods favorably if they can be applied.  

Aggregation Methods 

Vose (2008) discusses Bayesian methods that combine prior information with new data for 

simulation input modelling. Here, the prior can have various sources like empirical data, expert 

estimates or theory and the new information takes the form of observations of the distribution 

or process to be modelled.  

Crystal Ball advises on using historical data to select distributions or if not available to “use 

judgment based on experience” to gather all knowledge accessible about a distribution (Oracle, 

2013).  

In summary, Aggregation Methods are not explored in great depth as a simulation input mod-

elling method. This is also reflected in the low rank of preference expressed in the following 

hierarchical discussion of simulation input modelling methods. 

2.3.4 Hierarchy of input modelling methods 

We discussed which type of simulations are used in CF&A and which Risk Factors to be mod-

elled. When faced with broad modelling challenges the question arises which input modelling 

technique is adequate under which circumstances ideally with an implied hierarchy ranking 

input source per modelling situation.  

Rees (2015) discusses a framework that follows a set of considerations made by simulation 

modelers. This framework provides some degree or hierarchy for simulation input modelling 

methods. Theory driven methods are preferred, followed by data driven methods and lastly 

pragmatic approaches where no data or theoretical foundations are available. While this guid-

ance is valuable to simulation modelers, it also remains vague and does not explicitly consider 

varying modelling challenges such as changes in the DGP.  
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Another candidate is provided by Gleißner et al. (2014), who break down the options for model 

parameterization available to simulation modelers depending on which kind and quality of em-

pirical information or data is available. This overview cascades down from a situation of close 

to perfect availability of appropriate data to a situation where not even experts can make rea-

sonably accurate estimates. Implicitly this reflects a preference for parameters based on empir-

ical data. The next chapter will show that this preference is not common to all experts (interview 

transcripts, 2016). Damodaran (2012) expresses preference for data sources depending on the 

variable to be modelled, though this is based solely on empirical data and does not constitute a 

full hierarchy of sources. Charnes (2012) supports the view that expert input is preferable to 

historic data if parameters can be expected to change over time. Based on this brief review we 

argue that among the methods used there is a lack of a generally agreed hierarchy under dy-

namic modelling conditions.  

We condense the hierarchical logic discussed here in a simple decision tree. Decision trees are 

a useful method to structure decisions along a chain of multiple points (Safavian & Landgrebe, 

1990). Hierarchical classifiers are decision trees that support multilayered non-linear decisions 

(Magee, 1964) and is ideally suited here. The decision tree is constructed per the most relevant 

sources used for input modelling. Other methods for decision trees attempt to “minimize un-

certainty from each level to the next level” (Safavian et al., 1990) or, put differently, the deci-

sion nodes with the highest informational entropy form the root of the decision tree. We follow 

the order of preference as we do not have quantitative data to calculate the information gain per 

decision node in each step. In the decision tree, we provide the hierarchical order of simulation 

input modelling methods based on circumstances as shortly described in the grey shaded boxes. 

To the right, we place the recommended input modelling method or group of methods and ref-

erences.  
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The resulting decision tree below here is noteworthy as it underscores the solid level of align-

ment between academic and practitioner community. Charnes (2012) recommendation to har-

ness expert knowledge if DGPs are unstable is not recommended in most other publications, 

though the limitation of relying on data is mentioned elsewhere (e.g. Rees 2015).        

Figure 8 - Decision tree of parameterization methods depending on data availability; notes: theoretical foundations include scenarios 

of complete information, see Gleißner et al. (2014) 

 

Within several nodes more detailed modelling specifications arise. Within node “Derive dis-

tribution from data” a variety of methods exists as reviewed above (e.g. Kelton et al., 2010); 

depending on data availability. Further, within node “Elicit Expert opinion and derive distri-

bution” we suggest the methods discussed above from Vose (2008) and Cooke (1991). From a 

viewpoint of information theory (Winkler, 1981), it is noteworthy that aggregation methods 

are not recommended widely as situations with non-perfect data are common (e.g. Gleißner, 

2014). This could lead to situations where it is desirable to harness all available information 
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into a combined parameter estimate with a theoretically sound weighting. This is explored in 

Cooke (1991) for expert opinions, though not other sources. Finally, this decision tree puts 

forth, that if no adequate input modelling source is present, a risk factor cannot be simulated. 

However, in practice one can work with what we call here an “expert of last resort” that can 

provide however ad-hoc risk estimates to preclude a risk from being considered at all. Yet, 

this ad-hoc decision tree does not provide an answer to all modelling challenges as this re-

quires more detailed modelling scenarios as well as judgment from simulation modelers.  

2.3.5 Distributions and parameters 

Input distributions for simulations can mathematically be described via their probability density 

functions (PDF) and its parameters (McLeish, 2011). We differentiate between two factors, that 

is firstly the family the distribution belongs to and secondly the parameters that fully define the 

specific shape of the distribution. A further treatment is provided in the appendix.  

Analogously to the previous representation of most frequently modelled applications and risk 

factors in simulation analysis we show the most frequently mentioned distributions in table 911. 

    Charnes 

(2012) 

Rees  

(2015) 

Vose  

(2008) 

Solver  

(2010) 

1 Standard normal distribution x x x x 
2 Log normal distribution x x x x 
3 Beta Distribution x x x x 
4 Weibull x x x x 
5 Triangular (symmetric & skewed) x x x x 
6 Uniform continuous x x x x 
7 Uniform discrete x x x x 
8 Exponential x x x x 
9 Poisson distribution x x x   

10 PERT x x x   

11 
Mixture distribution (standard normal with 
Excess Skewness or Kurtosis) 

x x x   

12 Bernoulli x x x   
13 Binomial x x x   
14 Gamma / Chi Square x x x   
15 Pareto x x x   

 
11 We exclude Anderson (2004) from the depiction of this analysis as this publication is not focused on the choice of stochas-

tic distribution and thus is not insightful for this analysis 
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16 Logistic x x x   
17 Log-Logistic x x x   
18 Students-T x x x   
19 Maximum extreme x x x   
20 Minimum extreme x x x   
21 Negative binomial x x x   
22 Geometric x x x   
23 beta - PERT x   x   
24 Hypergeometric (incl. Inverse)   x x   

Table 9 - Most frequently used distributions per leading sources 

Table 9 highlights the conformity regarding the set of statistical distributions that find applica-

tion in the practitioner literature. As part of the expert interviews we focus on whether practi-

tioners likewise support the use of this number of statistical distributions.  

2.3.5 d) Correlation  

Unlike univariate simulation models, multivariate models require an estimate for the depend-

ence or correlation between the input parameters (e.g. Damodaran, 2012). Brealey and Myers 

(2012) point out that “specifying the interdependencies is the hardest and most important part 

of a simulation” and that simulations would rarely be necessary if all input factors were unre-

lated. Simulations are most powerful when multiple dependent stochastic variables are mod-

elled as otherwise analytic methods could often be used. Higher level dependence in multivar-

iate settings can be captured through Copulae (Rüschendorf, 2013). Copulae allow “more ex-

plicit control of the way in which joint percentile samples of distributions are to be drawn” 

(Rees, 2015) than correlation coefficients if comovement between variates is not constant 

across the range of their variance. A common empirical example is that correlation between 

stocks has been shown to be stronger in market turmoil (Chiang et al., 2007; Rees, 2015).  

Generally, a sampling dependence like correlation or copulae appear to be the most recom-

mended method for capturing comovement of variables. Other approaches like a structural 

model that implicitly assume a causal and / or directional dependence structure are not recom-

mended in the sources surveyed.  
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Kuritzkes et al. (2003) show that correlation parameters between risk factors are in many cases 

based on estimates of other organizations for practical reasons. This method can of course also 

be extended toward other parameters and constitutes a viable data-driven alternative if own data 

is not available or of insufficient quality. This reveals preference for own data despite chal-

lenges of this approach such as small sample bias that are discussed in the actuarial literature 

(e.g. Longley-Cook, 1962).  

2.4: Discussion and conclusion  

In this chapter, we conducted a structured literature review of the academic and practitioner 

literature on simulation input modelling in general and with a focus on CF&A. The objective 

was a consolidated understanding of the state-of-the-art consensus view of how simulation 

models in CF&A shall be parameterized.  

We find that the most central applications of simulation in CF&A are core analyses like profit-

ability or basic financial statements. Risk assessment is advised to be conducted through differ-

ent frameworks and methods that remain vague when it comes to defining specific risk inclu-

sion cut-off points. We conclude that both academic and practitioner literature recommend con-

ducting risk assessment along a categorization scheme to guide thinking on potential risks. Due 

to the wide array of potential risks organizations may face, both literature fields abstain from 

determining definitive rankings of risk factors. Furthermore, we argue that a major limitation 

of the frameworks in both the academic as well as practitioner literature is the lack of well-

defined cut-off points for inclusion of risk factors into a formal simulation model. 

We observe that simulation input modelling methods can be organized by their data source 

including methods based on data, experts, theory or aggregation of these sources. A decision 

tree shows that theory-driven methods are preferred, though hard to implement. In order of 
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preference this is followed by data driven methods. Expert-based methods are usually only rec-

ommended if other methods are unavailable. This ranking is also reflected in the fact that a 

considerable part of the literature and the software providers (Barton et al., 2002) assume data-

driven methods as the base case of model parameterizations. A further notable finding is that 

aggregation methods, in which different information sources are combined do not receive in-

depth discussions in the simulation input modelling literature.  

This review relies largely on analyzing previous research and is therefore necessarily limited 

by its sample. Given the growth in scientific output (Bornmann et al., 2015) there is a risk of 

missing out on relevant research, particularly if it has not yet achieved broad recognition. No-

tably, this review is subject to bias as only published literature was considered. This limitation 

was addressed by taking a broad angle to the sample selection, as described above, thereby 

minimizing the risk of inadvertently excluding research that would merit inclusion.  

To develop this review further, we complement it with in-depth semi-structured interviews 

with leading experts in simulation input modelling in the next chapter. 

Chapter 3: Expert interviews on simulation input modelling in corporate finance 

and accounting 

3.1: Introduction 

Leading thinking on simulation input modelling is dynamic and context dependent. To build 

onto the comprehensive structured review of the academic and practitioner literature, we ag-

gregate and contrast the viewpoints on simulation input modelling in corporate finance and 

accounting of leading practicing simulation experts through a series of in-depth semi-structured 

interviews. We present a comprehensive review of what experts consider the state-of-art in 

simulation input modelling. It has been argued that there is a disconnect between academia and 

practitioners, commonly labelled the theory-practice gap or a disconnect between rigour and 
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relevance (Kieser & Leiner, 2009). Contrasting the literature and leading practicing experts may 

illuminate in how far such a disconnect exists in simulation input modelling. This chapter fol-

lows a parallel structure as the previous one. This research is positive whilst the recommenda-

tions from experts are normative and yields a unique perspective on challenges in simulation 

input modelling.  

We find that modelling dependence via correlation and related methods tends to be considered 

only if direct modelling of causal dependence is infeasible. We find strong preference for the-

oretically grounded models over empirical data consistent with the structured literature review. 

Moreover, there is widespread awareness of expert biases causing sophisticated yet pragmatic 

de-biasing strategies to be applied. Further we observe pragmatism toward the number of sta-

tistical distributions required, a relatively small number of distributions offers sufficient realism 

for most purposes. Contrary to the findings of the structured literature review, there appears to 

be no clear consensus regarding preference of data sources to derive input parameters as differ-

ent interviewees prefer theory, data and expert opinion. In the same vein, we recognize that 

Aggregation Methods are supported amongst the experts in our sample, in contrast to the liter-

ature reviewed in chapter 2. 

3.2: Method  

Qualitative research methods are adept to capture the complexity of processes such as simula-

tion input modelling choices (Creswell, 2013) as they offer flexibility to gain understanding 

through discourse. We conduct a series of semi-structured interviews with subject matter ex-

perts (SMEs) to formalize knowledge from experts following an analogous structure as a tradi-

tional literature review. The line of questioning for the interviews is based on the preceding 

chapter. Subject matter experts add a new angle to this research through possession or access 
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to “contextual knowledge” (Meuser & Nagel, 2009) which is used complimentarily to the liter-

ature review (Bogner & Merz, 2009).  

We chose this method for its unconventional angle and flexibility. Through this approach, we 

can address specific research questions while leaving room for experts to address further di-

mensions (Kvale 1996). We take Bogner & Menz (2009) as guidance for our interviews as we 

seek to delve deeply into topics as conversations unfold beyond predetermined questions (DiC-

icco‐Bloom & Crabtree, 2006; Creswell, 2013). Questionnaire research ensures a uniform de-

sign of the same questions to achieve independent, comparable answers and eliminate the in-

terviewer as a source of error (Groves, 1989). Semi-structured interviews do not necessarily 

follow this structure (Galletta, 2013). We aggregate expert knowledge with learning on behalf 

of the interviewer through the interviews. While this would be problematic from a standpoint 

of comparability of responses it can be beneficial as in Grounded Theory (Burkard & Knox, 

2014) that incorporates learning on behalf of the interviewer into its research design. This is 

also referred to as emergent design where the data collection process may evolve throughout 

the study in “response to what is learned in the earlier parts of the study” (Morgan, 2013; Cre-

swell, 2013). We take a case-based view of our subject rather than deducing theory and testing 

its predictive ability subsequently as in Grounded Theory, building theory inductively based on 

data as opposed to building theory deductively (see Glaser & Strauss, 1967). We deviate from 

Grounded Theory as it is designed for slightly different research objectives, namely the objec-

tive to deduce a “general, abstract theory” (Creswell, 2013) from the views of participants 

whereas our objective is to access their expertise on a set of research questions to construct the 

status quo of views held by experts. To this end, we harness Grounded Theory’s general frame-

work without following it in detail.  
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3.2.1 Interview design 

To strike the balance between achieving an unconstrained interview situation and the downside 

of obtaining incomparable responses we developed a set of questions for guidance derived from 

Chapter 2. Per Creswell (2013) the distinction of qualitative and quantitative research is not 

binary, we thus quantify findings where possible for readability and transparency. Additionally, 

the interview and its general structure were tested and hence calibrated through a test interview.  

Per Wrona & Gunnesch (2016) there are two schools of thought on using pre-existing theoret-

ical knowledge throughout qualitative research studies, particularly case studies. As explained, 

the research design of this chapter builds onto a previous theoretical foundation which per 

Wrona et al. is common in the “analytical-empirical” tradition of qualitative research approach 

that is concerned with testing hypotheses. In this chapter, we take a positive view, which is 

more closely associated with a view unconstrained by previous knowledge. However, we fol-

low Wrona et al. in arguing that previous knowledge can further the ability to interpret new data 

whilst maintaining an open approach.  

3.2.2 Sample selection  

We attempt to capture a broad perspective of leading simulation modelers to interview from 

various functional roles, industries and backgrounds (Mays & Pope, 1995) including simulation 

consultants, risk managers, corporate finance and strategy consultants.  

Firstly, experts were selected based on publication of books and articles with a practitioner 

focus and practical experience. Secondly, we use a snowball sampling technique (Marshall, 

1996) where we ask interviewees for references of other potential interviewees thereby growing 

our sample to saturation. As we only included recommended expert interviewees where the 

expert status could be confirmed through other sources, we label the method “selective snow-
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balling”. This sampling method is not without risks if relied upon as the only source of inter-

viewees as it could lead to a non-representative group of closely networked experts that does 

not represent an unbiased view. Yet, only a quarter of the sample was built through selective 

snowballing, thus reducing this risk. Although random sampling of interviewees has attractive 

properties it was not applied here. We are interested in the opinions of leading practitioners, not 

random ones per Mays et al. (1995) for situations where the sampling shall “identify specific 

groups of people who possess characteristic” traits. In addition, leading experts available for 

interviews are scarce.  

Further we include practitioners who publish regularly on applied simulation in CF&A. It is 

common for practitioners in the German speaking countries to publish in dedicated practi-

tioner journals (Grisar & Meyer, 2015), thus the prevalence of publishing practitioners may be 

owed to the number of German-speakers in the sample. Interviewee’s academic background is 

important ensuring strong theory background of simulation input modelling, particularly on 

PhD-level, ensures understanding of the academic perspective. Within our sample, 58% of in-

terviewees held a PhD or equivalent, at least 50% published articles or books on simulation 

modelling while 75% worked as advisors or consultant with the remainder having a back-

ground in risk management. However, there are minor limitations. While the sample does in-

clude various nationalities, German-speaking researchers are overrepresented in the sample. 

Further, due to the scarcity of experts, it cannot be ruled out that those declining interviews 

were the ones most in demand. 

3.2.3 Sample saturation 

We try to saturate our sample (Charmaz, 2006) and build a sample complete enough that the 

marginal interviewee provides only little additional informational value. Further there is a trade-

off that limits sample size growth as adding less well-selected interviewees dilutes. Our research 
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design combines elements of case study research and grounded theory. Creswell (2013) aims 

for as many as 15-20 interviews for grounded theory though acknowledging that this is highly 

dependent on the research design and access to experts. We obtained 13 full length interviews, 

putting us slightly below the range indicated by Creswell. However, we show that we obtained 

saturation nonetheless through a standard approach. After the first nine interviews, we analyzed 

the emerging themes. Further we conducted four more in-depth interviews and examined the 

additional insights generated. As the themes expressed were mirroring the themes uncovered in 

the analysis we considered the sample as saturated.  

3.2.4 Avoiding bias 

The risk of subjective assessments in qualitative interviews requires a transparent research 

method (Flick, von Kardoff & Steinke, 2004). Interpretation of qualitative data and especially 

semi-structured interviews is necessarily “colored by the researcher’s experiences and biases” 

(Given, 2008). Transparency though can achieve inter-subjectivity, i.e. shared understanding of 

how the researcher arrived at the presented conclusions and interpretations. 

The open format of semi-structured interviews creates a risk for interviewer bias to be avoided 

or minimized (Mays et al., 1995). We reduce interviewer bias via non-leading questions, it is 

crucial to strike the balance between guiding the interview toward its objective whilst avoiding 

leading questions that may trigger specific responses. One challenge in semi-structured inter-

views is to obtain focused data. We first elicit responses where we do not provide any pre-

defined answers. In a second step, we provide these through follow-up questions.  

Various steps were taken to avoid interviewee bias. Gigerenzer & Fiedler (2003) suggested that 

experts generally perform best when the interview is “ecologically consistent” with the envi-

ronment they are used to, both physical as well as the conversation and questioning style. We 

ensure ecological consistency by creating interview situations close to the daily experience of 
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the practitioners. When interviewing managers Trinczek (2009) advocates a conversational or 

even informal (Connaway & Powell, 2010). Furthermore, reactions to interviewee statements 

were avoided to reduce social desirability bias. Moreover, the freedom of not having to act on 

the statements and views expressed allows the experts to articulate their views freely. We pro-

vide anonymity and confidentiality to interviewees. In total the transcribed Interviews cover 

over 35,000 words in addition to the non-transcribed interviews where interviewees objected to 

the recordings (transcripts available on request). When discussing relative prevalence of meth-

ods and concepts propagated in the interviews, we distinguish whether experts support a con-

cept or apply it.  

3.2.5 Data analysis and coding of themes 

Qualitative interviews contain information that needs to be aggregated to be accessible (Cre-

swell, 2013). To this end qualitative analysis to categorizes and codifies information. These 

categories and codes represent the core recurring themes. Methodically, such codes can either 

be predetermined ahead of the interview analysis phase based on expectations or prior 

knowledge of prevailing codes on behalf of the researcher or the codes emerge through the 

research process directly. We follow the latter for a broader set of codes (Creswell, 2013). By 

having already reviewed the literature one cannot avoid having unconsciously formed approx-

imate themes and codes mentally. Yet this is not problematic as it is common for codes to 

develop over time to reach their final state upon the research’s completion (Creswell, 2013). 

The coding of themes is derived from the transcribed interviews first and subsequently applied 

to them (Schmidt, 2004). The coding was aided by the QCAmap software that minimizes bias, 

enhances transparency and reproducibility of the research method by making the information 

accessible for readers interested in the details of the coding process. The choice for this software 



98 

 

was motivated by the strong theoretical footing of the method that is based on the work of 

Mayring (2014).  

While most interviewees consented to having, their interviewees recorded there were excep-

tions where the interview touched upon topics of their job responsibilities they deemed sensi-

tive, e.g. corporate risk managers can made be liable for statements made. To prevent worries 

about detrimental effects of interview recordings from affecting their responses we still con-

ducted the interviews and took notes in writing. Although this constitutes a limitation it still 

represents additional informational value and thus included in the research design. Notably 

there were risk managers who agreed to recordings and their responses did not deviate system-

atically from the non-recorded interviews.  

Yet anonymity is required to ensure unbiased responses: the information’s retrievability must 

be balanced with interviewee confidentiality (APA, 1994). We follow the APA suggestion that 

retrievability can only be provided as far as the interviewee’s confidentiality is preserved.  

3.3: Results 

3.3.1 Applications for simulation in CF&A  

Semi-structured Interviews were conducted to access expert opinions on where and why simu-

lation should be applied in CF&A. We present the key themes in condensed form with refer-

ences to the literature review. We present the themes in declining order of the support received.  

3.3.1 a) Most central applications 

Assertion of the most central or important application of simulation in CF&A will be conten-

tious or inspire debate. Nevertheless, we aim to provide a perspective on this question. This list 

of applications is not to be understood as definitive proof yet rather an introduction to the views 

the experts take. Later discussions in this chapter on other topics are to be read with these ap-
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plications in mind. Further, these applications are not mutually exclusive and occur simultane-

ously. Further, most expert stressed that simulations’ strength lies in its flexibility underscoring 

the difficulty of ranking the importance of applications. The ensuing discussions are to be un-

derstood in the context of these applications:  

Table 10 - Prevalence of themes and number of mentions 

Theme Number of mentions 

Income statement 9 
Balance sheet 8 
Cash-Flow statement 8 
Strategic decisions / investments / M&A 6 
Profitability 4 
Real options analysis 3 
Value / Earnings at risk 2 
Credit, Portfolio, insurance and cost modelling 1 (each) 

 

3.3.1 b) Drivers of simulation analysis 

Although treatments of the drivers of simulation analysis have been discussed for example by 

Vose (2008) or Rees (2015), a deeper understanding of what should drive decision makers to 

use simulation analysis sharpens understanding of its applications. Hence, we seek to under-

stand which attributes lend themselves to simulation modelling. 

Table 11 - Prevalence of themes and number of mentions 

Theme Number of mentions 

Uncertainty / risk 13 
Scale / size 6 
Strategic Importance / financial stability 6 
Managerial flexibility 3 
Regulatory 2 
Complexity 2 
Constrained Budgets, cognitive limitations, lack of experience, authorization to 
mitigate risk, reflect risk tolerance, requirement of decision process 

1 (each) 

• Uncertainty: unanimously experts underscored the importance of uncertainty affirm-

ing that high visibility of risk in company history supports awareness thereby driving 

simulation use. Some simulation modelers in practice distinguish common risks such 

as price volatility and event risks, the latter following compound distributions12  

 
12 This also includes modelling where the is a primary binary risk, such as the risk of a policy change and a secondary contin-

uous stochastic variable describing the impact of such a change if it occurs 
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• Scale / size: as expected the relative scale of a decision or project should drive applica-

tion of simulation analysis  

• Strategic importance / Financial stability: including the need to quantify the risk of 

bankruptcy which can drive the regulatory need for simulation (Hüffer & Koch, 1993) 

Several experts argued not in favor of a static framework or decision guideline on how 

to decide if decisions should be supported with simulation analysis. Rather they sug-

gested the straightforward notion of applying simulation for projects of major strategic 

importance without specifying how to assess strategic importance 

• Managerial flexibility: the potential for the explicit valuation of flexibility in future 

decisions shall drive the use of simulation  

• Regulatory requirements: in some jurisdictions and industries the use of simulation 

analysis can be driven by regulatory bodies  

• Complexity: closely related to the level of uncertainty 

3.3.1 c) Benefits of simulation modelling 

We discuss the benefits of simulation modelling in CF&A.  

Theme Number of mentions 

Calculation of ranges 13 
Improved strategic thinking 9 
Accurate calculation of avg. Outcomes 7 
Risk aggregation  4 
Non-linearities / options 4 
Low probability risks, asymmetries, customizability, risk identifi-
cation  

2 (each) 

Ease of implementation, complete modelling of capital markets 1 (each) 
Table 12 - Prevalence of themes and number of mentions 

• Calculation of ranges: as expected universal support was expressed for beneficial ef-

fect of probabilistic output ranges instead of point estimates of decision variables.  

• Improved strategic Thinking: it was argued that decision makers profit from the pro-

cess of building simulation models. Hillier, Ross, Westerfield, Jaffe & Jordan (2010) 
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support this claim. Although no substitute to quantitative analysis several experts advo-

cated conceptual use of simulation to improve strategic thinking. This view treats sim-

ulation as an enhanced form of scenario analysis that can advance strategic thinking 

through the analysis of risk factors and company strategy whereby decision-makers can 

be led to consider future scenarios (e.g. Gerber, Arms, Wiecher & Danner, 2014).  

• Accurate estimation of mean / average outcomes: it was stressed how simulation 

analysis improves estimation of mean decision variables; static calculations using the 

most likely input parameters do not yield the most likely outcome (Rees, 2015).  

• Risk aggregation / dependencies: experts argued in line with the academic literature 

(Temnov & Warnung, 2008) that simulation is a powerful tool to aggregate interrelated 

risks with complex co-dependence structures  

• Non-linearities and options: non-linearities and options can be modelled accurately 

through simulation. Moreover, simulation is argued to be more flexible in terms of dis-

tributional assumptions than analytic approaches 

• Low probability risks: explicit calculation of low probability risks and their effects on 

average outcomes benefit from explicit modelling. Per interviewees these risks are often 

not included in static calculations. For risk factors with a detrimental impact this leads 

to an overestimation of profitability or other KPIs – and vice versa for upside risks  

• Asymmetries: simulations can capture asymmetric probability distributions  

• Customizability: analogously the flexibility of simulation methods that allows for de-

tailed customization was praised 

• Risk identification: simulation methods achieve superior risk identification through a 

quantification of impact on decision variables  
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3.3.1 d) Barriers to usage 

Better understanding of barriers to more widespread usage of simulation is not the main objec-

tive of this research. However, the heterogeneity of expert opinion is noteworthy, thus this brief 

discussion. As laid out technical barriers to such applications have come down markedly in 

recent years through the widespread availability of computing power and tailored software. 

However, a lack of technical knowledge was still an oft-cited barrier. Yet, equally vocally the 

role of organizational barriers was highlighted.  

3.3.1 e) Integrated financial management 

Nine of the surveyed experts supported a holistic approach to simulation modelling analogous 

to Enterprise Risk Management (ERM) where the risk management process is conducted en-

terprise wide. ERM “strengthens a company’s ability to carry out its strategic plan” (Nocco & 

Stulz, 2006). The literature on risk management reached a consensus on this over more com-

partmentalized risk management that may not account for interrelated risks (Shapiro & Titman, 

1986; Miller 1992) or cross-entity effects. Integrated financial management, as understood by 

the experts interviewed, is the extension of this approach towards all major financial processes 

and analyses. Smith (1964) was early to recognize the benefits of financial planning and risk 

management with the wider range of financing analyses and capital budgeting decisions. Trige-

ogis (1991) points out that “corporate strategic planning, capital budgeting, incentive schemes, 

and control mechanisms should form an integrated system” as seemingly unrelated projects can 

be linked via channels including taxation, bankruptcy risk and financing conditions (Grob, 

1989). Translating this concept into simulation modelling includes building fully integrated fi-

nancial simulation models covering all financial statements and investment decisions that are 

capable of simulating risk profiles with flexible input parameters for all relevant risk factors 

and interdependent effects.  
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3.3.2 Risk assessment and prioritization  

3.3.2 a) Risk assessment based on simulation 

Any simulation model that models risk requires a previous assessment of the relevant risks and 

cut-off for risk inclusion to decide which risk factors to simulate. It is not generally clear how 

to assess and prioritize the major risks an entity faces before accurately modelling these risks 

as their interrelations and impact on decision variables are not known a priori. This theme came 

up repeatedly. While pragmatic approaches that build on experience and risk assessment work-

shops prevail, some apply simulation methods in this step already. A suggested best practice is 

to simulate a wide and comprehensive array of risks to build understanding of which factors are 

the most impactful for a company’s risk tolerance. Thus, the risk assessment itself is based on 

simulation analysis. While SMEs agreed with the merit of this approach they highlighted con-

straints with its implementation mirroring barriers that hold back simulation generally.  

3.3.2 b) Big data and machine learning approaches 

Through digitalization, many companies have access higher quality data (Manyika et al. 2011) 

that big data and machine learning help to put to productive use (McAfee, Brynjolfsson, Dav-

enport, Patil & Barton, 2012). Several experts speculated about potential uses of techniques that 

harness access to company-specific data for input modelling presenting interesting research 

avenues.  

3.3.3 Parameterization of simulations in CF&A 

3.3.3 a) Sampling vs. parameter dependence 

Co-dependence between risk factors is cited as a major reason to run simulation models and is 

covered in all reviewed textbooks (e.g. Rees, 2015; Vose, 2008; Lam, 2014; Charnes, 2012) as 

we saw in the previous chapter. Correlation coefficients are commonly discussed to account for 

co-movement and dependence between stochastic risk factors by academics and practitioners. 
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Another cross check with the discipline of operations research reveals a similar focus on corre-

lation and related methods (Schmeiser, 1999). However, despite their favorable mathematical 

properties they present challenges and shortcomings.  

• Many different risks lead to large correlation matrices, complex to derive and handle  

• Correlation coefficients can tend to be less straightforwardly communicated to non-

technical management than direct structural dependence 

• Correlation is directionless and may not capture a relationship accurately if in fact one 

variable has a causal effect on another  

• Directional models allow for more flexible treatment of e.g. non-constant co-movement 

across the full variable’s range; e.g. for conditional events like insurance, contracts  

This finding stands out as it is the sole theme that was supported through all expert interviews 

and represents a stark contrast to the academic literature. Consequently, the SMEs argued for 

the use of directly modeled dependence structures. This is supported in the literature where 

Rees (2015) differentiates between sampling dependence and parameter dependence and argues 

that there are situations were pure sampling dependence is inferior to parameter dependence for 

reasons analogous to the ones above. Parameter dependence describes situations where “pa-

rameters of a distribution are determined from the samples of other distributions” and thus no-

tably occur directionally. Other methods included: 

• Some experts suggest building a correlation matrix of underlying risk drivers that affect 

individual risk factors. The intuition behind this approach is that there is typically only 

a small number of underlying risk drivers that in turn reflect a much larger number of 

risk factors (e.g. a risk driver is GDP growth that affects many risk factors such as de-

mand, input costs, labor costs etc.). To capture dependence in the risk factors it is thus 
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sufficient to capture the sampling dependence between the underlying risk drivers and 

define a causal dependence structure of these risk drivers on individual risk factors  

• A further modelling choice builds causal models in the structural form following the 

Capital Asset Pricing Model, or CAPM, a regression model: a set of underlying risk 

drivers is identified, and historical beta-coefficients are calculated.  

Several factors contribute to the discrepancy between the acceptance of correlation methods in 

academic texts and their low acceptance among practitioners. Correlations have mathematical 

expressions that can be manipulated in larger models flexibly. Correlations can be measured 

empirically if data is available, reducing the need to assume causal dependence.  

3.3.3 b) Preference for input sources 

It appears possible to derive an order of preference where theory driven methods are preferred 

where possible then followed by data-driven and expert methods. The SMEs in our sample 

appear to agree on the preference for theory, although have dispersed views on the preference 

between data and experts.  

