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Abstract

We consider modal analogues of Hintikka et al.'s `independence-friendly �rst-order

logic', and discuss their relationship to equivalences previously studied in concur-

rency theory.
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1 Introduction

In [1], Alur, Henzinger and Kupfermann introduced Alternating Temporal

Logic, based on certain imperfect information games, in which independent

`teams' synchronize. In [3], the �rst author proposed the application of logics

based on Henkin quanti�ers to modal logic in computer science; such logics

include ATL, but also allow more powerful forms of expression. In that paper,

we argued that making sense of such logics required some notion of locality

in processes. After establishing some basic facts about such logics, we left

open the obvious question of how such logics relate to established notions of

independence and concurrency in computer science.

In this paper, we �rst interpret Henkin modal logics in a setting without

locality (at least, without explicit locality), and then relate them to some of

the natural true concurrent notions in the literature. The results here are

preliminary, but, we believe, go some way towards a satisfactory explanation,

and open up many further questions.

2 Henkin quanti�ers and independence-friendly logic

We give a brief summary of the notions of Henkin quanti�er and independence-

friendly logic.

A branching quanti�er Q is a set fx1; : : : ; xm; y1; : : : ; yng of variables, car-
rying a partial order �; the xi are universal, the yi existential. The semantics
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of Q� is de�ned to be that of 9f1 : : : fn: 8x1 : : : xm: �[fi(yi#)=yi], where yi# is
the list of variables � yi, and [�=�] denotes syntactic substitution: thus fi is

a Skolem function for yi, but it refers only to variables preceding yi in the

partial order.

In particular, the Henkin quanti�er 89

89
= fx1; x2; y1; y2g with xi � yi is

written 8x1 9y1
8x2 9y2

; thus 8x 9y

8u9v
�(x; y; u; v) is equivalent by de�nition to 9f; g: 8x; u:

�(x; f(x); u; g(u)).

Henkin quanti�ers turn out to have existential second-order power, and

are thus a strong operator to add to one's logic.

An alternative way of giving semantics to branching quanti�ers is via

games. Recall the Hintikka model-checking game for �rst-order logic (in pos-

itive form): given a formula  and a structure M , a position is a subformula

�(~x) of  together with a deal for �, that is, an assignment of values ~v to its

free variables ~x. At a position (8x: �1; ~v), Abelard chooses a value v for x,

and play moves to the position (�1; ~v � v); similarly Eloise moves at 9x: �. At
(�1^�2; ~v), Abelard chooses a conjunct �i, and play moves to (�i(~x

0); ~v0), where

~x0; ~v0 are ~x;~v restricted to the free variables of �i; and at (�1 _ �2; ~v), Eloise
similarly chooses a disjunct. A play of the game terminates at (negated) atoms

(P (~x); ~v) (resp. (:P (~x); ~v)), and is won by Eloise (resp. Abelard) i� P (~v) is

true. Then it is standard that M � � exactly if Eloise has a winning strategy

in this game, where a strategy is a function from sequences of legal positions

to moves.

These games have perfect information; both players know everything that

has happened, and in particular when one player makes a choice, they know

the other player's previous choices. Game semantics for the Henkin quanti�ers,

following [8], use games of imperfect information: in the game for 8x 9y

8u9v
�, when

Eloise chooses for v, she does not know what Abelard chose for x. To make

this explicit, the logic is written with a more general syntax which is linear

rather than two dimensional. A full account of the appropriate logic requires

several new constructs, some of which raise subtle issues [9]; we shall work

with a restricted version which is suÆcient to express all Henkin quanti�ers.

In addition to the usual �rst-order syntax, we also have independent quan-

ti�cation: If � is a formula, x a variable, and W a �nite set of variables, then

8x=W: � and 9x=W: � are formulae. The intention is that W is the set of

independent variables, whose values the player is not allowed to know at this

choice point: thus the Henkin quanti�er 8x 9y

8u9v
can be written as 8x=?: 9y=?:

8u=fx; yg: 9v=fx; yg: If one then plays the usual model-checking game with

this additional condition, which can be formalized by requiring strategies to

be uniform in the `unknown' variables, one gets a game semantics which char-

acterizes the Skolem function semantics in the sense that Eloise has a winning

strategy i� the formula is true.

