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ABSTRACT Due to the energy transition and the distribution of electricity generation, distribution power
systems gain a lot of attention as their importance increases and new challenges in operation emerge. The
integration of renewables and electric vehicles for instance leads to manifold changes in the system, e.g.
participation in provision of ancillary services. To solve these challenges artificial intelligence provides a
variety of solutions based on the increase in sensor data and computational capability. This paper provides a
systematic overview of some of themost recent studies applying artificial intelligencemethods to distribution
power system operation published during the last 10 years. Based on that, a general guideline is developed
to support the reader in finding a suitable AI technique for a specific operation task. Therefore, four general
metrics are proposed to give an orientation of the requirements of each application. Thus, a conclusion can
be drawn presenting suitable algorithms for each operation task.

INDEX TERMS Artificial intelligence, distribution power systems, fuzzy logic, machine learning, meta-
heuristics, power systems, power system operation.

I. INTRODUCTION
The supply of electrical energy is a necessity in modern soci-
ety and its reliability has to be guaranteed by the power sys-
tem operators. Nevertheless, thanks to the energy transition
many new challenges regarding the stability and operation of
the energy grid emerge. That being the case, system operators
as well as other stakeholders have to find solutions to keep the
grid stable and the energy supply reliable, while transitioning
the energy system to carbon-neutral operation.

Hence, governments of multiple countries are developing
strategies in cooperation with grid operators to increase the
integration of renewables, namely the European commis-
sion’s strategy to harness the potential of offshore renew-
able energy [1], [2]. The German government for instance
published a double tracked strategy relying on the optimized
operation of existing grid structures to reduce reserves as well
as the speed up of building new power lines [3].

Besides the conventional techniques in power system
operation, data-driven methods and especially artificial
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intelligence are getting more attention as a result of the
increasing amount of data provided by a growing number of
installed measurement systems. Additionally, the growth of
computational power is enabling the application of powerful
techniques in real-time, which also leads to an enlarged inter-
est in data-driven systems [4].

Given these circumstances, the research output in this field
also increases. To showcase, the online database of publish-
ers Elsevier, IEEE and Wileys (IET) were searched and the
growth of the number of publications per month compared to
the previous year was plotted in percent in figure 1. Thus,
a clear trend can be identified. According to this analysis,
it can be seen that the number of publications on AI in power
systems increased by 40 % for the last few years. Recently,
multiple studies have been done reviewing possible applica-
tions of AI in power systems focusing on different aspects.
Somewill be briefly revisited here. Zhao et al. [5] give a broad
overview about the three lifecycle phases of power electronics
being design, control and maintenance as well as possible
AI applications therein. Another broad review was proposed
by Monti et al. [6] focusing on different types of distributed
intelligence control in smart grids. Also, Omitaomu [7]
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FIGURE 1. Development of AI publications.

presented a survey on operation and security concerns focus-
ing on AI in smart grids. Some much more specific collec-
tions of applications were presented in the following studies.
In [8], Cao et al. provide an overview of applications using
deep reinforcement learning to solve problems in modern
power systems. Another study about reinforcement learning
was proposed by Glavic et al. [9], presenting decision and
control applications of reinforcement learning in power sys-
tems. Sun et al. [10] focus on voltage control and give an
overview of the challenges and opportunities of this con-
trol type. An extensive review about load flow control and
its challenges and opportunities including the integration of
AI was proposed by Alhelou et al. [11]. Chai et al. [12] and
Darab et al. [13] investigate different approaches and their
applications of AI in fault detection and diagnosis in power
systems. Kumar et al. [14] propose a collection of possible
applications of AI and other emerging techniques used for
the integration of distributed energy resources into the smart
grid. A similar review was presented by Ali and Choi [15].
Cai and Lu [16] propose a survey about different metaheuris-
tic algorithms and possible applications in power systems.

It can be concluded that a systematic review of applications
of AI techniques in distribution system operation would be a
valuable addition to the current literature. On that account,
different aspects of the applications provided here will be
revisited from a control perspective. Doing so, the aim of
this article is to give a systematic overview of applications of
AI already available and possible concerns. The contributions
of this article include the following.

• Systematic review of AI applications in distribution
system operation including the analysis of individual
requirements as well as their essential functions derived
from the reviewed papers. Because of this, four different
metrics are introduced being runtime, dataset, adaptabil-
ity and dynamic. The severity of each metric is rated for
every application from 0 to 5 based on the analysis of
the reviewed studies.

• A guideline is derived in a compact format to present
suitable techniques for every application, based on the

performed analysis. In this way, a helpful tool for
designing AI solutions for the proposed applications is
provided.

The structure of this article can be outlined as follows.
Section II presents a short overview of the basic concepts
of the most commonly used AI methods, being machine
learning, fuzzy logic respectively control and metaheuristic.
In section III the review methodology is described and the
metrics further used in this study are proposed. The applica-
tions of AI methods in power system operation are reviewed
in section IV, divided into decision-support and closed-loop
systems. This chapter closes with a guideline for finding
suitable methods for each application. Section V gives a brief
outlook about AI in power systems together with a short
overview of emerging concepts. Finally, in section VI this
article is concluded with a summary of the contributions.

This article does not claim to be exhaustive, however,
it aims to provide a systematic overview and guideline for
the selection of suitable AI algorithms in distribution power
system operation.

II. ARTIFICIAL INTELLIGENCE METHODS
The term AI has been discussed in many studies, start-
ing with definitions provided by Turing in the middle of
the 1940s [17], [18]. Also in recent discussions, there is no
consensus about one definition. However, most agreed on an
information-processing system influenced by an environment
that is able to learn and adapt [19], [20]. In this chapter, the
basic methods of AI techniques used in the different applica-
tions throughout this paper are briefly presented according to
figure 2, this division has been adapted from [5] and [21].
It is noteworthy that in many studies, standard algorithms
are modified to a certain extent, however, they are classified
in one category in this paper. Further information on the
different variations of each standard algorithm can be found
in the publications. Again, the article does not present a com-
prehensive overview but the most frequently used techniques.

FIGURE 2. Categories of AI.

A. MACHINE LEARNING TECHNIQUES
Machine learning is one group of techniques that gets used
a lot in recent studies. Some basics will be revisited here,
divided into three subgroups supervised, unsupervised and
reinforcement learning according to figure 3. In supervised
learning techniques a dataset consisting of the input and
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FIGURE 3. Categories of machine learning.

the output/target data of the mapping strategy, such as neu-
ral networks, is used for training and validation. The train-
ing is performed using an optimizer, minimizing an error
function consisting of some kind of distance measurement
between the actual output value and the target value of the
data. Supervised learning is used for regular neural networks
as well as convolutional neural networks, which also use
an additional filter layer at the inputs [22]. In contrast to
that, unsupervised learning does not have the target values
included in the dataset, which leads to a training procedure
where the learning algorithm has to find the individual target
itself. Typical methods of unsupervised learning are k-means
clustering algorithm and Support Vector Machine, applica-
tions are often found in the field of image classification
and anomaly detection [23]. The last learning technique that
should be mentioned here is reinforcement learning, which is
an agent-basedmethod to learn a certain action strategy. Here,
the agent has to decide for an action in a specific situation
and earns a reward for this. That way, a utility function is
approximated describing the value of a specific action [24].

B. METAHEURISTIC METHODS
Metaheuristic methods describe a group of algorithms that
solve a given optimization problem, they are often used
for finding the hyperparameters of models and controllers.
The algorithms can be divided into two subgroups being
trajectory-based and population-based methods also called
swarm intelligence according to figure 4.

The Particle swarm optimization (PSO) is probably the
most famous of the population-based methods. First invented
in 1995 by Eberhart and Kennedy, there are multiple
improved versions available, as mentioned in many stud-
ies below. The basic version of the PSO uses a swarm of
particles with an initial position and velocity in a search
field to find a global optimum, while each particle knows its
individual best and the global best position [25]. The fruit
fly algorithm is another popular metaheuristic optimization

FIGURE 4. Categories of metaheuristic methods.

algorithm, compared to PSO the flies implicitly collaborate to
build the solution and the algorithms only build a geometrical
representation [26]. The Ant colony optimization is based
on the foraging behavior of a real ant colony and was first
introduced in the early 1990s [27]. This algorithm is known
to be able to solve complex problems in a short amount of
time. The Genetic algorithm is inspired by natural evolution,
consequently, only the fittest individuals are selected for
reproduction by crossing the parent’s genes [28]. In the dif-
ferential evolutionary optimization a similar approach is used,
while additionally utilizing the survival of the fittest princi-
ple [29]. The immune algorithm was also developed from the
genetic algorithm based on the construction of the immune
operator through vaccination and immune selection [30].
Tabu search method is another metaheuristic algorithm that
guides a local heuristic procedure to search the global solu-
tion space, based on the incorporation of adaptive memory
and responsive exploration [31]. The simulated annealing
combines the physical behavior of the cool-down phase of
a solid material after annealing with solving large combina-
torial problems of optimization [32].