Perhaps contrary to expectations, seven SMEs recommended theoretically derived distribu-

tions. Contrary to arguments of infeasibility (Barton et al. 2002; Kelton & Law, 2000) several 

SMEs found ways in practice to implement. Examples were simulations of stock price behavior, 

that follow a statistically well-established process, or physical regularities such as the output of 

a power plant. Theory driven methods offer advantages over empirically derived distributions 

that mirror the advantages of using a fitted theoretical distribution over historical data: 

• Robustness with respect to empirical data irregularities, particularly likely if the data set 

is small or there is reason to believe that quality may be hampered 

• Available in the absence of data 

• More reliable in the extremes of the distribution (see Law et al. 2000) 
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Yet it is striking that some experts have a strong preference for data and almost always prefer 

it to experts’ judgment, while others prefer experts’ judgments over historical data categorically 

across parameter classes. In other words, some experts always prefer to work with data while 

others prefer to always work with experts. In our sample four experts strongly leaned toward 

data, two leaned strongly toward expert judgments with the rest expressing more nuanced 

views. Proponents of expert judgment raise several challenges to the use of historical data, ar-

guing that one can hardly be sure whether historical data can in fact be used due to quality and 

availability problems. Further, data generating processes can change and this may go unde-

tected. However, proponents of the use of historical data point to bias in human judgment par-

ticularly with regards to probabilities despite the widespread use of de-biasing strategies.  

In conclusion, a preference for theory driven methods is shared if only narrowly applicable, but 

SMEs differ from the reviewed literature as they do not exhibit clear preference for data or 

expert-driven methods for simulation input modelling.  

3.3.3 c) Expert bias 

Throughout all interviews the complex problem of expert bias was stressed. It is well-estab-

lished in the literature that experts tend to err systematically when dealing with probabilities, 

risk, volatility and related concepts. This understanding was well-reflected as all, but one expert 

described their approach to handling expert bias. Notably the only interviewee who did not raise 

the issue did not deny the existence of bias but rather expounded on the difficulty of de-biasing. 

Typical biases include overconfidence, anchoring, status quo bias and various more. Per our 

expert interviews one frequent source for bias is that the type of thinking required is not com-

mon in the daily experience of many experts resulting in a lack of calibration. This may include 

creating an optimal response to prevent a detrimental outcome, that do not overlap with statis-

tical assessments of risk factors. Notable exceptions are experts who receive continuous timely 
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feedback on their predictions, a common example in the literature are weather forecasters who 

tend to be well-calibrated due to timely and regular feedback on their forecasts (Murphy & 

Winkler, 1977). Secondly a lack of formal training in statistics and possible sources of bias 

contributes to the risk of obtaining biased parameter and input estimates (Clemen & Lichten-

dahl, 2002). Notably this type of bias is not necessarily contradicting the expert status (see 

discussion in chapter 6). Despite a growing body of knowledge on de-biasing strategies this 

remains challenge as it is not possible to be certain that bias is eliminated entirely (Meyer, 

Grisar & Kuhnert, 2011). Various de-biasing strategies were used, sometimes in combination: 

• The most prevalent approach, applied by seven experts, was to derive inputs from de-

scriptions in the experts’ known terminology to achieve ecological consistency 

(Gigerenzer & Fiedler, 2003). Hereby SMEs do not have to engage in formalized sta-

tistics. This approach can be considered an ex-post de-biasing strategy as data is de-

biased after it is elicited (McClelland & Bolger, 1994) 

• A further ex-post strategy used by four of the experts was the aggregation of expert 

opinions to reduce perceived uncertainty, especially through multi-disciplinary teams. 

These aggregations are done ad-hoc without emphasis on which method to use to weight 

opinions. This can be likened to the Delphi method where a group of experts is presented 

with additional data and factors considered important by other experts (Dalkey & 

Helmer, 1963). Related methods are recommended in the literature (e.g. Liebsch, 2003).  

• Another approach, applied by four experts, was to graphically illustrate parameter esti-

mates and question experts’ model of thinking about their estimates. This approach re-

sults in non-parametric distributions and is described as in Vose (2008). It is known 

from the academic literature as an approach that “centers on improving the elicitation 

process and countering bias a priori” (McClelland et al., 1994). A well-established bias-
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reducing method from Winman, Hansson & Juslin (2004) does not ask expert to esti-

mate confidence intervals but rather presents intervals of potential outcomes repeatedly 

and asks experts to judge the confidence level with which an interval would capture the 

true value of a risk factor.  

• Further approaches included making the experts accountable on their estimates, hence 

an ex-ante de-biasing approach.  

Overall experts used sophisticated de-biasing strategies to counteract bias. It thus appears that 

the practitioner and academic community are well-aligned regarding the risk of bias. Finally, it 

is noteworthy how a large fraction of the experts interviewed used de-biasing strategies without 

being explicitly aware of the literature on the topic or even the term “de-biasing”.  

3.3.3 d) Aggregation Methods 

Experts in our sample advocated Aggregation methods of combining data sources more gener-

ally, albeit with differing levels of certainty. It is striking that Aggregation Methods enjoy wider 

support amongst the experts surveyed than in the literature review. This could be explained as 

SMEs may approach challenges more pragmatically.  

3.3.3 e) Enriching data with expert judgment 

Empirical data was in many cases identified as the starting point for model parameterization. 

However, empirical data is inherently backward looking and thus error-prone in dynamic envi-

ronments. This downside can be addressed through the combination of empirical data with ex-

ogenous inputs such as expert opinions, thereby constituting another aggregation method. 

Trends and structural breaks can be captured through the adjustment of distributional properties 

based on expectations as described above. However, practitioners pointed toward the challenge 

of how different inputs can adequately be combined or aggregated. Accurate methods shall 
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consider the uncertainty inherent to different parameter estimates, i.e. must also capture the risk 

of error on behalf of the experts.  

• A simulation and risk management consultant used this method on a commodity price 

process where an expert panel adjusted historical parameters  

• Another consultant argued that this is feasible though expressed less confidence in the 

method due to a higher level of trust in data 

• Two further widely published simulation consultants argued in favor of adjusting data 

based on expert opinion 

However, these methods remain ad-hoc as will be further discussed in chapter 4. 

3.3.3 f) Appending distributional tails 

Data is enriched in the extremes of the distribution through appending tails. The actual statisti-

cal distributions of extremely rare events can be difficult to approximate for a lack of robust 

empirical data. This challenge is addressed by consulting with subject matter experts and adding 

this information to the empirically observed data. As has been suggested in the academic liter-

ature (Lambert, Matalas, Ling, Haimes & Li, 1994; Kelton et al. 2010) experts’ model extreme 

events separately from the distribution of less extreme events by e.g. attaching a longer tail.  

3.3.3 g) Fundamental models 

While theory-driven methods are based on theoretical understanding of the data generating pro-

cess fundamental models take a pragmatic approach to approximate the observed behavior of a 

stochastic process according to experts interviewed. Such models can take different forms. One 

mode, used in the utility industry, models demand and supply of electricity to simulate electric-

ity prices. Models can be calibrated using past data to enable scenario analysis. Seven of the 

experts in our sample had worked with such models. Fundamental models constitute a com-

bined approach of historical data and theory. A major advantage of such models is the ability 
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to make out of sample forecasts to account for structural changes in the data generating process. 

Structural breaks in data generating processes have first been empirically analyzed by Chow 

(1960) and describe situations where data generating process are unstable over time and their 

parameters shift. Experts in our interviews agreed that fundamental models generate superior 

parameters if the context is rule driven and follows a forecastable pattern.  

3.3.3 h) Distributions used 

Statisticians have put forth many statistical distributions for use in simulations. There was 

strong consensus that sufficient accuracy can be achieved for most applications without the use 

of the full spectrum of distributions as improved modelling in detail would rarely lead to im-

proved decision making once an approximately fitting distribution is used. Some rely almost 

exclusively on (in some cases truncated) log-normal distributions: 

Distribution Prevalence 
Normal (incl. Truncated and log normal) 100% 
Weibull 60% 
PERT 40% 
Triangular 30% 
Compound distributions (various families), Poisson & Binomial 20% (each) 
Pareto, Exponential, Uniform, Beta, Exponential, Uniform & Beta 10% (each) 

Table 13 - prevalence of distribution families 

This result stands in contrast to the academic literature that emphasizes choice of distributions.  

3.4: Discussion and conclusion 

In summary, we find substantial areas of agreement as well as ongoing debate between the 

literature review in chapter 2 and the expert interviews. In accordance with the literature review, 

experts argued for theoretically-grounded input models, strong emphasis of addressing cogni-

tive biases consistently as well as using the same set of input sources and modelling concepts 

prevalent in academia. In contrast to the literature, experts argued against using correlation but 

rather structural dependence, argued for the use of only a handful of distributions and argued 
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for the use of aggregation methods. Finally, applied experts did not exhibit consistent prefer-

ences for data vs. expert-based input models.  

Our analysis paints a differentiated picture of how experts view the most important applications 

of simulation in CF&A. SMEs interviewed strive for customized pragmatic solutions whilst 

displaying discipline to use simulation only where considerable rewards can be reaped. They 

rather advocate flexible approaches to decide on the use of simulation analysis such as value 

tree analysis. Yet they advocated for integrated simulation modelling instead of a compart-

mentalized application. These two views may appear to be at odds, yet they argued in favor of 

a holistic deep analysis where resources allow. Per the experts interviewed the full benefits of 

simulation are reaped if applied in a fully integrated manner.  

Practitioners are both pragmatic and forward thinking. For pragmatic reasons risk assessment 

methods are recommended that have methodical weaknesses such as following experience-

based risk assessment and identification strategy or using heat maps for prioritization. Yet or-

ganizational constraints are oft-cited reasons for such methods beyond technical complexity. 

Practitioners may have a reputation for pragmatic and empirical solutions. This is not strictly 

reflected in the recommendations aggregated for the parameterization of simulation models in 

CF&A in our sample of SMEs. They favored non-pragmatic, theory-driven approaches like 

theoretically derived parameters, fundamental models and de-biasing strategies. Notably the 

treatment of interdependent risk factors goes beyond the academic consensus on correlation. 

Finally, SMEs argued in favor of using Aggregation Methods though without robust theoretical 

footing. 

Throughout the interviews there was a recurring theme attributing the perceived lack of simu-

lation analysis in practice to organizational constraints rather than technical ones. It was argued 

that it is rather a lack of acceptance than a technical capability constraint that holds back a more 
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widespread usage of simulation, Rees (2015, Chapter 5) devotes a full chapter toward organi-

zational challenges. Future research could explore this multi-causality in more detail. Further, 

the amount of data accessible to simulation modelers is likely to continue to increase (McAfee, 

Brynjolfsson, Davenport, Patil & Barton, 2012). Future research could explore the potential 

effects of this and related trends on simulation input modelling. A more speculative conjecture 

is that this will lead to changing management culture further embracing quantitative analysis 

thus furthering simulation’s acceptance. Machine learning algorithms could be used to simulate 

scenarios based on analysis of a company’s historic data without the necessity to formally de-

fine a structural model preventing model specification errors.  

A limitation of this research is the risk of researcher bias, referring to the bias introduced by the 

researcher that can be critical in qualitative research (Mays et al., 1995). Despite taking multiple 

steps to avoid bias qualitative research remains affected by the researcher’s background (Given, 

2008). Measures were taken to ensure a broad and balanced sample, yet the reliance on a select 

number of leading experts remains a limitation. 

Chapter 4: Bayesian estimation for simulation input modelling 

4.1: Introduction  

Precise and forward-looking simulation input modelling is pivotal to achieve accurate simula-

tion modelling results. As the preceding chapters underscored, simulation input modelling rep-

resents a rich and nuanced research strand within simulation modelling in corporate finance and 

accounting. We build onto this research by presenting an input modelling method that allows 

the aggregation of quantitative empirical data and quantified expert opinions via the process of 

Bayesian updating of prior distributions. Through this combination of input sources, the infor-

mational value of each input source is utilized through a formal method to reduce uncertainty 

about the unknown estimated input parameters. While various methods exist to parameterize 
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simulation models, many face limitations under realistic assumptions. Simulation modelers use 

empirical data for simulation model parameterization, yet this method faces limitations if the 

modeled process undergoes changes or when there are various viable sources of data on the 

modelled process. Furthermore, data quality may be imperfect thus needing to be enhanced to 

serve as simulation input. By using input from forward looking experts for model parameteri-

zation simulation modelers can attempt to overcome such limitations. The parameterization 

method presented here seeks to harness the advantages of both methods drawing on an exten-

sive body of research from academic sub-fields as diverse as actuarial sciences, reliability en-

gineering and signal processing. Through a comparison of simulation results based on different 

simulation input modelling methods like empirical data, expert input and a “naïve” or Bayesian 

aggregation we illustrate the effects of the suggested method. 

The motivation for this method rests on common challenges in simulation modelling where 

Bayesian simulation input modelling may help addressing these. Firstly, there are challenges 

posed by non-constant distribution parameters as various input modelling methods, implicitly 

or explicitly, assume that the parameters of the underlying data generating process stay constant 

through time. A range of methods (e.g. Kelton et al., 2000), rely on distributions based on his-

toric data. These methods have limitations (e.g. Bratley, Fox & Schrage, 1987) if this assump-

tion does not hold as evidenced by the literature on structural breaks (e.g. Chow, 1960). Har-

nessing expert opinion presents an opportunity to address this challenge through enriching data 

with expert judgment. Secondly, the aggregation and weighting of different inputs is not 

straightforward (Cooke, 1991). It is common among simulation modelers to be presented with 

imperfect data (e.g. Kelton et al., 2000) creating a need to use multiple data sources aggregated 

robustly. Expert judgments have a level of certainty or credibility that should affect the decision 

weight of their input in an aggregate estimate that must be reflected in any method aggregating 



114 

 

different input sources. Thirdly, data quality can be poor in applied simulation contexts (Schru-

ben & Schruben, 2001; Kelton et al., 2000; Bratley et al., 1987), thus necessitating the use of 

different imperfect input sources that each have some advantage in their data properties. Lead-

ing practitioners confirm that data quality tends to be poor (interview transcripts, 2016), e.g. 

due to small samples with little data in the extremes of a distribution (Kelton et al., 2000).  

These challenges underscore limitations of traditional, single data source-based parameteriza-

tion methods. In Chapter 2 we presented the state-of-the-art simulation input modelling meth-

ods. One of the key conclusions was that aggregation Methods that combine different classes 

of information sources for input modelling are not as widely recommended as methods relying 

on a singular source. This is despite theoretical arguments to harness all available information 

and the realization that simulations are oftentimes run in dynamic environments of incomplete 

information.  

Per Oberkampf (2019), a key measure for accuracy of applied simulation modelling for decision 

support, is predictive ability rather than “agreement with empirical results”. This is, of course, 

exacerbated in situations where no direct empirical comparison is possible to verify accuracy, 

or further, where it is reasonable to assume that past data cannot be used as the sole input to 

predict future system behavior, as is common in simulation modelling. Schruben has argued 

that most simulations analyze what happens in systems if “something changes” (Barton et al., 

2002), thereby underscoring the need for a dedicated method. These challenges are varied yet 

may be addressable in part through the versatile method of recursive Bayesian estimation. Both 

quantitative input modelling based on historic data and more qualitative approaches based on 

expert input have distinct advantages and drawbacks that can be viewed as complimentary. 

While parameters based on historic data can accurately capture the central properties of distri-

butions they may fail to recognize the dynamic nature of data generating processes as well as 
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their extremes (e.g. Vose, 2008). Further, data is vulnerable to quality problems or measurement 

errors that cannot be addressed from within the data set. Experts on the other hand may be able 

to recognize the dynamic nature of the process but may be subject to cognitive biases (Rees, 

2015; Kahneman & Tversky, 1972). Our approach thus is to combine both methods to arrive at 

an alternative parameterization for simulation models. More generally this approach can be 

beneficial when empirical data and expert opinion need to be aggregated.  

Following Weber, Schmid, Pietz & Kaserer (2011) we investigate the impact of input modelling 

methods through a case study in the waste incineration and adjacent industries that is based on 

an actual application of the method. This chapter contributes to the literature on simulation 

input modelling for CF&A as it provides an analysis of the sensitivity of simulation results to 

the proposed input modelling method. The remainder of this chapter begins with the literature 

review, the method used and case application, followed by a critical discussion of the results, 

limitations, research outlook as well as concluding remarks.  

4.2: Review of the literature  

Utilizing Bayesian estimation for simulation input modelling builds on a broad and deep liter-

ature spanning various disciplines and specializations. These include operations research, actu-

arial sciences and signal processing where researchers have been concerned with questions re-

lated or analogous to simulation model parameterization. The methods discussed apply Bayes-

ian statistics and therefore a general introduction is provided. Hence, we also structure the lit-

erature review in four sub-sections per the most relevant literature strands. We first review the 

Bayesian approaches to simulation input modelling, then review the foundations of credibility 

theory followed by a brief discussion of methods to aggregate expert opinions and finally dis-

cuss recursive Bayesian updating. Though disparate, these fields exhibit coherence in their view 

of the merits of Bayesian Statistics for information aggregation. In the sense of Golden-Biddle 
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& Locke (2007) we seek to build a “synthesized coherence” of these literature strands that are 

not generally considered closely related.  

4.2.1 Bayesian methods in simulation modelling 

We henceforth describe methods in the literature that harness Bayesian statistics for simulation 

input modelling and related purposes. Using Bayesian methods has been described by Cheng 

as “powerful method for injecting human opinion into an analysis” (Barton et al. 2002) though 

also a tool that has not received the wide attention it deserves. Cheng also touches upon the 

potential of Bayesian methods to combine different data sets to reduce informational uncer-

tainty in an operations research context.  

Chick (2000) provides an excellent starting point for Bayesian methods in simulation. The 

method presented seeks to manage uncertainty about simulation input “parameters, sensitivity 

analysis, and the selection of the best of several simulated alternatives” if structural and param-

eter uncertainty exist – as is common in simulation modelling. If a simulation model is param-

eterized by fitting a theoretical distribution to empirical data via maximum likelihood estima-

tion, it is not straightforward to derive a robust confidence interval of the estimate due to the 

inherent properties of the estimation procedure. Confidence intervals are important particularly 

when dealing with small data sets with uncertainty. Via Bayes rule it is shown how to explicitly 

quantify uncertainty about input parameters. Chick furthermore presents and references a sub-

stantial part of Bayesian methods in simulation analysis. Despite the wide range of uses of 

Bayes Theorem in simulation modelling, most of the research does not explicitly address sim-

ulation input modelling and the potential to use Bayesian methods to aggregate information 

sources with entropy-reducing positive information value as understood by Shannon (1948).  

Vose (2008) discusses Bayesian inference for simulation input modelling under general as-

sumptions where a prior opinion about a distribution is updated through new data. For situations 
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where, new data is available this constitutes a hands-on approach to use Bayesian updating to 

introduce this information. This approach is related to the one we discuss here, though differs 

as it focuses on aggregating empirical data rather than aggregating different data sources. The 

case where expert opinion is treated as an observation and constitutes new information used for 

updating is not discussed.  

Another branch of research shows how Bayesian methods can be applied to de-bias expert judg-

ment. Clemen & Lichtendahl (2002) propose to de-bias expert judgments that are subject to 

overconfidence in the context of estimating confidence intervals. Using past expert estimates 

of probabilities that exhibit overconfidence the model illustrates how Bayesian statistics can be 

used for de-biasing. It is assumed that each expert has an intrinsic unknown bias factor that is 

constant across estimates. Across a data set of estimated confidence intervals and realizations 

an estimate is obtained of the inherent bias via a Markov Chain Monte Carlo algorithm. MCMC 

algorithms can approximate the posterior distribution when it is not known ex-ante what distri-

butional family the posterior belongs to. Where such data is available, and the assumptions of 

the method are met, this method of Bayesian de-biasing can in fact be combined with the 

method we discuss here. Armstrong, Galli, Bailey & Couët (2004) incorporate Bayesian updat-

ing into a real options analysis. Their methods provide a way to explicitly value newly obtained 

information in context of the decision to invest in an oil field. Additional information about an 

oil field and its prospects can reduce the uncertainty inherent in the investment decision and 

thus more precise estimates of project values and risks. Yee (2008) applies Bayesian updating 

in Valuation and the DCF context to construct a posterior evaluation of asset values via a Bayes-

ian triangulation of different valuations that combine analytic valuations (DCF, comparables, 

multiples) and market valuations. The central result of the article is the weighting function that 

uses Bayes Theorem to formalize the uncertainty-weighted averaging of different valuation 
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methods. Yee utilizes two advantageous properties of Bayesian statistics. Firstly, a Bayesian 

framework aggregates different estimates and aggregates informational value, thereby reducing 

entropy, across sources: the resulting valuation estimate has less uncertainty than any individual 

estimate. Secondly, this aggregation is inverse-uncertainty weighted thereby giving higher 

weight to less uncertain source – a key property of Bayesian updating. Whilst the method dis-

cussed in this chapter is focused on simulation input modelling, it harnesses these two specific 

traits of Bayesian statistics as well.  

This review illustrates that Bayesian methods have several applications in Simulation model-

ling, even some in simulation input modelling (e.g. Vose, 2008), that serve versatile purposes. 

However, it also underscores the need for a straightforward method to be applied to aggregate 

information sources in general input modelling situations. 

4.2.2 Methods to combine expert opinions 

Per Kelly & Smith (2011) a common assertion is that the method of aggregating expert opinions 

shall not be more sophisticated than the experts that provide the estimates. We argue against 

this as errors of potentially inaccurate expert estimates would only be exacerbated by non-op-

timal aggregation methods. The extensive literature on combination of expert opinions appears 

to support our claim through the level of sophistication of its methods. Cooke (1991) discusses 

expert input into decision processes broadly under conditions of uncertainty, though not focus-

ing specifically on requirements of simulation input modelling. Although this work does not 

address the challenges identified above it does provide a deep treatment of expert judgment in 

stochastic settings that closely align with the core of this chapter. Several chapters in Cooke 

(1991) are dedicated to a review of techniques and models to combine or aggregate multiple 

expert inputs. Both Bayesian and non-Bayesian models to combine expert opinions are dis-

cussed.  
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The classical non-Bayesian model is discussed as a practical tool that relies on weighted aver-

ages of all experts. A central objective of the literature is to assign optimal weights for averaging 

of diverse input sources. Various weighting schemes are discussed including assigning each 

expert equal weight, ranking per preference to assign weights accordingly and recursive self-

ranking by the experts. The latter comes closest to the variance- or uncertainty weighting we 

advocate via Bayesian updating as it captures the expert’s self-assessed uncertainty around the 

estimate provided. However, it is more laborious in practice and requires greater access to ex-

perts.  

In the context of eliciting probability estimates, the term scoring refers to a numerical evaluation 

of an estimate’s accuracy. Scoring values are obtained through repetitive comparisons between 

estimates and realizations revealing the average accuracy of an expert. Hence, scores can be 

used to combines expert inputs as weighting terms. The weighting increases with the amount 

of relevant information an expert has and the level of calibration. Formal definitions for numer-

ical values of entropy and calibration are treated in Cooke (1991). This framework results in 

robust expert scores and subsequent weightings in the combination of experts. However, it as-

sumes wide access to the experts to calibrate their scores that may prove unrealistic.  

The Bayesian models are in fact analogous to the Bayesian updating procedure discussed in this 

chapter where each expert is viewed as an “observation” or “realization” that provides addi-

tional information. This view has already been proposed e.g. by Winkler (1968). However, 

experts are required to provide a prior distribution and thus deviate from the approach we dis-

cuss here that derives its prior distributions from empirical data. 

Bayesian Methods have been used in Probabilistic Risk Assessment in reliability engineering 

(e.g. Kelly et al. 2011) for analogous reasons as for simulation input modelling. While param-
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eter estimation is fundamentally different in the settings of risk assessment in reliability engi-

neering and simulations in CF&A, there are some parallels that underscore the advantages of 

Bayesian Methods in combining information sources to quantify uncertainty. Notably, they also 

harness the opportunity to combine multiple quantitative and qualitative sources to estimate 

risk metrics such as rate of aging for engine parts.  

We conclude that the merits of Bayesian methods in aggregation of input sources has broad 

acclaim. We build onto this by adapting, illustrating and benchmarking Bayesian simulation 

input modelling for use in corporate finance and accounting.  

4.2.3 Credibility Theory and Bayesian methods from actuarial sciences 

Actuaries emphasize risk modelling and are on the forefront of methodical advancements in 

simulation methods. Adjusting simulation input parameters in a Bayesian framework is consid-

ered a solid tool for parameter adjustment, particularly in situations where two or more input 

sources are used for model parameterization (Temnov & Warnung, 2008). Actuaries have tra-

ditionally worked with multiple data sets, e.g. one internal set of insurance claims and one of 

pooled data that is used jointly with other insurance providers with a trade-off between speci-

ficity and robustness. Internal data being more specific to the expected uncertainty but with low 

robustness due small sample sizes whilst the external data is less specific though more robust. 

This tradeoff is well-suited for a Bayesian approach of data aggregation through methods of 

Credibility Theory. In actuarial sciences, the term credibility is used to describe the level of 

credence attached to data (Longley-Cook, 1962). By the law of large numbers, one can infer 

that small samples have lower credibility than large ones. However, small data sets may be 

more specific or targeted to the modelling challenge and thus still be valuable. Credibility The-

ory estimates the level of credence of data inputs. This level of credibility of data depends of 

course on how data is to be used and not only on properties of the data. Credibility is higher the 
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more similar data is to the case one is inferring about, e.g. when an insurance seeks to set the 

premium for a car insurance it will attach higher credibility to past damage data of similar driv-

ers by age, car type etc. than to more heterogeneous data. This also illustrates the key trade-

offs: more similar data has high credibility, yet it also has lower sample sizes, thereby lowering 

credibility. Credibility Theory provides methods to aggregate information across sources and 

weight them per credibility.  

Arthur Bailey has been credited with advancing Credibility Theory in the actuarial sciences 

(Norberg, 2006). The reasoning of actuaries described by Bailey (1950) is strikingly Bayesian 

in that it emphasizes the importance of prior knowledge:  

“[…] Underwriters belief that they are not devoid of knowledge before they acquire 

statistics. […] When statistics […] are acquired, the problem is not 'what should the 

rate have been?' but 'how much should the existing rate be changed […]?'” 

This is analogous to Bayesian updating of a prior distribution in the face of new data to obtain 

a posterior distribution. Not only are the intuition of using prior data analogous, so are some 

formal results. Venter (2003) shows a simple derivation of a primary result in Least squares 

credibility of minimizing the variance of the “posterior” estimator in a weighted average of two 

previous estimates that is equivalent to the inverse-variance weighted result obtained for updat-

ing the mean of a normal distribution in Bayesian statistics.  

Credibility of empirical data can oftentimes not be captured in a single number as it is highly 

context dependent thereby introducing an element of subjectivity or judgment (Longley-Cook 

1962; Behan, 2009).  

Jewell (1991) uses a Bayesian framework with an independent prior information set about a 

compound distribution of the severity and frequency of excess losses in an insurance setting. 
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The effects on insurance loss estimates of using different informational input into the parame-

terization process is illustrated here as well. Further, Hesselager (1993) builds onto this work 

by using Bayesian updating in an approach with parallels to the method presented in this chap-

ter. It is assumed that the reinsurer has “sparing knowledge” of the insurance contract and seeks 

other data sources to incorporate into its risk assessment. This is formalized via the Bayesian 

framework that estimates the compound distribution of losses. The compound distribution fol-

lows a Poisson process with Pareto-distributed loss amounts. A further critical assumption is 

that the true parameter of the distribution of losses is itself a random variable that is approxi-

mated via the combination of multiple input sources in a Bayesian setting. This assumption is 

in line with Bayesian theory that holds that the true parameters of statistical processes or distri-

bution follow some distribution themselves. Thus, a Bayesian posterior estimate of the distri-

bution of excess losses is generated. The example provided in this article illustrates in how far 

Bayesian updating represents an uncertainty-weighted average of two data sources about insur-

ance losses that reduces the overall parameter uncertainty.  

A further insightful illustration of such a problem is provided in Temnov et al. (2008). They 

discuss three risk aggregation approaches based on simulation, Fourier transformation and re-

cursion for assessment of operational losses of financial institutions. Parameters for the simu-

lation are obtained via Bayesian updating from external and internal data sources. Bayesian 

statistics offer a way to aggregate the information from both sources and weight them per their 

specificity or uncertainty. Here, as in the method we present below there are two or more data 

inputs with idiosyncratic strengths and weaknesses, maintaining the strengths whilst alleviating 

the weaknesses.  
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4.2.4 Recursive Bayesian updating  

Researchers in various fields use recursive Bayesian updating algorithms that incorporate mul-

tiple measurements or data points for e.g. signal processing or time-series econometrics (Grewal 

& Andrews, 2001). Recursive Bayesian estimation refers to the process of updating a prior 

estimate in multiple steps where the posterior after the first updating becomes the prior for the 

subsequent update. These methods seek to overcome the filtering problem where the true state 

of a dynamic system is unknown and only incomplete or imperfect data is available. These 

algorithms filter the underlying signal from its noise (Grewal et al., 2001) by aggregating mul-

tiple sources of information to approximate the unobservable true system state. The analogy to 

the problem of simulation model parameterization lies in the infeasibility to observe the future 

system to be simulated and the imperfection of experts’ estimates of the parameters for simu-

lation modelling. In addition, past data for use in simulation input modelling may be prone to 

measurement error, likewise a challenge that can be addressed through Kalman or Bayes filter-

ing, including concepts applied here as further discussed in the appendix.  

This extensive literature review underscores the various usages of Bayesian Statistics in simu-

lation modelling, risk assessment and aggregation of information sources. We build onto this 

work by extending the scope of application that we will introduce in detail hence.  

4.3: Method  

Our core application for Bayes Theorem is to quantitatively incorporate expert opinion into the 

parameterization of a simulation model. Thus, this method constitutes an aggregation method 

of deriving input parameters, as discussed in chapter 2. Bayesian statistics allows us to quantify 

this intuitive concept of combining historical data with new information in the form of expert 

opinions. Bayesian updating can be used to incorporate new information into existing statistical 
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distributions to reduce informational uncertainty. A general basic introduction to Bayesian sta-

tistics is provided in the appendix and describes a discrete binary probability example and how 

updating is applied there. A key contribution of this chapter is the focus on applicability of 

Bayesian updating to defined simulation input modelling environment. The perceived lack of 

in-depth discussion of aggregation methods and a guide on how to apply them motivate the 

method presented here.  

4.3.1 Assumptions 

Recursive Bayesian updating is built on a set of assumptions that we shortly discuss here, fo-

cusing on their realism and generalizations that do not necessarily build on these assumptions.  

4.3.1 a) Conjugate prior distributions 

Throughout this chapter, we assume conjugate prior distributions. This represents the assump-

tion that the prior and the likelihood take such a form that the posterior distribution follows the 

same functional form as the prior thus belonging to the same family of distributions. The prior 

and likelihood are then said to be conjugate (Lynch, 2007). Thereby the Bayesian updating can 

be represented in analytical form rather than being approximated through Markov Chain Monte 

Carlo (MCMC) methods. While this assumption represents a minor loss of generality, it is com-

mon in actuarial practice (Bailey, 1950) and the oil and gas industry where Bayesian methods 

are used to value new information explicitly (e.g. Armstrong et al., 2004). In fact, in the appli-

cations we consider the case that a statistical process changes parameter without changing func-

tional form and distributional characteristics. Assuming conjugate priors also facilitates the in-

terpretation of the impact of new information on the posterior. In situations where this assump-

tion is in doubt there are well-established MCMC methods to model non-conjugate priors (Gel-

man, Carlin, Stern & Rubin, 2014)  
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4.3.1 b) Informative prior 

Informative priors are based on empirical data of the distribution in question rather than being 

based merely on assumptions. Uninformative priors on the other hand are applied in the absence 

of empirical data when there is some other, possibly vague, information on the distribution, 

such as an upper or lower limit or a range. Hence, the priors used are informative in the under-

standing of Bayesian statistics. More generally we assume that the past data of a statistical 

process contains meaningful informational value and can thus improve a standalone expert es-

timate.  

4.3.1 c) Knowledgeable experts 

Perhaps one of the most critical assumption is that experts have access to information that can 

improve upon the empirically observed data. Put differently we assume that experts can exog-

enously determine changes to the data generating process. One example is based on the notion 

of event-induced structural breaks. Practical examples for this include competitive market dy-

namics like the bankruptcy of a competitor, a new mining development in a commodity market 

or policy decisions such as tax or subsidy changes. However, there are various applications that 

do not require the assumption of structural change. This includes the need to combine data from 

different, relevant sources or the benefits of enriching data with expert opinion when dealing 

with measurement error or incomplete data. While this is a strong assumption we consider it 

realistic for our purposes and the suggested application.  