This logic is called by Hintikka `independence-friendly' logic. Study of this

particular formalism has been mostly carried out by Hintikka and colleagues;

but there has been over the last thirty years a continued interest in branching
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quanti�cation in natural language semantics, increased now by the current

popularity of `Game Theoretical Semantics'. (The recent thesis [12] contains

a most useful account of this area.) However, there has been little interest in

the computer science temporal logic community.

3 Independence-friendly modal logic

One reason for this is that at �rst sight, independence-friendly modal logic

makes little sense. Suppose that we extend the usual syntax of modal logic

with the Hintikka slash; we will also need to assign a tag to each modality, so

that we can refer back to it after a slash.

De�nition 3.1 The syntax of independence-friendly modal logic (IFML) is

given as follows. Let �; �; : : : range over a countable set of tags, a; b; : : : over

a set of labels. tt and � are IFML formulae. If �1 and �2 are IFML formulae,

so are �1 _ �2 and �1 ^ �2; and so are hai�=�1;:::;�m�1 and [a]�=�1;:::;�m�1.

Certain syntactic conditions may be imposed:

De�nition 3.2 An IFML formula � is well-formed if

(a) in every subformula hai�=�1;:::;�m	, the bound tag � is uniquely bound in

�;

(b) every independent tag �i of � is bound in some higher modality in �.

It is moreover good if

(c) the dependency relation on tags given by � � � if � is not an independent

tag of �, is transitive.

We will for this paper restrict ourselves to good formulae.

Of the well-formedness requirements, (a) is a convenience to avoid renam-

ing, but (b) is more controversial: it implies, for example, that a subformula

of a well-formed formula is not in general well-formed. This is an issue related

to questions of compositional semantics; see [9] for a discussion.

The `goodness' requirement is a restriction largely for technical conve-

nience. If the dependency relation is not transitive, one can have a phe-

nomenon called `signalling' [9], whereby intendedly independent choices can

be made dependent. Although this is interesting in certain linguistic applica-

tions, in `normal' mathematics, and arguably in logics for concurrency, it is

undesirable.

Obviously, the intended semantics of an independence-friendly modal logic

is that the existential choice in the hai�=�1;:::;�m must be made independently

of the choices made in the modalities tagged by �i. However, in a standard

transition system semantics for modal logic, the choices available at a modality

are determined by the choices made in earlier modalities, and thus in general

it makes no sense to ask for an independent choice.

This problem is removed if the events referred to in the modalities are `in-

dependent' in some sense. For example, in a system comprising two parallel,
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non-communicating, components, two independent modalities can reasonably

refer to choices made in di�erent components. Moreover, the two independent

local choices may result in only a single action at a global system level, as

when in CCS two actions synchronize; it is this situation that gives the new

expressive power in the ATL of [1], and in the `Henkin modal logic' of [3]. This

observation then naturally raises the question of the relationship between in-

dependence in the meaning of Hintikka, and independence in semantic models

for concurrency.

To examine this question, we shall revert from models with independence

implicitly given by locality, to a model with explicit independence. Of the

many possibilities, let us choose transition systems with independence; these

are perhaps the nearest model to ordinary labelled transition systems, and

have been used by Nielsen and others to study branching-time logics of (con-

current) independence.

First, we banish a confusing clash of terminology. In `transition systems

with independence', the independence is concurrency, in the model; we wish

to relate this to Hintikka-style logical `independence'. Therefore, henceforth,

concurrent model independence will be called `concurrency'; `independence'

will be used only to refer to logical independence. We stress that `concurrency'

is here being used as an ad hoc term to distinguish model independence from

logic independence. In the literature, `concurrency' is a distinct concept from

model `independence'; because we will make restrictions on our classes of

models, the distinction does not occur in our setting. (We welcome suggestions

for better terminology.)