C. RULE-BASED SYSTEMS
Rule-based systems are a group of AI techniques that allow
the direct integration of human knowledge. By developing a
set of if-then rules, the system is able to decide based on the
rules given by an expert. Hence, a definition can be derived,
describing the rule-based system as a modularized know-how
system [33]. In multiple studies, rule-based systems are also
referred to as expert systems. Besides the Boolean logic,
fuzzy logic and control have been used a lot in rule-based
systems, as it can be seen in figure 5.

The main advantage of using fuzzy theory and logic is
the description of variables and relations in human lin-
guistics. Because of this, a fuzzy system normally consists
of three basic parts. Starting with fuzzification, where the
input signals are mapped onto a fuzzy membership function
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FIGURE 5. Categories of rule-based methods.

using a membership degree. These functions can be of dif-
ferent shapes namely triangular, trapezoidal or Gaussian.
In the following inference module, the calculated degrees
of membership are integrated into IF-THEN fuzzy rules,
which were prior derived from expert knowledge about the
process. As the last step the defuzzification is performed,
which creates an output signal that the physical system is able
to handle [34]. It is noteworthy, that many combinations of the
different categories are possible, namely, [35]–[37]. In addi-
tion, some techniques do not belong to only one category
and might be classified in others as well. To conclude this
introductory chapter to AI techniques, basic advantages and
limitations for each group of techniques is listed in table 1
together with applications.

TABLE 1. AI algorithms.

III. REVIEW METHODOLOGY
In this chapter the methodology of the proposed review is
described in detail. Therefore, table 2 lists all databases that
were searched as well as the search string, search period and
the screening procedure.

TABLE 2. Review methodology.

After classifying the studies into groups of distribution
system applications, some general metrics are defined, which
are critical for either distribution grid operation or artificial
intelligence design. In this way, each study can be reviewed
with a focus on the defined aspects, to build a base for the
concluding guideline. These metrics are then used to show
the severity of requirements of the individual applications for
possible approaches. Every metric allows a rating from 0 to 5,
meaning low to very high severity of requirements in this
category. After reviewing the studies for each application,
a rating for every metric is chosen, concluding the require-
ments mentioned in the approaches.

While concluding the reviewed studies, a general guide-
line was derived, showing the applicability of all methods
described in chapter II to each application. The outcome is
shown using a table with a general rating summarizing the
findings of the review and metrics. In the following, the
metrics are further described.
Dataset: As most of the approaches presented here are

data-based, the database used in each study is presented here
if accessible as well as the required set of measurements.
Runtime: The operating timescale and runtime of the pro-

posed approaches are also mentioned if possible. Doing so,
the practical applicability of each study can be reviewed as
well as real-time operation possibilities.
Dynamic:The consideration of system dynamics is manda-

tory for some applications.
Adaptability: The required effort to adapt the reviewed

approaches to new situations is investigated, such as training
time [44]. This metric is highly correlated with the dataset as
large datasets often lead to long training times, so in table 3
duration of times needed for adaptation are given.

In Table 3 the ratings of the different metrics are specified.
The defined ranges for dataset, runtime and adaptability are
based on the reviewed papers as a quantitative measurement.
Therefore, the values provided in the studies are sorted in five
groups defining the outer limits. The highest rating achieved
in one study is then shown in the corresponding figure in
each subchapter. Same holds for the dynamics, but when no
dedicated timescales are mentioned, the definitions provided
in [45] are utilized as additional information.

Although certain characteristics (or non-functional
requirements) of the algorithms like convergence speed,
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TABLE 3. Definition of metrics.

accuracy as well as exact training and testing time are relevant
to system dynamics, but cannot be considered directly as an
individual metric to compare the approaches. It is thanks to
differences in the test scenarios of reviewed studies, in simu-
lation software and hardware set-ups and the modification of
original algorithms.

IV. APPLICATIONS OF AI IN DISTRIBUTION POWER
SYSTEMS
In figure 6 the structural division used in this paper is shown.
Distribution grid operation is divided into two different types.
On the left side, the decision support systems are shown,
which use the measurements to visualize different situations
inside the grid, so the operator is able to take manual control
actions. In this paper, it is referred to as decision support
systems. Here the decision support systems are human-in-
the-loop or open-loop control, as it is not working fully auto-
matic. This category includes in particular state estimation,
fault diagnosis systems and stability assessment methods. For
every system, there are multiple examples presented using
the three different types of artificial intelligence described
in section II.

The right side of figure 6 describes the closed-loop or
automatic side of grid control. Here, only fully self-reliant
systems without the need for human interaction to influence
the grid are considered. This is shown by the two arrows
under the box representing the closed-loop of the grid and
the control. Nevertheless, a visualization of the automatic
control actions to the distribution system operator is often
necessary to check if the control is running as intended. The
applications using artificial intelligence found by the authors
contain for example voltage control. These days, there exist
different degrees of automation in distribution grids, but they
are often run by manual operator decisions. In the following
section A, some of the most recent applications of AI in
decision support systems are presented and different aspects
are discussed. Section B investigates the applications for the
closed-loop-control. It is noteworthy that not all reviewed
approaches were originally developed for distribution sys-
tems, but they are at least applicable to them. Due to the
transition of power systems, e.g. distributed generation, oper-
ational tasks that were exclusively for transmission systems
might also be of interest for distribution system operators.

FIGURE 6. Distribution system operation.

For example, the provision of frequency ancillary services
by distributed generation connected to the distribution sys-
tem has been researched recently [46]. On that account the
influence of fast generation changes on the distribution grid
has to be investigated. So the assessment of frequency will
be of interest for future grids. Moreover, when distributed
and especially inverter-based generation also has to work in
grid-forming mode, the dynamics of the distribution system
will also change [45]. For that reason, there are also tasks
considered in this study that might be useful for future distri-
bution system operation, but are mainly used in transmission
systems right now.

The maintenance of power system components is also part
of the system operation and a field where AI is applied
regularly especially in predictive maintenance. But as it is
very specific for every component it will not be considered
here. For further information on this topic the authors refer
to [47], [48].

To categorize the applications in line with distribution
management system terminology, the wording used by EPRI
for the description of the advanced distribution automa-
tion (ADA) functions in [49] is used. Therein, high-level
functions like real-time Distribution Operation Model and
Analysis (DOMA) and Fault Location, Isolation and Service
Restoration (FLIR) are described in detail. In figure 7, the
four main ADAs investigated in this paper are shown as well
as the included functions. For example, the modeling of loads
and the analysis of power quality are part of the DOMA.

Figure 8 shows a rough timescale ranging fromms to days,
which is used here to arrange the applications reviewed in the
following chapter. The tasks occurring in the distribution grid
are listed above the timeline. The distribution grid manage-
ment functions to solve these problems can be found under
the timeline. The Distribution Operation Model and Analysis
function (DOMA) includes themodeling of distribution nodal
loads aswell as the analysis of economic efficiency and power
quality.
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FIGURE 7. Applications of distribution system operation.

FIGURE 8. Timescale of distribution system operation.

It should be highlighted here, that the fault location, iso-
lation and service restoration’s main task is to identify the
faulted section and location and recommend an optimal isola-
tion strategy of the faulted part of the system. In the following,
the emergency actions have to be coordinated, in particular
load shedding, to keep the system stable. The coordination of
restorative actions is necessary after the emergency appeared
and all emergency actions have been taken.

It is worth mentioning that the power quality is a
sub-function describing all techniques that assess the stability
of the system as well as the exploration of the given oper-
ational limits. The state estimation in distribution systems
ranges from ms to minutes depending on the application
and the measurement update rate, but for future systems the
interest in real-time applications in the range of ms will
most probably increase [50]. The aim of the fault location,
isolation and service restoration is the accurate detection
of faults and anomalies in a minimum amount of time and
their isolation and restoration. In dynamic optimization of
the voltage, reactive or active power of the distribution grid
multiple objectives can be considered, discussed in part B of
this chapter. The distribution grid operator is also in charge
of the coordination of emergency actions like load shedding
as well as the following restorative actions for instance feeder
re-connection.