Uncertainty of parameters needs to be quantifiable, this quantification may not be straightfor-

ward especially for expert input, although this has been standard practice when working with 

expert input (Cooke, 1991) and we will explain in detail below the method used in the applied 

simulation model. 
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We further assume that experts are statistical frequentists in the sense that they provide inde-

pendent assessments given the data they have access to. If the experts where full Bayesians, 

situations could arise where the formal updating process replicates a process the experts have 

already run through as they arrived at their estimates. In other words, every expert would have 

their own prior giving rise for an adjustment of these priors, this is discussed in Gelman (2012). 

4.3.1 d) Observed data variance proxies for parameter variance 

In this chapter, we assume that the historically observed variance can be interpreted as a rea-

sonable approximation of the uncertainty of the historically observed mean. This variance is 

then used as the prior variance of the mean for the normal distribution. This assumption is 

critical yet common for the closed form solution (Fink, 1997) with known variance. Without 

this assumption, one would obtain a different proxy for the variance of the empirically observed 

mean. In the next chapter we discuss an extension to this method that investigates this assump-

tion in further depth.  

4.3.1 e) Uncorrelated estimation errors 

In Kalman filtering theory the measurement errors are generally assumed not to exhibit auto-

correlation, yet methods exist to circumvent these problems if this assumption does not hold 

(e.g. Wang, Li & Rizos, 2012; Jazwinski, 2007). We assume the expert’s estimation error is not 

correlated with the variance of the estimated parameter. We discuss the threat posed by corre-

lated expert opinions in chapter 6.  

4.3.2 New information 

In Bayesian statistics new information arrives in the form of new observations of a stochastic, 

potentially noisy process. We substitute actual observations with expert opinions that we treat 

like observations as is common in Bayesian statistics (e.g. Kelly et al., 2011). A key distinction 
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here is that actual observations become only accessible as new realizations of a stochastic pro-

cess occur, whereas expert opinion is forward looking in nature thereby enabling a distinct input 

modelling approach. The process of deriving numerical estimates based on beliefs is referred 

to as elicitation in the literature (Cooke, 1994). Rees (2015) acknowledges that soliciting expert 

judgment is prone to statistical inconsistencies and offers some basic questioning tips to coun-

teract this. We discuss several more cognitive and related biases in the analysis part of chapter 

6. Notably, the elicitation is a complex process that has been researched in considerable depths 

(e.g. Cooke, 1991 and references therein), we touch upon various aspects of this process in the 

discussion of biases. In this section, we discuss which parameters experts are required to esti-

mate.  

Expert opinion must be provided in a form suitable for Bayesian analysis. For the case of the 

normal distribution with fixed variance, that we treat here, this means that estimates must be 

provided of the future mean as well as self-assessed uncertainty. The latter can be provided, 

e.g. via estimation of confidence intervals. Crucially, experts must quantitatively estimate their 

own uncertainty about statistical parameters they are estimating. Here, we follow Cooke (1991, 

Ch. 11) where experts estimate their own uncertainty which is critical for a correct weighting 

of inputs yet is subject to various cognitive biases, most notably overconfidence / overprecision 

bias and the generally observed difficulty of quantifying uncertainty (Spiegelhalter, Pearson & 

Short, 2011). Despite these challenges, the de-biasing methods from the literature provide a 

reasonable countermeasure to potential biases.  

4.3.3 Derivation for the Standard normal distribution 

In simulation modelling, continuous distributions are commonly used thus we show how Bayes-

ian updating can be applied here. As we showed in the preceding chapters, the normal distribu-

tion continues to be among the most prevalent distribution and is thus chosen for this example. 
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Further, the log-normal distribution can be derived directly from the normal, thereby addressing 

additional modelling scenarios.  

We seek to update μ, the unobservable mean of some population data. This closed-form solution 

assumes that σ is known and fixed, we show an example of how the variance can be updated 

separately in the appendix. Historically we have observed the mean and standard deviation and 

will denote them: 

µ! = historically observed sample mean 

σ! = historically observed sample standard deviation 

As outlined above we assume that the historically observed squared standard deviation prox-

ies for the uncertainty of the mean. Next, we obtain some new information about said parame-

ters via additional data or expert input. We denote the new data X and now seek to obtain the 

likelihood of observing µ given our previously held believes: 

#(µ|X) ∝ #()|*)#(*)	                   (4) 

The operator ∝ stands for proportionality and is read as „is proportional to “. This operator al-

lows us to simplify the notation by omitting variables that are constant with respect to μ as 

these do not affect the proportionality of the statement (Rachev, Hsu, Bagasheva & Fabozzi, 

2008). P(X│μ) denotes the likelihood of the new data given the mean and P(μ) denotes the 

prior believe about the population mean. For simplicity, we assume here that the new data fol-

lows a normal distribution with mean μ and variance σ!". The observed variance of empirical 

data can be interpreted as the expected spread around the mean of a variable (Fink, 1997). Un-

der these assumptions, the likelihood function of X is: 

#()|*) = ∑ 	#
$%&

&

'"()!"
	exp	 1− (!#+,)"

")!"
3                (5) 

Where n is sample size of new information and “exp” the exponential function.  
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To solve (1) we need to derive the likelihood function of the second element on the right-hand 

side of the equation, the prior distribution of μ. 

#(*) = &
√"()/"

	exp	 1− (,+0/)"

")/"
3                                      (6) 

Where µ! represents the prior mean and σ! represents the standard deviation of the prior. By 

substituting (2) and (3) into (1) we obtain: 

#(µ|X) ∝ &

')!" 	)/"	
	exp	 4+(,+0/)
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#%&
"
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6           (7) 

As shown in Lynch (2007) this can be rearranged to show that μ│X is normally distributed 

with mean: 

µ = ,/)"4#)/",!
)!"4#)/"

                     (8)  

This result can be reformulated to further highlight its intuition: 

µ =
&
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$
'!"
	µ!                         (9) 

Note that the mean is a weighted average of the prior empirical mean, the believe µ7 and µ!, 

the mean of the new information. Each is weighted by its inverse variance. Thereby a highly 

uncertain prior raises the weight of the new information in the posterior and vice-versa. The 

prior mean’s (µ7) weight is proportional to the inverse of its variance ( &
)/"

) and likewise the data 

/ new information mean (µ!) weight is proportional to the ratio of its sample size (n) and its 

variance ( #
)!"

). Intuitively a new source of information with a high level of certainty moves the 

posterior towards this new information whereas analogously a highly certain prior will take a 

larger weight.  

Similarly, we follow Lynch (2007) to obtain the result of the variance:  

σ	" =
)/"	)!"

#)/"4)!"
                        (10) 
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Note that the variance of the estimate of the posterior μ│X has the noteworthy property of be-

ing strictly smaller than both the variance of the prior and the variance of the new data. This 

makes intuitive sense as the combination of two sources of evidence of positive, entropy-re-

ducing informational value allows for a more precise estimate of the unknown population pa-

rameters. This is one of the core results of Bayesian statistics and has appealing properties 

that we further explore in the next chapter. 

4.4: Case application 

The objective of these simulations is a classical impact analysis of varying input modelling 

specifications or parameterizations that constitute the factor levels in this experimental design. 

In short, this constitutes a benchmark of various input modelling methods via one simulation 

model. This simulation experiment is based on an actual application of the method and therefore 

offers a level of realism that is not necessarily present in comparable research (e.g. Weber et 

al., 2011). As we address simulation input modelling for CF&A, we model common challenges 

revolving around profitability and risk (e.g. Weber et al., 2011; Meyer et al., 2011). 

4.4.1 Case study  

The case application discussed here revolves around the financial position and short-term earn-

ings forecast of a mid-sized German waste incineration facility. A sale of the facility had been 

agreed one year hence and the current management was focused on forecasting key financial 

metrics to address any potential funding gaps before the eventual sale one year after the current 

base year 2018. The objective was thus to forecast financial metrics over a one-year time based 

on current actuals and knowledge of the entity’s assets. The entity can be considered part of the 

German Mittelstand. The willingness of banks to provide short-term credit to Mittelstand com-

panies has been shown to be low (Hansmann, Höck & Ringle, 2003) thereby necessitating a 

diligent scrutiny of the short-term financial position and potentially resulting financing needs.  
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The entity in this case study incinerates waste to generate district heating and electricity earning 

most revenues from three distinct sources: 

1. Revenue Electricity: electricity is generated from the waste incineration process and fed 

into the network at current market rates; this typically accounts for ~23% of their reve-

nues (depending on relative per unit prices of different revenue streams); electricity rates 

are constant across all assets  

2. Revenue District heating (“Fernwärme”): further exhaust heat is used for district heating 

accounting for a further ~28% of revenues; contrary to electricity rates, there can be 

differences in district heating rates across assets/locations, however prices are highly 

correlated 

3. Revenues from incinerating waste: the largest part of revenue is generated through the 

fees obtained from waste collection companies for incinerating waste accounting for 

~48% of revenues; it is noteworthy how unusual this case is as this entity is not paying 

for the primary input into its production process but rather is getting paid 

For this entity, historically, prices for district heating and electricity are positively correlated 

whereas prices for waste are negatively correlated with both district heating and electricity 

prices resulting in a natural hedge, this is assumed constant in the model. The full correlation 

matrix is provided in table 14.  

Historical Correlation coefficients be-
tween unit prices of revenue sources 

Waste price Electricity rate District heating 
rate: Location 1 

District heating 
rate: Location 2 

Waste price 1,00 -0,67 -0,85 -0,69 
Electricity rate -0,67 1,00 0,59 0,91 
District heating rate: Location 1 -0,85 0,59 1,00 0,50 
District heating rate: Location 2 -0,69 0,91 0,50 1,00 

Table 14 - Correlation matrix of output prices 

The entity owns two major assets, both waste incineration plants, of varying size, that we will 

label simply ‘location 1’ and ‘location 2’ with annual waste incineration capacities of 450.000 

and 270.000 tons respectively and historical utilization of typically ~95%. 
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It must be noted here, that the situation the entity was in, was characterized by a discrepancy 

between what experts predicted and what historical analysis suggest would be the development 

of factor prices – thereby underscoring the need for precise input modelling. Expert input was 

used to obtain the following data points for the year following the base year.  

Factor  Expected mean price Self-assessed variance 

Waste Prices 64.00 € 7.00 € 
Electricity prices  39.00 € 1.00 € 
District heating location 1 19.00 € 12.00 € 
District heating location 2 21.00 € 12.00 € 

Table 15 - Expert opinion / estimate for input modelling 

Expert input was solicited through experts’ assessment of confidence intervals of the variables 

to be modelled through the method discussed in Winman, Hansson & Juslin (2004) as well as 

in the appendix. This method entails providing intervals and asking experts to assign probability 

judgments rather than the other way around. This method has been shown to reduce cognitive 

bias in the form of overconfidence/overprecision bias. The input was obtained from experienced 

experts in the commodities and purchasing department of the entity. From confidence intervals 

it is straightforward to infer self-assessed uncertainty / variances by inverting the steps under-

taken to construct confidence interval and solving for the variance.  

The prior is based on historical data intrinsic to the entity in question and simple extrapolation 

of trends.  

Factor  Historic 7-year mean price Historic 7-year variance 
Waste Prices 67.25 € 13.64 € 
Electricity prices  34.75 € 2.89 € 
District heating location 1 21.08 € 6.84 € 
District heating location 2 29.16 € 6.74 € 

Table 16 – Historic data for model input variates 

The case application presented here is stylized for several reasons. As it is based on an actual 

entity it is bound to strict confidentiality standards that require to make certain discretionary 

changes to the entity to ensure its anonymity without changing the salient features of the 

method’s application. To ensure generalizability, a key objective of case study research is to 
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discuss cases that can be considered “typical” for the research strand (Seawright & Gerring, 

2008); this can be achieved as evidenced by the review of typical applications in Chapter 2 

where simulation of profitability is among the most frequent applications. Further, we simplify 

policy factors like the government subsidies for eco-friendly electricity as part of the German 

“Erneuerbare Energien Gesetz” that are not essential to the method.  

4.4.2 Benchmarking 

In a benchmarking analysis, we compare simulation results based on the proposed method of 

Bayesian updating with alternative input modelling parameterizations. Empirical data and ex-

pert opinions are most commonly used and subject to uncertainty or imprecision as we showed 

in the previous chapter and are therefore used as benchmarks. Bayesian input modelling is on 

the other hand not compatible with theory-based input modelling if those theories are determin-

istic with respect to the parameters they define. We therefore refrain from comparative analysis 

of theory-based input modelling in this chapter as Bayesian input modelling is aimed at situa-

tions with multiple informative input sources.  

Finally, non-Bayesian methods of data aggregation can combine multiple data sources (e.g. 

Cooke, 1991). As the expert interviews showed (2016) this can take a pragmatic form such as 

averaging of sources. We Benchmark our simulation results with results obtained from these 

ad-hoc or naïve methods. We exclude methods requiring extensive access to experts for cali-

brations or violate other assumptions.  

4.4.3 Design of Experiment 

The analysis and communication of simulation results follows the Design of Experiment (DoE) 

principles presented in Lorscheid, Heine & Meyer (2012) aiming at systematically structured 

analysis and transparency. Following Hocke, Lorscheid & Meyer (2015) we also provide a 
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simplified representation of the simulation model in Figure 10. This simplicity of the model 

underscores the focus on input modelling which utilizes the model to illustrate input modelling 

impact on the response variables. 

Figure 9 - Simulation process overview 

 
I: Formulate objective of simulation experiment 

As touched upon above, the objective of this simulation is a quantification of the effect of dif-

ferent simulation input modelling specifications, thus different input parameterizations. Our 

objective is to research the viability of Bayesian updating for simulation input modelling in 

simulation environments in CF&A. As pointed out in Lorscheid et al. (2012) simulation exper-

iments are likely to uncover all effects of input distributions if a proper DoE is provided. Thus, 

it may seem a foregone conclusion that a different input parameterization will result in a differ-

ent simulation output. Yet simulation modelers typically face trade-offs between accuracy and 

model complexity (Weber et al., 2011) as increasingly realistic or detailed models become more 

resource intensive in terms of time, computing power and modelling know-how. We extend 

this to the discussion of model parameterization via Bayesian updating. Hence, we analyze the 

effects of alternative model parameterization against the backdrop of this trade-off. Moreover, 

we investigate the sensitivity of simulation results to different input parameterizations.  

More generally, there is no established method to proof superiority of subjective parameters as 

used in simulation input modelling as subjective statements cannot generally be judged right or 

wrong (Keren, 1991). As mentioned in the introduction, this simulation experiment was applied 
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in a stochastic setting with only a single real-world realization and therefore no definitive proof 

if the Bayesian input modelling is superior in the sense of being closer to the “true” mean pa-

rameter than alternative parameterizations. Hence in a Bayesian setting, it is not generally fea-

sible to know the unique parameters of a distribution as these are random variables themselves. 

An empirical comparison is infeasible as there is no data source containing the required data 

points that would include many simulations under the described conditions with additional data 

on the future realizations of the simulated variables. However, this simulation succeeds in 

demonstrating the desirable properties Bayesian updating can have for simulation input model-

ling in CF&A.  

II: Classification of variables 

Following Lorscheid et al. (2012) we assign each stochastic variable to the groups independent, 

dependent and control variables.  

Table 17 - Classification of variables 

 

Independent variable Control variables Dependent variables  

1) Input model: waste incineration 
prices 1) Number of simulation runs  1) Earnings-at-risk at 5% 
2) Input model: electricity prices  2) Utilization rates per location 2) Net income 
3) Input model: district heating 
prices for location 1 3) Heating value per waste unit 3) Probability of incurring a loss 
4) Input model: district heating 
prices for location 2 

4) Electricity and district heating 
shares  

 5) Cost of disposal of burnt waste  
 6) Combustibles   
 7) Additional consumables, raw ma-

terials  
 8) Maintenance  
 9) Additional services consumed  
 10) Salaries and wages  
 11) Social security contributions  
 12) Other SG&A (incl. Professional 

services)  
 13) Depreciation  
 14) Interest payments & financing 

conditions  
 15) Taxes   
 16) Net working capital   
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III: Definition of response variables and factors 

This step is of utmost importance for sensitivity of simulation to input parameters. Input mod-

elling methods represent factor levels for the independent variables. The parameters resulting 

from these modelling methods represent the factor’s levels that differ between the applications. 

The dependent variables are profitability and risk KPIs of the modelled entity such as or Earn-

ings-at-risk (Lorscheid et al., 2012). We follow Meyer et al. (2011) in choosing Earnings-at-

risk (EaR) as one of the response variables of interest, a widespread risk metric (Viemann 2005). 

EaR is based on the concept of Value-at-risk that is commonly defined as “the worst loss over 

a target horizon that will not be exceeded with a given level of confidence” (Jorion 2001). Table 

18 presents the independent variables, factors and factor level ranges for this simulation exper-

iment.  

Table 18 - Definition of factors, factor level ranges and response variables 

IV: Selecting a factorial design  

This step determines an experiment’s factors that influence the independent variable and po-

tential interactions between these variables. In the simulations, we isolate the effects of input 

distributions and do not alter other variables making our factorial design straight-forward with 

a single factor: the choice of input modelling method and thus no interactions between factors13. 

This experiment follows a 4x1 factorial design with the four factors representing input model-

ling specifications. 

 

 
13 Although Bayesian and naïve updating constitute aggregation methods of the other two factors, we do not view these as 

factor level combinations but rather new factors altogether  

Independent variable Factors Factor level range 

Waste incineration prices Input modelling method {Prior, Data, Posterior, Naïve update} 
Electricity prices Input modelling method {Prior, Data, Posterior, Naïve update} 
District heating prices location 1 Input modelling method {Prior, Data, Posterior, Naïve update} 
District heating prices location 2 Input modelling method {Prior, Data, Posterior, Naïve update} 
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V: Estimation of experimental error variance  

To ensure simulation results are not driven by unintended randomness one must determine the 

number of simulation runs that is sufficient. Lorscheid et al. (2012) suggest using the stability 

of the coefficient of variation of as a stopping criterion. The coefficient of variation stabilizes 

after 100.000 simulations runs and is plotted on a logarithmic scale in figure 11.  

  
Figure 10 - Coefficient of variation, logarithmic scale of # of simulation runs, in % 

In addition, we ran the simulation in increments from 10 to 1.000.000 runs and observe that the 

standard error of the response variable net income only decreases slightly after 100.000 simu-

lation runs as is plotted in figure 12. 

  
Figure 11 - Standard deviation of net income, logarithmic scale of # of simulation runs, in € 

In a related analysis, Weber et al. (2011) conclude that 100.000 simulation runs offer sufficient 

stability in a similar modelling context. We thus conclude that for our purposes 100.000 simu-

lation runs are sufficient. Furthermore, Crystal Ball’s Precision Control tool allows for setting 

a threshold of accuracy and then runs the simulation until a specified level of accuracy (e.g. +/- 

1%) is reached with 95% certainty, as a further layer to ensure to stay within +/- 1% of the 

desired accuracy.  
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VI: Simulation experiment 

This simulation experiment is implemented in the crystal ball software environment; in this 

choice, we follow, among others, Meyer et al. (2011) who argue that this is commonly used 

choice among simulation modelers, especially in CF&A. We further discuss modelling assump-

tions in the appendix.  

VII: Analyzing effects 

We run the simulation model in the crystal ball environment as described above and obtain the 

following response variables summarized in table 19.  

Table 19 - Factor levels and response variables of the 4x1 simulation experiment (negative numbers in brackets) 

Through the three separate response variables we obtain a differentiated picture of the entity’s 

risk profile and the varying input modelling methods, especially Bayesian input modelling com-

pared to naïve updating. While both input parameterizations build onto the same aggregated 

input sources, their mean net incomes are estimated at Mn 4.10 €, for the Bayesian update, and 

Mn 3.08 €, for the naïve update, thereby constituting a ~33% difference. In addition, we observe 

negative skewness for all distributions of net income (see table 20).  

Factor levels Response variable I: 

Earnings-at-risk 5% 

Response variable II: 

average net income  

Response variable III: 

Probability to incur loss 

Factor level 1: Prior Mn 1.91 € Mn 5.14 € 0.45% 
Factor level 2: Data (ex-
pert input) Mn (3.07) € Mn 0.94 € 29.15% 
Factor level 3: Bayesian 
Posterior Mn 0.87 € Mn 4.10 € 1.85% 
Factor level 4: Naïve up-
dating  Mn (0.19) € Mn 3.08 € 5.70% 
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Figure 12 - Probability density functions per input modelling specification with 5th and 50th percentile / mean highlighted 

Figure 13 shows the simulation-based probability density functions of the four input modelling 

methods overlaid on one another. In addition, it shows response variables including the 5th per-

centile of net income, which corresponds to the response variable of Earnings-at-risk at 5%, as 

well as the mean of simulation net incomes (probability to incur losses is not shown here). It 

must be noted here, that the updating focused on the mean of the distribution assuming the 

standard deviation fixed which leads to the similarity in shape of the output distributions. Whilst 

the distributions based on Bayesian and naïve updating share significant overlap, as is expected 

as both are based on data sources, albeit aggregated differently, it becomes apparent that they 

differ substantially. This will become even more apparent in the following figure.  
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Figure 13 – Simulation-based confidence intervals for net income projections (axis in € millions) 

Figure 14 shows smoothed simulation-based confidence intervals for net income projections 

thereby further highlighting the impact on response variables to the four different factor levels, 

most notably between Posterior and the “Naïve Update” process based on simple averages. 

Note, how the increasing confidence levels on the vertical axis correspond to increasingly wide 

intervals that center on the average net income per the simulation model.  

Finally, we provide additional simulation data in table 20. 

Table 20 - Additional descriptive statistics for simulation experiment 

In the appendix we provide multivariate regression outputs for the simulation of the four factor 

levels. As expected these analyses support our conclusions drawn above and results are highly 

statistically robust across all simulations.  

 

Statistic Data Naive update Posterior Prior 

Simulation runs  100.000   100.000   100.000   100.000  
Average (mean) Mn 0.94 € Mn 3.08 € Mn 4.10 € Mn 5.14 € 
Standard deviation  Mn 2.19 € Mn 2.01 € Mn 1.98 € Mn 1.97 € 
Skewness -0,344 -0,167 -0,074 -0,008 
Kurtosis 3,18 3,36 3,30 3,29 
Minimum Mn (9.73) € Mn (7.20) € Mn (6.29) € Mn (4.64) € 
Maximum Mn 9.10 € Mn 11.12 € Mn 12.78 € Mn 13.32 € 
Standard error of the mean 6,940 € 6,369 € 6,265 € 6,239 € 
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4.5: Discussion and conclusion 

This chapter derived and applied a straightforward and computationally inexpensive method to 

aggregate prior data with expert input for the purpose of simulation input modelling in corporate 

finance and accounting. We showed the impact the method had in a case application and ana-

lyzed and interpreted the simulation model’s general results. We conclude that this method can 

be applied in simulation settings with various imperfect input modelling sources to efficiently 

aggregate information sources.  

As argued above, it is not possible in this context to proof the superiority of Bayesian input 

modelling over naïve aggregation methods. However, the solid theoretical foundation of more 

accurate weighting of input sources and thereby more precise parameter estimates should in-

spire confidence in the method. Beyond the theoretical foundations, there are ways to further 

illustrate the uncertainty-reducing properties of Bayesian estimation that unequivocally show 

the advantages of this method in quantitative form. This will be the objective of the next chapter.  

Future research may focus on the application of this input modelling method to other realms of 

simulation modelling. While we focus our analysis on stochastic simulations in CF&A there is 

a wider range of simulation methods such as Agent-Based Models or System Dynamics where 

input parameters are critical. Future research could analyze how the methods discussed here 

can be transferred to these methods. We limit the applications to a set of core distributions as 

identified by an expert sample in line with the literature as discussed in the previous chapter. 

Future research may replicate the analysis and illustration with yet more distributions.  

 

 

 

 



142 

 

Chapter 5: Simulation Output at risk (SOaR): quantifying parameter input stochasticity  

5.1: Introduction  

The accuracy of simulation models in CF&A hinges upon their input parameters and distribu-

tions which oftentimes are not known precisely and can even be considered stochastic variables 

themselves in a Bayesian setting. The epistemic uncertainty about simulation input parameters 

is not always quantified intuitively although it can constitute a substantial modelling risk. We 

present here a straightforward method to quantify and communicate modelling risk stemming 

from stochasticity in distributional parameters called Simulation Output at Risk (SOaR). The 

concept is analogous to Value at risk (VaR), among the most important and widely used risk 

metrics in finance and accounting thus widely understood in a potential target audience. The 

SOaR metric quantifies modelling risk due to input parameter variability intuitively in a single 

metric. It thereby contributes to the theory of sensitivity analysis of stochastic simulation and 

to improved communication of simulation methods more generally. After discussing the metric 

in general, we apply it to an adaptation of the business case application from chapter 4 in a 

simulation experiment highlighting both the metric and its ease of communication as well as 

the uncertainty reducing properties of the Bayesian input modelling approach  

Input error can induce a simulation modeler to under- or overestimate risks (Lam, 2016). Input 

error refers to the uncertainty of simulation input modelling parameters and their subsequent 

effects on simulation outputs (e.g. Henderson, 2003). Input error remains an important chal-

lenge in simulation input modelling. As the effects of uncertainty of input parameters do not 

decline with the number of simulation runs, simulation models can lead to a false sense of 

security in simulation outputs if indicators like the coefficient of variation decline and stabilize 

with increasing numbers of simulation runs. The objective of this chapter is to present and dis-

cuss a novel metric to communicate risk of input error called Simulation Output at Risk (SOaR). 
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SOaR enables the communication of a sensitivity analysis of parameter uncertainty in a single 

number. Further, the close conceptual relation to the Value-at-risk metric ensures that a wide 

group of simulation modelers can be expected to be acquainted with the interpretation of this 

metric (Jorion, 2007).  

One objective of simulations in CF&A can be to provide a probability distribution of possible 

outcomes of a stochastic variable or KPI such as a Net present value or future net income. 

However, a simulation model will only yield potential outcomes given its input parameters. 

Assuming non-negligible risk of error from the input parameters, simulation results can be 

skewed and erroneous. Simulation input parameters that fail to account for their own uncer-

tainty can present modelling risk.  

Extensive efforts in the literature on simulation modelling have sought to improve the commu-

nication of simulation results through standardized reporting formats (Lorscheid, Heine & 

Meyer, 2012; Hocke, Meyer & Lorscheid, 2015). One challenge noted by Lorscheid et al. was 

the lack of generally understood standards that are straightforward to communicate and under-

stood by a wide audience. SOaR represents a step in this direction, seeking to improve commu-

nication on modelling risk from stochastic input parameters. While the consideration and quan-

tification of input modelling uncertainty is not new, it’s spread may have been hindered by the 

complexity of its communication. As Henderson (2003) emphasizes, any method used to cap-

ture input uncertainty must be, among other factors, transparent, implementable as well as effi-

cient. A key contribution of this metric lies in the ease of estimation, communication and un-

derstanding. Beyond the core contribution of the SOaR metric, this chapter also serves to es-

tablish and illustrate one of the key benefits of Bayesian input modelling, namely its uncertainty 

reducing properties, thereby underscoring a feature of the method that is not straightforwardly 

replicated with different input modelling method. 
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5.2: Review of the literature  

In this section, we briefly review modelling risk quantification methods, sensitivity analysis in 

simulation modelling, the Value-at-risk metric. 

5.2.1 Modelling risk / Model uncertainty 

Vose (2008) discusses Model uncertainty broadly encompassing the structural model as well as 

the input parameters. If the stochastic model that drives a variable is uncertain, Vose argues for 

an inclusion of more than one modelling structure in the simulation with a stochastic choice 

within each simulation run for one of the candidate models and thus distributions again being 

stochastic. Per Vose (2008) it is rare not to observe deviations between stochastic distributions 

and processes used in simulations and reality, he argues, however, that this need not be “terri-

ble” for the model. Vose suggests testing the model’s robustness or sensitivities to such speci-

fications yet without providing a primer on how such analyses shall be quantified generally and 

communicated in a widely interpretable way. To this end, Lam (2016) provides a tutorial on 

input uncertainty in simulation experiments generally. He distinguishes between simulation er-

ror and input error. The former referring to errors from finite simulation runs whereas the latter 

stem from inaccuracies in the probabilistic assumptions that serve as input to simulation mod-

els. Through a robust DOE (e.g. Lorscheid et al., 2012) it is possible to minimize risk of simu-

lation error. Input error can be further broken up into the parameter uncertainty, concerning 

erroneous distributional parameters, and model uncertainty, concerning incorrect choice of dis-

tribution family (e.g. Gaussian instead of log normal) and its correlation over time with itself 

and across other variates. This dichotomy implicitly assumes a correct functional form of the 

modelled process as it does not mention modelling errors such as incorrectly modelled relation-

ships between variables. As Song, Nelson & Pegden (2014) show, it is possible to dissect vari-
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ance owing to simulation and input errors. While simulation error declines with increasing num-

ber of simulation runs and approaches zero, input error is independent of the number of simu-

lation runs and thus remains a significant threat to simulation outputs even as declined costs of 

computation have lowered the threat of simulation errors in practice. This underscores the im-

portance of a clear communication of input error.  

Henderson (2003) introduces input model uncertainty along two examples, in one case uncer-

tainty is known and inherent to the model whereas in the other, the parameters are stable though 

not known with certainty resulting in a perceived probability distribution around the unknown 

parameter. This illustrates well the dichotomy between aleatoric and epistemic uncertainty, that 

we discuss in further depth in the next section.  

Lam (2016) identifies two objectives of understanding input uncertainty. The first objective is 

to quantify the “sensitivity of output variability from the uncertainty of the input”. This objec-

tive motivates the SOaR metric. SOaR summarizes output uncertainty stemming from input 

uncertainty in a single number for straightforward communication. The second objective is to 

“generate an interval that covers the true performance measure with high confidence”. This 

harks back to Vose’s (2008) recommendation of using different models stochastically in case 

of uncertainty regarding the functional form of the DGP and not only its parameterization. In 

this Bayesian setting where the parameter (vector) is considered a stochastic variable, this 

would translate into drawing from the population of possible parameters given our estimate of 

its stochastic value for each simulation run. This, of course, leads to a wider distribution of 

input parameters and thereby independent variables and thus its dependent variables as well.  

For the rest of this chapter we will use the following structure and definitions. Building onto 

Lam’s definition, we divide modelling risk into three branches with the first two in line with 
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Lam (2016). We can differentiate between choosing an incorrect distribution or process, re-

ferred to as model uncertainty, and using erroneous parameters for these distributions, referred 

to as parameter uncertainty. The third branch can be labelled model specification error or func-

tional form uncertainty and is analogous to its equivalent in econometrics (MacKinnon, 1992).  

• Functional form uncertainty describes an incorrectly specified model and can lead to a 

series of biases and errors, including omitted variable bias, simultaneity bias, or the 

inclusion of unnecessary or the exclusion of necessary variables. This is also described 

as Structural uncertainty (Draper, 1995).  

• Model uncertainty: It is not always straightforward to determine what type of distribu-

tion created an empirical data set and simulation outputs are not always sensitive to the 

specification of the “correct” distribution (Rees, 2015; Kelton & Law, 2000; Vose, 

2008). However, in dissecting various risk factors to accurate modelling it is important 

to distinguish different sources of modelling risk or uncertainty. Choice of distribution 

tends to be discrete whereas a distribution’s parameters are usually defined on a ratio 

scale. 

• Parameter uncertainty remains the focus of this chapter that the SOaR metric seeks to 

capture. It describes uncertainty regarding the parameters of a pre-specified distribution 

and SOaR captures its effect on the simulation output.  