De�nition 3.3 A coherent transition system with concurrency (TSC) is a

labelled transition system with states S, labels L, and transition relation ! �
S � L� S, together with a relation C � !�! and an initial state s0. Two

transitions t1 = (s1
a1�!s01) and t2 = (s2

a2�!s02) are concurrent if (t1; t2) 2 C.
A relation � between transitions with the same label is de�ned by

s1
a
�!s01 � s2

a
�!s02 , 9b: (s

0

1

b
�!s02) C (s1

a
�!s01) C (s1

b
�!s2) C (s2

a
�!s02)

(i.e., the two a transitions form a diamond with two b transitions independent

of a; notionally, the two a transitions are the same a `event', and the two b

transitions are the same b `event'); � is the reexive, symmetric and transitive

closure of �, and it groups transitions into events. In addition, the relation

C is required to satisfy four natural axioms which ensure that an event has

a unique outcome at a given state, that concurrent transitions may occur in

either order, that concurrency respects events, and that two concurrent events
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can occur one after the other:

1: s
a
�!s1 � s

a
�!s2 ) s1 = s2

2: s
a
�!s1 C s1

b
�!u) 9s2: s

a
�!s1 C s

b
�!s2 C s2

a
�!u

3: s
a
�!s1 � s2

a
�!u C w

b
�!w0 ) s

a
�!s1 C w

b
�!w0

and w
b
�!w0 C s

a
�!s1 � s2

a
�!u) w

b
�!w0 C s2

a
�!u

4: s
a
�!s1 C s

b
�!s2 ) 9u: s1

b
�!u C s

a
�!s1

(a plain TSC need not satisfy axiom 4, the coherence axiom; however, most

reasonable models and classes of models are coherent, and we need it for The-

orem 6.10, so we adopt it as a standard requirement). Consequently, a �ring

sequence of transitions gives rise to a partial order of events, which can be lin-

earized into several di�erent transition sequences, in the usual way of partial

order semantics. (Note: in the literature, I is used rather than C, as TSCs

are called TSIs.)

In graphical depictions of TSCs, concurrent transitions are denoted by

putting the symbol C inside the commutative square, and the initial state is

marked by a circle (when it is not obvious).

We can now de�ne a semantics for IFML, given �a la Hintikka, by de�ning

its model-checking game as a game of imperfect information. A consequence

of this is that the semantics is not de�ned on states, but requires some history

to be kept.

De�nition 3.4 A tagged run of a TSC is a sequence s0
a0�!
�0

: : :
an�1
�!
�n�1

sn, where

the �i are distinct tags; we shall also use the tag �i to refer to the transition

si
ai�!si+1. We let �; � etc. range over tagged runs, and use obvious notations

for extensions of runs.

A position of the model-checking game for an IFML formula � on a TSC

is a pair of a tagged run and a subformula, written � ` 	.

The initial position is s0 ` �.

The rules of the game are as follows:

� At a position � ` tt, Eloise wins; at � ` �, Abelard wins.

� At � ` �1 _ �2 (resp. ` �1 ^ �2), Eloise (resp. Abelard) chooses a new

position � ` �i.

� At � = s0
a0�! : : :

an�1
�!sn ` hbi�=�i1 ;�i2 ;:::;�im	 (resp. ` [b]�=�i1 ;�i2 ;:::;�im	),

Eloise (resp. Abelard) chooses a transition sn
b
�!t that is concurrent with

all the transitions �ij
, and the new position is �

b
�!
�
t ` 	.

Tags are, of course, merely syntactic sugar; it suÆces to identify the ith

transition by i. However, tags are convenient to match the de�nition of IFML.

As usual, a strategy for Eloise is a function from her positions to choices.

Imperfect information games are handled by imposing additional conditions
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on strategies.