A. AI IN DISTRIBUTION SYSTEM DECISION SUPPORT
1) MODELING DISTRIBUTION NODAL LOADS,
DISTRIBUTION MODE CIRCUIT CONNECTIVITY
In the modeling of distribution nodal loads on a short
timescale, the digital twin concept is a technique applied in
very recent studies. The concept of the digital twin is gaining
lots of attention with the rise of industry 4.0 in different
disciplines [51]. It describes the digital representation of a
physical system in which behavior and state are changed
based on parameter information andmeasurements. This con-
cept is already well established in the manufacturing sector
and gets used for a variety of applications therein. Over the
last few years, some applicationswere also found in the power
systems sector, such as maintenance and power plant design
and very recently monitoring and control [52]. In figure 9
some basic requirements are defined for the implementa-
tion of nodal load and circuit connectivity modeling in a
power system operation environment. The processing speed

FIGURE 9. Severity of basic requirements for modeling distribution nodal
loads, distribution mode circuit connectivity.
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is essential as well as the accuracy to show the system behav-
ior in every possible state. Hence, a large dataset including
multiple situations is necessary. Moreover, the model needs
to be able to extract the system behavior from the data and
adapt to all operation scenarios, consequently the adaptability
is rated high. Owing to the ability of the digital twin to
change its behavior online, an estimation of the dynamic
parameters is often necessary, which can be performed by
utilizing AI techniques. This seems to be a very common
technique to build a digital twin, so some recent applications
are presented in the following. Zhou et al. [53] propose a
digital twin-based framework for online grid analysis. For
this purpose, a virtual model of the power system containing a
bus/breaker, node/breaker, and a bus/branch model is updated
in real-time by SCADA and state estimation data. When a
change in the model is detected, a complex event-processing
engine performs a situation awareness analysis and feeds the
results into a machine learning framework. Therein, an online
security assessment prediction is performed using a neural
network, which was previously trained offline. The comput-
ing time for the whole process was less than 300 ms in field
tests.

He et al. [54] propose a digital twin-based power flow
calculation using an Artificial neural network. To this end,
a mapping of the grid inputs P, Q to the outputs being com-
plex voltage through a neural network is developed. A set
of 9600 samples of Gaussian power fluctuation for the IEEE
9-bus systemwas created inMATPOWER for the training and
testing of the system. Thus, the operator is able to monitor
the power flow all through the power system in real-time
only using operational data. To perform a conventional power
flow calculation, a model of the whole system is mandatory,
including load models in particular. Jereminov et al. [55]
propose a linear first-order load model which can be utilized
for power flow calculations and an algorithm for parameter
fitting called PowerFit. Relying on linear models has the
advantage of better convergence of the power flow algorithm.
By utilizing load data from Carnegie Mellon University cam-
pus andµPMU data from Lawrence Berkeley National Labo-
ratories, the developed algorithm aswell as the loadmodel are
tested. During operation, the algorithm searches for cut points
in the data, which can be detected by drastic changes in the
load data. In case of a detected cut point, the load parameters
are adapted to the new situation.

The first dataset consists of 575 samples in 5 minute steps
of real voltage and current, as well as imaginary current.
For the second dataset 12 days were used including complex
voltage and current with a 120 Hz measurement frequency,
which was averaged to 500 samples.

Wang et al. [43] propose a two-stage approach for load
modeling using theWestern Electricity Coordinating Council
Composite LoadModel (WECC) to capture the dynamic load
response. In this model, each load component aggregates a
different type. That being the case, during the first stage, the
composition of the load at each bus is investigated using a
DDQN learning agent. In the following stage, a parameter

set for the model is found using Monte Carlo simulations.
For training and testing purposes, the TSAT in DSATools by
Powertech Labs Inc. was used for creating training exam-
ples utilizing the IEEE 39-bus grid. In contrast to that,
Cui et al. [56] propose an LSTM based method for parameter
estimation of a composite load model using the ZIP model.
To extract the temporal relationship betweenmeasurements at
the target bus, namely, P, Q, V and the load model parameters,
a stack of LSTMs is used for the parameters as well as for the
measurements. Afterwards, both are temporarily pooled for
the extraction of the average temporal latent, finally they are
used to estimate the new set of load parameters through linear
regression. For the experimental investigation, the Siemens
PSS/E 23-bus system with a Gaussian variation on every
parameter and a ground fault event simulation on every bus
with a sampling time of 0.4 s in a 32 s timeframe is used.
Additionally, a 68-bus New England and New York intercon-
nected bus system are considered with a similar parameter
variation, but transmission line outages as test cases. The data
has a resolution of 0.1 s and a simulation timeframe of 20 s
in this example.

A digital twin approach for load dynamics identification
is proposed by Baboli et al. [57], by combining system
identification methods with neural networks. Hence, optimal
utilization of EVs and DERs is possible. In addition to the
parameters of the nodal load modeling, the overall system
parameter and the structure of the system are a necessity for
most calculations. In most distribution systems the topology
and state of the breaker are not known to full extend. Conse-
quently, some kind of topology identification system can be
helpful.

Zhao et al. [58] propose a neural network architecture with
binary classifiers for online identification of the line status.
The developed network is trained using a set of inputs from
measurements, e.g., PMUs. Across the hidden layers, a set of
features is created followed by a line status approximation in
the output layer. Thus, the problem is formulated as binary,
because the output of the neural network is either one or
zero, meaning the line is connected or not connected. For
simulation, the IEEE 30-bus system including 41 lines is
utilized. A set of 300,000 training and test samples is created
together with adequate power data, setting the line status as
a Bernoulli random variable with a probability of 0.6 of the
lines being connected. A different approach is followed by
Jafarian et al. [59] using a deep neural network for topol-
ogy identification only utilizing measurements available
to DER management systems. For testing purposes, the
IEEE 123 node test feeder with 24 different topologies
and different switching positions, which should be classi-
fied by the DNN is used. A training and testing set of
6,000 load and generator settings is created for every topol-
ogy. Chao et al. [42] propose an approach for checking
the topology of a LV distribution grid using fuzzy c-means
clustering. For this purpose, the Smart meter data provided
by the individual household is collected over time and the
correlation between different users is checked. The data is
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finally compared through a GIS system. Doing so, it can
be shown if a user is listed in the right transformer area by
utilizing the fuzzy c-means algorithm. In this study, the data
of 48220 users in 500 transformer areas were used and the
connection relationship was verified.

2) STATE ESTIMATION
As a result of the transition towards distributed generation,
the measurability and controllability of the distribution grid
are getting important. Because the operation practices of the
distribution grid changes, an estimation of the actual states is
mandatory for every grid model and control. On account of
themissing topology information and under-determinedmea-
surement sets that often occur in distribution systems, con-
ventional approaches are hard to implement. Consequently,
the utilization of AI techniques seems like a consequential
step, because of their ability to extract information purely
data-based. In the following, some approaches utilizing
AI techniques are presented, for further information on dis-
tribution system state estimation, please take a look at Prima-
dianto [60]. As presented in figure 10, state estimation mostly
requires a large dataset and high adaptability to new system
states. Additionally, the runtime is fast in most cases due to
the AI approaches.

FIGURE 10. Severity of basic requirements for state estimation.

Wang et al. [61] propose a physics-guided model combin-
ingmachine learningmethods with established physics-based
methods in a hybrid model to enhance the explainability of
the data-driven model. The basic idea is to include temporal
correlation of the states to get a better state estimation, which
also takes into account the dynamics of the system. That being
the case, a Deep Neural Network model containing LSTMs
is used with the measurement of the current and previous
time steps as inputs. In this way, the state of the system is
estimated and fed into an AC power flow model containing
the physical parameters of the system. For simulation, the
IEEE 14-bus and 118-bus systems are trained and tested with

35,000 samples from NYISO load profiles in 5 min time
resolution.

A different approach to integrating physical structures
into a neural network was proposed by Zamzam and
Sidiropoulos [62]. Herein, the graph structure of the electrical
grid is utilized and copied as the structure of the neural net-
work leading to a graph neural network. Doing so, the com-
plexity and trainable parameters of the network are reduced.
The approach was tested using a large dataset and the IEEE
37- feeder power system. Mestav et al. [63] developed a deep
learning-based framework for real-time distribution system
state estimation only relying on machine learning methods.
The system consists of an offline part for training the DNN
and an online part, which is a copy of the offline DNN.
When new data arrives, the offline system is trained repeat-
edly, followed by the adaptation of the online DNN. The
offline learning procedure starts with some sets of his-
torical smart meter data, which are used to estimate the
injection distribution using Gaussian, Gaussian mixture and
Weibull models. In the following, a Monte Carlo sampling is
performed using the estimated injection distributions to gen-
erate some sets of injection samples. These are fed into
a power flow calculation, which then creates the training
samples for the offline DNN training. With this framework,
the creation of a full training set is possible without full
observability. A bad-data detection is also performed by
investigating the difference between the measurement and
the learned distribution parameters. That being the case, bad
data can be detected pre-estimation. For the simulation a
dataset from Pecan Street collection [64] is used, containing
four months of training data and four months of testing data.
Zhang et al. [65] proposed a real-time state estimation with
an additional forecasting system. This approach focuses on
the nonlinear dynamics of the power system. This is done
by utilizing two different types of DNNs, the first one for
estimation and the second one for prediction. For estimation,
a prox-linear net consisting of a plain-vanilla FNN and a
prox-linear solver is presented. This system is trained offline
using a dataset from the 2012 Global Energy Forecasting
Competition containing real load data. When the whole sys-
tem runs in real-time, three basic steps are performed. First,
the estimation of the states through the prox-linear net, which
is then fed to the Deep RNN for predicting the upcom-
ing states. The results are feedback to the prox linear net,
to improve the estimation accuracy.