Barton (2012) uses a similar dichotomy by differentiating errors resulting from incorrect exe-

cution logic and errors from incorrect input models, the latter comprising both model and pa-

rameter uncertainty.  
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5.2.2 Sensitivity analysis 

Attempts to quantify parameter uncertainty can be described as a part of sensitivity analysis of 

a simulation model. Parameter uncertainty is captured through sensitivity analysis by some ap-

plied simulation modelers. Bratley, Fox & Schrage (1987) advocates the use of sensitivity anal-

ysis to determine a models’ sensitivity to input modelling specifications, especially if the data 

source contains “little or wrong, but related” data giving rise to suspicions. This shall include 

the parameters of a distribution but also the choice of distribution, thereby covering parameter 

as well as model uncertainty, though not uncertainty regarding the functional form. The SOaR 

metric is congruous to a sensitivity analysis of simulation results in relation to changes in the 

input parameterization.  

It is not generally possible to conclude the effect of input uncertainty on output uncertainty in 

a simulation model without running the simulation model as the relationship between input and 

output uncertainty are not necessarily linear or otherwise predictable. Non-linearities can arise 

from many model specifications in CF&A such as explicit modelling of non-linear credit cov-

enants (e.g. credit ratings), assignment of cost pools depending on amount of allocated costs or 

modelling of future decisions (e.g. real options analysis). Where these occur, there is a distinct 

non-linearity in the relationship between input uncertainty and output distribution.  

Hofer, Kloos, Krzykacz-Hausmann, Peschke, & Woltereck (2002) discuss pathbreaking appli-

cations dissecting aleatoric and epistemic uncertainty (see ‘Method and result’-section) in reli-

ability engineering. They propose a modelling method that can account for two separate sources 

of uncertainty around a single variate that circumvents the need to run nested simulations that 

would entail prohibitive computational effort. Instead, they propose two methods of either sam-

pling from a joint distribution, effectively a compound distribution, or running a simulation 

focusing on one source of uncertainty, the aleatoric part, and keeping the other fixed, in this 
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case the epistemic. There are clear analogies to the SOaR metric that we will point out as we 

discuss the metric and build on this reasoning and develop it further.  

In a similar vein, Guo & Du (2007) apply a method of jointly analyzing aleatoric and epistemic 

uncertainty through simulations in reliability engineering that they label “Unified Uncertainty 

Analysis”. 

5.2.3 Value at risk 

Value-at-risk inspires the SOaR metric and is a frequent measure of risk in simulation models 

in CF&A (Jorion, 2007) thus meriting a brief review, Wipplinger & Jorion (2007) review in-

depth. VaR remains a debated risk measurement metric as it does not capture the severity of 

potential losses beyond its pre-defined thresholds (e.g. 1% or 5%). Thereby, critics argue, it 

over-simplifies the risk profile of potentially irregular or asymmetric distributions to a single 

number (Einhorn & Brown, 2008). This perceived shortcoming can be addressed through the 

metric of conditional Value at risk, commonly labelled cVaR (Rockafellar & Uryasev, 2002). 

It is defined as the average loss or deviation of a distribution’s mean beyond the defined thresh-

old, put differently, cVaR describes the average of the response variable beyond the 5% cut-off 

threshold. Thereby the variability in the response variable’s tail distribution is captured. This 

metric can be used in addition to the unconditional VaR as well as a substitute. It can straight-

forwardly be calculated for earnings-at-risk as we will show in the simulation model below. To 

calculate conditional Earnings-at-risk all sources of uncertainty are modelled jointly. Addi-

tional steps need to be taken to calculate conditional simulation-output-at-risk (cSOaR) that we 

will discuss below. We calculate the conditional Simulation output at risk for all relevant factor 

levels. 
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The metric’s simplicity is also a major advantage as it supports communication and is widely 

understood (Jorion, 2007). It is this simplicity of communication in a stochastically complex 

environment that we aim for in the metric of Simulation Output at risk.  

Simulations are a tool to estimate VaR which is driven by a variety of risk factors. We can 

distinguish between real risk factors, e.g. the variability of returns associated with political or 

operational risk, and modelling risk, notably parameter uncertainty. Modelling risk describes 

the variation in simulated VaRs that arises due to the risk of errors in the model. The second 

objective as formulated in Lam (2016) strives to capture the probability distribution of the sim-

ulated dependent variables including their parameter uncertainty and by extension also the VaR 

including parameter uncertainty.  

One key differentiation to VaR is that SOaR is defined via the input distribution threshold, 

rather than purely the output of the distribution. In other words, the input distribution defines 

the cut-off thresholds rather than the output distribution as would be the case for VaR. This 

innovation enables the metric to capture risk from different sources of uncertainty and holds as 

long as an approximately linear relationship between input model and output distributions can 

be assumed.  

5.3: Method and results 

In a Bayesian setting, that we continue to follow here, we use Bayesian updating to reduce the 

uncertainty of input parameters and thereby SOaR. To this end, it is necessary to differentiate 

two sources of uncertainty relevant to this context. We are confronted with two levels of uncer-

tainty (note that both aleatoric as well as epistemic uncertainty are distinct from the above-

mentioned model and functional form uncertainties): 

1. Aleatoric or physical uncertainty (Der Kiureghian & Ditlevsen, 2009; Fox & Ülkümen, 

2011): describes randomness in the realizations of the stochastic process that cannot be 
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reduced through more information and are stochastic for each simulation run or physical 

realization; even if assuming stable distributional parameters each realization is random 

just like a coin toss is random even if the process of tossing the coin is perceived to be 

the same for each toss.  

2. Epistemic uncertainty (Der Kiureghian et al., 2009; Fox & Ülkümen, 2011): describes 

uncertainty about input modelling parameters due to incomplete information; this un-

certainty could be reduced through improved information or modelling. Consider the 

example of the fair and unfair coins being tossed (see appendix) and the application of 

Bayesian statistics to make inferences about the coins being tossed, here we observe 

epistemic uncertainty as we do not know the distributions pertaining to the coins. Sim-

ilarly, consider any situation with limited access to data from the process to be modelled, 

resulting in imperfect knowledge of distributional characteristics.  

It is generally not necessarily clear which variables are subject to aleatoric or epistemic uncer-

tainty, or both (Der Kiureghian et al., 2009). Furthermore, in simulation research and practice, 

it is oftentimes not straightforward to distinguish epistemic and aleatoric uncertainty, thus sim-

ulation modelers may not specify which one they focus on (Hofer, Kloos, Krzykacz-Hausmann, 

Peschke & Woltereck, 2002). Assuming perfect information, one would seek to model strictly 

the aleatoric or physical uncertainty that is inherent in the process to be modelled. However, 

under circumstances of imperfect information and aleatoric uncertainty, simulations should 

model both sources of uncertainty (Hofer et al., 2002) as incorrect assessment of these two 

uncertainty sources can lead to inconsistent risk assessment including over- or underestimation 

of variability, depending on the modelling context (Der Kiureghian et al., 2009).  

Examples abound for variables whose perceived variation can be driven by both epistemic as 

well as aleatoric uncertainty. Previously we discussed major risk factors commonly modelled 
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and construct straightforwardly conceivable scenarios of how these can be subject to both clas-

ses of uncertainty. An input distribution can “contain” both aleatoric as well as epistemic un-

certainty if the simulated variable is both stochastic in its realizations and knowledge about it 

is imperfect. 

1. Variable costs are amongst the most commonly modelled variables; aleatoric uncer-

tainty can stem from e.g. input cost factors, stochastic production processes etc.; epis-

temic uncertainty may stem from imperfect knowledge due to errors in cost accounting 

systems (e.g. Labro et al. 2007) 

2. Purchasing prices of input factors can fluctuate due to aleatoric uncertainty such as a 

stochastic commodity price process and simultaneously due to epistemic uncertainty if 

e.g. price negotiations are involved with unknown outcomes (that are still based on fluc-

tuating base rate prices) that represent epistemic uncertainty; this can be denoted as 

structural breaks where an input distribution that is undergoing structural change with 

imperfectly known consequences for the distribution’s parameters, as is common in 

simulation modelling (Barton et al. 2002) 

3. Demand factors are the third most commonly modelled risk factor whose variation can 

be driven by both sources of uncertainty, e.g. considering an aleatorically stochastic 

demand forecast that is subject to epistemic uncertainty in the form of measurement 

error in the data used to construct the forecast (Der Kiureghian et al., 2009)  

These examples underscore that both sources of uncertainty are common in the input modelling 

factors of simulations in corporate finance and accounting.  

For this application we assume that the risk factors modelled, that will be introduced below, are 

driven by both aleatoric and epistemic uncertainty. Further, we assume uncorrelated and nor-
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mally distributed aleatoric and epistemic uncertainty. The resulting compound distribution, ac-

counting for both sources of uncertainty, is also normally distributed with a strictly increased 

standard deviation of 8567869#: =	98;<=>?6@$5" + 8A8$B?=7$5" . Via this compound distribution, 

it is thus possible to calculate a simulation output that accounts for parameter uncertainty within 

the distributional assumptions of this example. This compound distribution simplifies the sim-

ulation model as it circumvents the need to run a nested model that is a feature of analyses 

concerned with capturing aleatoric and epistemic uncertainty in simulations (Henderson, 2003). 

Further, the assumption of normality allows us to fully define the input distributions by their 

first two central moments, its mean and standard deviation. A stylized visualization of the com-

pound distribution is shown in figure 15.  

 

Figure 14 - Compound uncertainty containing both aleatoric and epistemic uncertainty for a univariate normal distribution (Proba-

bility mass not normalized to 1 for illustrative purposes) 

The compound uncertainty leads to a strictly wider distribution in the input variates and there-

fore per the central limit theorem also to a higher level of variability in the simulation model. 

Per definition, epistemic uncertainty can theoretically be reduced through obtaining more ac-

curate information, though usually at a cost (Oberkampf, 2019) which would reduce the com-

pound uncertainty and lead to a narrower distribution in the stylized figure 15. As epistemic 
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uncertainty approaches zero, the compound uncertainty approaches the aleatoric uncertainty 

(see chapter 6). A key challenge with both aleatoric and epistemic uncertainty in a modelling 

context is touched upon in Oberkampf (2019): while it is necessary, for some purposes or ob-

jectives pertaining to the simulation model, to model both sources of uncertainty jointly, it may 

lead to simulation outputs with non-straightforward interpretations for other objectives. Relat-

ing this to the objective put forth by Lam (2016) and discussed above, for objective 1, quanti-

fying output uncertainty stemming from epistemic uncertainty, a separate modelling is neces-

sary whereas a joint modeling achieves objective number 2. The following two-staged simula-

tion model will encompass joint as well as separate modelling of both sources of uncertainty 

and show how simulation modelling can adequately capture this uncertainty.  

5.3.1 Bayesian updating with aleatoric and epistemic uncertainty 

In chapter 4 we did not distinguish between aleatoric and epistemic uncertainty but introduce 

this distinction here. We assume that the compound uncertainty as discussed in chapter 4 can 

be decomposed into aleatoric and epistemic uncertainty; the next section outlines this decom-

position and shows a derivation applicable here. The aleatoric uncertainty represents the vari-

ance of the modelled variable that we continue to assume fixed for the Bayesian updating. The 

epistemic uncertainty represents the uncertainty around the aleatorically stochastic input pa-

rameter, that we use for weighting in the updating process thereby reducing uncertainty. It is 

critical to emphasize that only the epistemic uncertainty shall determine the prior or new infor-

mation’s weight in the posterior due its information content and not the aleatoric uncertainty 

that represents mere variability. Here, it is of course critical to achieve consistent decomposition 

for all input sources contributing to the update as inaccurate approximation of epistemic and 

aleatoric uncertainty shares would imply skewed and inaccurate posterior parameter estimates 
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as we discuss further below. For the Bayesian updating we continue to assume conjugate prior 

distributions to the normally distributed input variates.  

5.3.2 Derivation  

After discussing epistemic and aleatoric uncertainty in this Bayesian context, we proceed to the 

core of this chapter, the derivation of the SOaR metric. The objective of the SOaR metric is to 

quantify the impact of epistemic uncertainty on simulation outputs whilst simultaneously mod-

elling aleatoric uncertainty. We define SOaR analogously to the definition of VaR from Jorion 

(2007): 

Simulation-Output-at-Risk is the maximum expected deviation of simulation outputs due to 

epistemic uncertainty that will not be exceeded with a low, specified probability.  

Analogously, we define: 

Conditional Simulation-output-at-risk is the average deviation of simulation outputs due 

to epistemic uncertainty beyond a low, specified probability threshold.  

Just like the definition of VaR, SOaR is nonconstructive as it specifies the properties of the 

metric, though not how it is derived. However, in a context of simulation modelling, one method 

is to run the simulation model itself with varying input parameterizations. Obtaining the (down-

side) SOaR metric via this method can be done in the steps outlined in Table 21: 

Table 21 - Step-by-step procedural approach for SOaR calculation 

Step  Procedure 

1 Derive stochastic input model (assuming known and non-stochastic functional form) 
2 Derive (or make assumptions for) aleatoric and epistemic uncertainty contribution to the compound uncer-

tainty input model and keep aleatoric uncertainty fixed 
3 Obtain threshold percentiles of the distribution of epistemic uncertainty at defined cut-off points, e.g. 5th 

or 95th; 1st or 99th etc.; ensure consistent modelling of ‘downside’ and ‘upside’ risk 
4 Run simulation model with fixed aleatoric uncertainty centered on its mean (corresponding to the mean or 

50th percentile of the epistemic uncertainty distribution) 
5 Run simulation model again with fixed aleatoric uncertainty though now centered on the pre-defined per-

centile of the epistemic uncertainty distribution thereby capturing the uncertainty related to epistemic un-
certainty at the corresponding percentile 

6 Calculate deviation in simulation output metrics between input modelling specifications to obtain the sim-
ulation output at risk per metric 



155 

 

Figure 16 visualizes how the SOaR parameterization relates to the full probability distribution 

of a modelled variate. The distribution on the left-hand-side is centered on the 5th percentile of 

the epistemic uncertainty distribution. It shows thus the downside deviation of the input mod-

elling variate that will not be exceeded with a probability of 5%. This distribution corresponds 

to a probability mass of 5% in the Bayesian sense  

 
Figure 15 – Epistemic uncertainty modelled on fixed percentile of the aleatoric uncertainty distribution for a univariate distribution 

For a multivariate distribution, one would estimate the threshold percentiles for the joint distri-

bution considering co-dependencies as we show in the application below.  

5.3.2 a) Variance decomposition 

In the case application we discuss here, SOaR is applied in a scenario where it is possible to 

approximate a variance decomposition via the method described below. To generalize the 

method, the question arises how simulation modelers shall apply the metric if this decomposi-

tion is not as straightforward as in the scenario below where a clear distinction of sources of 

uncertainty can be made. While decompositions, including the method presented below, are 

approximate and thus have inherent imperfections, they can still advance prudent simulation 

input modelling. Bayesian statisticians tend to favor approximations where precise sources of 
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information are unattainable. Further, in Bayesian contexts it is often viewed acceptable to work 

with assumptions, even if these entail imprecisions, where no data exists as echoed, e.g. in 

Bayesian methods in credibility theory (Bailey, 1950; Longley-Cook, 1962) where statisticians 

assume they are “not devoid of knowledge before acquiring data”. This is reflected in choices 

of priors that include “weakly informative” and “objective” or “uninformative” priors, a some-

what misleading name, that describes vague or imprecise prior knowledge (Jaynes, 2003) that 

is nonetheless a useful element in the Bayesian updating process to aggregate information. The 

objective of using less informative priors is referred to as regularization and prevents overfitting 

posteriors to data, or in this case expert opinion, and represents a standard approach in Bayesian 

modelling. This context notwithstanding, it remains a challenge to decompose variance pru-

dently and robustly. Bayesian estimation of posterior input modelling distribution is only accu-

rate if the decomposition of aleatoric and epistemic uncertainty can be considered consistent 

for all input sources of the updating process, in this case historic data and expert opinion. 

Henceforth, a short discussion follows of decomposition approaches for both empirical data as 

well as expert input, the two sources considered here.  

For expert input, one has to rely on the experts’ own estimation of the epistemic and aleatoric 

uncertainty shares of their estimates. Here again Cooke (1991) provides useful guidance in the 

discussion of expert calibration and especially normative goodness (Winkler & Murphy, 1968). 

Normative goodness refers to the consistency of an expert’s probabilistic estimates with general 

probability theory as opposed to substantive goodness that refers to actual subject matter ex-

pertise. As we discuss in the next chapter, normative goodness is critical in Bayesian updating 

based on expert opinion generally to ensure consistent estimation of posteriors. This extends 

further to self-assessed variance decomposition that requires experts to be able to distinguish 

sources of variance within their own estimates. This results in the need to increase awareness 
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and sensitize experts of the distinction, akin to de-biasing methods building onto creating 

awareness of cognitive biases, thereby counteracting it – a method that has been shown to be 

effective, though without necessarily reducing bias to zero (see next chapter). Note however 

that this is not a structural bias with a typically ‘known direction’, such as overconfidence, as 

it is not a priori known if experts tend to overestimate aleatoric or epistemic uncertainty shares. 

The challenge to rely onto experts’ self-assessment represents a limitation of this modelling 

approach.  

For historic data there is more flexibility of methods for variance decomposition as both expert-

based as well as empirical methods exist. One method, that we shortly touch upon here, is de-

composition purely via expert assessment. An expert’s estimate of the epistemological and ale-

atoric share of compound variance of empirical data may be imperfect however represents an 

improvement over otherwise available methods to quantify uncertainty. For this, it would be 

necessary to ensure a high level of statistical calibration on behalf of the expert, as discussed 

above. Variance decomposition via empirical data, as used in vector-auto-regressions (e.g. Lüt-

kepohl, 2005), can be applied if consistent interpretations of epistemic and aleatoric uncertainty 

exist, as in our example below.  

5.3.3 Case description 

We build here on the case example from chapter 4. This setting contains a natural extension 

that lends itself to an application of simulation output at risk. Here in fact, we model the Simu-

lation-Output-at-Risk for district heating rates that were introduced in the previous chapter. The 

entity in question still has two major locations / assets that provide, among other sources of 

revenue, district heating. While electricity and waste (for incineration) prices are equal across 

different asset locations, this is not the case for district heating for the entity in question. Prices 

per MW/h of district heating per location are correlated but can diverge substantially, even over 
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sustained periods of time. The entity in question had access to a forecast for average district 

heating rates for southern Germany, though not for each of the two areas it serviced. This fore-

cast for the whole region has proved to be reasonably accurate, superior to time-series auto-

regressive forecast models14.  

Hence, we treat uncertainty stemming from the (stochastic) average price rate for southern Ger-

many as aleatoric uncertainty and treat uncertainty stemming from the deviation from each 

location to this forecast as epistemic uncertainty. More precisely, we decompose the compound 

variance into its approximate constituent parts of aleatoric and epistemic uncertainty. The ale-

atoric uncertainty is approximated through the explained part of a linear regression of each 

location’s district heating price on average for Southern Germany whilst the epistemic uncer-

tainty is approximated by the residual sum of squares of the same regression (the full model of 

this derivation is provided in the appendix). This is mathematically equivalent to variance de-

composition as used in vector-auto-regressions (Lütkepohl, 2005).  

Here, the prior mean is based on a simple forecast model that uses the exogenous forecast of 

the Southern German average district heating price to model each location’s price based on a 

simple regression model. In this setting the resulting prior suggested a steep increase in district 

heating rates for the simulated one-year period. This prior represents one factor level in the 

simulation and is based on actual data from the application of the Bayesian input modelling 

method discussed in chapter 4. 

The prior is updated with new information in the form of expert opinion through Bayesian input 

modelling as shown in the previous chapter. Expert input was derived in the same format as in 

chapter 4 as we apply the equivalent context once more here. It is crucial to note here, that there 

was a discrepancy between the suggested prices for district heating based on the prior and the 

 
14 Straightforward regression analysis showed that this was in fact the case  
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expert opinion as shown in table 22. In other words, the prior suggested steep increases in prices 

whereas experts from the case company were less optimistic and cautioned against planning 

with prices based on these priors.  

Table 22 - simulation input modelling data for both stages of the simulation experiment 

A key deviation from chapter 4 is that we assume, as explained above, that we can differentiate 

aleatoric and epistemic uncertainty. Here only the epistemic uncertainty is interpreted as the 

uncertainty associated with the (data-based) prior and expert assessment and thus used for 

weighting in the updating process. The aleatoric uncertainty is assumed fix and compounded in 

a separate step. The posterior compound uncertainty is strictly smaller than its prior and thusly 

leads to a strictly reduced compound posterior uncertainty. 

Table 22 shows only the approximated epistemic variance per each variate, as we discussed 

above. This epistemic variance is used for weighting of input sources rather than the aleatoric 

variance, which is fixed, and shall not determine a sources’ weight in the posterior in this set-

ting. Note the uncertainty-reducing features of the Bayesian update: the posterior epistemic 

variance is strictly smaller than its priors. This is a salient feature of Bayesian statistics and the 

following application will underscore its benefits for simulation modeling under parameter un-

certainty.  

The case application described here, operates within the context of Bayesian updating assuming 

conjugate priors via expert opinion with aleatoric and epistemological uncertainty. Within the 

Bayesian updating process, we assume a fixed variance or standard deviation – though this 

assumption is not necessary and can be circumvented via Markov-Chain Monte Carlo methods. 

Parameter 
Prior 

Data (expert in-

put) 
Posterior 

Mean: District heating location 1 25,29 21,00 23,03 
Epistemic Variance: District heating location 1 3,34 3,00 1,58 
Mean: District heating location 2 36,03 25,00 32,00 
Epistemic Variance: District heating location 2 1,73 3,00 1,10 
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As discussed, this variance corresponds to the aleatoric variance rather than the epistemologi-

cal, which per definition cannot be fixed. This means, that input providing experts must be 

aware of the critical distinction of the two sources of uncertainty in the input model. For the 

weighting in the Bayesian update, only the experts’ epistemic uncertainty is elicited and re-

quired. The key objective remains eliciting the distribution’s mean as well as the uncertainty of 

this estimate, which in this case is restricted to the epistemological uncertainty pertaining to the 

expert themselves. As the aleatoric uncertainty is assumed fix, it can be based on data from the 

prior rather than needing to be estimated.  

To compute the SOaR metric, we model epistemic uncertainty at a pre-defined threshold point 

defined at 5%. As the two location’s district heating prices are correlated, we model a multi-

variate distribution and compute the 5th percentile of the epistemic uncertainty at their joint 

cumulative density function at equidistant points from their mean as measured in each process’s 

epistemic uncertainty. As district heating has an approximately positively linear effect on net 

income, we estimate the downside SOaR at the 5% level by running the simulation with a pa-

rameterization on the 5th percentile of the epistemic uncertainty distribution that we show be-

low. The derivation for cSOaR is slightly different as it builds onto parameterization not at the 

threshold but rather along the average parameterization below the defined threshold that we 

show below in the case application as well. 

An extension of this model could assume the input modelling distribution’s aleatoric variance 

not fixed and incorporate the expert’s estimate of the aleatoric variance into the posterior of the 

epistemic variance. This would work analogously to the input modelling specification described 

in the appendix to chapter 4.  
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5.3.4 Simulation model and DoE protocol  

We extend the application from chapter 4 to capture how SOaR will be applied in a two-staged 

model, the first stage is a 1x2 experimental design and the second is a 2x2 experimental design. 

We present the analysis of Simulation Output at Risk based on a further development of the 

application from chapter 4 of a simulation model in the context of a decision-making scenario 

in a corporate finance setting. It must be noted however, that while the application is based on 

an actual case application of the method, the SOaR metric was not used in this context.  

I: Formulate objective of simulation experiment 

The objective of this simulation model is twofold. Firstly, the first and second stages both show, 

in distinct form, the uncertainty-reducing properties of Bayesian updating for simulation input 

modelling with aleatoric and epistemic uncertainty. Thereby, addressing both objectives of 

quantifying parameter uncertainty put forth by Lam (2016). Secondly, the second stage of this 

simulation model introduces the calculation of the SOaR metric within this Bayesian modelling 

context. For stage I, the parameterization and thereby factor levels are illustrated graphically in 

figure 17:  
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Figure 16 - Stage I of the simulation model 

The posterior epistemic uncertainty is reduced due to the Bayesian update, leading to a lower 

compound variance, as well as an expectation of lower variation in the simulation model output.  

Joint modelling however, precludes distinguishing the two types of uncertainty, representing a 

potential shortcoming of the modelling approach depending on the purpose and objective of the 

simulation model (Oberkampf, 2019). Stage I with its joint modelling of epistemic and aleatoric 

uncertainty seeks to achieve Lam’s (2016) second objective. 
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We will seek to overcome this limitation in stage II of the model through the SOaR metric as 

well as conditional SOaR. The objective of stage II of the model is to introduce the Simulation 

Output at risk metric in a setting of Bayesian updating as illustrated in figure 18:  

 
Figure 17 – Representation of stage II of the simulation model with prior and posterior epistemic and aleatoric variances simulated 

independently  

The input modelling of stage II of the simulation model models epistemics and aleatoric uncer-

tainty separately and through centering the fixed aleatoric uncertainty along different percen-

tiles of the prior and, strictly lower, posterior uncertainty, captures the effect of each source of 

uncertainty.  

Here we will show several of the desirable properties of the SOaR metric including distinguish-

ing aleatoric and epistemic uncertainty and its straightforward communication. This contribu-

tion then underscores unequivocally one of the salient properties of Bayesian input modelling, 

its uncertainty reducing features, which are illustrated through the SOaR metric and go beyond 
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the benchmarking of chapter 4 by establishing its superiority in this setting of joint modelling 

of epistemic and aleatoric uncertainty. 

II: Classification of variables 

The classification of variables follows to some extent the previous chapter, we thus show only 

were we deviate from the corresponding table shown in chapter 4. In fact, only the dependent 

variables change in this classification of variables. 

Table 23 - Classification of dependent variables for stage I & II (independent and control variables equivalent to chapter 4) 

As response variables we choose a similar set of metrics as in chapter 4 if they have straight-

forward interpretations for the compound modeling of epistemic and aleatoric uncertainty. For 

Earnings-at-risk we also show its conditional variation, conditional-earnings-at-risk. One ex-

ception is that we do not show Earnings at risk metrics for simulation models with input distri-

butions of district heating rates centered on the 5th percentile of the epistemic uncertainty dis-

tribution. These do not have straightforward frequentist statistical interpretations and would 

require additional simulation models of the aleatoric uncertainty centered along all percentiles 

of the epistemic distribution which would be tantamount to running a model with fully com-

pounded input distributions as in stage I of the simulation experiment. In addition, we include 

dependent variable IV, standard deviation of net income, that highlights the uncertainty-reduc-

ing properties of Bayesian updating. We do not include the dependent variable “probability to 

incur losses” as this risk is quite low due to the expectation of increasing district heating rates. 

III: Definition of response variables and factors 

Stage I: Dependent variables Stage II: Dependent variables  

I) Earnings-at-risk at 5%  

I) Net income (with epistemic variance centered at dif-
ferent percentiles of the aleatoric uncertainty distribution 
to calculate Simulation-output-at-risk) 

II) Conditional Earning-at-risk at 5% 
II) Earnings-at-risk at 5% (only for input distribution 
centered on 50th percentile) 

III) Net income  
IV) Standard deviation of net income  
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We show here the response variables and factors for stage I and II respectively. Table 24 shows 

independent variables, factors and factor level ranges for stage I.  

Table 24 - Definition of independent variables, factors, factor levels for stage I 

Note that in the factor level range for the independent variable we vary the input model used 

for the standard deviation. In the first factor level we compound the assumed fixed aleatoric 

variance with the prior of the epistemic variance whereas in the second we use the strictly re-

duced Bayesian posterior of the epistemic for compounding. This is predicted to lead to a nar-

rower range of response variables of interest.  

For stage II the independent variables and factors are shown in table 25. As we model only 

fixed aleatoric uncertainty through the independent variates’ standard deviation in all factor 

levels, the standard deviation of the input price distributions becomes a “mere” control variable. 

Epistemic uncertainty is modelled through centering of the mean along thresholds of the epis-

temic uncertainty distribution and is thus an independent variable however modelled via the 

mean of the price input distributions.  

Table 25 - Definition of independent variables, factors, factor levels for stage II 

Stage I: Independent variable Factors Factor level range 

Mean of District heating prices lo-
cation 1 

Input modelling method {Prior, Posterior} 

Standard deviation of District heat-
ing prices location 1 

Input modelling method {Prior (compound of aleatoric, prior epistemic), 
posterior (compound of aleatoric, posterior epis-
temic)} 

Mean of District heating prices lo-
cation 2 

Input modelling method {Prior, Posterior} 

Standard deviation of District heat-
ing prices location 2 

Input modelling method {Prior (compound of aleatoric, prior epistemic), 
posterior (compound of aleatoric, posterior epis-
temic)} 

Stage II: Independent variable Factors Factor level range 

Mean of District heating prices lo-
cation 1 

Input modelling method {Prior (centered on 50th percentile of epistemic 
uncertainty distribution), posterior (centered on 
50th pctl.), prior (centered on 5th pctl.), posterior 
(centered on 5th pctl.)} 

Mean of District heating prices lo-
cation 2 

Input modelling method {Prior (centered on 50th percentile of epistemic 
uncertainty distribution), posterior (centered on 
50th pctl.), prior (centered on 5th pctl.), posterior 
(centered on 5th pctl.)} 
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The response variables for both stage I and II are the standard deviation of net income and the 

Simulation Output at Risk respectively. Throughout this simulation we keep the input model-

ling parameters for waste and electricity prices unchanged (i.e. we model their stochastic effect, 

though do not change their factor levels) at its prior values to isolate the effect of modelling 

choices around district heating rates. The priors for independent variables are based on the OLS-

regression model analogous to the one used for the variance decomposition and further elabo-

rated upon in the appendix.  

The SOaR method allows us to model aleatoric uncertainty while keeping epistemic uncertainty 

fixed at pre-defined points (50th and 5th percentile of the distribution of district heating prices). 

Note that the aleatoric uncertainty, in this set of assumptions, is not altered through the updating 

process and we thus consider the aleatoric variance fixed throughout the scenarios of the second 

stage of the simulation experiment for highlight the effects of epistemic uncertainty that is in 

fact altered through the Bayesian update. The key response variable is then defined as the dif-

ference in the output variable(s) of interest between the simulation points on the epistemic un-

certainty distribution.  

IV: Selecting a factorial design 

As each input modelling choice represents an independent factorial design we cannot model 

interaction effects as would be common in more complex simulation experimental settings 

(Kelton et al. 2000). Thus, the factorial design is straightforward as we model each factorial 

design independently as is common in related benchmarking simulation experiments (e.g. We-

ber, Schmid, Pietz & Kaserer, 2011). Hence for stage I there is a 2x1 factorial design, as well 

as for stage II both modelling the effects of the two factor levels: input modelling based on the 

Bayesian prior and posterior parameter estimate.  
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V: Estimation of experimental error variance  

As the model follows an analogous structure to the simulation model in chapter 4, we do not 

show the coefficient of variation and standard deviation of simulated net incomes as the graphs 

are almost equivalent. We run again 100,000 simulations per factorial design.  

VI: Simulation experiment 

We build again on the model developed for chapter 4 and run it in the Crystal Ball simulation 

environment and run the model as per the defined number of simulation runs from the analysis 

of experimental error variance. Beyond the basic analysis provided through Crystal Ball, it is 

also possible to extract the full experimental data set to run further advanced analyses that we 

discuss below.  

VII: Analyzing effects 

Table 26 shows the dependent and response variables for stage I of the simulation model. 

Table 26 - Dependent/response variables stage I 

 

As expected the Bayesian posterior input model leads to linearly reduced expected average net 

income as well as a risk of lower earnings per the Earnings-at-risk metric because the expecta-

tions from experts on price developments of district heating rates were less optimistic than the 

prior. The reduced modelling uncertainty through the lower epistemic uncertainty can already 

be observed here through the difference between dependent variables III vis-à-vis dependent 

variables I and II. Unconditional earnings-at-risk for the factor level parameterized based on 

the Bayesian prior deviate Mn 3.23€ (Mn 7.30€ -Mn 4.07€) from the corresponding mean net 

Factor levels 
Dependent variable 
I: Earnings-at-risk 

5% 

Dependent variable 

II: Conditional-
Earnings-at-risk 

5% 

Dependent variable 
III: Average net in-

come 

Dependent variable 
IV: Standard devia-

tion of net income 

Factor level 1: 
Prior Mn 4.07€ Mn 3.25€ Mn 7.30€ Mn 1.96€ 

Factor level 2: 
Bayesian Poste-
rior 

Mn 2.81€ Mn 2.09€ Mn 5.71€ Mn 1.76€ 
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income (conditional EaR: Mn 4.05€) whereas the factor level based on the Posterior deviates 

Mn 2.89€ (conditional EaR: Mn 3.62€) thereby highlighting the reduced variability of depend-

ent variable III, average net income. This is of course underscored in dependent variable IV 

which shows reduced standard deviation of net income.  