De�nition 3.5 An Eloise strategy � is uniform if the choice at a hi position
is uniform in the speci�ed independent earlier choices, in the following sense:

Let � ` hbi�=�i1 ;�i2 ;:::;�im	 be as above. The strategy � must choose sn
b
�!t

such that if s0 = s00
a0�! : : :

an�1
�!s0

n
` hbi�=�i1 ;�i2 ;:::;�im	 is any other position such

that j =2 fi1; : : : ; img ) �j � �0

j
, � chooses a transition s0

n

b
�!t0 � sn

b
�!t. (In

words, � must choose the same event regardless of the events chosen in the

independent modalities. If no such event can be chosen, there is no uniform

strategy.) Abelard uniform strategies are de�ned similarly.

De�nition 3.6 An IFML formula � is true in a given TSC, written s0 � �,

i� Eloise has a uniform winning strategy for the model-checking game s0 ` �.

� is false i� Abelard has a uniform winning strategy.

� is determined i� it is either false or true.

The non-determinacy in general of the model-checking game is a charac-

teristic feature of independence-friendly logic. For a simple example, con-

sider the TSC generated by the CCS process ((a:c + a:c) j (b:c + b:c))nc (in
which the a transitions are independent of the b transitions), and the formula

[a]�hbi�=�h�itt. This formula is not true, since Eloise cannot choose a b transi-
tion so as to synchronize unless she knows which a transition was chosen; but

it is also not false, since Abelard has no strategy for falsifying it. For practical

purposes, we may consider untruth to be falsehood.

4 IFML equivalence

One of the �rst questions about any logic is, what is the induced equivalence?

In the case of IFML (or indeed the simpler Henkin modal logic of [3]), the

de�nition of equivalence itself is problematic, because of the non-determinacy.

We take the weaker (practical) de�nition, and say

De�nition 4.1 Two TSCs S and T are IFML-equivalent, S �IFML T , if for

every IFML formula �, S � �, T � �.

Logically induced equivalences are typically characterized by a game nat-

urally related to the satisfaction game: for modal logic, we have bisimulation

games and model-checking games, for �rst-order logic we have Ehrenfeucht{

Fra��ss�e games and Hintikka games. For IF logics, the outscoping nature of

the = makes such a formulation harder, and to our knowledge none has been

presented. We will consider E{F games for independence logics in a later ar-

ticle; here we study IFML equivalence by relation to known equivalences in

true concurrency.
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5 Restrictions on models

For the remainder of this paper, we will consider restricted classes of models.

Analysing the e�ect of removing the restrictions is left to later work.

Firstly, all TSCs will be image-�nite: that is, for any state s and label a,

there are only �nitely many a-successors of s. This is a standard restriction

required to obtain an exact match between �nitary modal logic and bisimula-

tion.

Secondly, all TSCs will be acyclic: that is, no state is reachable from itself.

This restriction avoids the necessity of distinguishing between models and

their unfoldings, which in turn avoids the necessity to distinguish multiple

occurrences of the `same' event.

Finally, we require the dependency relations in the models to be transitive;

this is formally, but not actually, a further restriction, since events that are

formally concurrent but actually causally dependent can be made formally

non-concurrent without change to the model.

6 Equivalences for concurrency

There are numerous equivalences for concurrency, but there is one spectrum of

particularly natural equivalences that appears promising: the spectrum from

bisimulation through to coherent hereditary history preserving bisimulation.

These equivalences have several characterizations; we will de�ne them in the

style of classical bisimulation, and also give the game characterizations, which

will be useful in our results.

The weakest equivalence is ordinary `strong bisimulation'; this is well

known to be too weak for true concurrent properties, but we de�ne it just

to help clarify the other de�nitions. In particular, we will de�ne it on runs,

rather than states.

De�nition 6.1 A relation R on pairs of runs of two TSCs S and T is a

(strong) bisimulation if

A (s0; t0) 2 R

B if (�; �) 2 R and �0 = �
a
�!s is a run, then there is t such that � 0 = �

a
�!t

and (�0; � 0) 2 R; and symmetrically.