3) POWER QUALITY ANALYSIS
The analysis of power system stability is an important part
of the power system operation, so in this chapter some of
the most recent studies using AI techniques for stability
assessment tasks in distribution system operation are pre-
sented. Thanks to their ability to efficiently extract nonlinear
dynamic system behavior and their short runtime, multiple
AI techniques have been applied here. As this paper is an
overview over various topics of AI applications in power
systems, it is not as detailed as others. For further information,
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the reader might take a look at Alimi et al. [66]. Some of the
tasks and studies mentioned here are traditionally considered
for transmission system operators, in particular frequency
stability. However, as generation moves to the distribution
system, frequency and non-frequency ancillary services have
to be provided by generators connected to the distribution
system [46]. On that account, the assessment of frequency
and frequency stability might also be relevant for distribution
system operators in the near future. Additionally, a distri-
bution grid with a high share of renewables reacts dynam-
ically to system disturbances and might affect the overall
power system stability. It is also worth mentioning that there
are additional stability classifications like resonance stability
and converter-driven stability, defined by an IEEE PES task
force [45].

To detect dynamic system stability, an accurate model of
system dynamics leading to a large dataset and a fast runtime
on account of rapid changes in stability are necessary as
shown in figure 11, same holds for the adaptability. Neverthe-
less, this does not hold for every application in this chapter,
such as long-term voltage stability. Voltage stability is hard
to assess, considering the time behavior mentioned at the
beginning of this chapter. Because of this, Zhang et al. [67]
propose a hierarchical and self-adaptive data analytic method
for real-time short-term voltage stability assessment. Based
on PMU measurements a voltage instability detection is per-
formed in the first place, meaning the voltage is checked for
undergoing stable or unstable propagation. The detection of a
stable status is followed by the prediction of the fault-induced
voltage delayed recovery (FIDVR) severity. Therefore, the
root-mean squared voltage dip severity index (RVSI) is used,
which is proposed in this paper and evaluates the voltage
recovery performance of every single bus. That way, a hierar-
chical assessment system is developed, which leads to faster
execution of the process, because the second hierarchy is
only activated if the first hierarchy detects a stable point.
This makes the first stage classification and the second one a

FIGURE 11. Severity of basic requirements for power quality analysis.

regression problem, both are solved using an extreme learning
machine ensemble. Even though the aggregation of the ELMs
is done separately for each stage, the performance validation
is aggregated after the training. Doing so, a multi-objective
optimization problem is formulated and solved to find the bal-
ance between the earliness and the accuracy of the proposed
approach. For database generation of pre-fault condition the
New England 39-bus system is used, running 10,000 Monte
Carlo simulations for an added 700 MW Wind power plant
and loads. The fault simulations are done using the Transient
Stability Assessment Tool (TSAT) at a 0.01 s simulation
step size and the RELIEFF algorithm was used for feature
selection purposes. For further information on this specific
algorithm, the authors refer to [68].

A similar approach was proposed by Xu et al. [69] and
Zhu et al. [70], which also uses a two-stage system for
voltage stability assessment. As a first stage, a stability detec-
tion is performed here, followed by a trajectory prediction.
Mohammadi et al. [71] propose a SVM for assessing the
power system voltage stability using PMU measurements.
The measurement data is processed using two optimization
goals, first the misclassification rate of the SVM. In the
second step the number of input features of the SVM is
reduced systematically, thanks to the highly nonlinear rela-
tions between the measurements and the voltage stability.
Thus, the authors try to reduce the processing time and
increase the prediction accuracy. For the selection of the
subset of features, containing the highest amount of infor-
mation, mutual information is used, describing the mutual
dependence between two random variables. In the following,
the dataset is processed by a biogeography-based optimiza-
tion algorithm (BBO), which is an evolutionary optimization
algorithm. For the first simulation, a 39-bus test system is
utilized to create a database of 506 pre-fault operation condi-
tions from load patterns, for which the stability of power flow
convergence is checked. Each set contains reactive power
flow, line currents, squared voltages and voltage phase angles
calculated from PMUs, as well as the fault location. After-
wards, a 66-bus real power grid in Iran is used for further
testing and 26 operation conditions are created from 15 days
of load data. To this end, 24 PMUs are placed throughout the
grid.

Another approach is proposed by Malbasa et al. [72]
detecting the operating points which are different in the
developedmachine learning predictions and the actual system
state. After detection, a training set around the identified oper-
ating points is created, so the machine learningmethod can be
adapted. That being the case, the incoming data is divided into
three different classes by their voltage stability margin. The
first one contains all operating points with voltage stability
margin (VSM) larger than the mean (stable) VSM, the second
one operating points with aVSM in the second quantile (alert)
and the third one in the smallest quantile (critical). When
operating online the incoming data from PMUs as well as
SCADA is collected into an unlabeled pool and fed into
the machine learning system for prediction. In this way, the
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most inaccurate predictions can be found and the unlabeled
datasets are handed over to an offline PSSE simulation, which
creates accurate labels for these operating points. This leads
to a labeled data pool for further training. All through this
study, ANN, RF and SVM are compared as possible predic-
tion techniques. For simulation purposes, a version of the
WECC system is used with a dataset of 10,000 operating
points created through PSSE simulation environment.

In power system operation, transient stability also has to be
considered. Owing to the fast appearance, the detection algo-
rithms have to operate on a very short timescale, as mentioned
at the beginning of the chapter. On that account, Tan et al. [73]
propose an approach for transient stability assessment based
on PMU data considering different signal-to-noise ratios.
Stacked autoencoders (SAE) are used for feature extraction,
followed by a convolutional neural network (CNN) to per-
form representational learning for noise filtering. The learn-
ing process is performed offline based on historical data,
utilizing unsupervised learning for the features and super-
vised learning for classification by the CNN. In online oper-
ation, the real-time data provided by PMUs is used for the
transient stability analysis. A simulation database is created
using the 39-bus New England grid and a PSD-BPA software
to perform power flow calculations at different load levels,
three-phase short-circuits are applied to create an unstable
system. That way, 4,000 samples were obtained including
different levels of SNR. Another two-stage approach
for online transient stability prediction was proposed by
Zhu et al. [74] by utilizing a hierarchical convolutional neural
network. PMU data is used to build the fault-on trajectories
of voltage magnitude, rotor angle, frequency deviation, active
and reactive power of each generator. From this transient
profile a spectral representation is extracted using discrete
Fourier transform and a 2D- graphical representation is cre-
ated, called the transient image. These images are fed into the
first stage of the proposed system, consisting of a CNN as a
regressionmodel for the stabilitymargin. For the second stage
of the model, all incoming data is divided into subsets by the
estimated stability margin. A CNN is trained for every subset
to get a more precise estimation and a binary stability signal.
For simulation, the IEEE 39-bus system and the Guangdong
Power Grid system in south China are utilized, performing
simulations in the PSD-BPA simulation package released by
China-EPRI. 7200 transient cases were created by varying
load and topology.

In contrast to that, Chen et al. [75] propose an indirect
PCA approach to reduce the dimensionality of inputs for
stability assessment using ML systems. Because of this, only
the relevant data points are kept. In direct PCA, the reduc-
tion is performed by cutting off the smallest eigenvalues,
which are not necessarily the most irrelevant for stability
assessment in power systems. For this purpose, an indirect
PCA approach is presented, which calculates the difference
between stable and unstable projections for every single
dimension after acquiring the necessary values. Doing so,
the most important, meaning the most different dimensions

are kept. For testing purposes, the IEEE 39-bus system is used
to create datasets containing 165 measurements (bus voltage/
generation/load, branch power flows, etc.) by performing
Monte Carlo simulations on active power generation and bus
voltage.