The output for stage I of the simulation model shows the joint modelling of epistemic and ale-

atoric uncertainty thereby achieving Lam’s (2016) second objective. However, as stated above, 

this model does not enable us to differentiate the two sources of uncertainty. We observe dif-

ferent variances of the output variables, yet the sources of the uncertainty cannot be decom-

posed as the input distributions are already compounded.  

 

Figure 18 - Scaled Density functions for stage I of the simulation experiment 

Figure 19 visualizes the probability distributions of net income simulations based on both input 

modelling methods of stage I. To improve readability of overlaying density plots, we trans-

formed the discrete histograms into approximate PDFs along 100 intervals of width €181,042. 

Visual inspection confirms a continuous distribution without non-linearities, thereby ensuring 

that the estimation of SOaR is indeed valid here. The first salient feature of this simulation 

model is the uncertainty reducing effect of Bayesian updating that we observe. The distribution 
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of net incomes based on Bayesian updating is narrower due to this reduced uncertainty. This is 

further illustrated through confidence intervals shown in figure 20.  

 

Figure 19 - Simulation-based Confidence intervals of expected net income for stage I and II 

Through the Bayesian update we reduce epistemic uncertainty by leveraging all available in-

formation in the prior as well as the expert opinions. In the simulation model output this can be 

observed through a reduced compound variance consisting of the fixed aleatoric and the re-

duced epistemic variance. The result is a narrower distribution of net income and adjacent met-

rics in the second factorial design. This is an important result as it represents a methodologically 

robust way to reduce overall or compound uncertainty through reducing epistemic uncertainty 

within the assumptions of this model.  

Table 27 shows the dependent and response variables for stage II of the simulation model. 
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Table 27 - Response variables for second stage of the simulation model 

Table 28 shows the calculation of the simulation output at risk metric for the input models based 

on the prior as well as the Bayesian posterior based on the four factorial designs.  

Table 28 - Simulation output at risk estimation 

In short, this metric now allows a straightforward communication of modelling risk in terms of 

the response variable of interest in the simulation output. It follows the following statement 

than now communicates epistemic uncertainty in one variable.  

“Based on input modelling following the prior (posterior), the maximum expected down-

side deviation of simulation-based net income forecasts due to epistemic parameter uncer-

tainty that will not be exceeded with a probability of 5% is Mn 1.97€ (Mn 1.43€)” 

An alternatively specification reads: 

“Based on input modelling following the prior (posterior), the probability with which net 

income will fall short of Mn 5.31€ (Mn 4.29€) due to epistemic parameter uncertainty is 

5%”  

In addition, Figure 21 shows the probability density functions of all four input modelling 

choices of stage II.  

Factor levels 
Response variable I: av-

erage net income 

Response variable II: 

Earnings-at-risk 5% 

Response variable III: 

conditional Earnings-at-

risk 5% 

Factor level 1: Prior at 
50th percentile Mn 7.30€ Mn 4.81€ Mn 4.15€ 

Factor level 2: Prior at 
5th percentile  Mn 5.33€ N.A. N.A. 

Factor level 3: Bayesian 
posterior at 50th percen-
tile  

Mn 5.72€ Mn 3.21€ Mn 2.59€ 

Factor level 4: Bayesian 
Posterior at 5th percentile Mn 4.29€ N.A. N.A. 

Factor levels 
Response variable I: net 

income 5th percentile 

Response variable I: net 

income 50th percentile 

Delta between 50th and 

5th percentiles (column 
3- column 2) 

Prior  Mn 5.33€ Mn 7.30€ Mn 1.97€ 
Bayesian Posterior  Mn 4.29€ Mn 5.72€ Mn 1.43€ 



171 

 

 
Figure 20 - Probability density functions of stage II 

As above we show the simulated net incomes in the form of approximated probability density 

functions to improve readability and show percentiles of the distributions. The distribution col-

ored in lighter shades correspond to those with input distributions centered on the 5th percentile 

of the epistemic uncertainty distribution. The visual interpretation is, that there is a 5% chance 

that epistemic uncertainty about the aleatoric variability of input distributions leads to downside 

deviations from the aleatoric uncertainty at least as extreme as this distribution. Hence, this 

distribution has a probability mass as understood in the Bayesian sense of 5%, we show it here 

scaled to the same magnitude as the other distributions to improve comparability.  

5.3.5 Discussion of modelling properties 

Henderson (2003) discusses various methods for dealing with parameter uncertainty and de-

fines four requirements: transparency, validity, implementability as well as efficiency. We 

shortly discuss this illustration of the SOaR metric along these dimensions.  

• In the context of aleatoric and epistemic uncertainty, SOaR can create transparency 

between these sources of uncertainty in a straightforward manner. Further, its simplicity 

of capturing parameter uncertainty contributes to its transparency.  
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• This metric’s validity can be ensured as it is based on a set of foundations in simulation 

modelling and Bayesian statistics that provide a solid footing of the method as long as 

the underlying set of assumptions, as discussed above, is satisfied and if the output dis-

tribution has an approximately normal shape. 

• Implementability is a key focus of the method that can be implemented without signif-

icant computational expense beyond the simulation model. This however would change 

if assumptions such as conjugate prior distributions would not hold necessitating Mar-

kov-Chain-Monte-Carlo methods for the Bayesian update. Again, within the assump-

tions discussed, this method is designed to be straightforwardly implemented.  

• Efficiency in the computational sense is assured through the low computational expense 

incurred in the implementation as shown here. This, however is again dependent on the 

assumptions of the model.  

In short, this application of the SOaR metric appears to fulfill the basic requirements put forth 

by Henderson (2003). It must be noted, however, that this is a stylized application with the 

intention of illustrating the method. Several assumptions may not hold in other scenarios. For 

instance, the SOaR metric, as shown here, can only be applied if an approximated decomposi-

tion of aleatoric and epistemic uncertainty is feasible. As pointed out above, this is a strong 

assumption as evidenced by the fact that simulation models do not necessarily distinguish the 

source of uncertainty (Henderson, 2003; Hofer et al., 2002). Further, the assumption of conju-

gate priors does not always hold leading to considerably larger computational effort and re-

duced implementability and efficiency in the Bayesian updating part of this method. Finally, as 

any method that rests on elicitation of subjective probabilities and distributions, this method 

will be subject to the risk of residual cognitive bias, notably overconfidence/-precision bias, 
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that cannot be guaranteed to be fully eliminated regardless of the sophistication or thoroughness 

of the de-biasing strategy (Cooke, 1991; see discussion in next chapter).  

Beyond the assumptions, that may not hold, there are limitations to the methods. Similar to 

Value-at-risk, using a single metric to communicate risks or variability has drawbacks as irreg-

ular distributions, that do not belong to the known families of distributions, pose a challenge to 

SOaR as the extreme tails of the distribution beyond the cut-off thresholds (e.g. 5%) are not 

necessarily modelled (Einhorn & Brown, 2008). This includes asymmetric, discontinuous, non-

parametric or otherwise irregular distributions. SOaR can be error prone for models or applica-

tions containing non-linearities or optionalities as these can lead to discontinuous distributions 

of output variables. While conditional-SOaR alleviates this shortcoming, it does not rule out 

vulnerability entirely as the tails of simulated distributions depend on potentially error-prone 

tails of input distributions. While both VaR and SOaR can be calculated correctly from an ana-

lytical standpoint, distributional irregularities can invalidate the interpretation of the metric be-

yond the thresholds. Put simply, downside risk can be unpredictable beyond defined thresholds 

and this is exacerbated by discontinuous distributions. This can partially be addressed through 

visual inspection of probability density functions of response variables.  

5.4: Discussion and Conclusion 

SOaR enables simulation modelers to communicate modelling risk stemming from stochastic 

input parameters in this simulation setting in a corporate finance and accounting context. In this 

Bayesian setting, it further highlights the uncertainty-reducing properties of Bayesian input 

modelling. The method generally fulfills the requirements of methods seeking to capture input 

modelling uncertainty, however it is dependent on several assumptions that are critical to this 

assessment. We propose to include this metric into the communication of simulation experi-

ments’ treatment of parameter uncertainty.  
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Future research could delve into the following topics. Contingent non-linearities are not 

straightforwardly described with the SOaR metric. Contingent non-linear effects can emerge 

through various channels like explicit modelling of future decisions based on future develop-

ments of unpredictable variables within contractual obligations or real options analysis. Result-

ing distributions can be non-continuous or of non-parametric shape with the resulting problems 

mentioned above. Future research could describe the resulting effects in further depth or offer 

metrics that can more accurately capture simulation risk for non-parametric distributions.  

Generally, this method can be extended to additional distributions straightforwardly. It would 

be of interest to simulation modelers to observe how to design input thresholds for compound 

distributions of, e.g. compounds of binary distributions such as a Poisson process with normal 

or log-normal distributions and thereby extend SOaR to this environment. Further, Variance 

decomposition is critical to accurate modelling of SOaR and represents a viable area for future 

research, particularly the elicitation of variance shares.  

In more complex experimental designs, simulations can result in emergent effects or behaviors 

that depend on specific input parameter values, especially in fields such as Agent-Based-mod-

elling (Miller & Page, 2009). Some effects may only occur if input parameters are within spe-

cific ranges or exceed some threshold value. Thus, the uncertainty of input values can be con-

sidered of high importance for Agent-based modelling as the occurrence of emergent effects 

may be affected by uncertainty of parameter values. The approach described above may not be 

able to capture non-linear effects like these, thus calling for a different quantification of simu-

lation input modelling risk.  
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Chapter 6: Bayesian input modelling desiderata 

6.1: Introduction  

Bayesian updating for simulation input modelling has several desirable properties for simula-

tion input modelling as the previous chapters showed. However, various other factors deter-

mine in how far these properties come to bear or even raise new challenges. This chapter fur-

ther analyzes the method under a broad set of circumstances and conditions and discusses 

counterarguments against the method, common challenges in simulation input modelling and 

how Bayesian updating copes with these. Where previous chapters introduced and illustrated 

the method, Chapter 6 provides a sensitivity analysis of the behavior or performance of 

Bayesian updating for simulation input modelling under challenging and general though still 

practically relevant circumstances. Through literature analysis and empirical modelling, we 

discuss the circumstances in which the method is fulfilling the input modelling desiderata 

along which the argument is structured. 

This chapter is structured in three parts. The first section establishes a set of criteria, input 

modelling desiderata, that can be used to assess the properties of input modelling and reflect 

the various trade-offs within the assessment of input modelling methods. The second section 

derives the challenges to Bayesian simulation input modelling if, in addition to data, one ex-

pert provides input. Based on the challenges derived, individual methods like modelling and 

literature analysis are used to analyze the properties of simulation input models based on 

Bayesian updating. In this second section, we also analyze the behavior of input parameters 

with different assumptions on the prior and data used for the Bayesian updating. The third 

section analyzes challenges arising if multiple experts provide input.  

We conclude that simulation input modelling based on Bayesian updating fulfills several in-

put modelling desiderata and thus presents a useful addition to a simulation modeler’s toolkit. 
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However, there are challenges that can adversely affect this method and could result in inac-

curate parameter estimates where the necessary assumptions of this method are not met. 

Therefore, the method must be applied prudently and thoroughly.  

6.2: Analysis and Results 

Formally we structure the analysis along a derivation of input modelling desiderata followed 

by an analysis of challenges with at first one expert and then multiple experts.  

6.2.1 Simulation input modelling desiderata  

We define what properties the ideal input modelling method shall have. The literature on in-

put modelling methods provides clear guidance here, although there is some discrepancy as to 

the priorities put forth to evaluate input modelling methods. In the preceding chapter Hender-

son’s (2003) four criteria were already briefly mentioned: transparency, validity, implementa-

bility as well as efficiency. Johnson & Mollaghasemi (1994) discuss desiderata for simulation 

input modelling methods that go beyond the objective of accurately capturing a physical phe-

nomenon: physical plausibility, flexibility, generality, legal precedence, ease and efficiency of 

parameter estimation as well as ease and speed of variate generation. The latter two overlap 

with Henderson’s efficiency desideratum. Table 29 shows their overlap: 

Table 29 - Input modelling desiderata per Henderson (2003) and Johnson & Mollaghasemi (1994) 

 

 

 Source 

Desideratum Henderson, 2003 Johnson & Mollaghasemi, 1994 

1. Transparency Yes No 
2. Validity Yes No 
3. Implementability Yes No 
4. Physical plausibility  No Yes 
5. Ease and efficiency of parameter estimation Yes Yes 
6. Ease and speed of variate generation Yes 
7. Flexibility  No Yes 
8. Generality No Yes 
9. Legal precedence No Yes 
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6.2.1 a) Transparency 

Transparency here refers to the objective that a method “shall be understood by its users” 

(Henderson 2003). Despite the emphasis on making the method accessible, Bayesian updating 

builds on statistical methods that may not be accessible to all simulation modelers. It may yet 

still be possible to apply the method even without full grasp of the underlying statistics, 

though this raising risks of methodological errors in the implementation. This does, however, 

represent a restriction and potentially a barrier to the diffusion of this input modelling method.  

6.2.1 b) Validity  

Bayesian updating and its application to simulation input modelling as described in the con-

text of chapter 4 rests on solid technical foundations ensuring its general validity. It remains 

however necessary to ensure that none of the assumptions underlying the method are violated 

if it is to be applied.  

6.2.1 c) Implementability  

This refers to the desideratum that a method shall be implementable for a variety of chal-

lenges without the need the for “expert intervention” (Henderson, 2003). As this chapter 

shows, Bayesian updating can be implemented in a variety of settings despite existing chal-

lenges within these settings. However, Bayesian updating entails information gathering re-

quirements that may go beyond what simpler input modelling methods require, especially re-

garding the quantification of uncertainty within the elicitation of expert opinion and beyond.  

6.2.1 d) Physical plausibility 

Physical plausibility is achieved if a model parameterization or its method accurately captures 

the physical properties of the modelled process (Johnson et al., 1994). Through the assump-

tion of conjugate priors, the updating process does not alter a variate’s distribution and 

thereby its physical plausibility. It remains, however, important that the prior already takes a 
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shape that is physically plausible. More generally, without the assumption of conjugate priors, 

the posterior can take on many distributional shapes and is thus flexible to achieve physical 

plausibility conditional on all available data and the prior. As Bayesian updating is flexible in 

its choice of distribution (Lynch, 2007) there is no general limitation to physical plausibility 

of the method.  

6.2.1 e) Ease and efficiency of parameter estimation 

This desideratum refers to the ease and efficiency with which parameters can be precisely es-

timated. Parameter estimation is analogous to data-driven or expert based methods that rely 

on a single data source and thus Bayesian input modelling does not affect this input modelling 

desideratum beyond the requirements of its simpler constituent input parts. The only re-

striction is the aforementioned information requirement during the updating process. 

6.2.1 f) Ease and speed of variate generation 

Some “esoteric” (Johnson et al. 2004) distributions do not generate variates efficiently consti-

tuting a computational downside, however of decreased importance with faster computers. 

Yet, as Bayesian updating does not tamper with the distribution but rather it’s parameteriza-

tion, it does not affect the ability to generate variates from an updated distribution.  

6.2.1 g) Flexibility 

Here flexibility refers to a modelling method having exceptional cases or additional varia-

tions. Again, as Bayesian updating is possible for a variety of distributions (Lynch, 2007) the 

method is flexible with respect to various distributional shapes. However, the necessary as-

sumptions for the closed form solutions are curtailing flexibility by limiting its scope. For ex-

ample, no conjugate prior exists for the Weibull distribution if both the scale and shape pa-

rameter are unknown. Yet through the application of Markov-Chain-Monte-Carlo methods, 

this limitation can be overcome. 
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6.2.1 h) Generality 

Generality refers to the ease with which a parameterization can be transformed from univari-

ate to multivariate. Extending parameter estimates to multivariate settings was not treated in 

chapter 4. Generally, multivariate normal posteriors exist (Marin & Robert, 2007) and can be 

updated through new data. However, for more complex multivariate distributions the full 

proofs are not always available, necessitating a derivation of and solution to the likelihood 

function to derive the posterior and its parameters.  

6.2.1 i) Legal precedence 

Legal precedence refers to previous use by reputable sources. Following these may give cre-

dence to the choice of a distribution beyond its practical merits and the above desiderata. 

While precedence should not drive the choice of a distribution, Johnson et al. point toward the 

importance of being able to communicate and defend the method or distribution. As the litera-

ture review in the previous chapter showed, there is some precedence for related methods that 

show how Bayesian updating can be applied for data aggregation and in simulation environ-

ments.  

In conclusion, the short discussion along these nine simulation input modelling desiderata re-

veals a favorable view on Bayesian input modelling. However, Bayesian input modelling is 

limited in terms of its transparency, implementability, generality as well as legal precedence.  

6.2.1 j) Alternative desiderata for simulation input modelling 

As a further robustness check we analyze alternative sets of desiderata. Schmeiser argues for 

three criteria to evaluate input distributions (Fox et al. 1990): generality, ease of generating 

variates and ease of parameter estimation. In the same source, Wilson argues for a set of six 

properties of input distributions: flexibility (of shape), generalizability in one dimension, ex-
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tendibility to higher dimensions / multivariate distributions, tractability, good parameteriza-

tion and ease of variate distributions. These criteria appear generally in line with the above 

discussed, however are designed to evaluate distributions directly rather than input modelling 

methods. For completeness, we provide a short perspective of the two properties not included 

above.  

Flexibility of shape. 

Input models that are flexible in shape accommodate markedly different distributional shapes 

in a stable distributional family (Fox et al. 1990). Again, Bayesian updating for simulation in-

put modelling is flexible with regard to the use of distributions and does not alter a distribu-

tion’s shape beyond the updating process thereby allowing flexibility of shape within one dis-

tributional family as well as beyond.  

Good parameterization. 

Here, Wilson refers to interpretable parameters that govern separable properties of a distribu-

tion (Fox et al. 1990). This argument holds here again, as the method as used here does not 

affect a distribution’s shape and thus does not affect the property of good parameterization.  

6.2.2 Challenges with a single input providing experts 

In the following we discuss challenges using Bayesian input modelling with one expert in-

cluding cognitive biases, dishonest experts, organizational bias, elicitation of non-parametric 

distributions and resulting input parameter surfaces. 

6.2.2 a) Cognitive Bias 

Cognitive bias can represent a challenge in simulation input modelling when working with ex-

pert judgment (Cooke, 1991; Meyer, Grisar & Kuhnert, 2011; Vose, 2008) despite existing 

de-biasing methods. We seek to understand in how far such de-biasing strategies are compati-
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ble with and should be used complimentarily with Bayesian updating. There is a solid theoret-

ical foundation for the prevalence of cognitive biases in general and their impact on simula-

tion input modelling. Experts can be subject to a range of well-documented biases (Kahneman 

& Tversky, 1972). These biases include anchoring (Tversky and Kahnemann, 1974), overcon-

fidence (Brenner, Koehler & Libermann, 1996), availability and representativeness heuristics 

(Vose, 2008) and others reviewed in Tversky (1982). Kahnemann and Tversky suggest that 

biases arise because people deviate from a calculating approach to decision making and de-

cide based on simple cognitive heuristics. Besides these generally well-established cognitive 

biases, simulation input modelers are faced with a related though overlapping challenge that 

arises when people deal with probabilities, distributions and related concepts. Spiegelhalter, 

Pearson & Short (2011) discuss biases in probability judgment and confidence intervals that 

seem to amplify existing cognitive biases. Low level of numeracy and statistical literacy have 

been shown among experts that translate into inaccuracies when quantifying stochastic varia-

bles (e.g. Fagerlin, Ubel, Smith & Zikmund-Fisher, 2007; Spiegelhalter et al., 2011). Exper-

tise in one subject domain does not preclude risks of inaccurate translation of expertise into 

probabilities and distributions. 

When discussing cognitive biases in the context of probability or distributional judgment, 

there is a helpful dichotomy between normative and substantive goodness (Winkler & Mur-

phy, 1968). The former describes how well an expert’s estimate fits with probability theory 

and is conceptually distinct from the latter that concerns the expert’s subject matter expertise. 

As introduced in the preceding chapter, normative goodness refers to how well an expert can 

translate their subjective probability believes into numerical quantities whereas substantive 

goodness refers to the expertise itself. The following discussion emphasizes biases affecting 

normative goodness due to its structural effect on Bayesian estimation via its effect on self-
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assessed statistical confidence, further discussion of de-biasing methods to improve substan-

tive goodness can be found in Soll, Milkman & Payne (2014). 

Biases can be counteracted through ex-ante and ex-post methods. Ex-ante methods attempt to 

counteract the bias of the subject by e.g. making it aware of its bias and let it correct such be-

havior or questioning strategies as judgment is elicited. Ex-post methods on the other hand try 

to eliminate bias from judgment after they provided estimates. The larger part of the literature 

on counteracting bias “centers on improving the elicitation process and countering bias a pri-

ori” (Meyer, Grisar & Kuhnert, 2011; McClelland & Bolger, 1994), in other words ex-ante. 

Pivotal elements of ex-ante de-biasing methods are training and calibration through repeated 

feedback on experts’ assessments (Jolls & Sunstein, 2006). Welsh, Begg, Bratvold & Lee 

(2004) provide an ex-ante de-biasing strategy for the oil and gas industry where capital com-

mitments depend on expert judgments of probabilities relating to efficiency of oil wells. They 

suggest a strategy that recognizes experts’ tendency to think in terms of heuristics rather than 

probabilities. This reasoning has also been proposed by Gigerenzer (1991) to provide a more 

“ecologically consistent” environment closer to the expert’s experience than questioning tech-

niques that may be beyond the expertise of the experts interviewed. Remarkably similar meth-

ods have been applied by the experts interviewed for chapter 3, notably without their explicit 

knowledge that these are well-established methods indeed. Ex-ante de-biasing also entails the 

method applied for expert elicitation in the case study of chapter 4 based on Winman, Hans-

son & Juslin (2004, see chapter 4 or appendix). This method has been confirmed by Teigen & 

Jørgensen (2005). Yet it must be stressed that ex ante de-biasing strategies have not proven to 

fully eliminate bias (Morgan, Henrion & Smal, 1992). More generally, sophisticated expert 

judgments and simulation models are usually not needed for situations where well-calibrated 

experts are plentiful but rather in situations that go beyond the “day-to-day experience” 
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(Clemen & Lichtendahl, 2002) as calibration is task and context dependent (Klayman, Soll, 

González-Vallejo & Barlas, 1999). Hence, the effectiveness of ex-ante de-biasing is limited as 

many methods are not applicable due to lacking expert calibration or may risk residual bias. 

Ex-post de-biasing methods have been applied in simulation modelling to reduce the impact 

of cognitive bias by Meyer et al. (2011). They show how biases can lead to inaccurate expert 

judgments and that such biases are non-additive and simple de-biasing strategies are often in-

sufficient to fully eliminate bias leading to potential underestimation of risk in aggregate. We 

conclude that despite the merits of ex-ante and ex-post de-biasing methods, cognitive biases 

remain a challenge that merits further discussion.  

Overconfidence has been considered the most important cognitive bias when eliciting infor-

mation from experts (Cooke, 1991; Plous, 1993; Meyer et al., 2011) and a challenge to expert 

opinions (Vose, 2008). Overconfidence bias takes different shapes, the one we are concerned 

with here is overprecision15, its most predictable (Moore & Healy, 2008) and persistent 

(Capen, 1974) manifestation that affects primarily normative goodness or calibration. Statisti-

cal calibration is a quality of experts not closely correlated with their level of expertise that 

has been shown to be worse for questions considered difficult (Cooke, 1991). Simulation 

studies tend to be conducted in non-standard situations (Barton et al., 2002; Clemen et al., 

2002) thereby adding to the difficulty of achieving calibration via training.  

Overprecision or expert calibration thus has a structural effect on Bayesian updating through 

the expert’s quantification of their estimate’s uncertainty. Experts providing confidence inter-

vals for a variate consistently estimate these intervals too narrowly implying “excess cer-

 
15 The other two are overestimation (deeming one’s skills better than they factually are) and overplacement (deeming one’s 

performance better than it is relative to others) and do not directly affect the arithmetic mechanics of Bayesian updating 
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tainty” (Winman et al., 2004; Alpert & Raiffa, 1982). By construction, the width of a confi-

dence interval is inversely proportional to its variance. Due to variance-weighting in the ag-

gregation process an input source is assigned weight per its perceived certainty and thus over-

confidence bias causes artificially high decision weights in the Bayesian posterior. To coun-

teract this effect, we briefly review three methods:  

• With ample access to experts, one shall obtain individual calibration scores (Cooke, 

1991) that are preferable to generic adjustments as overconfidence bias varies (Klay-

man et al., 1999).  

• With less access, one shall de-bias according to the literature, e.g. per Winman et al. 

(2004) as discussed in previous chapters and the appendix.  

• If only confidence intervals are provided, self-assessed variances shall be adjusted up-

wards to de-bias overprecision. Teigen et al. (2005) find that 90% confidence intervals 

typically have a 50% or even lower chance of containing the “correct” value, approxi-

mately consistent with other studies (e.g. Alpert et al. 1982). Note, that the implied up-

ward adjustment of the variance is of a factor of 2.44 based on the ratio of z-scores of 

the 50% and 90% confidence intervals and thus implies a sizable underestimation of 

uncertainty. We provide a table of adjustment scores for over- and underconfidence:  

For a Gaussian, a confidence interval is calculated as standard deviation*z-scoreα, for 50% 

and 90% intervals, the z-scores are 0.674 and 1.645 respectively. Transforming 90% confi-

dence intervals into 50% CIs is achieved by maintaining its width and adjusting the z-score 

and scaling standard deviation by the inverse amount, which is equal to 1.645/0.674=2.44.  
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  Stated confidence level vs. …           
...actual confi-

dence 
90% 80% 70% 60% 50% 40% 30% 20% 10% 

90%  1,00   0,78   0,63   0,51   0,41   0,32   0,23   0,15   0,08  
80%  1,28   1,00   0,81   0,66   0,53   0,41   0,30   0,20   0,10  
70%  1,59   1,24   1,00   0,81   0,65   0,51   0,37   0,24   0,12  
60%  1,95   1,52   1,23   1,00   0,80   0,62   0,46   0,30   0,15  
50%  2,44   1,90   1,54   1,25   1,00   0,78   0,57   0,38   0,19  
40%  3,14   2,44   1,98   1,60   1,29   1,00   0,73   0,48   0,24  
30%  4,27   3,33   2,69   2,18   1,75   1,36   1,00   0,66   0,33  
20%  6,49   5,06   4,09   3,32   2,66   2,07   1,52   1,00   0,50  
10%  13,09   10,20   8,25   6,70   5,37   4,17   3,07   2,02   1,00  

Table 30 – Implied over- and underconfidence scores based on stated and actual confidence levels of estimated confidence intervals 

following Teigen et al. (2005) 

In summary, overconfidence bias has a structural effect on Bayesian updating that must be 

counteracted as described.   

6.2.2 b) Dishonest experts 

Dishonesty or agency conflicts among agents can obliterate the variance weighted averaging 

on purpose by the experts. A related question is how uninformative experts affect the method. 

Dishonest or uninformative experts that provide new information invalidate Bayesian updat-

ing as it violates the assumption that new information contains positive information value. 

This is detrimental in two dimensions. Firstly, it creates an expected parameter value that is 

structurally biased toward the falsely provided expert estimate. Secondly, by reducing the var-

iance of the biased posterior it creates “excess certainty”. This argument can also be based on 

theory underlying Kalman filters. Throughout this chapter, we treat expert inputs analogously 

to observations in Bayesian (Kalman) filtering. In Kalman filtering it is assumed that new ob-

servations stem from the same process as previous observations. By analogy, a dishonest ex-

pert does not constitute an observation from the same data generating process and thus does 

not yield information about the true parameters of the process.  

6.2.2 c) Elicitation of non-parametric distributions  

In Chapter 2 we discussed the preference for eliciting expert opinion on non-parametric distri-

butions as recommended by, e.g. Vose (2008). Bayesian updating is not generally applicable 
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for non-parametric distributions as the lack of parameters that define the distribution prevents 

the derivation of posterior hyperparameters via conjugate priors. However, in individual cases 

it is possible to construct PDFs and likelihood functions for, e.g. truncated distributions that 

can approximate non-parametric distributions.  

6.2.2 d) Input parameters with varying assumptions on prior and new infor-

mation 

Figure 22 shows a surface plot of a posterior estimate of a mean parameter of a normal distri-

bution with known variance based on a fixed prior and a new information. The new infor-

mation is varied in its self-assessed variance or uncertainty and the deviation between prior 

estimate and new information. This surface plot is based on the first independent variable of 

the case application in chapter 4, namely the price of waste for incineration. This visualizes 

the posterior by varying both the mean as well as the self-assessed variance of new infor-

mation. With increasing uncertainty or variance, the weight of the new information in the pos-

terior decreases and the posterior approaches the prior. With high assigned variance, the 

weight of the new information in the 

posterior approaches zero. On the 

other hand, for artificially low vari-

ance the posterior approaches the 

mean provided as new information. 

With increasing deviation between 

prior and new information, the delta 

between the prior and the posterior 

increases linearly. 

 

Figure 21 – Surface plot of posterior estimate of the man of a normal distri-

bution with known variance and varying properties of the new information 
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6.2.3 Analysis with multiple input providing experts 

Here we assume two or more experts who provide input and discuss the effects. In a recursive 

update the posterior as derived above takes the place of the prior and an analogous calculation 

for a secondary posterior follows with no general limit to the number of recursive updates. 

The properties of recursive estimators are symmetric standing in contrast to methods used by 

practitioners (interview transcripts, 2016; section on expert bias) as shown in the preceding 

chapter. Here methods were advocated were a final estimate based on expert opinions was de-

duced through arithmetic averaging without explicit weighting of the associated uncertainty 

risking mis-calibrated weights of data points. We shortly discuss challenges based on chapters 

2 and 3, including: Uneven calibration, Correlation between experts’ opinions and Expert het-

erogeneity. 

6.2.3 a) Recursive updating  

The following application briefly captures the simplicity and power of recursive Bayesian up-

dating in the context of aleatoric and epistemic uncertainty. Recursive updating follows analo-

gous arithmetic as one-staged updates, notably with the constantly decreasing uncertainty 

around parameters estimates as highlighted in figure 22 that is based on hypothetical numbers 

for illustrative purposes. Suppose here a prior for the normally distributed mean parameter of 

110.0 with variance of 10.0 and new information in the form of expert opinion of 100.0 with 

equal variance. For simplicity, assume further additional experts providing the same input re-

cursively. The posteriors of higher order converge gradually to a value of close to the mean of 

the new information with strictly decreased variance. These parameters represent input mod-

elling specifications to be used as input parameters in simulation models.  
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Figure 22 - Probability density functions of parameter estimates of Prior, new information and multiple posteriors 

Table 31 shows numerical values for each plotted input modelling specification: 

 Parameter New Infor-

mation 

Prior posterior 1 posterior 2 posterior 3 posterior 4 posterior 5 

Mean 100,00 110,00 105,00 104,00 103,60 103,39 103,26 
Aleatoric var-
iance 

10,00 10,00 5,00 3,33 2,50 2,00 1,67 

Table 31 – Numerical values of parameter estimates per Bayesian input modelling specification 

Figure 22 above represents the uncertainty around the mean parameter, interpreted as the alea-

toric uncertainty that decreases through information aggregation thereby improving precision. 