Systems S and T are (strongly) bisimilar), S �b T , if there is a strong bisim-

ulation between them.

Bisimulation makes no use of the history of a run, and ignores the concur-

rency, and thus is de�nable on states of the TSCs, as is usually done. The

de�nition can also be cast in game-theoretic terms:

De�nition 6.2 The bisimulation game played between Duplicator and Spoiler

on two TSCs S and T is played as follows. Positions are pairs (�; �) of runs

from S and T . The initial position is (s0; t0). The two players alternate, with
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Spoiler starting. The rules are:

I Spoiler chooses one of S or T , say S, and chooses a transition sn
an�!sn+1.

Duplicator must respond in the other system with a transition tn
an�!tn+1

extending � , or else she loses.

II If either player cannot move, the other wins; if play continues for ever,

Duplicator wins.

S and T are bisimilar i� Duplicator has a winning strategy for the bisimulation

game i� Duplicator has a history-free winning strategy.

Since modal logic characterizes bisimulation, and IFML includes modal

logic, it is immediate that �IFML implies �b.

A stronger notion of equivalence is obtained [7,13] by requiring the equiv-

alence to preserve the concurrency relation between matching events. The

following formulation is not the original de�nition, but is equivalent in our

framework:

De�nition 6.3 R is a history-preserving bisimulation (hpb) if

A (s0; t0) 2 R

C if (�; �) 2 R and �0 = �
a
�!s is a run, then there is t such that � 0 = �

a
�!t,

and transitions i and j in �0 are concurrent i� transitions i and j in � 0 are

concurrent, and (�0; � 0) 2 R; and symmetrically.

and we write S �hpb T if there is an hbp between S and T .

and there is the obvious analogous game characterization.

Hpb detects at least some true concurrent features; for example, it dis-

tinguishes a:b + b:a from ajb. However, it has been argued [6,5] that hpb

and similar relations such as local/global cause equivalence are really about

causality, not about concurrency, and that true concurrency is more correctly

captured by the stronger equivalences. The development in this paper will

provide further backing to such a view.

The �rst, initially discouraging, result is that hpb can make distinctions

that IFML cannot.

Theorem 6.4 �IFML 6� �hpb

Proof. Consider the following systems:

�
b
�!� �

b
 ��

b
�!�

a" C a" a" C a"

Æ
b
�!� Æ

b
�!�

These systems are not hpb, but it may be veri�ed by exhaustive checking that

no IFML formula distinguishes them. 2

This example will suggest later a possible modi�cation to the de�nition of

IFML; for the present, we continue with the investigation.

It would be surprising if hpb were �ner than IFML-equivalence, and indeed
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it is not, although this is not quite so easy to demonstrate.

Theorem 6.5 �hpb 6� �IFML

Proof. The simplest counter-example we have at present is rather complex

to draw in full, so we will give a combined graphical and syntactic description.

Let A and C be the two systems

11
b1%

1
b2�!12

a1%

Æ

&a2

2
b1�!21

&b2

22

11
d1%

1
d2�!12

c1%

Æ

&c2

2
d1�!21

&d2

22

and let P be their concurrent composition, which is a pyramid with 16 distinct

�nal states on the square face. The systems S and T are formed by adding an

e transition to some of these �nal states, as indicated by the following matrix

in which the columns are the A states 11; 12; 21; 22, the rows are the C states

11; 12; 21; 22, and the entries indicate the presence of an e transition in the

given systems.