The frequency stability is traditionally a transmission sys-
tem task, but as described above this might also become
interesting for distribution system operators. Therefore,
Xu et al. [76] propose an online predictor of frequency sta-
bility utilizing an Extreme Learning Machine. The frequency
stability margin is described as a combination of the distance
between the actual frequency, the minimal frequency allowed
and the duration of the undergoing. For the training of the
ELM, a database is constructed by utilizing the New England
39-bus system consisting of generation and load at each bus as
well as the total load and generation serving as inputs for the
system. A 30 s simulation is performed for a tripping genera-
tor under 360 different system conditions. After offline train-
ing, the ELM-predictor can be applied in an online scenario.
A partially similar approach is followed by Mestav et al. [63]
proposing a two-stage framework for online usage based on a
DNN for the estimation and a stacked ELM for the correction
phase. During the first stage a DNN is used to estimate the
frequency stability metrics being frequency nadir and the
time to reach it, Rate of Change of Frequency (RoCoF) and
quasi-steady-state frequency. The results are then handed to
the second stage and the frequency metrics are corrected
using a stacked ELM. For Simulation purposes a modified
IEEE RTS-79 bus system is utilized to generate 30,000 sam-
ples with 261 inputs for the estimation stage, including pri-
mary reserves, inertia constants and load damping coefficient.
Yurdakul et al. [77] propose a methodology for the prediction
of system frequency based on LSTMs. Multiple variables are
used as system inputs in a certain time, including frequency
measurements, loads, day of the week and hour of the day.
These variables are fed into a multilayer LSTM network,
which is followed by a neural network with one neuron to
finally provide the frequency forecast to the operator. For
testing, a dataset from NGESO containing two months of
secondly measured frequency is utilized and sampled down
to a resolution of one minute. All through the study, multiple
tests were performed including different look-back windows
for the inputs from 1 to 30 minutes. A much more holistic
approach is proposed by You et al. [78] utilizing an arti-
ficial intelligence model for assessing transient, small sig-
nal and frequency stability at the same time based on the
same input parameters. For this purpose, dispatch data from
the scheduling model is obtained by simulation to calculate
the stability margins for different scenarios in the first step.
By utilizing the generator dispatch levels and network data as
input features the artificial intelligence system is able to pre-
dict the stability margin indices for frequency, transient and
small-signal stability after training. Throughout the study,
a neural network as well as random forests are trained using
an 18-bus test system with 288 stability scenarios, calculated
every 5 minutes for 24 hours. A similar approach is followed
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by Hotz and Becker [41], by utilizing an ANN for online
detection of small signal stability.

In [79] a framework for power quality disturbance analysis
is proposed combining compressive sensing and machine
learning algorithms. Therein, a two-stage reduction is used,
first random projection is utilized to reduce the fault signals
dimension, second a k-nearest-neighbor algorithm is applied
to find the best k nearest neighbor training samples from the
whole dataset and create a reduced set for training. Finally,
the fault is classified by solving an objective formulation
consisting of a combination of L1-norm and L2-norm. For
testing purposes, sixteen different scenarios including flicker
and harmonics were simulated 200 times each.

4) ANALYSIS OF ECONOMIC EFFICIENCY
In the following, the economically optimal generation of
a distribution system is investigated. This topic might be
most relevant for the balancing group manager since the
liberalization of energy markets. Nevertheless, the evaluation
of economic efficiency is mentioned in [49] as part of the
DOMA and the optimization might also be extended to other
optimization goals. The economic dispatch problemwas orig-
inally intended to minimize the generation cost, today some
approaches also consider the reduction of carbon as the main
goal or at least as secondary. Consequently, a cost func-
tion is formulated, integrating all the different optimization
goals [80]. Due to slow change of the problem variables, the
optimization does not require a fast runtime or adaptability as
shown in figure 12. Nevertheless, a certain amount of data is
required for proper optimization.

FIGURE 12. Severity of basic requirements for analysis of economic
efficiency.

To solve this optimization task a lot of studies were pre-
sented utilizing metaheuristics methods, a few are reviewed
in the following. Liang et al. [81] propose an improved fruit
fly optimization algorithm for solving the economic dispatch
problem. To this end,multiplemodifications are implemented
like penalty functions for the integration of operation con-
straints of the system. For testing the IEEE 6-, 40- and

10-bus systems are used to run multiple tests. Whereas the
first two grids remain static and the latter one dynamic
in its load and generation behavior. Chen et al. [82]
applied an improved particle swarm optimizer using
biogeography-based learning to the economic dispatch prob-
lem. By integrating a comprehensive learning strategy and
biogeography-based optimization, the PSO particles are able
to learn from each other, which leads to an efficient bal-
ance between exploration, exploitation and unintentional
convergence. Across the study, five test systems with vary-
ing numbers of generators and loads were implemented in
MATLAB and 50 individual simulations were performed for
the generation of statistical information about the perfor-
mance of the optimization algorithm.

Besides metaheuristic methods, reinforcement learning
is also applied to economic optimization problems a lot
recently. Lin et al. [83] present an approach based on deep
reinforcement learning for real-time economic dispatch in
a virtual power plant. By integrating edge computing, the
computational and communicational load is reduced. More-
over, a 3-layer system is implemented with the virtual power
plant (VPP) operator on the highest stage, followed by an
agent for every region of generation and load, which is the
lowest stage. To solve the economic dispatch problem, aDNN
is trained offline at the VPP stage using historical data on an
hourly timescale. The results are handed over to the agents as
set points. Doing so, the agents are able to solve the economic
dispatch for their own region online. For testing purposes,
a three-area system with multiple loads and generators was
designed and 45,000 samples with 24 hours of data were used
to train the network. Dai et al. [84] also propose a distributed
reinforcement learning algorithm for solving the economic
dispatch, additionally unknown generation cost functions are
taken as a premise. That being the case, the state-action
value function approximation is utilized to solve this problem.
A simple 4-generator system and the IEEE 39-bus system
with 10 generators are used for testing. All through the study,
twelve different load situations are implemented on both
systems to test the algorithm.

Across this chapter, multiple approaches for modeling and
analysis of power systems utilizing AI have been reviewed,
so some major concerns in practical application should be
briefly discussed here.
• The integration of large measurement systems, which
are crucial for most modeling and analysis approaches,
increases the vulnerability to cyberattacks. As this topic
is not an essential part of this study but a major con-
cern when integrating AI approaches, it should be men-
tioned here. It is also worth noting that some approaches
already integrate trust metrics for measurement values
in modeling, e.g., [85].

• The online adaptability of models and analysis tools
is crucial for long-term application to power systems,
as they change permanently. Consequently, new training
and adaptation of the model have to be performed on a
regular basis, which also requires new datasets including
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TABLE 4. Application of AI to decision-support systems.

updated system data. Hence, such models and analysis
tools have a high maintenance demand.

Based on the basic requirements proposed for every applica-
tion as well as the usage statistics of the applied AI meth-
ods, a rough guideline for selecting a suitable algorithm for
every application is presented in table 4. Using a quantitative
approach, every algorithm’s applicability to a certain appli-
cation is rated. A bad rating in this table does not mean that
the technique can not be applied to a problem in either case,
it just provides an orientation.

B. APPLICATIONS IN DISTRIBUTION SYSTEM
CLOSED-LOOP CONTROL
In the following chapter, some of the most recent studies
working on closed-loop controls in distribution systems are
presented. For the most part, closed-loop controls are used to
optimize voltage, active or reactive power.

1) VOLT/VAR/WATT OPTIMIZATION
In the first part of this chapter, the low voltage oscillations
resulting from multiple voltage regulators in the system
are investigated. For the most part, this was a problem of
the transmission system operator, but when operating an
inverter-based generation connected to the distribution grid
in voltage-controlled mode, this might also be interesting for
distribution grid operators. The integration of continuously
acting voltage regulators in most conventional generating
units has a significant impact on the steady-state stability of
the power system. The reason being the low frequency and
small magnitude oscillations, which can get dangerous for
the system without additional control. Because of this, a sup-
plementary excitation control known as the power system
stabilizer was developed for synchronous generation [86].
The runtime of the implemented controller has to be fast
to react to the dynamic behavior of the system, nevertheless
the optimization of controller parameters can be significantly
slower as it does not have to happen in real-time as shown in
figure 13, same holds for the adaptability. To improve the
controller performance, Sabo et al. [87] propose a
Neuro-Fuzzy controller (NFC) to replace the conventional

FIGURE 13. Severity of basic requirements for power system stabilizer.