In the context of aleatoric and epistemic uncertainty we can extend the above example and in-

troduce epistemic uncertainty as well, that we assume to be normally distributed. Figure 23 

then illustrates the effect on the compound uncertainty, where we observe a compound-nor-

mal-normal distribution, which is itself again a normal distribution, though of increased vari-

ance as shown in the preceding chapter. This compound distribution is effectively to be used 

in a simulation input modelling context as argued before. Note that aleatoric variance is fixed 

across Bayesian updates and therefore does not changes as more information is aggregated. 

The compound variance follows the formula introduced in the previous chapter.  
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Figure 23 – Probability density functions of compound distribution of estimates of prior, new information and multiple posteriors of 

aleatoric and epistemic uncertainty  

Several properties of figure 23 are noteworthy. As in the figure above, successive updates 

lead to a shift of the distribution towards the mean value of new information provided. Higher 

order posterior distributions also show decreasing variance, however not to the same extent as 

above as the aleatoric or physical uncertainty remains unchanged through Bayesian updates. 

Numerical values in table 32 further illuminate this point:  

 Parameter  New Infor-

mation 

Prior Posterior 1 Posterior 2 Posterior 3 Posterior 4 Posterior 5 

Mean  100,00   110,00   105,00   104,00   103,60   103,39   103,26  
Epistemic 
variance 

 10,00   10,00   5,00   3,33   2,50   2,00   1,67  

Physical vari-
ance 

 10,00   10,00   10,00   10,00   10,00   10,00   10,00  

Compound 
variance 

 14,14   14,14   11,18   10,54   10,31   10,20   10,14  

Table 32 – Numerical values of parameter estimated per Bayesian input modelling specification and full distribution parameters 

Through the uncertainty-reducing recursive Bayesian updating, a swiftly decreasing weight of 

the epistemic uncertainty is observable in the compound variance that approaches the physical 

variance through the recursive updates – as is desirable for many modelling contexts. In short, 
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Bayesian updating and especially recursive updating, can present a viable method for input 

modelling in a context with both aleatoric and epistemic uncertainty.  

6.2.3 b) Uneven calibration or overprecision bias 

Posterior parameters estimates are affected by experts’ calibration. This effect can be exacer-

bated in settings with unevenly calibrated experts which is equivalent to uneven levels of 

overprecision bias per Cooke (1991). This leads to Bayesian posteriors biased towards the 

most overconfident experts and hence biased simulation outputs. In situations with unevenly 

calibrated experts, the objective shall be to assign each expert the appropriate level of credi-

bility and thus the appropriate level of weight by de-biasing individual experts. If calibration 

levels are known and uneven, the approach is straightforward. If calibration levels of multiple 

experts are not known it is necessary to follow the above-mentioned de-biasing steps.  

6.2.3 c) Correlation between experts’ opinions and errors 

Shared information sources used by experts can lead to shared errors and represents a chal-

lenge. Here we are discussing more specifically correlated biases and thus estimation errors 

among experts. Cooke (1991) raises the issue of correlation among expert opinion, both 

“across” and “within” experts considering them “unavoidable but usually benign” in practice 

without elaborating why it should be considered benign. We consider the information theoret-

ical implications of correlated expert judgments. Shared sources among experts lead to corre-

lated expert opinions with implications for their informational value. Aggregation of experts 

is only beneficial if new information is contained in the experts’ opinions. If recursive updates 

of a parameter estimate are conducted with expert opinions built on identical data, this would 

give excess credibility to these observations and skew the posterior. Each observation is con-

sidered a new stochastic realization of the unobservable DGP (Grewal & Andrews, 2001) that 

carries new information. By extension each expert is assumed to carry new information, 
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where this assumption does not hold it is not valid to aggregate additional expert opinions at 

full weight. Winkler (1968) argues that if experts all come from a common subpopulation 

their weights should be chosen so that the total number of “observations” assigned to them 

should be equal to one. If experts are “independent” their individual weights should be equal 

to one and its sum equal to the number of experts. More generally, the sum of all expert’s 

weights must be larger or equal to 1 and smaller or equal to the number of experts involved 

depending on the level of independence of their information sources. Yet cases in between 

these extremes are less straightforward to address and leave the optimal assignment of deci-

sion weight at the discretion of the simulation input modeler. In summary, correlation among 

estimation error of expert opinion and expert judgment generally presents challenges to 

Bayesian updating for simulation input modelling that can be most effectively addressed 

through weighting of inputs.  

6.2.3 d) Expert heterogeneity 

Expert interviewees affirmed that differing experts’ views exacerbate challenges in input 

modelling while others noted that a panel of experts is strictly preferable to a single expert 

opinion. Thus, the question arises if particularly heterogenous opinions present any challenges 

to the method. Again, an analogy to Kalman filtering is insightful. We view expert opinions 

as observations of a stochastic process. Hence, considerations of auto-correlated errors not-

withstanding, heterogeneous expert opinions are akin to heterogeneous observations in a Kal-

man filtering process. One of the pivotal reasons for the success of Kalman filters is their abil-

ity to extract information from noisy or heterogeneous data (Grewal et al., 2001). Thus, in 

principle Bayesian updating can extract data from heterogeneous experts.  

6.3: Discussion and conclusion 
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This chapter analyzed the properties of Bayesian updating for simulation input modelling 

along general input modelling desiderata as well as for challenges if working with one input 

providing expert as well as multiple.  

Despite not fulfilling some of the desiderata, like transparency, implementability, generality 

or legal precedence, Bayesian input modelling meets most of the desiderata identified in the 

literature and thus represents a viable addition to the simulation modeler’s tool set.  

Amongst the challenges discussed, most notably the overprecision bias has a structural effect 

on Bayesian updating requiring simulation modelers to take measures to counteract this bias. 

This effect translates as well to multiple experts with uneven calibration which necessitates 

de-biasing. Further, correlated expert judgment must be counteracted via discretionary deci-

sion weighting through assignment of observation numbers reflecting the information content 

and independence of expert opinion.  

7 General conclusion  

Simulation has thoroughly affected finance and accounting research whilst the method is honed 

and advanced simultaneously. As a research method as well as a method applied by practition-

ers it has had profound impact on both the science and theory of finance and accounting as well 

as its practice. Simulation input modelling in corporate finance and accounting affects the 

method of simulation along various levels from the technical implementation of simulation 

models to the acceptance and thereby diffusion of the method in academia and practice. Like-

wise, this dissertation contributes to the understanding of simulation modeling, and input mod-

elling in particular, along several dimensions, from positive bibliometric research and literature 

reviews to theoretical and methodological contributions in input modeling and the quantifica-

tion and communication of input parameter stochasticity. This dissertation makes several con-
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tributions. It analyzed the current use and diffusion of simulation methods in finance and ac-

counting research, highlighting how simulation crossed the ‘chasm’ into the methodological 

mainstream in various finance research clusters though diffused much less in accounting re-

search, albeit with exceptions such as costing that apply simulation methods. There appears to 

be promising simulation-based research in various niches of accounting research as well. These 

findings contribute to several streams of literature, notably to critical reflections on finance and 

accounting research, the type of simulation-based research conducted in these disciplines as 

well as the diffusion of scientific methods more generally. A further finding of the bibliometric 

study points to the relative lack of research dialogue on simulation input modelling specifically 

for corporate finance and accounting as opposed to the substantial research efforts directed to-

wards input modelling for capital market and especially derivative and asset pricing.  

The resulting research on the state-of-the-art input modelling methods for corporate finance and 

accounting provides a structured overview of the field and contrasts this with perspectives of 

leading simulation modelers in the field. A ‘consensus’ view of input modelling sources is de-

rived that can help guide simulation researchers in their modelling choices. This consensus is 

challenged through semi-structured expert interviews where a more nuanced and occasionally 

divergent preference for input modelling sources prevails. Notably, there appears to be a lack 

of formal discussions of aggregation methods that combine different and potentially diverging 

input sources into one coherent input modelling distribution. Further, the interviews shed light 

on several specialized modelling topics contrasting with the purported consensus and thereby 

contributing to the literature on simulation input in corporate finance and accounting.  

Within the field of aggregation methods focused on corporate finance and accounting we dis-

cuss and illustrate a method of aggregating historical data and expert opinion, two potentially 

divergent sources that tend to be available in common modelling environments, based on 
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Bayesian updating to fully utilize all available information in a robust aggregation scheme. The 

method is illustrated through a case study applying the method to a real-life modelling environ-

ment. This represents a contribution to simulation input modelling for CF&A that strives for 

robust yet implementable method that address several common input modelling challenges such 

as dynamic data generating processes. However, due to the nature of this benchmarking, it is 

not straightforward to prove the superiority of Bayesian updating in this context, this is however 

achieved in the next chapter that emphasizes and illustrates the uncertainty reducing properties 

of Bayesian updating.  

Finally, the modelling metric Simulation output at risk is developed and applied to the above-

mentioned case study. Within the context of Bayesian input modelling in an environment of 

both aleatoric and epistemic uncertainty the metric is demonstrated. It seeks to facilitate com-

munication of simulation output variability due to input parameter stochasticity by capturing its 

impact in a single figure with a parallel interpretation to commonly used risk metrics. This 

contributes to the literature on quantification of input uncertainty as well as the literature around 

standards for the communication of simulation experiments. Moreover, this application serves 

to highlight how Bayesian input modelling can in fact reduce simulation model output variabil-

ity by lowering the uncertainty pertaining to its input models thereby unequivocally establishing 

a key desirable property of Bayesian input modelling. Finally, this dissertation critically reviews 

its main methodological contributions in terms of Bayesian input modelling via a series of chal-

lenges to the method that highlights its strength and notably its limitations.  

By advancing simulation input modelling for corporate finance and accounting we contribute 

to the robust foundation on which the method is built and further underscore the vital role input 

modelling should play in simulation modelling generally – perhaps a subfield that can profit 

from further theoretical contributions in a similar vein. 
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9 Appendix 

Chapter 1 

Most central nodes 

Table 33 provides full references for each cluster’s most central node ordered by cluster size. 

Period Cluster label Short refer-

ence / node  

Reference 

Period I 

Early exercise option 

valuation 

Longstaff 

2001 

Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: a simple 

least-squares approach. The review of financial studies, 14(1), 113-147. 

Period I 

Value-at-risk Hull 1998 Hull, J., & White, A. (1998). Incorporating volatility updating into the historical simulation 

method for value-at-risk. Journal of risk, 1(1), 5-19. 

Period I 

Optimal consumption 

portfolio 

Cox 1989 Cox, J. C., & Huang, C. F. (1989). Optimal consumption and portfolio policies when asset 

prices follow a diffusion process. Journal of economic theory, 49(1), 33-83. 

Period I 

Statistics and sam-

pling methods for 

stock markets 

Glasserman 

1999 I 

Glasserman, P., Heidelberger, P., & Shahabuddin, P. (1999). Asymptotically optimal im-

portance sampling and stratification for pricing path‐dependent options. Mathematical finance, 

9(2), 117-152. 

Period I 

Option pricing Geske 1984 Geske, R., & Johnson, H. E. (1984). The American put option valued analytically. The Journal 

of Finance, 39(5), 1511-1524. 

Period I 

Stochastic volatility I Scott 1987 Scott, L. O. (1987). Option pricing when the variance changes randomly: Theory, estimation, 

and an application. Journal of Financial and Quantitative analysis, 22(4), 419-438. 

Period I 

Stochastic volatility II Jacquier 

1994 

Jacquier, E., Polson, N. G., & Rossi, P. E. (2002). Bayesian analysis of stochastic volatility 

models. Journal of Business & Economic Statistics, 20(1), 69-87. 

Period I 

Statistical processes 

and distributions 

Eberlein 

1995 

Eberlein, E., & Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli, 1(3), 281-299. 

Period I 

Bayes factor and 

Monte Carlo Chib 1996 

Chib, S., & Greenberg, E. (1996). Markov chain Monte Carlo simulation methods in economet-

rics. Econometric theory, 12(3), 409-431. 

Period I 

Malliavin Calculus Fournie 

1999 

Fournié, E., Lasry, J. M., Lebuchoux, J., Lions, P. L., & Touzi, N. (1999). Applications of Mal-

liavin calculus to Monte Carlo methods in finance. Finance and Stochastics, 3(4), 391-412. 

Period I 

Estimation methods 

for inference and cont. 

time processes 

Gallant 

1996 

Gallant, A. R., & Tauchen, G. (1996). Which moments to match?. Econometric Theory, 12(4), 

657-681. 

Period I 

Bond and exotic op-

tions 

Turnbull 

1991 

Turnbull, S. M., & Wakeman, L. M. (1991). A quick algorithm for pricing European average 

options. Journal of financial and quantitative analysis, 26(3), 377-389. 

Period I 

Long memory time se-

ries 

Granger 

1980 I 

Granger, C. W., & Joyeux, R. (1980). An introduction to long‐memory time series models and 

fractional differencing. Journal of time series analysis, 1(1), 15-29. 

Period I 

Accounting & audit-

ing topics 

Cogger 

1981 

Cogger, K. O. (1981). A time-series analytic approach to aggregation issues in accounting 

data. Journal of Accounting Research, 285-298. 

Period 

II 

Volatility and risk I Bos 1984 Bos, T., & Newbold, P. (1984). An empirical investigation of the possibility of stochastic sys-

tematic risk in the market model. Journal of Business, 35-41. 

Period 

II 

Simulation  

methods for  

option pricing 

Haugh 2004 Haugh, M. B., & Kogan, L. (2004). Pricing American options: a duality approach. Operations 

Research, 52(2), 258-270. 

Period 

II 

Stochastic processes Broadie 

2006 

Broadie, M., & Kaya, Ö. (2006). Exact simulation of stochastic volatility and other affine jump 

diffusion processes. Operations research, 54(2), 217-231. 

Period 

II 

Affine term structure 

models 

Duffee 2002 Duffee, G. R. (2002). Term premia and interest rate forecasts in affine models. The Journal of 

Finance, 57(1), 405-443. 

Period 

II 

Early exercise option 

valuation 

Broadie 

1997 I 

Broadie, M., & Glasserman, P. (1997). Pricing American-style securities using simulation. 

Journal of economic dynamics and control, 21(8-9), 1323-1352. 

Period 

II 

GARCH volatility Bollerslev 

1986 

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of 

Econometrics, 31, 307-327 

Period 

II 

Value-at-Risk Jorion 2000 Jorion, P., (2000). Value-at-Risk, McGraw-Hill: New York 

Period 

II 

Monte Carlo methods 

and valuation 

Sobol 1967 Sobol', I. Y. M. (1967). On the distribution of points in a cube and the approximate evaluation 

of integrals. Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 7(4), 784-802. 

Period 

II 

Credit derivatives Andersen 

2003 II 

Andersen, L., Sidenius, J., & Basu, S. (2003). All your hedges in one basket. RISK-LONDON-

RISK MAGAZINE LIMITED-, 16(11), 67-72. 

Period 

II 

Market efficiency and 

stock market behavior 

Ng 2001 Ng, S., & Perron, P. (2001). Lag length selection and the construction of unit root tests with 

good size and power. Econometrica, 69(6), 1519-1554. 

Period 

II 

Volatility Bekaert 

2000 II 

Bekaert, G., & Wu, G. (2000). Asymmetric volatility and risk in equity markets. The review of 

financial studies, 13(1), 1-42. 
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Period 

II 

Macro Asset pricing Hansen 

1982 II 

Hansen, L. P., & Singleton, K. J. (1982). Generalized instrumental variables estimation of non-

linear rational expectations models. Econometrica: Journal of the Econometric Society, 1269-

1286. 

Period 

II 

Interest rate models Brigo 2001 Brigo, D., & Mercurio, F. (2007). Interest rate models-theory and practice: with smile, inflation 

and credit. Springer Science & Business Media. 

Period 

II 

Stochastic volatility Eraker 2004 Eraker, B. (2004). Do stock prices and volatility jump? Reconciling evidence from spot and op-

tion prices. The Journal of Finance, 59(3), 1367-1403. 

Period 

II 

Bayes factor and 

Monte Carlo 

Gilks 1996 Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995). Markov chain Monte Carlo in prac-

tice. Chapman and Hall/CRC. 

Period 

II 

Risk modelling for fi-

nancial  

institutions 

Embrechts 

2003 II 

Embrechts, P., Furrer, H., & Kaufmann, R. (2003). Quantifying regulatory capital for opera-

tional risk. Derivatives Use, Trading and Regulation, 9(3), 217-233. 

Period 

II 

Executive stock op-

tions 

Ingersoll 

2006 

Ingersoll, Jr, J. E. (2006). The subjective and objective evaluation of incentive stock options. 

The Journal of Business, 79(2), 453-487. 

Period 

II 

Realized Volatility Barndorff-

Nielsen 

2001 

Barndorff‐Nielsen, O. E., & Shephard, N. (2001). Non‐Gaussian Ornstein–Uhlenbeck‐based 

models and some of their uses in financial economics. Journal of the Royal Statistical Society: 

Series B (Statistical Methodology), 63(2), 167-241. 

Period 

III 

Volatility and risk Higham 

2005 

Higham, D. J., & Mao, X. (2005). Convergence of Monte Carlo simulations involving the 

mean-reverting square root process. Journal of Computational Finance, 8(3), 35-61. 

Period 

III 

Volatility and option 

pricing 

Eberlein 

1998 

Eberlein, E., Keller, U., & Prause, K. (1998). New insights into smile, mispricing, and value at 

risk: The hyperbolic model. The Journal of Business, 71(3), 371-405. 

Period 

III 

Early exercise option 

valuation 

Longstaff 

2001 

Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: a simple 

least-squares approach. The review of financial studies, 14(1), 113-147. 

Period 

III 

GARCH volatility Bollerslev 

1986 

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of 

Econometrics, 31, 307-327 

Period 

III 

Value-at-Risk Kupiec 

1995 

Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models. FEDS 

Paper, (95-24). 

Period 

III 

Markov chain state 

pricing 

Peters 2009 Peters, G., Shevchenko, M., Wüthrich, P. (2009). Model uncertainty in claims reserving within 

tweedie's compound poisson models. Astin Bulletin, 39 (1), 1-33 

Period 

III 

Contagion and inter-

dependence 

Embrechts 

2002 

Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk man-

agement: properties and pitfalls. Risk management: value at risk and beyond, 1, 176-223. 

Period 

III 

Term Structure mod-

els 

Dai 2000 Dai, Q., & Singleton, K. J. (2000). Specification analysis of affine term structure models. The 

Journal of Finance, 55(5), 1943-1978. 

Period 

III 

Implied volatility Gatheral 

2005 

Gatheral, J. (2011). The volatility surface: a practitioner's guide (Vol. 357). John Wiley & Sons. 

Period 

III 

Monte Carlo methods 

and valuation 

Caflisch 

1997 

Caflisch, R. E., Morokoff, W. J., & Owen, A. B. (1997). Valuation of mortgage backed securi-

ties using Brownian bridges to reduce effective dimension. Department of Mathematics, Uni-

versity of California, Los Angeles. 

Period 

III 

Asset returns Apergis 

2004 

Apergis, N., & Miller, S. M. (2004). Consumption asymmetry and the stock market: further evi-

dence. 

Period 

III 

Derivative models Haug 2006 Haug, E., (2006) The Complete Guide to Option Pricing Formulas, 2nd ed, New York, NY: 

McGraw-Hill 

Period 

III 

Commodity valuation Schwartz 

2000 

Schwartz, E., & Smith, J. E. (2000). Short-term variations and long-term dynamics in commod-

ity prices. Management Science, 46(7), 893-911. 

Period 

III 

Systemic banking risk Allen 2000 Allen, F., & Gale, D. (2000). Financial contagion. Journal of political economy, 108(1), 1-33. 

Period 

III 

Simulation in capital 

investment 

Hertz 1964 Hertz, D. B. (1964). Risk analysis in capital investment. Harvard Business Review, 42, 95-106. 

Period 

III 

Macro Finance Clarida 

2000 

Clarida, R., Gali, J., Gertler, M., (2000). Monetary policy rules and macroeconomic stability: 

evidence and some theory. Quarterly Journal of Economics, 115, 147-180 

Table 33 - Most central node per cluster per period including full reference 

 
Full tables including all references 

In the following all clusters are listed in tables following the period of the cluster as well as 

the order of size.  

Period I 
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Table 34 - Early Exercise option valuation, 27 nodes 

Short citation / node Full reference 

Longstaff 2001 Longstaff, F., Schwartz, E., Pricing American Options by Simulation: A Simple Least Square Approach 

(2001) Rev. Financial Stud., 14, pp. 113-147 

Glasserman 2003 Glasserman, P., (2003): Monte Carlo Methods in Financial Engineering, New York: Springer 

Barraquand 1995 I Barraquand, J., Martineau, D.,: Numerical valuation of high dimensional multivariate american securities 

(1995) J Finan Quant Anal, 30, pp. 383-405 

Carriere 1996 Carriere, J., Valuation of Early-Exercise Price of Options Using Simulations and Nonparametric Regression 

(1996) Insur.: Math. Econ., 19, pp. 19-30 

Broadie 1997 I Broadie, M., Glasserman, P.,: Pricing American-style securities using simulation (1997) J Econ Dyn Control, 

21, pp. 1323-1352. , 8-9 

Andersen 2004 Andersen, L., Broadie, M.,: A primal-dual simulation algorithm for pricing multi-dimensional American op-

tions (2004) Management Science, 50 (9), pp. 1222-1234 

Rogers 2002 Rogers, L.,: Monte Carlo valuation of American options (2002) Math. Finance, 12 (3), pp. 271-286 

Broadie 2004 Broadie, M., Glasserman, P.,: A stochastic mesh method for pricing high-dimensional American option (2004) 

J. Comput. Finan, 7, pp. 35-72 

Tilley 1993 Tilley, J.,: Valuing American options in a path simulation model (1993) Trans. Soc. Actuaries, 45, pp. 83-104 

Haugh 2004 Haugh, M., Kogan, L., Pricing American options: A duality approach (2004) Oper. Res., 52, pp. 258-270 

Tsitsiklis 1999 I Tsitsiklis, J., Van Roy, B.,: Regression Methods for Pricing Complex American Style Options (1999) IEEE 

Trans. Neural. Net., 12, pp. 694-703. , and 

Clement 2002 Clément, E., Lamberton, D., Plotter, P.,: An analysis of a least squares regression method for American option 

pricing (2002) Finance and Stochastics, 6, pp. 449-471 

Duffie 1996 II Duffie, D., (1996): Dynamic Asset Pricing Theory, (Princeton University Press: Princeton, NJ) 

Carr 1998 Carr, P.,: Randomization and the American put (1998) Review of Financial Studies, 11, pp. 597-626 

Broadie 1997 II Broadie, M., Glasserman, P., Jain, G.,: Enhanced monte carlo estimates for American options prices (1997) 

Journal of Derivatives, 5, pp. 25-44 

Raymar 1997 Raymar, S., Zwecher, M.,: A Monte Carlo valuation of American call options on the maximum of several 

stocks (1997) Journal of Derivatives, 1, pp. 7-23 

Harrison 1979 Harrison, J.M., Kreps, D.,: Martingale and arbitrage in multiperiod securities markets (1979) J. Econ. Theory, 

20, pp. 381-408 

Tsitsiklis 1999 II Tsitsiklis, J., van Roy, B., Optimal stopping of Markov process: Hilbert space theory, approximation algo-

rithms, and an application to pricing high-dimensional financial derivatives (1999) IEEE Trans. Automat. 

Control, 44 (10), pp. 1840-1851 

Andersen 1999 I Andersen, L., (1999): A Simple Approach to Pricing Bermudan Swaptions in the Multi-Factor LIBOR Market 

Model, Geneva Re Financial Products. Working Paper 

Jamshidian 1997 Jamshidian, F.,: LIBOR and swap market models and measures (1997) Financ. Stoch., 1, pp. 293-330 

Kolodko 2006 Kolodko, A., Schoenmakers, J.,: Iterative construction of the optimal Bermudan stopping time (2006) Finance 

and Stochastics, 10, pp. 27-49 

Bossaerts 1989 Bossaerts, P., (1989): Simulation Estimators of Optimal Early Execise, Working paper, Carnegie-Mellon Uni-

versity 

Lamberton 1996 Lamberton, D., Lapeyre, B., (1996): Intoduction to Stochastic Calculus Applied to Finance, Chapman & Hall 

Andersen 2000 Andersen, L., Andreasen, J.,: Volatility skews and extensions of the Libor market model (2000) Appl. Math. 

Financ., 7 (1), pp. 1-32 

Ibanez 2004 Ibanez, A., Zapatero, F.,: Monte Carlo Valuation of American Options through Computation of the Optimal 

Exercise Frontier (2004) J. Finan. Quant. Anal., 39, pp. 253-275. , and 

Carr 1992 Carr, P., Jarrow, R., Mynemi, R.,: Alternative characterization of American puts (1992) Mathematical Fi-

nance, 2, pp. 87-106 

Longstaff 1999 Longstaff, F., Santa-Clara, P., Schwartz, E., (1999) Throwing Away a Billion Dollars: The Cost of Subopti-

mal Exercise Strategies in the Swaptions Market, working paper, University of California, Los Angeles 

 

Table 35 - Value-at-risk, 19 nodes 

Short citation / node Full reference 

Bollerslev 1986 Bollerslev, T.,: Generalized autoregressive conditional heteroscedasticity (1986) Journal of Econometrics, 31, 

pp. 307-327 

Engle 1982 Engle, R.,: Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation (1982) 

Econometrica, 50, pp. 987-1008 

Artzner 1999 Artzner, P., Delbaen, F., Eber, J., Heath, D.,: Coherent measures of risk (1999) Mathematical Finance June 

Barone-Adesi 1999 Barone-Adesi, G., Giannopoulos, K., Vosper, L.,: VaR without Correlation for nonlinear Portfolios (1999) 

Journal of Futures Markets, 19, pp. 583-602 

Barone-Adesi 1998 Barone-Adesi, G., Bourgoin, F., Giannopoulos, K.,: Don’t look back (1998) Risk, 11., August 
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Duffie 1997 Duffie, D., Pan, J.,: An overview of value at risk (1997) Journal of Derivatives, 4, pp. 7-49 

Hendricks 1994 Hendricks, D.,: Evaluation of value at risk models using historical data (1994), Federal Reserve Bank of New 

York, New York  

McNeil 2000 McNeil, A., Frey, R., Estimation of tail-related risk measures for heteroscedastic financial time series: An ex-

treme value approach (2000) J. Empir. Finance, 7, pp. 271-300 

Bollerslev 1992 II Bollerslev, T., Chou, R., Kroner, K., ARCH modelling in finance: A review of the theory and empirical evi-

dence (1992) Journal of Econometrics, 52, pp. 5-59 

Hull 1998 Hull, J., White, A.,: Incorporating volatility updating into the historical simulation method for value-at-risk 

(1998) J. Risk, 1 (1), pp. 5-19 

Nelson 1991 Nelson, D., Conditional heteroscedasticity in asset returns: A new approach (1991) Econometrica, 59, pp. 

347-370 

Kupiec 1995 Kupiec, P.,: Techniques for verifying the accuracy of risk measurement models (1995) Journal of Derivatives, 

3, pp. 73-84 

Barone-Adesi 2002 Barone-Adesi, G., Giannopoulos, K., Vosper, L.,: Backtesting derivative portfolios with filtered historical 

simulation (2002) European Financial Management, 8, pp. 31-58 

Dowd 2002 Dowd, K., (2002): Measuring Market Risk, John Wiley & Sons, Chichester 

Black 1976 II Black, F.,: The pricing of commodity contract (1976) Journal of Financial Economics, 3, pp. 167-179 

Bollerslev 1987 Bollerslev, T.,: A conditional heteroscedastic time series model for speculative prices and rates of return 

(1987) Rev Econ Stat, 69, pp. 542-547 

Boudoukh 1998 Boudoukh, J., Richardson, M., Whitelaw, R.,: The best of both worlds (1998) Risk, 11 (5), pp. 64-67 

Barone-Adesi 2001 Barone-Adesi, G., Giannopoulos, K.,: Non-parametric VaR techniques. Myths and realities (2001) Economic 

Notes by Banca Monte dei Paschi di Siena SpA, 30, pp. 167-181 

Jorion 1996 Jorion, P., Risk: Measuring the Risk in Value at Risk (1996) Financial Analysts Journal, 52, pp. 47-56 

 

Table 36 - Optimal consumption portfolio, 13 nodes 

Short citation / node Full reference 

Cox 1985 I Cox, J., Ingersoll, J., Ross, S.,: A theory of the term structure of interest rates (1985) Econometrica, 53, pp. 

385-408 

Chib 1995 I Chib, S., Greenberg, E.,: Understanding the Metropolis-Hastings algorithm (1995) Am. Statist., 49, pp. 327-

335 

Ait-Sahalia 1996 Ait-Sahalia, Y.,: Testing continuous-time models of the spot interest rate (1996) Review of Financial Studies, 

9, pp. 385-426 

Merton 1969 Merton, R., Lifetime Portfolio Selection under Uncertainty: The Continuous Time Case (1969) Rev. Econ. 

Stat., 51, pp. 247-257 

Merton 1971 Merton, R.,: Optimum consumption and portfolio rules in a continuous-time model (1971) Journal of Eco-

nomic Theory, 3, pp. 373-413 

Chan 1992 Chan, K.C., Karolyi, G.A., Longstaff, F., Sanders, A.B.,: An empirical comparison of alternative models of 

short-term interest rates (1992) Journal of Finance, 47, pp. 1209-1227 

Eraker 2001 Eraker, B.,: MCMC analysis of diffusion models with application to finance (2001) J. Bus. Econ. Stat., 19 (2), 

pp. 177-191 

Brennan 1997 Brennan, M., Schwartz, E., Lagnado, R.,: Strategic asset allocation (1997) Journal of Economic Dynamics and 

Control, 21, pp. 1377-1403 

Samuelson 1969 Samuelson, P.,: Lifetime portfolio selection by dynamic stochastic programming (1969) Rev. Econ. Stat., 51, 

pp. 239-246 

Cox 1989 Cox, J., Huang, C.,: Optimal consumption and portfolio policies when asset prices follow a diffusion process 

(1989) Journal of Economic Theory, 49, pp. 33-83 

Elerian 2001 Elerian, O., Chib, S., Shephard, N.,: Likelihood inference for discretely observed non-linear diffusions (2001) 

Econometrica, 69, pp. 959-993 

Liu 1999 Liu, J.,: Portfolio selection in stochastic environments (1999) Working Paper, UCLA 

Schroder 1999 Schroder, M., Skiadas, C.,: Optimal consumption and portfolio selection with stochastic differential utility 

(1999) Journal of Economic Theory, 89, pp. 68-126 

 

Table 37 - Statistics and sampling methods for stock markets, 12 nodes 

Short citation / node Full reference 

Glasserman 1999 I Glasserman, P., Heidelberger, P., Shahabuddin, P.,: Asymptotically optimal importance sampling and stratifi-

cation for pricing path-dependent options (1999) Math. Finance, 9, pp. 117-152 

Nelsen 1999 Nelsen, R.B., (1999) An Introduction to Copulas, New York: Springer 

Mandelbrot 1963 Mandelbrot, B.,: The variation of certain speculative prices (1963) J. Bus., 36, pp. 394-419 



213 

 

Morgan 1996 Morgan, J.P., (1996): RiskMetrics Technical Document, 4th Ed., New York 

Moro 1995 Moro, B.,: The full Monte (1995) Risk, 8 (2), pp. 57-58 

Embrechts 2002 Embrechts, P., McNeil, A., Straumann, D., Correlation and dependence in risk management: Properties and 

pitfalls (2002) In Risk Management: Value at Risk and Beyond, pp. 176-223.  