� ST � S

ST � S T

S T ST �
� S � ST

It may be veri�ed (and has been checked with the Edinburgh Concurrency

Workbench!) that S and T are strongly bisimilar, and since the concurrency

relations are the same, they are also history-preserving bisimilar. However,

the following IFML formula is true of S but not of T :

[a]�hbi�[c]=��hdiÆ=��heitt:

(This is because in S, Eloise can choose b1 after Abelard's a1 and b1 after

Abelard's a2; then she can choose d2 after c1 and d1 after c2, without depending

on a, and she ends up in a state with an e transition. In T , on the other hand,

no such uniform choice of d exists.) 2

A stronger equivalence from concurrency theory is hereditary (or strong)

history-preserving bisimulation (hhpb) [2,10]. Its relational characterization is

De�nition 6.6 R is a hereditary history-preserving bisimulation (hhpb) if

A (s0; t0) 2 R
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B if (�; �) 2 R and �0 = �
a
�!s is a run, then there is t such that � 0 = �

a
�!t

and (�0; � 0) 2 R; and symmetrically;

D if (� = s0
a0�!
�0

: : : sn; � = t0
a0�!
�0

: : : tn) 2 R, and transition �i is backwards

enabled in �, meaning that �i is concurrent with every later �j, then �i
is backwards enabled in � and (�0; � 0) 2 R, where �0 is obtained from � by

using the TSC diamond axioms to push �i to the end, and then deleting

�i, and similarly � 0 is obtained from � by likewise `backtracking' �i; and

symmetrically.

The rather complex looking clause D is nothing more than undoing the latest

action in some concurrent component; viewing a run as a partial order, rather

than a sequence, it is simply the deletion of a maximal element.

It is easy to see that clauses B and D imply that hhpb also satis�es clause

C of the hpb de�nition, and so hhpb is �ner (and indeed strictly �ner) than

hpb. The natural game characterization [11] of hhpb is

De�nition 6.7 The hhpb game played between Duplicator and Spoiler on two

TSCs S and T is played as follows. Positions are pairs (�; �) of runs from S

and T . The initial position is (s0; t0). The two players alternate, with Spoiler

starting. Spoiler may move in two ways, to which Duplicator must respond.

(i) Spoiler chooses one of S or T , say S, and chooses a transition sn
an�!sn+1.

Duplicator must respond in the other system with a transition tn
an�!tn+1

extending � , or else she loses.

(ii) Alternatively, Spoiler chooses S or T (say S), and a transition si
ai�!si+1

in � which is backward-enabled. He then `backtracks' along this tran-

sition, as in the relational de�nition. Duplicator must then respond by

backtracking the ith transition in the other system; if this transition is

not backwards enabled, she cannot move.

(iii) If either player cannot move, the other wins; if play continues for ever,

Duplicator wins.

Hhpb looks like a good candidate for comparison with IFML. For the

same reasons as hpb, hhpb can distinguish systems that IFML cannot; but one

might wonder whether hhpb is �ner than IFML-equivalence (for our restricted

models). We have a counter-example for in�nite-branching models, but for

image-�nite models we have not so far constructed a counter-example (or

proved the assertion). We make the

Conjecture 6.8 �hhpb 6� �IFML

(As an illustration of how hhpb is stronger than hpb, and how it is intuitively

related to IFML, note that the two systems of Theorem 6.5 are distinguished

by the formula

[a]hbi[c]hdi b a[a]hbiheitt

of the characteristic logic [11] for hhpb (where a is the modality of back-

tracking an a action). We shall discuss in a later article the nature of the
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relationship between this formula and the IFML formula.)

In order to �nd equivalences within concurrency that are stronger than

IFML, it is necessary to introduce `coherence' requirements, as studied in for

example [4]. The requirement we need is in fact somewhat stronger than

the requirement studied there, so the induced equivalence, which we call

strictly coherent hereditary history-preserving bisimulation (schhpb), is some-

what stronger than Cheng's strong coherent history-preserving bisimulation.

De�nition 6.9 R is a strictly coherent hereditary history-preserving bisim-

ulation (schhpb) if

The clauses of hhpb, together with

E if (��; ��0) 2 R and (��; �� 0) 2 R and � C �, then �0 C � 0 and (���; ��0� 0) 2
R, and symmetrically.

Theorem 6.10 If S and T are schhpb, then they are IFML-equivalent.

Proof. (Sketch) Let � be an IFML formula such that S � �. We shall use

the schhpb relation and Eloise's winning uniform strategy for S ` � to allow

her to win T ` �.