PSS as well as a coordinated multi-power system stabilizer
for power system stabilization and reduction of low fre-
quency oscillations. The NFC combines a fuzzy controller
and an ANN, so the advantages are the integration of expert
knowledge into fuzzy logic, no need for a plant model as
well as the ANNs ability to learn. In this study a 6-layer
NFC with 2 inputs, the error and the change of the error,
is developed. For the coordinated multi-power system PSS
a metaheuristic farmland fertility algorithm is utilized, which
divides the problem into different sections and optimizes each
one separately. For testing purposes, an eigenvalue simulation
analysis is performed based on SMIB, IEEE 3-machine,
9-bus and the 10-machine 39-bus New England grid
using MATLAB. Three different scenarios are simulated
in this study, first a symmetrical three-phase fault, fol-
lowed by a drop and a sudden rise of generation at a cer-
tain number of generators. A similar method is applied by
Douidi et al. [88], using a cascaded controller consisting of
several PD fuzzy control blocks to act as a nonlinear lead-lag
for low frequency damping and a krill herd algorithm for
parameter optimization. Throughout the paper, disturbance
tests are performed using a 3-machine 9-bus IEEE grid for
simulation as well as a larger 16-machine 68-bus system.
Masrob et al. [89] proposed an ANN to adjust the controller
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parameters in real-time for a responsive control behavior.
To mimic the behavior of a PD controller a neural network
with one layer and two nodes is trained based on the rotor
speed aberration and its derivative. On that account, the
utilized grid model is reduced in the first place by keeping
the dominant eigenvalues. A one-machine infinite-bus system
is used for simulation and small changes in the reference
voltage are studied. A similar approach is followed by
Rana et al. [90], except the ANN is used to estimate the
optimal parameters for a conventional PSS online. There-
fore, a set of 1,000 samples in different conditions is gen-
erated and optimized offline for training and testing of
the ANN. After training, a one-machine infinite-bus system
is used for testing combined with different load conditions.
Chitara et al. [91] proposed a metaheuristic approach and
applied the cuckoo search optimization algorithm as a power
system stabilizer to reduce low frequency oscillations. To this
end, the algorithm is used to optimize a cost function that
consists of the damping ratio and damping factor of the
eigenvalues and operating points. By selecting the damping
factor and ratio, the unstable eigenvalues will be placed in a
D-shape region in the left half of the s-plane. For simulation
purposes, the New England 39-bus systemwith 10 generators
is utilized and three operating conditions are tested varying
from low to high loading. Additionally, three three-phase
fault scenarios are tested on different buses. It is worth
mentioning that the computation times for all implemented
algorithms are over 15 min. The application of metaheuristic
algorithms to PSS is a logical consequence, as the problem
can be easily formulated as a figure of merit. That being
the case, similar approaches as the ones described above are
proposed by Dasu et al. [92], Syahputra and Soesanti [93]
and Ekinci and Hekimo ǧlu [94].
A different approach is followed by Zhu and Jin [95].

Here, a reinforcement learning framework is applied to the
optimization problem of the power system stabilizer. Thus,
the Q learning algorithm is used to optimize the PSS parame-
ters based on the reward received for specific control action.
Using Kundur’s four machine two-area system, multiple
tests were performed in MATLAB/SIMULINK. Two dif-
ferent operation modes were utilized, the first one contain-
ing pulse inference and the second one a three-phase short
circuit.

In the next part of this chapter, the control of voltage and
reactive power in distribution systems is briefly investigated.
An in-depth analysis of challenges of voltage control in smart
grids can be found in Sun et al. [10]. In this study, only some
recent approaches will be reviewed to give a broad overview.
On account of multiple different load and generation situa-
tions in a power system, the voltage control requires a short
runtime, high adaptability and therefore a comprehensive
dataset as shown in figure 14.
A multi-agent framework for voltage control using deep

reinforcement learning was proposed byWang et al. [96]. For
this purpose, the voltage control problem is formulated as a
Markov game and only the local measurements are available

FIGURE 14. Severity of basic requirements for voltage and reactive power
control.

for each agent in its zone. During offline training, a power
flow calculation is performed in the first step and the results
are handed over to the individual agents to detect voltage
band violations. To clear the violation, each agent identifies
control actions and a second power flow is calculated as well
as the rewards. By utilizing the Illinois- 200-bus system, four
different test cases with 5,000 samples each are investigated
in this study. A broad spectrum of possible failures is covered,
ranging from load change to line tripping and communication
failures. Diao et al. [97] and Duan et al. [98] also propose
a deep reinforcement learning framework named GridMind,
which is able to take online control actions. When a set of
real-timemeasurements arrives, a power flow is calculated for
voltage band violation detection. The obtained states are then
processed by the deep reinforcement learning agent together
with the calculated reward, to find the control actions which
lead to the highest future reward. In the following, a second
power flow is solved also considering the suggested control
actions to check for voltage violations again. The results are
then feedback into the process to update the reward. Multiple
systems are utilized for testing purposes, namely, the IEEE
14-bus system to create 10,000 samples with PSAT software.

A hybrid system combining a metaheuristic approach and
reinforcement learning is presented in [36]. Here, a two-stage
system is proposed consisting of a real-time automatic
voltage regulation (AVR) with secondary voltage control.
Therein, an artificial emotional reinforcement learning algo-
rithm is implemented for each generator’s AVR, followed by
an improved dragonfly algorithm. The algorithm individuals
consist of a real and imaginary part to extend the search
space for performing a coordinated secondary voltage con-
trol. As an additional optimization goal, the carbon emission
ratios for each generator are taken into consideration by the
dragonfly algorithm. Doing so, the voltage control is moved
from the conventional centralized three-stage approach to a
decentralized two-stage version. The proposed framework is
tested on the IEEE 57-bus, 118-bus and 300-bus systems with
multiple simulations. Relying on metaheuristic optimization,
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Yoshida and Fukuyama [99] and Iwata and Fukuyama [100]
propose a parallel multi-population differential evolutionary
particle swarm optimization for voltage and reactive power
control. On that account, the problem is formulated as amixed
integer nonlinear optimization problem with AVR operating
values, OLTC tap positions and the number of reactive power
compensation equipment as state variables. Constrained by
the min, max voltage and power flow, the formulation is
optimized by the PSO. In this approach, multiple sub-swarms
are built with agents migrating between the sub-swarms to
exchange information. In total 100 trials simulations are per-
formed on the IEEE 118-bus system. A hybrid particle swarm
optimization was proposed by Chen [101], utilizing a fuzzy
adaptive inference to control the reactive power and voltage in
a distribution system. Thus, a hybrid PSO is used, consisting
of three PSO variants, searching for the optimal solution of
the formulated mixed integer non-linear programming prob-
lem. Fuzzy adaptive inference is used to improve the search
process of the proposed PSO as it tends to converge to local
minima. For testing, the IEEE 33-bus system is adapted and
simulations are performed based on real-world data from a
Chinese grid operator and multiple scenarios created by load
and generation variation. Guliyev [40] developed a fuzzy con-
troller for reactive power control of capacitor banks. Based
on the reactive power, the derivative of reactive power, the
voltage and the number of commutations of the capacitor
bank, a control action is obtained using 96 calculated fuzzy
rules. Furthermore, the functionality of the proposed con-
troller is tested using a capacitor bank model for simulation
with multiple variations of load and generation.

2) FAULT IDENTIFICATION, ISOLATION AND SERVICE
RESTORATION
Another important part of power system operation is the
detection and diagnosis of faults, losses and anomalies, in par-
ticular different kinds of short circuits, communication out-
ages, and cyberattacks to avoid power outages. For more
detailed information on this specific topic, the reader might
check Gururajapathy et al. [102]. In figure 15 it is shown,
that the detection of faults and anomalies requires an accurate
modeling of system dynamics and a fast runtime, due to
fast changing system states. The systems adaptability is also
important, owing to changing topologies, e.g, the addition
of a feeder. Some techniques focus on a specific error type,
so a comprehensive dataset is not mandatory in any case.
It is noteworthy, that the system level restoration and recovery
could be open-loop in some cases, but in future scenarios we
assume that it will be automatic.

First, the detection and classification of faults, mainly short
circuits, will be reviewed in this chapter. Peng et al. [103]
propose an intuitionistic fuzzy spiking neural p system for
fault diagnosis. According to the author’s analysis, this
approach has three main advantages, the first one being
the use of an intuitionistic fuzzy number, which shows the
amount of alarm information and the impreciseness. The
fuzzy reasoningmechanism followed by the representation of

FIGURE 15. Severity of basic requirements for fault identification,
isolation and service restoration.

the diagnosis results as a membership and non-membership
function. Based on this approach, a fault diagnosis model is
built, which collects information from each device in the out-
age area, calculates the fault confidence levels and finds the
faulty component. The proposed approach is further inves-
tigated using two different test grids in different sizes and
voltage levels. The first one is 69 kV with 10 sections and the
second one 348 kV with 18 system sections. For both grids,
three fault scenarios are tested ranging from single faults
without failure devices to multiple faults with the rejection
of circuit breakers.