Fama 1965 Fama, E.,: The behavior of stock market prices (1965) J. Bus., 38, pp. 34-105 

Glasserman 2000 I Glasserman, P., Heidelberger, P., Shahabuddin, P.,: Importance Sampling and Stratification for Value-at-Risk 

(2000) Computational Finance, 1999, pp. 7-24 

Glasserman 1999 II Glasserman, P., Heidelberger, P., Shahabuddin, P.,: Importance sampling in the Heafh-Jarrow-Morton frame-

work (1999) The Journal of Derivatives, 7, pp. 32-50 

Blattberg 1974 Blattberg, R., Gonedes, N.,: A comparison of stable and student distributions as statistical models for stock 

prices (1974) Journal of Business, 47, pp. 244-280 

Press 1990 Press, W., Farrar, G.R.,: Recursive stratified sampling for multidimensional Monte Carlo integration (1990) 

Computers in Physics, 4 (2), pp. 190-195 

Glasserman 1998 Glasserman, P., Heidelberger, P., Shahabuddin, P., Gaussian importance sampling and stratification: Compu-

tational issues (1998) Proc. 1998 Winter Simulation Conf., 1, pp. 685-693., eds. D. J. Medeiros, E. F. Watson, 

J. S. Carson and M. S. Manivannan (IEEE Computer Society Press) 

 

Table 38 - Option pricing, 12 nodes 

Short citation / node Full reference 

Boyle 1997 Boyle, P., Broadie, M., Glasserman, P.,: Monte-Carlo methods for security pricing (1997) Journal of Eco-

nomic Dynamics and Control, 21, pp. 1267-1321 

Boyle 1977 Boyle, P., Options: A Monte Carlo approach (1977) Journal of Financial Economics, 4, pp. 323-338 

Cox 1979 Cox, J., Ross, S., Rubinstein, M., Option pricing: A simplified approach (1979) Journal of Financial Econom-

ics, 7, pp. 229-264 

Barone-Adesi 1987 Barone-Adesi, G., Whaley, R.,: Efficient analytic approximation of American option values (1987) Journal of 

Finance, 1, pp. 301-320., June 

Geske 1984 Geske, R., Johnson, H.,: The American put option valued analytically (1984) Journal of Finance, 39, pp. 1511-

1524 

Broadie 1996 II Broadie, M., Detemple, J., American option valuation: New bounds approximations, and a comparison of ex-

isting methods (1996) The Review of Financial Studies, 9, pp. 1211-1250 

Brennan 1977 I Brennan, M., Schwartz, E.,: The valuation of american put options (1977) Journal of Finance, 32, pp. 449-462 

Barraquand 1995 II Barraquand, J.,: Numerical Valuation of High Dimensional Multivariate European Securities (1995) Manage-

ment Science, 41, pp. 1882-1891 

Jacka 1991 Jacka, S.D.,: Optimal stopping and the American put (1991) Mathematical Finance, 1, pp. 1-14 

MacMillan 1986 MacMillan, L.W.,: An analytic approximation for the american put price (1986) Advances in Futures and Op-

tions Research, 1, pp. 119-139 

Parkinson 1977 Parkinson, M., Option pricing: The american put (1977) Journal of Business, 50, pp. 21-36 

 

Table 39 - Stochastic volatility I, 11 nodes 

Short citation / node Full reference 

Heston 1993 I Heston,: A Closed-Form Solution for Option with Stochastic Volatility with Applications to Bond and Cur-

rency Options (1993) Review of Financial Studies, pp. 327-343 

Hull 1987 Hull, J., White, A.,: The pricing of options as assets with stochastic volatilities (1987) Journal of Finance, 42, 

pp. 281-300 

Kloeden 2000 Kloeden, P., Platen, E., (2000): Numerical Solution of Stochastic Differential Equations, New York, NY: 

Springer 

Wiggins 1987 Wiggins, J.B.,: Option values under stochastic volatilities (1987) Journal of Financial Economics, 19, pp. 351-

372 

Duan 1995 Duan, J.,: The GARCH option pricing model (1995) Mathematical Finance, 5, pp. 13-32 

Scott 1987 Scott, L., Option pricing when the variance changes randomly: Theory, estimators and applications (1987) J. 
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Table 49 – Simulation methods for option pricing, 22 nodes 
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Table 51 - Early exercise option valuation, 15 nodes 
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Table 52 - Affine term structure models, 15 nodes 
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Table 53 - GARCH volatility, 14 nodes 
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Table 54 - Value-at-Risk, 13 nodes 

Short citation / node Full reference 
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Duffie 1997 Duffie, D., Pan, J.,: An overview of value at risk (1997) Journal of Derivatives, 4, pp. 7-49 

Hendricks 1994 Hendricks, D.,: Evaluation of value at risk models using historical data (1994), Federal Reserve Bank of New 

York, New York  

Boudoukh 1998 Boudoukh, J., Richardson, M., Whitelaw, R.,: The best of both worlds (1998) Risk, 11 (5), pp. 64-67 

Pritsker 2006 Pritsker, M.,: The hidden dangers of historical simulation (2006) Journal of Banking and Finance, 30 (2), pp. 

561-582 

Angelidis 2004 Angelidis, T., Benos, A., Degiannakis, S.,: The use of GARCH models in VaR estimation (2004) Statistical 

Methodology, 1 (1-2), pp. 105-128., DOI 10.1016/j.stamet.2004.08.004, PII S1572312704000103 

Davison 1997 Davison, A.C., Hinkley, D.V., (1997): Bootstrap methods and their application, Cambridge University Press, 

Cambridge 
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Table 55 - Monte Carlo methods and valuation, 8 nodes 

Short citation / node Full reference 

Jackel 2002 Jackel, P., (2002): Monte Carlo Methods in Finance, Wiley 

Broadie 1996 II Broadie, M., Detemple, J., American option valuation: New bounds approximations, and a comparison of ex-

isting methods (1996) The Review of Financial Studies, 9, pp. 1211-1250 

Caflisch 1997 Caflisch, R.E., Morokoff, W., Owen, A.B.,: Valuation of mortgage backed securities using Brownian bridges 

to reduce effective dimension (1997) J. Comput. Finance, 1, pp. 27-46 

Niederreiter 1992 Niederreiter, H., (1992): Random Number Generation and Quasi-Monte Carlo Methods, Philadelphia, PA 

SIAM 

Moro 1995 Moro, B.,: The full Monte (1995) Risk, 8 (2), pp. 57-58 

Paskov 1995 Paskov, S., Traub, J.,: Faster Valuation of Financial Derivatives (1995) J. Portfol. Manage., 21, pp. 113-120., 

and 

Papageorgiou 2002 Papageorgiou, A.,: The Brownian bridge does not offer a consistent advantage in quasi-Monte Carlo integra-

tion (2002) J. Complex., 18, pp. 171-186 

Sobol 1967 Sobol, I.M.,: On the distribution of points in a cube and the approximate evaluation of integrals (1967) USSR 

Computational Mathematics and Mathematical Physics, 7, pp. 86-112., 4 

Jackel 2002 Jackel, P., (2002): Monte Carlo Methods in Finance, Wiley 

 

Table 56 - Credit derivatives, 7 nodes 

Short citation / node Full reference 

Broadie 1996 I Broadie, M., Glasserman, P.,: Estimating security price derivatives using simulation (1996) Management Sci-

ence, 42 (2), pp. 269-285 

Li 2000 Li, D., On default correlation: A copula function approach (2000) J. Fixed Income, 9, pp. 43-54 

Schoenbucher 2003 Schoenbucher, P., (2003): Credit Derivatives Pricing Models, Wiley Finance 

Asmussen 2007 Asmussen, S., Glynn, P.W., (2007) Stochastic Simulation, New York: Springer Verlag 

Andersen 2003 II Andersen, L., Sidenius, J., Basu, S.,: All your hedges in one basket (2003) Risk, 16, pp. 67-72 

Joshi 2004 Joshi, M., Kainth, D.,: Rapid and accurate development of prices and Greeks for nth-to-default credit swaps in 

the Li model (2004) Quant. Finance, 4, pp. 266-275 

Hull 2004 Hull, J., White, A.,: Valuation of a CDO and an nth to default CDS without Monte Carlo simulation (2004) 

Journal of Derivatives, 12, pp. 8-23 

Broadie 1996 I Broadie, M., Glasserman, P.,: Estimating security price derivatives using simulation (1996) Management Sci-

ence, 42 (2), pp. 269-285 

 

Table 57 - Market efficiency and stock market behavior, 7 nodes 

Short citation / node Full reference 

Elliott 1996 Elliott, G., Rothenberg, J., Stock, H.,: Efficient tests for an autoregressive unit root (1996) Econometrica, 64, 

pp. 813-836 

Phillips 1988 Phillips, P., Perron, P.,: Testing for a unit root in time series regression (1988) Biometrika, 75 (2), pp. 335-346 

Lo 1988 I Lo, A., Mackinlay, A.C., Stock market prices do not follow random walks: Evidence from a simple specifica-

tion test (1988) Review of Financial Studies, 1, pp. 41-66 

Dickey 1979 Dickey, A., Fuller, A.,: Distribution of the estimators for autoregressive time series with a unit root (1979) 

Journal of Statistical Association, 74, pp. 427-431 

Fama 1970 Fama, E., Efficient capital markets: A review of theory and empirical work (1970) Journal of Finance, 25, pp. 

383-417 

Ng 2001 Ng, S., Perron, P.,: Lag length selection and the construction of unit root tests with good size and power 

(2001) Econometrica, 69, pp. 1519-1554 

Grossman 1980 Grossman, S., Stiglitz, J.,: On the impossibility of informationally efficient markets (1980) The American 

Economic Review, 70, pp. 393-408., June 

Elliott 1996 Elliott, G., Rothenberg, J., Stock, H.,: Efficient tests for an autoregressive unit root (1996) Econometrica, 64, 

pp. 813-836 
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Table 58 - Volatility, 6 nodes 

Short citation / node Full reference 

Nelson 1991 Nelson, D., Conditional heteroscedasticity in asset returns: A new approach (1991) Econometrica, 59, pp. 

347-370 

Glosten 1993 Glosten, L., Jaganathan, R., Runkle, D.,: On the relation between the expected value and the volatility of the 

nominal excess return on the stocks (1993) J. Finance, 48, pp. 1779-1801 

Black 1976 I Black, F.,: Studies in stock price volatility changes (1976) Proceedings of the 1976 Business Meeting of the 

Business and Economic Statistics Section, pp. 177-181., American Statistical Association 

Bollerslev 1992 I Bollerslev, T., Wooldridge, J.,: Quasi-maximum likelihood estimation and inference in dynamic models with 

time-varying covariances (1992) Econometr. Rev., 11 (2), pp. 143-172 

Bekaert 2000 II Bekaert, G., Wu, G.,: Asymmetric volatility and risk in equity markets (2000) Rev. Financ. Stud., 13, pp. 1-42 

Christie 1982 Christie, A., The Stochastic Behavior of Common Stock Variances: Value, Leverage and Interest Rate Effects 

(1982) Journal of Financial Economics, 10, pp. 407-432 

Nelson 1991 Nelson, D., Conditional heteroscedasticity in asset returns: A new approach (1991) Econometrica, 59, pp. 

347-370 

 

Table 59 - Macro asset pricing, 6 nodes 

Short citation / node Full reference 

Lucas 1978 Lucas Jr., R.E.,: Asset prices in an exchange economy (1978) Econometrica, 46 (6), pp. 1429-1445 

Mehra 1985 Mehra, R., Prescott, E.C., The equity premium: A puzzle (1985) Journal of Monetary Economics, 15 (2), pp. 

145-161 

Hansen 1982 II Hansen, L.P., Singleton, K.J.,: Generalized instrumental variables estimation in non-linear rational expecta-

tions models (1982) Econometrica, 50, pp. 1269-1286 

Cochrane 2001 Cochrane, J., (2001) Asset Pricing, Princeton: Princeton University Press 

Hansen 1983 Hansen, L.P., Singleton, K.J.,: Stochastic Consumption, Risk Aversion and the Temporal Behavior of Stock 

Returns (1983) Journal of Political Economy, 91 (2), pp. 249-265 

Campbell 1999 Campbell, J.Y., Cochrane, J., By force of habit: A consumption-based explanation of aggregate stock market 

behavior (1999) Journal of Political Economy, 107, pp. 205-51 

 

Table 60 - Interest rate models, 5 nodes 

Short citation / node Full reference 

Brigo 2001 Brigo, D., Mercurio, F., (2001): Interest Rate Models Theory and Practice, (Springer: Berlin) 

Brace 1997 Brace, A., Gatarek, D., Musiela, M.,: The market model of interest rate dynamics (1997) Math. Finance, 7, pp. 

127-155 

Jamshidian 1997 Jamshidian, F.,: LIBOR and swap market models and measures (1997) Financ. Stoch., 1, pp. 293-330 

Gatheral 2005 Gatheral, J., (2005) The Volatility Surface: A Practitioners Guide, Wiley Finance 

Miltersen 1997 Miltersen, K., Sandmann, K., Sondermann, D.,: Closed form solutions for term structure derivatives with log-

normal interest rates (1997) J. Financ., 52, pp. 409-430 

 

Table 61 - Stochastic volatility, 4 nodes 

Short citation / node Full reference 

Eraker 2003 Eraker, B., Johannes, M., Polson, N.,: The impact of jumps in equity index volatility and returns (2003) Jour-

nal of Finance, 58, pp. 1269-1300 

Eraker 2004 Eraker, B.,: Do stock market and volatility jump? Reconciling evidence from spot and option prices (2004) 

Journal of Finance, 59, pp. 1367-1404 

Heston 1993 II Heston, S.,: A closed form solution for options with stochastic volatilities with applications to Bond and Cur-

rency Options (1993) The Review of Financial Studies, 6, pp. 329-343 

Barndorff-Nielsen 2004 Barndorff-Nielsen, O., Shephard, N.,: Power and Bipower Variation with Stochastic Volatility and Jumps 

(2004) J. Financ. Econom., 2, pp. 1-48 
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Table 62 - Bayes factor and Monte Carlo, 4 nodes 

Short citation / node Full reference 

Gilks 1996 Gilks, W.R., Richardson, S., Spiegelhalter, D., (1996) Markov Chain Monte Carlo in Practice, (Eds.) (Chap-

man & Hall: London) 

Gelman 1995 Gelman, A., Carlin, J., Stern, H., Rubin, D., (1995): Bayesian Data Analysis, Chapman & Hall, New York 

Lando 2002 Lando, D., Skødeberg, T.,: Analyzing rating transitions and rating drift with continuous observations (2002) 

Journal of Banking and Finance, 26, pp. 423-444 

Spiegelhalter 2003 Spiegelhalter, D., Thomas, A., Best, N., Gilks, W., (2003) WinBUGS User Manual (Version 1.4), Cambridge, 

UK: MRC Biostatistics Unit 

 

Table 63 - Risk modelling for financial institutions, 4 nodes 

Short citation / node Full reference 

Embrechts 1997 Embrechts, P., Kluppelberg, C., Mikosch, T., (1997): Modeling Extremal Events for Insurance and Finance, 

Springer, Berlin 

Bank 2006 Bank for International Settlements,: International convergence of capital measurement and capital standards 

(2006), BCBS 

Degen 2006 Degen Embrechts, P., Lambrigger, D., The Quantitative Modelling of Operational Risk: Between g-and-h and 

EVT (2006) Astin Bulletin, 37 (2) 

Embrechts 2003 II Embrechts, P., Furrer, H., Kaufmann, R.,: Quantifying regulatory capital for operational risk (2003) Deriv. 

Use, Trad. Regul, 9, pp. 217-233 

 

Table 64 - Executive stock options, 4 nodes 

Short citation / node Full reference 

Ingersoll 2006 Ingersoll, J.E.,: The subjective and objective evaluation of incentive stock options (2006) Journal of Business, 

79, pp. 453-487 

Carpenter 1998 Carpenter, I.,: The exercise and valuation of executive stock options (1998) Journal of Financial Economics, 

48, pp. 127-158 

Carr 2000 II Carr, P., Linetsky, V.,: The valuation of executive stock options in an intensity-based framework (2000) Euro-

pean Finance Review, 4 (3), pp. 211-230 

Hall 2002 Hall, B.J., Murphy, K.J.,: Stock options for undiversified executives (2002) J Account Econ, 33, pp. 3-42 

 

Table 65 - Realized Volatility, 4 nodes 

Short citation / node Full reference 

Barndorff-Nielsen 2001 Barndorff-Nielsen, O., Shephard, N.,: Non-Gaussian Ornstein-Uhlenbeck-based models and some of their 

uses in financial economics (2001) J. R. Stat. Soc. Ser. B, 63 (2), pp. 167-241 

Barndorff-Nielsen 2002 Barndorff-Nielsen, O., Shephard, N.,: Econometric Analysis of Realized Volatility and Its Use in Estimating 

Stochastic Volatility Models (2002) Journal of The Royal Statistical Society, 64 (2), pp. 253-280. Series B 

Anderson 2001 Anderson, T., Bollerslev, T., Diebold, F., Ebens, H.,: The distribution of realized stock return volatility (2001) 

J. Financ. Econ., 61, pp. 43-76 

Andersen 1997 I Andersen, T., Bollerslev, T.,: Intraday periodicity and volatility persistence in financial markets (1997) Jour-

nal of Empirical Finance, 4 (2-3), pp. 115-158 

 

Period III 

Table 66 - Volatility and risk, 22 nodes 

Short citation / node Full reference 

Heston 1993 I Heston,: A Closed-Form Solution for Option with Stochastic Volatility with Applications to Bond and Cur-

rency Options (1993) Review of Financial Studies, pp. 327-343 

Broadie 2006 Broadie, M., Kaya, O.,: Exact simulation of stochastic volatility and other affine jump diffusion processes 

(2006) Operations Research, 54 (2), pp. 217-231 

Lord 2009 Lord, R., Koekkoek, R., Van Dijk, D.,: A comparison of biased simulation schemes for stochastic volatility 

models (2009) Journal of Quantitative Finance, 10 (2), pp. 177-194 
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Ninomiya 2008 Ninomiya, S., Victoir, N.,: Weak approximation of stochastic differential equations and application to deriva-

tive pricing (2008) Appl. Math. Finance, 15, pp. 107-121 

Andersen 2008 Andersen, L.,: Efficient simulation of the Heston stochastic volatility model (2008) Journal of Computational 

Finance, 11 (3), pp. 1-22 

Alfonsi 2010 Alfonsi, A., High order discretization schemes for the CIR process: Application to affine term structure and 

Heston models (2010) Math. Comp, 79, pp. 209-237 

Ninomiya 2009 Ninomiya, M., Ninomiya, S.,: A new higher-order weak approximation scheme for stochastic differential 

equations and the Runge-Kutta method (2009) Finance and Stochastics, 13 (3), pp. 415-443 

Carr 1999 Carr, P., Madan, D.,: Option valuation using the Fast Fourier Transform (1999) J. Comp. Finance, 2, p. 61 

Kahl 2006 Kahl, C., Jackel, P.,: Fast strong approximation Monte Carlo schemes for stochastic volatility models (2006) 

Quant. Finan., 6, pp. 513-536 

Revuz 1991 Revuz, D., Yor, M., (1991) Continuous Martingales and Brownian Motion, Springer Verlag: New York 

Berkaoui 2007 Berkaoui, A., Bossy, M., Diop, A., Euler scheme for SDEs with non-Lipschitz diffusion coefficient: Strong 

convergence (2007) ESAIM: Probab. Stat., 12, pp. 1-11 

Joe 2008 Joe, S., Kuo, F.Y.,: Constructing Sobol' sequences with better two-dimensional projections (2008) SIAM J. 

Sci. Comput., 30, pp. 2635-2654 

Glasserman 2009 Glasserman, P., Kim, K.,: Gamma expansion of the Heston stochastic volatility model (2009) Finance and 

Stochastics, 15, pp. 267-296 

Andersen 2007 I Andersen, L., Piterbarg, V.,: Moment explosions in stochastic volatility models (2007) Finance and Stochas-

tics, 11 (1), pp. 29-50 

Willard 1997 Willard, G.,: Calculating prices and sensitivities for path-independent derivative securities in multifactor mod-

els (1997) Journal of Derivatives, 5, pp. 45-61 

Johnson 1995 Johnson, N., Kotz, S., Balakrishnan, N., (1995) Continuous Univariate Distributions, 2., New York: Wiley 

Alfonsi 2005 Alfonsi, A.,: On the discretization schemes for the CIR (and Bessel squared) processes (2005) Monte Carlo 

Meth. Appl., 11, pp. 355-384 

Higham 2005 Higham, D., Mao, X.,: Convergence of Monte Carlo simulations involving the mean-reverting square root 

process (2005) J. Comput. Finan., 8, pp. 35-61 

Pitman 1982 Pitman, J., Yor, M.,: A decomposition of Bessel bridges (1982) Probab. Theory Related Fields, 59, pp. 425-

457 

Yuan 2000 Yuan, L., Kalbfleisch, J.,: On the Bessel distribution and related problems (2000) Ann. Inst. Statist. Math., 52, 

pp. 438-447 

Bossy 2007 Bossy, M., Diop, A., (2007): An efficient discretization scheme for one dimensional SDEs with a diffusion 

coefficient function of the form {pipe}x{pipe}a, a in [1/2, 1)., RR-5396, INRIA, December 2007 

Lyons 2004 Lyons, T., Victoir, N.,: Cubature on Wiener space (2004) Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 

460 (2041), pp. 169-198 

Van 2010 Van Haastrecht, A., Pelsser, A.,: Efficient, almost exact simulation of the Heston stochastic volatility model 

(2010) Int. J. Theor. Appl. Financ., 13, pp. 1-43 

 

Table 67 - Volatility and option pricing, 22 nodes 

Short citation / node Full reference 

Black 1973 Black, F., Scholes, M.,: The pricing of options and corporate liabilities (1973) J. Political Economy, 81, pp. 

631-654 

Duffie 2000 Duffie, D., Pan, J., Singleton, K.,: Transform Analysis and Asset Pricing for Affine Jump Diffusion (2000) 

Econometrica, pp. 1343-1376 

Eraker 2003 Eraker, B., Johannes, M., Polson, N.,: The impact of jumps in equity index volatility and returns (2003) Jour-

nal of Finance, 58, pp. 1269-1300 

Madan 1990 Madan, D., Seneta, E.,: The variance gamma model for share market returns (1990) J. Business, 63, pp. 511-

524 

Bates 1996 Bates, D., Jumps and Stochastic Volatility: Exchange Rate Process Implicit in Deutsche Mark Options (1996) 

Review of Financial Studies, 9, pp. 69-107 

Carr 2000 I Carr, P., Geman, H., Madan, D., Yor, M., The fine structure of asset returns: An empirical investigation 

(2000) Journal of Business, 75 (2), pp. 305-332 

Jacquier 1994 Jacquier, E., Poison, N., Rossi, P.,: Bayesian analysis of stochastic volatility models (with discussion) (1994) 

Journal of Business & Economic Statistics, 12, pp. 371-417 

Abramowitz 1964 Abramowitz, M., Stegun, I., (1964) Handbook of Mathematical Functions with Formulas, Graphs and Mathe-

matical Tables, New York: Dover 

Bakshi 1997 Bakshi, G., Cao, C., Chen, Z.,: Empirical Performance of Alternative Option Pricing Models (1997) J. Fi-

nance, 52, pp. 2003-2049 

Hull 1987 Hull, J., White, A.,: The pricing of options as assets with stochastic volatilities (1987) Journal of Finance, 42, 

pp. 281-300 

Barndorff-Nielsen 1998 Barndorff-Nielsen, O.,: Processes of normal inverse Gaussian type (1998) Financ. Stoch., 2 (1), pp. 41-68 

Eraker 2004 Eraker, B.,: Do stock market and volatility jump? Reconciling evidence from spot and option prices (2004) 

Journal of Finance, 59, pp. 1367-1404 
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Cox 1976 Cox, J., Ross, S.,: The valuation of options for alternative stochastic process (1976) J. Financ. Econ., 3, pp. 

145-166 

Bates 2000 Bates, D.,: Post-.87 Crash Fears in the S&P 500 Futures Option Market (2000) Journal of Econometrics, 94, 

pp. 181-238 

Madan 1998 Madan, D.B., Carr, P., Chang, E.,: The variance gamma process and option pricing (1998) Eur. Finan. Rev, 2, 

pp. 79-105 

Carr 2003 I Carr, P., Geman, H., Madan, D., Yor, M.,: Stochastic Volatility for Lévy Processes (2003) Mathematical Fi-

nance, 13, pp. 345-382 

Eberlein 1998 Eberlein, E., Keller, U., Prause, K., New insights into smile, mispricing and value at risk: the hyperbolic 

model (1998) J. Bus., 71 (3), pp. 371-405 

Spiegelhalter 2002 Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A.,: Bayesian measures of model complexity and 

fit (2002) J. R. Stat. Soc. Ser. B (Stat Methodol.), 64 (4), pp. 583-639 

Delbaen 1994 Delbaen, F., Schachermayer, W.,: A general version of the fundamental theorem of asset pricing (1994) Math. 

Ann., 300 (3), pp. 463-520 

Andersen 2002 Andersen, T., Benzoni, L., Lund, J.,: An empirical investigation of continuous-time equity return models 

(2002) J. Finan., 57, pp. 1239-1284 

Koop 2003 Koop, G., (2003) Bayesian Econometrics, London: Wiley-Interscience 

Primiceri 2005 Primiceri, G.,: Time varying structural vector autoregressions and monetary policy (2005) Rev. Econ. Stud., 

72, pp. 821-852 

 

Table 68 - Early exercise option valuation, 21 nodes 

Short citation / node Full reference 

Longstaff 2001 Longstaff, F., Schwartz, E., Pricing American Options by Simulation: A Simple Least Square Approach 

(2001) Rev. Financial Stud., 14, pp. 113-147 

Tsitsiklis 1999 I Tsitsiklis, J., Van Roy, B.,: Regression Methods for Pricing Complex American Style Options (1999) IEEE 

Trans. Neural. Net., 12, pp. 694-703., and 

Carriere 1996 Carriere, J., Valuation of Early-Exercise Price of Options Using Simulations and Nonparametric Regression 

(1996) Insur.: Math. Econ., 19, pp. 19-30 

Andersen 2004 Andersen, L., Broadie, M.,: A primal-dual simulation algorithm for pricing multi-dimensional American op-

tions (2004) Management Science, 50 (9), pp. 1222-1234 

Broadie 2004 Broadie, M., Glasserman, P.,: A stochastic mesh method for pricing high-dimensional American option (2004) 

J. Comput. Finan, 7, pp. 35-72 

Broadie 1997 I Broadie, M., Glasserman, P.,: Pricing American-style securities using simulation (1997) J Econ Dyn Control, 

21, pp. 1323-1352., 8-9 

Clement 2002 Clément, E., Lamberton, D., Plotter, P.,: An analysis of a least squares regression method for American option 

pricing (2002) Finance and Stochastics, 6, pp. 449-471 

Rogers 2002 Rogers, L.,: Monte Carlo valuation of American options (2002) Math. Finance, 12 (3), pp. 271-286 

Haugh 2004 Haugh, M., Kogan, L., Pricing American options: A duality approach (2004) Oper. Res., 52, pp. 258-270 

Tilley 1993 Tilley, J.,: Valuing American options in a path simulation model (1993) Trans. Soc. Actuaries, 45, pp. 83-104 

Stentoft 2004 I Stentoft, L.,: Convergence of the least squares Monte Carlo approach to American option valuation (2004) 

Management Science, 50 (9), pp. 1193-1203 

Boyle 1997 Boyle, P., Broadie, M., Glasserman, P.,: Monte-Carlo methods for security pricing (1997) Journal of Eco-

nomic Dynamics and Control, 21, pp. 1267-1321 

Barraquand 1995 I Barraquand, J., Martineau, D.,: Numerical valuation of high dimensional multivariate american securities 

(1995) J Finan Quant Anal, 30, pp. 383-405 

Belomestny 2009 Belomestny, D., Bender, C., Schoenmakers, J.,: True upper bounds for Bermudan products via non-nested 

Monte Carlo (2009) Math. Finance, 19, pp. 53-71 

Duffie 1996 II Duffie, D., (1996): Dynamic Asset Pricing Theory, (Princeton University Press: Princeton, NJ) 

Kolodko 2006 Kolodko, A., Schoenmakers, J.,: Iterative construction of the optimal Bermudan stopping time (2006) Finance 

and Stochastics, 10, pp. 27-49 

Stentoft 2004 II Stentoft, L.,: Assessing the least squares Monte-Carlo approach to American option valuation (2004) Rev. 

Deriv. Res., 7 (2), pp. 129-168 

Bally 2003 I Bally, V., Pages, G.,: A quantization algorithm for solving multidimensional discrete optimal stopping prob-

lem (2003) Bernoulli, 9, pp. 1003-1049 

Gamba 2002 Gamba, A., (2002) Real options valuation: A Monte Carlo approach, Working Paper, University of Verona 

Kan 2009 Kan, K., Reesor, R., Whitehead, T., Davison, M.,: Correcting the bias in monte carlo estimators of american-

style option values (2009) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 439-454 

Schoenmakers 2013 Schoenmakers, J., Zhang, J., Huang, J.,: Optimal dual martingales, their analysis and application to new algo-

rithms for Bermudan products (2013) SIAM J. Finance Math., 4, pp. 86-116 
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Table 69 - GARCH volatility, 13 nodes 

Short citation / node Full reference 

Bollerslev 1986 Bollerslev, T.,: Generalized autoregressive conditional heteroscedasticity (1986) Journal of Econometrics, 31, 

pp. 307-327 

Engle 1982 Engle, R.,: Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation (1982) 

Econometrica, 50, pp. 987-1008 

Nelson 1991 Nelson, D., Conditional heteroscedasticity in asset returns: A new approach (1991) Econometrica, 59, pp. 

347-370 

Diebold 1995 Diebold, F., Mariano, R.,: Comparing predictive accuracy (1995) J Bus Econ Stat, 13 (3), pp. 253-263 

Taylor 1986 Taylor, S., (1986): Modeling Financial Time Series, John Wiley & Sons, New York, USA 

Glosten 1993 Glosten, L., Jaganathan, R., Runkle, D.,: On the relation between the expected value and the volatility of the 

nominal excess return on the stocks (1993) J. Finance, 48, pp. 1779-1801 

Andersen 1998 Andersen, T., Bollerslev, T., Answering the skeptics: yes, standard volatility models do provide accurate fore-

casts (1998) International Economic Review, 39 (4), pp. 885-905 

Andersen 2003 I Andersen, T., Bollerslev, T., Diebold, F., Labys, P.,: Modeling and forecasting realized volatility (2003) 

Econometrica, 71, pp. 579-625 

Zhang 2005 Zhang, L., Mykland, P., Ait-Sahalia, Y., A tale of two-time scales: determining integrated volatility with noisy 

high-frequency data (2005) J. Am. Stat. Assoc., 100, pp. 1394-1411 

Kuester 2006 Kuester, K., Mittnik, S., Paolella, M., Value-at-Risk prediction: A comparison of alternative strategies (2006) 

Journal of Financial Econometrics, 4, pp. 53-89 

Dowd 2002 Dowd, K., (2002): Measuring Market Risk, John Wiley & Sons, Chichester 

Ding 1993 Ding, Z., Engle, R., Granger, C.,: A Long Memory Property of Stock Market Returns and A New Model 

(1993) Journal of Empirical Finance, 1 (1), pp. 83-106 

Zumbach 2004 Zumbach, G.,: Volatility processes and volatility forecast with long memory (2004) Quant. Finance, 4, pp. 70-

86 

 

Table 70 - Value-at-Risk, 12 nodes 

Short citation / node Full reference 

Jorion 2000 Jorion, P., (2000) Value-at-Risk, McGraw-Hill: New York 

Kupiec 1995 Kupiec, P.,: Techniques for verifying the accuracy of risk measurement models (1995) Journal of Derivatives, 

3, pp. 73-84 

Christoffersen 1998 Christoffersen, P.,: Evaluating interval forecasts (1998) Int Econ Rev, 39, pp. 841-862 

Engle 2004 Engle, R., Manganelli, S., CAViaR: conditional autoregressive value at risk by regression quantiles (2004) J. 