Suppose that in the model-checking games we have reached positions � ` 	
and � ` 	. If it is Abelard's turn to move in T , Eloise copies his move to

S using the schhpb. If it is Eloise's turn to move, her move in T is given

by taking her move in S and mapping it to T via the schhpb. This gives a

winning strategy in T .

Using the hereditary and coherent properties of the schhpb, one can show

inductively that when Eloise chooses a matching transition, she can do so

uniformly in its concurrent events; and therefore that if her S strategy is

uniform, she can construct her T strategy to be uniform. 2

7 Alternatives to IFML?

The fact that all the concurrent equivalences (apart from bisimulation itself)

distinguish systems that IFML does not, is unsatisfactory. Upon inspection of

the counter-example of Theorem 6.5, one can see that this is due to a rather

simple mismatch between the expressivity of the concurrent logics and IFML:

the concurrent logics can express `a followed by a concurrent b', `a followed

by a dependent b', and also `a followed by choice of concurrent and dependent

b'. IFML, on the other hand, can express `a followed by a concurrent b', and

`a followed by a dependent b and no concurrent b', but cannot distinguish the

case where there is a dependent b as well as a concurrent b.

It is possible to make a small change to the semantics of IFML which

addresses this issue. Let us call the result IFMLd (IFML with explicit depen-

dence), de�ned by the following change to the model-checking game of Defn

3.4:

11
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De�nition 7.1 The IFMLd game is as for IFML except that:

� At � = s0
a0�! : : :

an�1
�!sn ` hbi�=�i1 ;�i2 ;:::;�im	 (resp. ` [b]�=�i1 ;�i2 ;:::;�im	),

Eloise (resp. Abelard) chooses a transition sn
b
�!t that is concurrent with

all the transitions �ij
and not concurrent with any other transition �k, and

the new position is �
b
�!
�
t ` 	.

That is, choices in modalities are required to be concurrent with previous

choices if and only if they are logically independent, rather than just if.

This is super�cially attractive, and certainly deals with the example of

Theorem 6.5, and we

Conjecture 7.2 �IFMLd � �hpb

but have not established this conjecture.

It is also very tempting to conjecture that �IFMLd � �hhpb. Unfortunately,

this conjecture fails.

Theorem 7.3 �IFMLd 6� �hhpb

Proof. The following is a notorious example [11] of two systems that are not

hhbp (although they are hbp):

�
c%

� �
b. -a a% &b

� C Æ C �
a- .b b& %a

� �
d&
�

�
c%

� �
b. -a a% &b

� C Æ C �
a- .b b& %a

� �
d.
�

It may be veri�ed by exhaustive (and in this case somewhat exhausting) check-

ing that neither IFML nor IFMLd can distinguish them.

It should, however, be pointed out that despite the naturalness of IFMLd,

there are some unpleasant consequences of adopting it. In particular, it be-

comes impossible to express the ordinary modal logic formula [a]hbi�, where
the choice of b may depend on a, if a and b happen to be concurrent. (It is

for this reason that Conjecture 7.2 is not the simple result one would like.)

8 Conclusion

We have shown that it is possible to de�ne a modal version of the Hintikka{

Sandu independence-friendly logic, and that such a logic naturally requires

true concurrent models. We have looked at the relationship between the in-

duced equivalence and the equivalences associated with true concurrent mod-

els. The results so far indicate that although there is a natural connection, it

is not as clean as one would like; however, we are hopeful that further work

will throw more light on this. We expect in the full version of this paper

to settle all the issues explicitly labelled as conjectures; but we think it will

12
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take a more substantial e�ort to complete the analysis. There are intrigu-

ing questions about the exact relationship between backtracking (as used in

hhbp), and uniformity (as used in schhpb and in IFML), and we suspect that

these questions may provide a useful notion of Ehrenfeucht{Fra��ss�e game for

independence logics. (To coin a slogan, the art of independence is in doing

second-order things without appearing to do so.) In turn, independence logics

may give new insight into the complexity of the concurrent equivalences.
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