A different approach by Lin et al. [39] utilizes a hybrid
system combining the advantages of the Genetic Algorithm
and the Tabu Search for fault diagnosis. Therefore, the objec-
tive function containing the state of the system, the breakers
in the system and the protection are enhanced by integrat-
ing the influence between the main and backup protection.
This was done to improve the problem of non-uniqueness,
which was investigated in prior studies. For simulation pur-
poses, a typical power system consisting of 4 substations,
28 components, 84 protections, and 40 breakers is utilized
and possible failure scenarios are tested throughout the paper.
Jamil et al. [104] propose a two-stage approach for fault clas-
sification consisting of a wavelet transformation and a genetic
algorithm. In the first stage, the incoming current signal is
decomposed into a high and low frequency part by a filter
and then separated into detail and aggregated components
using multi resolution analysis. Here, the detail coefficients
are unique for every type of fault and are used to construct
the input datasets for the following genetic algorithm. Ten
different types of faults are simulated on a transmission
line in MATLAB with different values of fault inception
angle and fault resistance. In [105] Wang et al. combine the
advantages of metaheuristics andmachine learning by using a
SVM for the classification of anomalies in generation control,
optimized by an improved PSO algorithm. Thus, the PSO
is extended by an adaptive speed weighting and population
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splitting to overcome convergence speed and local minima
problems. For experimental validation, a dataset provided
by the Electric Consumption & Occupancy is utilized, con-
sisting of aggregated consumption data of six households
over 8 months in one second resolution. By adding an addi-
tional analysis stage, Deng et al. [38] proposed a hybrid
three-stage approach combining techniques from different
fields to detect the faults of a motor bearing. In the first stage,
the original vibration signal is decomposed into different
intrinsic mode functions using the empirical mode decom-
position followed by a fuzzy information entropy, to obtain
the features used in the following stages. All through the
second stage, an improved PSO algorithm is proposed using
different methods to tailor it to the existing problem and
the optimization of the parameters of a Least-squares SVM,
which is trained using the improved PSO algorithm. Finally,
the trained Least-squares SVM is applied to the actual classi-
fication task. For testing of the developed algorithm vibration
data from Bearing Data Center of Case Western University
was used, measured at a frequency of 12,000 Hz for 10 s.
Another three-stage approach targeting the identification and
localization of anomalies based on PMUs was proposed by
Li et al. [106]. To avoid costly labeling work, unsupervised
learningwas used, so there is no need for historical labels. The
developed framework consists of three main parts, first event
detection based on the change-point method, which detects
abrupt changes in the data matrix, generated from PMU
signals. In the second part, an identification approach based
on two stages is proposed. The first one is a PCA, which finds
the most important features to cluster the events, followed
by a compactness evaluation stage. Here, the compactness of
the normal and event data distribution is evaluated. The final
step is the localization of the event that occurred, which is
done by the change-point method. That way, the location of
the event is estimated by finding the most significant change
in neighboring PMUs. Across the experiments performed in
the study different events as well as different PMU pene-
tration levels are considered. Blazakis et al. [107] propose
an adaptive neuro fuzzy inference system (ANFIS) for the
detection of nontechnical losses such as illegal electricity
power consumption, e.g., meter tampering, or grid manip-
ulation. The ANFIS system is the combination of an ANN
using backpropagation with a Sugeno fuzzy inference system
consisting of five layers. The first one being a fuzzy layer,
followed by a product layer combining the results from the
first layer. In the third layer, all values are normalized fol-
lowed by a defuzzification layer before all nodes are aggre-
gated in the output layer. As testing scenarios, three base
cases are identified, being partial theft, when the consump-
tion is constantly lower, overload, when the consumption is
constantly higher and periodic theft, reduced consumption
during specific hours of the day. By varying the percentage
of the overall consumption, thirteen different scenarios are
created. The dataset used in this study contains 5,000 house-
hold data from Ireland collected over 6 months in a 30 min
resolution. As an input for the ANFIS, the mean, median,

load factor and entropy were selected from a range of pos-
sible features using the neighborhood component analysis.
In [108] Goswami et al. studied three different machine learn-
ing techniques for fault analysis and classification, focus-
ing on the identification. For this classification task a set
of 11300 samples is created, 1,000 for each fault type, using
MATLAB. Each sample consists of one voltage and current
value per phase, which makes six features. The time span
set for the fault data captured during the simulation is 10 ms
to 280 ms, this enables the trained classifiers to identify the
fault types based on their dynamic behavior. Three classifica-
tion algorithms are trained, namely, a K-Nearest-Neighbor,
Support Vector Machine and a Decision Tree utilizing the
prior described dataset.

In [79] the framework also applied in [109] is applied to
fault classification. A real-world test grid with 13.2 kV is built
in MATLAB and 10 different faults are simulated 100 times
each with multiple locations and fault parameters to generate
a training dataset. Wang et al. [110] present an approach for
online anomaly detection in a data attack situation with auto-
matic generation control using a multi-class classification
based on k-nearest neighbors. Therefore, k-means clustering
is performed offline to form the classes, followed by an online
classification based on three conformity metrics that rely
on the received Area Control Error. The developed system
is tested using the IEEE 39-bus grid with synthetic data
and six developed test scenarios, for instance flip and ramp
attack. An ensemble system for the detection of anomalies
in PMU data is proposed by Zhou et al. [37]. Therein, a set
of base detectors is trained offline in the first place. When
detecting an anomaly in an online operation, the anomaly
scores are calculated and aggregated as a decision base. For
testing purposes, a stream of synthetic PMU data created by
a real-time digital simulator as well as real-world PMU data
is used. For the latter one, three different types of anomalies
are detected, voltage is zero, data during events and data
beyond 5 % of the mean value and the previous and fol-
lowing point. Ren et al. [111] also focused on online
anomaly detection and proposed amachine learning approach
integrating HPC.

The detection is performed after the anomaly appeared,
so a prediction algorithm seems valuable for the sys-
tem operator to take preventive actions. To this end,
Zhang et al. [112] developed a two-step system for fault
prediction based on historical data. In the first stage, three
LSTM subnetworks extract the temporal information from
current, voltage and active power measurements. The result-
ing features are fed into a SVM classifier for fault estimation.
In this study, a dataset from the China Southern Power Grid in
Wanjiang from the years 2012-2014 was used, with
2500 samples for training and testing, consisting of 500 mea-
surement points each. These points are recorded either before
a line trip or during normal operation in a 15 min resolution
and labeled with the event that finally appeared. The practical
applicability of the proposed approach is highlighted by the
authors, as a result of the performed experiments and the
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ability of the system parameters to constantly update to new
states of the power system online. Ashok et al. [113] propose
an approach to detect cyber-attacks in measurement systems
and their influence on the state estimation by forecasting the
state behavior and comparing the prediction with the actual
measurement. In [85] the anomaly detection is also integrated
into the state estimation by the addition of a trust metric for
every measurement.

3) COORDINATION OF EMERGENCY ACTIONS
When the grid is in a critical mode, the coordination of
emergency actions is an important part of distribution system
operation. A possible reaction to a frequency drop besides
control actions is the shedding of loads. That being the case,
under-frequency load shedding relays get installed that dis-
connect the load when the threshold is reached. Thanks to
the complexity of power systems and their dynamic behavior,
the optimal load shedding strategy is hard to find. Because of
this, the proposed algorithms have to be adaptable but do not
require large datasets as shown in figure 16.

FIGURE 16. Severity of basic requirements for coordination of emergency
actions.

In [114] an approach for optimal coordination of
under-frequency load shedding is proposed. An analytical
hierarchy process algorithm is used to rate the importance of
each load for the creation of a ranking as well as different
load shedding strategies. K-means clustering is used to divide
the appearing instability mode into different clusters based on
the detected measurements. Moreover, an ANN is trained to
choose the best load shedding strategy for every cluster. For
training purposes, 667 datasets are created through offline
simulation of system faults causing instability. The trained
algorithm is then tested on the IEEE 39-bus grid using three
different fault scenarios. Another approach was proposed by
Malkowski and Nieznanski [115] using fuzzy logic to create
an adaptive load shedding algorithm. Therefore, a member-
ship function for frequency as well as the derivative of the
frequency is created. The output of the inference block shows
the number of load groups that have to be disconnected.

For simulation purposes, the CIGRE 23-bus system is uti-
lized. Multiple different situations are extensively tested
including different turbine controllers, frequency-dependent
loads and different numbers of operating points.

Usman et al. [116] propose an approach to solve the
optimal load shedding coordination when undergoing volt-
age limits. By using a multi-objective minimization prob-
lem formulation, power loss, voltage deviation and cost of
the load shedding are taken into account. An evolutionary
PSO algorithm is used to solve this optimization problem.
Additionally, the computational efficiency is increased by
integrating an evolutionary competition between the current
and previous positions of particles. Throughout the study, the
approach is tested on the IEEE 33-bus distribution grid using
a daily demand profile. In [117], Hasanat et al. propose an
ant colony optimization algorithm to minimize the amount
of load shedding. On that account, the algorithm is extended
using a local search to improve the solution. As this approach
is purely developed on the graph structure of the electrical
grid, a graph generator is used in combination with data from
the national grid data of Bangladesh to create benchmark
datasets. Dreidy et al. [118] propose another study on the
optimization of the load shedding amount comparing PSO,
binary evolutionary programming and binary genetic algo-
rithm. Because of this, a part of the Malaysian distribution
systemwith high penetration of PVs ismodelled and ten loads
are flexibly prioritized while two remaining a fixed priority.

4) COORDINATION OF RESTORATIVE ACTIONS
The importance of the distribution system operator in restora-
tive actions after a blackout is increasing as more gener-
ation happens to be connected to the distribution system.
That being the case, multiple studies were recently presented
working on the integration of distributed generation into the
restoration strategy [119], [120]. Moreover, the integration
of energy storage in restoration is also proposed in many
studies, including the utilization of EVs [121], [122]. Applied
approaches have to be adaptable, as a result of the differ-
ent situations that appear after a blackout, as can be seen
in figure 17.