Bus. Econ. Statist., 22, pp. 367-381 

Mandelbrot 1963 Mandelbrot, B.,: The variation of certain speculative prices (1963) J. Bus., 36, pp. 394-419 

Morgan 1996 Morgan, J.P., (1996): RiskMetrics Technical Document, 4th Ed., New York 

Geman 1984 Geman, S., Geman, D.,: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images 

(1984) IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, pp. 721-41., and. pp 

Berkowitz 2011 Berkowitz, J., Christoffersen, P., Pelletier, D.,: Evaluating value-at-risk models with desk-level data (2011) 

Manage Sci, 57 (12), pp. 2213-2227 

Barone-Adesi 1999 Barone-Adesi, G., Giannopoulos, K., Vosper, L.,: VaR without Correlation for nonlinear Portfolios (1999) 

Journal of Futures Markets, 19, pp. 583-602 

Fama 1965 Fama, E.,: The behavior of stock market prices (1965) J. Bus., 38, pp. 34-105 

Christoffersen 2004 I Christoffersen, P., Pelletier, D., Backtesting value-at-risk: A duration-based approach (2004) Journal of Finan-

cial Econometrics, 2, pp. 84-108 

Gelfand 1990 Gelfand, A.E., Smith, A.,: Sampling-based approaches to calculating marginal densities (1990) Journal of the 

American Statistical Association, 85, pp. 398-409 

 

Table 71 - Markov chain state pricing, 7 nodes 

Short citation / node Full reference 

Green 1995 Green, P.J.,: Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination 

(1995) Biometrika, 82, pp. 711-732 

Gilks 1996 Gilks, W.R., Richardson, S., Spiegelhalter, D., (1996) Markov Chain Monte Carlo in Practice, (Eds.) (Chap-

man & Hall: London) 

Hastings 1970 Hastings, W.,: Monte Carlo sampling methods using Markov Chains and their application (1970) Biometrica, 

57, pp. 97-109., pp 
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Table 72 - Contagion and interdependence, 7 nodes 

Short citation / node Full reference 
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423 

Embrechts 2002 Embrechts, P., McNeil, A., Straumann, D., Correlation and dependence in risk management: Properties and 

pitfalls (2002) In Risk Management: Value at Risk and Beyond, pp. 176-223.  
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Table 73 - Term Structure models, 6 nodes 

Short citation / node Full reference 
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Table 74 - Implied volatility, 6 nodes 

Short citation / node Full reference 

Karatzas 1991 Karatzas, I., Shreve, S., (1991) Brownian Motion and Stochastic Calculus, (New York: Springer-Verlag) 

Dupire 1994 Dupire, B.,: Pricing with a smile (1994) Risk Mag., January, pp. 18-20 
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Table 75 - Monte Carlo methods and valuation, 5 nodes 

Short citation / node Full reference 
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Table 76 - Asset returns, 5 nodes 

Short citation / node Full reference 

Newey 1987 Newey, W., West, K.,: A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent co-
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Apergis 2004 Apergis, N., Miller, S.M., (2004) Consumption asymmetry and the stock market: Further evidence, University 

of Connecticut, Department of Economics,,, and 

Ng 2001 Ng, S., Perron, P.,: Lag length selection and the construction of unit root tests with good size and power 

(2001) Econometrica, 69, pp. 1519-1554 
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Table 77 - Agent based models of markets, 5 nodes 

Short citation / node Full reference 

Lebaron 2006 Lebaron, B.,: Agent-based computational finance (2006) Handbook of Compulalional Economics, 2 (1), pp. 

187-1233 
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Table 78 - Derivative models, 5 nodes 

Short citation / node Full reference 

Broadie 1997 III Broadie, M., Glasserman, P., Kou, S.,: A continuity correction for discrete barrier options (1997) Mathemati-

cal Finance, 7 (4), pp. 325-348 

Feng 2008 Feng, L., Linetsky, V.,: Pricing discretely monitored barrier options and defaultable bonds in Lévy process 
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Korn 2010 Korn, R., Korn, E., Kroisandt, G., (2010): Monte Carlo Methods and Models in Finance and Insurance, Boca 

Raton FL Chapman and Hall 

 

Table 79 - Commodity valuation, 4 nodes 

Short citation / node Full reference 

Schwartz 1997 Schwartz, E., Stochastic behavior of commodity prices: Implications for valuation and hedging (1997) Journal 

of Finance, 52 (3), pp. 923-973 

Schwartz 2000 Schwartz, E., Smith, J.,: Short-term variations and long-term dynamics in commodity prices (2000) Mgmt 

Sci., 46, pp. 893-911 

Brennan 1985 Brennan, M., Schwartz, E.,: Evaluating Natural Resource Investments (1985) J. Business, 58, pp. 133-158 
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Casassus 2005 Casassus, J., Collin-Dufresne, P.,: Stochastic convenience yield implied from commodity futures and interest 

rates (2005) J. Financ., 60, pp. 2283-2331 

 

Table 80 - Systemic banking risk, 4 nodes 

Short citation / node Full reference 

Nier 2007 Nier, E., Yang, J., Yorulmazer, T., Alentorn, A.,: Network models and financial stability (2007) Journal of 

Economic Dynamics and Control, 31, pp. 2033-2060 

Allen 2000 Allen, F., Gale, D.,: Financial contagion (2000) Journal of Political Economy, 108, pp. 1-33 

Freixas 2000 Freixas, X., Parigi, B., Rochet, J.,: Systemic risk, interbank relations and liquidity provision by the central 

bank (2000) Journal of Money, Credit and Banking, 32 (3 PART 2), pp. 611-638 

Iori 2006 Iori, G., Jafarey, S., Padilla, F.,: Systemic risk on the interbank market (2006) Journal of Economic Behavior 

& Organization, 61, pp. 525-542 

 

Table 81 - Simulation in capital investment, 4 nodes 

Short citation / node Full reference 

Hertz 1964 Hertz, D.,: Risk analysis in capital investment (1964) Harvard Business Review, 42 (1), pp. 95-106 

Hoesli 2006 Hoesli, M., Jani, E., Bender, A.,: Monte Carlo simulations for real estate valuation (2006) Journal of Property 

Investment & Finance, 24 (2), pp. 102-122 

French 2005 French, N., Gabrielli, L., Discounted cash flow: Accounting for uncertainty (2005) Journal of Property Invest-

ment & Finance, 23 (1), pp. 75-89 

Kelliher 2000 Kelliher, C., Mahoney, L.,: Using Monte Carlo simulation to improve long-term investment decisions (2000) 

Appraisal Journal, 68 (1), pp. 44-56 

 

Table 82 - Macro Finance, 3 nodes 

Short citation / node Full reference 

Clarida 2000 Clarida, R., Gali, J., Gertler, M., Monetary policy rules and macroeconomic stability: evidence and some the-

ory (2000) Quarterly Journal of Economics, 115, pp. 147-180 

Fernandez-Villaverde 

2007 

Fernández-Villaverde, J., Rubio-Ramírez, J.F., Sargent, T.J., Watson, M.W.,: ABC's (and D)'s for Under-

standing VARS (2007) American Economic Review, 97, pp. 1021-1026 

Smets 2007 Smets, F., Wouters, R., Shocks and frictions in U.S. business cycles: A bayesian DSGE approach (2007) The 

American Economic Review, 97 (3), pp. 586-606., JUNE 

 

Additional data on niche diffusion 

Table 82 below shows diffusion shares calculated analogously to Figure 7 in the first chapter 

for additional clusters  

 
Discipline Source Niche # simulation 

papers  

 # total papers  % of simulation 

papers 

Finance Schäffer et al. Financial intermediation 13 1.024 1,3% 

Finance Schäffer et al. Asset Pricing 204 4.176 4,9% 

Finance Schäffer et al. Asset Pricing Macro Factors - 50 0,0% 

Finance Schäffer et al. Asset Pricing general models 183 3.321 5,5% 

Finance Schäffer et al. Asset Pricing anomalies 7 187 3,7% 

Finance Schäffer et al. Term structure 170 2.437 7,0% 

Finance Schäffer et al. Market microstructure 89 1.230 7,2% 

Finance Schäffer et al. Agency conflicts 9 1.341 0,7% 

Finance Schäffer et al. Agency conflicts Market for control 1 69 1,4% 

Finance Schäffer et al. Agency conflicts Ownership - 264 0,0% 

Finance Schäffer et al. Agency conflicts Capital Structure 1 97 1,0% 
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Finance Schäffer et al. Corporate Diversification 4 243 1,6% 

Finance Schäffer et al. Internal capital markets 26 1.106 2,4% 

Finance Schäffer et al. Initial public offerings 9 1.856 0,5% 

Finance Schäffer et al. Initial public offerings Underpricing 2 523 0,4% 

Finance Schäffer et al. Initial public offerings Long Term return 1 82 1,2% 

Finance Schäffer et al. Mutual Funds 41 2.212 1,9% 

Finance Gaunt Banking & Financial institutions 387 27.047 1,4% 

Finance Gaunt Behavioural finance 25 877 2,9% 

Finance Gaunt Experimental finance 2 36 5,6% 

Finance Gaunt Derivatives 570 6.161 9,3% 

Finance Gaunt Asset pricing and valuation 944 19.724 4,8% 

Finance Gaunt market microstructure 89 1.230 7,2% 

Finance Gaunt Capital structure 36 2.784 1,3% 

Finance Gaunt Payout policy 143 5.380 2,7% 

Finance Gaunt Governance 94 29.286 0,3% 

Finance Gaunt Corporate control 3 855 0,4% 

Finance Gaunt Organisation 1.671 131.548 1,3% 

Finance Gaunt Valuation 740 15.336 4,8% 

Finance Gaunt capital budgeting 74 1.047 7,1% 

Finance Gaunt investment policy 31 892 3,5% 

Finance Gaunt incentives 618 31.093 2,0% 

Finance Gaunt compensation 234 10.982 2,1% 

Finance Gaunt Mutual funds 39 2.212 1,8% 

Finance Gaunt Hedge funds 30 1.246 2,4% 

Finance Gaunt Investment industry 3 74 4,1% 

Accounting Gaunt Accounting education 11 868 1,3% 

Accounting Gaunt Auditing 107 11.238 1,0% 

Accounting Gaunt Corporate governance 14 10.561 0,1% 

Accounting Gaunt Financial accounting 12 1.467 0,8% 

Accounting Gaunt Managerial accounting 5 363 1,4% 

Accounting Gaunt Research methods and methodology in acc. 67 1.551 4,3% 

Accounting Just et al. Earnings management 11 1.891 0,6% 

Accounting Just et al. Disclosure 8 2.110 0,4% 

Accounting Just et al. Executive Compensation 12 1.328 0,9% 

Accounting Just et al. Auditing Services 107 11.238 1,0% 

Accounting Just et al. Accounting Systems & Data 42 2.010 2,1% 

Accounting Just et al. Analyst forecasts 22 896 2,5% 

Accounting Just et al. Valuation  740 15.336 4,8% 

Accounting Just et al. Corporate Governance 14 10.561 0,1% 

Accounting Chenhall Capital budgeting 74 1.047 7,1% 

Accounting Chenhall Incentives 618 31.093 2,0% 

Accounting Chenhall Management control systems 15 1.613 0,9% 

Accounting Chenhall Performance measurement 115 4.526 2,5% 

Accounting Chenhall Budgeting 132 3.206 4,1% 

Accounting Chenhall transfer pricing 8 468 1,7% 

Accounting Chenhall Costing 45 857 5,3% 

Accounting Chenhall Activity based costing 27 418 6,5% 

Accounting Chenhall Informal controls - 115 0,0% 

Accounting Chenhall MCS in inter-firm relationships - 7 0,0% 

Accounting Chenhall Methodological aspects 92 3.747 2,5% 

F&A Chapter 1 Stochastic volatility 450 1.610 28,0% 

F&A Chapter 1 Volatility and option pricing 147 825 17,8% 

F&A Chapter 1 Monte Carlo Valuation 14 14  

F&A Chapter 1 Volatility 1.493 18.711 8,0% 

F&A Chapter 1 Value at risk 416 2.107 19,7% 

F&A Chapter 1 Volatility and valuation  105 687 15,3% 

F&A Chapter 1 (Least squares) Monte Carlo valuation 42 77  

F&A Chapter 1 Affine term structure models 18 158 11,4% 

F&A Chapter 1 Financial market statistics - -  

F&A Chapter 1 complex / Exotic option pricing  23 117 19,7% 

F&A Chapter 1 Consumption optimal portfolios & interest rates 17 274 6,2% 

F&A Chapter 1 Multivariate stock market statistics - -  

F&A Chapter 1 Option pricing 333 2.272 14,7% 

Table 83 - Diffusion share of simulation research clusters obtained via the method described in chapter 1 

Chapter 2 
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Probability density functions 

The PDF describes the general shape of the distribution. Some common examples of families 

of PDFs are the standard normal / Gaussian distribution, the lognormal distribution or the 

Weibull distribution. Depending on the variable to be modeled different distributions are appli-

cable to accurately model and capture the range of expected realizations of the given variable. 

The functional form of a distribution is typically rooted in its data-generating process, e.g. a 

lognormal distribution can emerge through accumulation of normally distributed small percent-

age changes that are additive on the logarithmic scale.  

Over time a plethora of distributions has emerged that can capture many salient features of 

DGPs. Many of these distributions have clear theoretical or practical justifications. These in-

clude but are not limited to the standard normal, log normal, Mixture (standard normal with 

skew or Kurtosis) / skew normal, Beta, Weibull, PERT, beta - PERT, Triangular, Poisson, uni-

form (continuous / discrete), Bernoulli / Binomial, Gamma, Exponential, Pareto, Logistic, Log-

Logistic, Students-T, Maximum / Minimum extreme, Negative binomial, Geometric, General 

discrete, Integer Uniform and Hypergeometric distribution. Through our analysis and the inter-

views with leading experts we can provide a strong framework for simulation modelers for 

which core distributions to keep in their toolbox.  

Stochastic processes 

If a simulation model requires successive draws multiple times from the same marginal distri-

bution that exhibits some form of autocorrelation, then it becomes necessary to define a sto-

chastic process that models this auto-dependence (Law et al., 2010). Put differently, if a simu-

lation needs not only a single draw from a distribution but rather a series of draws that are 
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interrelated in some way, then this requires the definition of how this process is defined sto-

chastically. Stochastic processes include Brownian motion, autoregressive moving-average 

(ARMA or ARIMA) or generalized autoregressive conditional heteroskedasticity (GARCH).  

Parameters of probability density functions 

PDFs of various distribution families are characterized by a set of parameters that specify the 

exact attributes of the distribution (Law et al., 2000). Further below we provide an overview of 

distributions that are used regularly by practitioners. While the standard normal distribution is 

fully described by its mean and standard deviation other distributions may require additional or 

different parameters to further describe its exact shape. Furthermore, its defining parameters 

are also its descriptive statistics and median, mode and mean coincide. In other distributions, 

the parameters may not be as straightforwardly understood in an intuitive sense to simulation 

modelers as for the commonly used Weibull distribution that is defined by three parameters, 

scale, shape and location. These parameters are also common across many other distributions 

(Law et al., 2000). The mean of a Weibull distribution is a function of both the scale (α) and 

shape (β) parameter16: 

:;<= = >Γ(1 + &
C
)                    (3) 

Where Γ represents the gamma function (see Artin, 2015). Thus, the defining parameters de-

termine its descriptive statistics, though not as straightforwardly as for the Gaussian.  

Chapter 4  

Introduction to Bayesian statistics 

 
16 Assuming a location parameter of 0  
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As our method relies on Bayesian updating we provide a brief introduction to Bayesian statis-

tics. The objective here is not to give a general treatment of Bayes Theorem as excellent re-

sources are plentiful (e.g. Kruschke, 2014; Gelman et al. 2014). Bayesian statistics dates to 

Thomas Bayes who developed its first applications in the 18th century (Gelman et al. 2014). 

Despite the long intellectual history there has been a growing interest in applications of 

Bayesian statistics to a host of topics particularly in the finance literature (e.g. Rachev, Hsu, 

Bagasheva & Fabozzi, 2008). In part this renaissance is due to Markov Chain Monte Carlo 

methods that allow more efficient calculations if prior and posterior distributions do not nec-

essarily follow the same functional form or follow an unknown functional form. Bayesian sta-

tistics at its core shows how a prior believe about statistical properties of data or a process can 

be updated or improved through incorporation of new information to form a posterior believe.  

Bayesian updating of a binary probability 

A simple coin tossing example is commonly used to illustrate how Bayes Theorem can be 

used to update a prior belief through the incorporation of new information (e.g. used in Kelly 

et al., 2011; Vose, 2008). This illustration assumes a binary probability distribution. Other 

distributional families can be treated analogously (Fink 1997). Through Bayes theorem we 

can invert conditional probabilities. For two binary events A and B it holds: 

A(B|C) = DECFBGD(;)
D(H)

                (11) 

Here P denotes the probability of respective events A and B. This conditional probability al-

lows us to reason about our prior believe based on newly obtained evidence. In this general 

form our prior of	A(B|C) is equal to A(B) if we do not have any knowledge about the proba-

bility of occurrence of B. If we obtain knowledge about B (in this binary case this would 

simply mean B occurred or not) we can make a more precise estimate of A(B|C) as shown in 
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(1). The process of Bayesian updating describes how an unconditional prior probability or be-

lief can be updated through new information to become a conditional posterior probability or 

belief. A common illustration for Bayes theorem is a game of chance where a coin is tossed 

three times and one should guess based on the outcome what type of coin is tossed. Assume 

that there are four possible coins from which the tossed coin is drawn at random, three fair 

coins F with AI(D;<E) = 0.5 and one unfair coin UF with AJI(D;<E) = 0.9. Frequentist 

statistics allows the calculation of the likelihood of each possible outcome of the three tosses 

(e.g. the chance of three heads with the unfair coin is given by AJI(DDD) = 0.9K = 0.73). 

Bayes Theorem allows us to calculate the relative likelihood that the game was played with 

each type of coin given an outcome. Here the prior estimate, the unconditional likelihood of 

any coin being a fair coin F is A(L) = K
L
= 0.75. The prior is an unconditional estimate prior 

to any new information to condition an estimate on. Through Bayes theorem we can incorpo-

rate new information MN obtained through the three coin tosses. Assume that one coin is 

tossed three times each time showing head, thus MN = DDD. The posterior believe about 

A(L|MN) is given by the likelihood function: 

A(L|MN) = DEMNFLGD(I)
D(MN)

= DEMNFLGD(I)
DEMNFLGD(I)4DEMNFOLGD(JI)          (12) 

The middle segment of Equation (2) already reflects the general form that is used to derive the 

Bayesian posterior that one observes again in the case of continuous distributions: 

#PQR;STPS ∝ UTV;UTℎPPE ∗ #STPS 

By substituting the respective probability masses, we derive the likelihood of A(L|MN) for 

three tosses of heads in a row: 

A(L|MN) = DEMNFLGD(I)
D(MN)

= DEO.Q*GD(O.RQ)
D(O.Q*)D(O.RQ)4D(O.S*)D(O."Q)

= 34%	       (13) 
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In short, the probability of the coin tossed being a fair coin is just 34% given the observation 

that three heads have been tossed in a row. Comparing this to the unconditional probability of 

75% illustrates the predictive power of Bayesian analysis that can be generalized for various 

distributions.  

Experts input  

Chapter 4 briefly mentioned the method used to extract expert input following the method de-

scribed in Winman, Hansson & Juslin (2004). According their research, overconfidence bias 

can be reduced substantially by inverting the typical elicitation process. In elicitation it is 

common to extract subjective probabilities via confidence intervals. Experts are thus asked for 

their assessment of a variables mean, e.g. in our case the future electricity price, and then to 

ask them on their assessment of a confidence interval of, e.g. 90%. In other words, experts 

construct intervals of a given confidence level. It has been shown that such intervals are usu-

ally estimated too narrowly due to the overconfidence, or more precisely, the overprecision 

bias (Cooke, 1991). Winman et al. (2004) however have shown that this bias can be reduced 

by a different elicitation process. Here, elicitors construct confidence intervals and request ex-

perts to judge their confidence levels. Via recursion of this elicitation process the subjective 

probability estimates are derived. This process was applied in the elicitation for this case.  

Multivariate regression analysis of simulation experiments  

The following tables contain multivariate regression outputs for the simulation experiment from 

chapter 4.  

Regression Statistics: Data input model     

R Square            0,9915        
Adjusted R Square            0,9915        
Observations          100.000        
ANOVA      
 df SS MS F Significance F 

Regression 4 4,76966E+17 1,19241E+17 2900867,114 0 
Residual 99995 4,11034E+15 41105438798   



235 

 

Table 84 - Multivariate regression output for the data / new information input modelling specification 

 

Table 85 – Multivariate regression output for the naïve updating input modelling specification 

 

Total 99999 4,81076E+17    
      
 Coefficients Standard Er-

ror 

t Stat P-value  

Intercept -81.321.845     42.115    -1.931    0  
District heating rate: 
Location 1 · 10 

 757.967     568     1.334    0  

District heating rate: 
Location 2 · 10 

 467.815     762     614    0  

Electricity rate · 10  611.574     1.109     552    0  
Waste price · 10  534.055     448     1.192    0  

Regression Statistics: Naïve update in-
put model 

    

R Square 0,9956     
Adjusted R Square 0,9956     
Observations          100.000        
ANOVA      
 df SS MS F Significance F 

Regression 4 9,27876E+17 2,31969E+17 5633586,498 0 
Residual 99995 4,1174E+15 41176085835   
Total 99999 9,31994E+17    
      
 Coefficients Standard Er-

ror 

t Stat P-value  

Intercept -76.718.169     19.647    -3904,8277 0  
District heating rate: 
Location 1 · 10 

 715.649     245    2926,836457 0  

District heating rate: 
Location 2 · 10 

 442.318     247    1791,204447 0  

Electricity rate · 10  576.672     378    1527,593447 0  
Waste price · 10  503.683     174    2901,700081 0  

Regression Statistics: Posterior input 

model 

    

R Square 0,9973     
Adjusted R Square 0,9973     
Observations          100.000        
ANOVA      
 df SS MS F Significance F 

Regression 4 8,90572E+17 2,22643E+17 9152192,177 0 
Residual 99995 2,43255E+15 24326728363   
Total 99999 8,93004E+17    
      
 Coefficients Standard Er-

ror 

t Stat P-value  
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Table 86 - Multivariate regression output for the posterior input modelling specification 

 

Table 87 - Multivariate regression output for the Prior input modelling specification 

 

Modelling assumptions of the financial models  

To focus on the properties of different input modelling approaches we keep the model simple 

where this does not affect accuracy. These assumptions include: 

• We assume fixed percentages for annual investment volumes / capital expenditure and 

a constant rate of depreciation 

• Further we assume an absence of non-tangible capital and thus no amortization  

To simplify modelling further we assume that interests are calculated on final account bal-

ances of the balance sheet as opposed to averages over multiple periods 

Intercept -75.081.772     15.355    -4.890    0  
District heating rate: 
Location 1 · 10 

 700.835     188     3.732    0  

District heating rate: 
Location 2 · 10 

 433.063     190     2.281    0  

Electricity rate · 10  565.034     290     1.945    0  
Waste price · 10  493.495     133     3.698    0  

Regression Statistics: Prior input 

model 

    

R Square 0,9986     
Adjusted R Square 0,9986     
Observations          100.000        
ANOVA      
 df SS MS F Significance F 

Regression 4 8,70484E+17 2,17621E+17 18445727,84 0 
Residual 99995 1,17973E+15 11797904067   
Total 99999 8,71663E+17    
      
 Coefficients Standard Er-

ror 

t Stat P-value  

Intercept -73.913.919     10.505    -7.036    0  
District heating rate: 
Location 1 · 10 

 690.785     131     5.272    0  

District heating rate: 
Location 2 · 10 

 426.931     132     3.238    0  

Electricity rate · 10  556.698     202     2.762    0  
Waste price · 10  486.120     93     5.231    0  
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Bayesian updating with unknown variance 

In the applications of Chapter 4, we assumed that the variance of the distributions of inde-

pendent variables were known throughout the Bayesian updating process. This can be gener-

alized to the case where their variances are also unknown and thus is updated as well. Hence, 

this represents a setting with a second change in the simulation input modelling environment. 

This illustration assumes conjugate priors for the variance as well. It can be shown (see e.g. 

Lynch 2007) that the conjugate prior for the variance follows an Inverse-Gamma distribution. 

Intuitively, as the variance is strictly positive the normal distribution cannot be its conjugate 

prior. It is common to work with a Gamma distribution instead of the Inverse-Gamma and in-

vert the variance leading to the intuitive term of precision λ = &
)"

. This inversion is used 

throughout the literature (e.g. DeGroot et al., 2012) as it leads to a more parsimonious mathe-

matical representation. A reparameterization would enable us to use an Inverse-Gamma distri-

bution and the usual variance term.  

Hence, we are interested in the conjugate prior distribution of the mean and the variance that 

follow a joint Normal-Gamma distribution: 

Normal − Gamma	(*, λ|*O, d, >, e)              (14) 

That follows the joint Normal-Gamma distribution by definition: 

Normal − Gamma	(*, λ	|	*O, d, >, e) = N(*|*O, (dOλ)+&)Ga(λ|	>O, eO)      (15) 

Where *O describes the location parameter of the normal distribution, (dOλ)+& describes the 

variance, d describes the number of pseudo-observations for the hyperparameters (prior pa-

rameters) that can be interpreted as sample sizes of the observations with properties defined 

by the prior parameters, >O describes the Gamma distribution’s shape parameter and βO de-

scribes the Gamma distribution’s rate or inverse scale parameter. The joint Normal-Gamma 

distribution implies * is normally distributed conditionally on λ. The parameterization of the 
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Normal distribution is conditional on the Gamma distribution’s parameters; hence we first de-

rive its posterior parameters. It can be shown that the posterior parameters of the Gamma-dis-

tributed variance are: 

># = >O +
#
"
                    (16) 

e# = eO +
&
"
∑ (g$ − g)777"#
$%& + T+#(!̅+0+)"

"(T+4#)
             (17) 

= stands for the number of observations (i.e. experts’ inputs in our case) in the updating pro-

cess. Subsequently we would derive the posterior values of the Normal distribution:  

*# =
T+0+4#!̅
T+4#

                   (18) 

d# = dO + =                    (19) 

Full derivations for these posteriors are provided in Murphy (2007) and Degroot et al. (2012). 

Finally, we now obtain expected values for the mean and variance by taking expectations of 

mean or the Mode over the Gamma and Normal distribution. Hence, the posterior mean is 

given by (here h denotes the expectations operator): 

h(*) = *O                    (20) 

And the posterior variance is given by: 

Mode(λ") = C$
(V$4&)

                  (21) 

Kalman filter 

Kalman filters use series of stochastic, noisy or incomplete measurements over time and grad-

ually incorporate information into estimates of a dynamic system’s state that is not directly 

observable. Mathematically the Kalman filter is based on a representation of Bayesian con-

cepts of prior, likelihood and posterior (Grewal et al. 2001). Three objectives are achieved 

through these algorithms, filtering, smoothing of time series data and prediction. The Bayes-

ian filter is in fact equivalent to the Kalman filter under the assumption of Gaussian noise and 
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normally distributed measurement errors (Charles, 2011). The Bayesian filter is an application 

of Bayesian estimation to a setting where estimated parameters change over time thusly re-

quiring recursive re-estimation as new data becomes available over time. Kalman filter is built 

on the assumption of a measurement error, i.e. it is not possible to directly observe the true 

state of a dynamic system (Grewal et al., 2001) assumed to be an unobserved Markov state. 

This is akin to challenges in simulation input modelling. In Kalman filters measurement noise 

refers to new observations. In input modelling setting described here, these are the errors of 

the experts’ judgments that are assumed to be normally distributed. A derivation is shown in 

Reid (2001) that demonstrates that the Kalman filter’s estimate is the minimum variance unbi-

ased estimator of the state variable.  

Chapter 5 

Additional analysis of simulation experiment, chapter 5 

Table 88 shows input parameters for all factor levels in stage I of the simulation experiment of 

chapter 5. 

Table 88 - Input parameters for stage I of the simulation experiment 

Table 89 shows the input parameters for all factor level in stage II of the simulation experiment.  

Stage I Factor levels Average of normal distribu-

tion (1st central moment) 
Standard deviation of normal 

distribution (2nd central moment) 
Factor level 1: Prior - district heating lo-
cation 1 22.25€ 2.62€ 
Factor level 1: Prior - district heating lo-
cation 2 32.39€ 2.60€ 
Factor level 2: Posterior - district heating 
location 1 21.59€ 2.25€ 
Factor level 2: Posterior - district heat-
ing location 2 29.69€ 2.47€ 

Stage II Factor levels Average of normal distribu-

tion (1st central moment) 
Standard deviation of normal 

distribution (2nd central moment) 
Factor level 1: Prior at 50th percentile – 
district heating location 1 22.25€ 1.87€ 
Factor level 1: Prior at 50th per-centile – 
district heating location 2 32.39€ 2.24€ 
Factor level 2: Prior at 5th percentile – 
district heating location 1 20.24€ 1.87€ 
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Table 89 - Input parameters for stage II of the simulation experiment 

The correlation matrix used in the model remained unchanged from chapter 4. Further, the elic-

itation method to gain expert input remained unchanged as well.  

Approximation of epistemic and aleatoric uncertainty 

To approximate the aleatoric and epistemic uncertainty contribution to the compound varia-

tion observed in the district heating prices we applied the following method. Note that there 

existed a reasonably accurate forecast for the average prices across district heating locations.  

In the past this price has been a strong predictor for individual district heating locations, 

where the price can vary substantially over sustained periods of time. An ordinary least square 

(OLS) regression of the following form confirmed the predictive power of the average South-

ern German district heating rate:  

ASTk;:$B?@$5?_W=>?$#X_<65>?$6#_&	$ =	>O +	e&	ASTk;:$B?@$5?_W=>?$#X_>Y=@>X=	$ + l     (22) 

For the price of district heating the regression output is given below: 

Factor level 2: Prior at 5th percentile – 
district heating location 2 30.95€ 2.24€ 
Factor level 3: Bayesian posterior at 50th 
percentile – district heating location 1 21.59€ 1.87€ 
Factor level 3: Bayesian posterior at 50th 
percentile – district heating location 2 29.69€ 2.24€ 
Factor level 4: Bayesian Posterior at 5th 
percentile – district heating location 1 20.24€ 1.87€ 
Factor level 4: Bayesian Posterior at 5th 
percentile – district heating location 2 30.95€ 2.24€ 

Regression Statistics: Naïve update in-

put model 

    

R Square 0.512     
Adjusted R Square 0.415     
Observations 7     
ANOVA      
 df SS MS F Significance F 

Regression 1 21.03 21.03 5.25 0.070 
Residual 5 20.02 4.00   
Total 6 41.05    
      
 Coefficients Standard Er-

ror 
t Stat P-value  

Intercept -5.574 9.14 -0.61 0.56  
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Table 90 - Regression output for annual prices series for location 1 

Likewise, Table 91 shows regression outputs for the price series of location 2:  

 

Table 91 - Regression output for annual prices series for location 2 

 

Note that per the m" metric the regression models explain 0.415 and 0.969 of the variation ob-

served. This part, the “explained” part of the variation, is here interpreted as aleatoric uncer-

tainty and the remainder, the “unexplained” part as the epistemic variation. In other words, the 

epistemic variance is approximated through the regression’s residuals and calculated as the 

variance of these residuals. Through this method we obtain a variance decomposition shown 

in table 92: 

Table 92 - Variance decomposition for the price series of district heating in location 1 & 2 

This method approximates the epistemic and aleatoric uncertainty shares in the variation of 

each location’s district heating rates.  

Germany average 
prices  

1.087 0.47 2.29 0.070  

Regression Statistics: Naïve update in-

put model 

    

R Square 0.74     
Adjusted R Square 0.69     
Observations 7     
ANOVA      
 Df SS MS F Significance F 

Regression 1 30.07 30.07 14.50 0.013 
Residual 5 10.37 2.07   
Total 6 40.43    
      
 Coefficients Standard Er-

ror 
t Stat P-value  

Intercept -0.88 6.58 -0.13 0.909  
Germany average 
prices  

1.30 0.34 3.81 0.013  

  Location 1 Location 2 
Total Variance      6,84         6,74    
Total Standard deviation      2,62         2,60    
"Epistemic" variance      3,34         1,73    
"Epistemic" SD      1,83         1,31    
"Aleatoric" variance      3,50         5,01    
"Aleatoric" SD      1,87         2,24    