Zhou et al. [123] propose a multi-agent system to restore a
distribution grid. Therein, two classes of agents are defined,
being load agents and distribution substation agents. The first
one’s goal is to restore the own load and offer energizing
actions to the neighboring loads in the following, whereas
the second one monitors the substation power flow and holds
a list of each load agent. For testing purposes, a 16-bus
24 branch system is used considering load and substation
faults. Another multi-agent based approach is provided by
Sampaio et al. [124]. A system based on four different types
of agents is proposed, being substation agent, feeder agent,
branch agent and equipment agent. Every agent communi-
cates its name, status and equipment as well as loading and
priority loads if accessible. For testing, a simulator was devel-
oped to represent a real MV system with four substations.
In this study, two fault situations were tested. In contrast
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TABLE 5. Applications of AI to closed-loop control systems.

FIGURE 17. Severity of basic requirements for coordination of restorative
actions.

to that, a hybrid approach using machine learning and
metaheuristic methods is proposed in [35]. A total of four
metaheuristic algorithms being a modified PSO, frog leaping
algorithm, genetic algorithm and ant colony optimization
algorithm are used in combination with a multi-class support
vector machine. To create a database, 320 faults were sim-
ulated using the IEEE 69-bus system and for every scenario
each metaheuristic algorithm finds its best restoration solu-
tion. The best solution of the four algorithms serves as a target
value for the SVM and features that are extracted utilizing
a discrete wavelet transform are used as inputs. In [125]
another approach using metaheuristic and machine learn-
ing techniques is proposed for optimal restoration strategies.
For this purpose, a PSO is used to optimize the switch posi-
tions for power loss minimization. Additionally, an ANN is
fedwith switch positions, system level loads and line power to
find a load balancing index and the voltage profile. To create
a database for training the IEEE 33-bus by NRM is utilized
and load variations are performed.

In the following, some concluding remarks regarding the
practical implementation of closed-loop AI algorithms in
power systems will be discussed similar to the previous
subchapter.

• In control theory, the robustness of controllers has been
studied extensively, but in AI there have only been
few studies and for some AI approaches the robustness
is hard to investigate due to their black-box structure.
Nevertheless, for the safe operation of power systems,
robustness is crucial, as the provision of energy to the
consumers has to be guaranteed by the system opera-
tor. Hence, future research should consider this prob-
lem, which is also closely related to the explainability
that will be discussed in more detail in the next
chapter.

• The dynamics in power systems change as a result of the
integration of inverter-coupled participants [45], which
also leads to interactions between multiple controllers
with different runtime and optimization goals. As a con-
sequence, the influence of AI based controllers has to be
investigated in depth.

To conclude the analysis of closed-loop systems, a table
is presented similar to the one proposed at the end of the
previous subchapter. In this way, table 5 provides a guideline
for the selection of an AI algorithm for closed-loop control
applications. As prior described, this only serves as a guide-
line and does not exclude possible applications of low-rated
methods for certain problems.

Throughout this chapter, some of the most recent studies
for distribution grid operation utilizing AI techniques were
systematically presented and reviewed. Doing so, the current
state of the art is presented in a compact format and research
directions for the individual problems can be identified.
In table 6 the distribution of the application in publications
is shown to visualize possible research gaps or underrep-
resented research fields. It can be seen from the table that
the field of economic dispatch and power system stabilizers
has not been extensively researched for the past few years.
Regarding the underrepresentation of research in the field of
economic dispatch, a reason might be that this topic is very
complex thanks to market mechanisms and government rules.
Power system stabilizer has been researched for some time,
but they seem to lose relevance during the last few years
according to the analysis. One reason for that might be the rise
of inverter-based generation also connected to the distribution
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TABLE 6. Summary of usage statistics of applications in distribution
power systems operation.

grid, which needs at least an adaption of controls, as they are
not coupled synchronously. This also leads to an enhanced
description of stability, which has to be considered when
designing controllers. For further information, the authors
refer to [126]–[128].

V. OUTLOOK: AI IN POWER SYSTEMS
It can be concluded that AI is already used a lot in power
systems research these days but there is still room for
improvement and further research. In this chapter, a broad
outlook will be given together with some major concerns in
AI practical implementation, which have to be addressed in
future studies after the potential of AI application has been
shown in the last few years.

A. EXPLAINABILITY OF AI
Regarding the implementation in real-world systems a con-
cern is the explainability of the AI system. This is especially
relevant in closed-loop control, where the system and not
the operator take control actions. Owing to the black-box
structure of most AI approaches, it is not possible to check if
the developed system is behaving as intended in all situations.
An approach that has been researched a lot recently is the
integration of physics into AI techniques and explainable AI.
There are multiple possibilities to explain the behavior of
an AI system ranging from understanding what the model
has learned [129] to the explanation of individual predic-
tions [130]. Nevertheless, during this review, only a few stud-
ies on explainable AI in power systems were found, so this
topic has lots of potential for future research activities.

B. DATABASE
As already mentioned across this review, the database is
essential for most AI applications. The complexity of power
systems is high, which leads to a need for extensive data
collection and sorting for training and testing of the devel-
oped models and algorithms. There are already some open
source data collections available [64], [131], but these are
developed on specific benchmark grids or recorded in a spe-
cific real-world situation. Therefore, the general applicability
might not hold for every approach. Nevertheless, there are
already collections and surveys available concludingmultiple
databases [132], [133]. Additionally, access to data is also
limited because of data privacy regulations. A lot of attention

has been paid to this topic during the last few years [134].
As a result of the restrictions, a central collection and usage of
data for individual loads is sometimes not possible. Whereas
being necessary to protect the data, the restrictions lead to
suboptimal datasets and slow down further development to a
certain point.

C. REDUCTION OF COMPUTATIONAL LOAD
Despite the fact that computational power has increased mas-
sively during the last decade, it still requires a lot of time
for most AI techniques to learn complex behaviors. So, the
application to real-time tasks in power systems is limited,
especially when the learning process is performed online,
e.g., online adaptation of Deep Neural Networks. This is also
a critical point in metaheuristic approaches when applied to
optimization tasks, they perform an extensive trial-and-error
process, which takes a long time to converge. Moreover,
online adaptability of the developedmodels and approaches is
necessary due to long time changes in power systems, namely
aging of components.

The following conclusion regarding the application of
revisited AI approaches to future power system operation is
not comprehensive but highlights three points that should be
considered:
• Enhancement of explainability to increase the plausibil-
ity and traceability of AI systems

• Enhancement of robustness in every state of the system,
so safe operation is possible

• Development of comprehensive datasets for training and
testing of developed approaches

• Reduction of computational demand to allow real-time
application and online adaptability

In the last few years, a lot of new concepts and techniques
emerged in power systems that have lots of potential also for
AI applications. Some of themwill be mentioned here briefly.

D. SECTOR COUPLING
For the transition of the power system to carbon neutrality, the
coupling of energy sectors is a research field that gained a lot
of attention during the last decade [135], [136]. Concepts like
energy quarters were developed for optimizing whole sector
coupled buildings and neighborhoods, which are placed in the
distribution grid. They can also be utilized as flexibility in the
grid [137], depending on the storage capability e.g., in bat-
tery storage and EVs. Therefore, various control concepts
and algorithms have to be developed and implemented, also
AI seems to be a helpful tool here [138], [139].

E. PROVISION OF ANCILLARY SERVICES
As a result of the volatility of renewable energy genera-
tion and new load characteristics, the provision of ancillary
services is an upcoming research topic. On that account,
flexible loads, namely, electric vehicles (EVs) can be uti-
lized besides DER [140], [141] through advanced load-
ing concepts [142]–[145]. A problem that occurs in the
participation of EVs in ancillary services is the missing
infrastructure [146]. Moreover, thanks to the increase in
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asynchronous generation the acquisition and provision of sys-
tem inertia has to be considered as it is no longer inherently
provided by synchronous generators. This leads to multiple
questions on the behavior of low inertia systems [147]. There-
fore, also AI techniques can be applied [148].

VI. CONCLUSION
In this article, some of the most recent applications of AI
in distribution power system operation are reviewed. Con-
sequently, the basic functionality of the main AI methods
of rule-based systems, metaheuristic methods and machine
learning are introduced and the exertion on power system
specific problems is shown. Throughout this study, the appli-
cations are divided into decision-support and closed-loop
control systems. A guideline for selecting a suitable algorithm
for an application is developed in this review. In doing so, four
general metrics are proposed, the severity of requirements
on the database, runtime, dynamics and adaptability. The
metrics are quantitatively assigned to each application. Based
on the revised studies and the provided metrics, a conclusion
is provided rating the suitability of each technique to the
application.
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