
Chapter 7
Examples of Evolutionary Equations

This chapter is devoted to a small tour through a variety of evolutionary equa-
tions. More precisely, we shall look into the equations of poro-elastic media,
(time-)fractional elasticity, thermodynamicmedia with delay as well as visco-elastic
media. The discussion of these examples will be similar to that of the examples in
the previous chapter in the sense that we shall present the equations first, reformulate
them suitably and then apply the solution theory to them. The study of visco-elastic
media within the framework of partial integro-differential equations will be carried
out in the exercises section.

7.1 Poro-Elastic Deformations

In this section we will discuss the equations of poro-elasticity, which form a coupled
system of equations. More precisely, the equations of (linearised) elasticity are
coupled with the diffusion equation. Before properly writing these equations we
introduce the following notation and differential operators.

Definition Let Kd×d
sym := {

A ∈ K
d×d ; A = A�} ⊆ K

d×d be the (closed) subspace

of symmetric d × d matrices. Let � ⊆ R
d be open. Then define

L2(�)d×d
sym := L2(�;Kd×d

sym )

=
{
(�jk)j,k∈{1,...,d} ∈ L2(�)d×d ; ∀j, k ∈ {1, . . . , d} : �jk = �kj

}
.

Analogously, we set C∞
c (�)d×d

sym := C∞
c (�;Kd×d

sym ).

Note that the symmetry of a d × d matrix here means that the matrix elements
are symmetric with respect to the main diagonal. For K = C, this does not
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correspond to the symmetry of the associated linear operator (which would rather
be selfadjointness).

Definition Let � ⊆ R
d be open. Then we define

Gradc : C∞
c (�)d ⊆ L2(�)d → L2(�)d×d

sym

(
φj

)
j∈{1,...,d} �→ 1

2

(
∂kφj + ∂jφk

)
j,k∈{1,...,d} ,

and

Divc : C∞
c (�)d×d

sym ⊆ L2(�)d×d
sym → L2(�)d

(
�jk

)
j,k∈{1,...,d} �→

(
d∑

k=1

∂k�jk

)

j∈{1,...,d}
.

Similarly to the definitions in the previous chapter, we put Grad := −Div∗
c , Div :=

−Grad∗
c and Grad0 := −Div∗, Div0 := −Grad∗, where (analogously to the scalar-

valued case) we observe that Gradc ⊆ −Div∗
c motivating the notation Grad and

Grad0.

Remark 7.1.1 Note that in the literature Gradu is also denoted by ε(u) and is
called the strain tensor. Due to the (obvious) similarity to the scalar case, we
refrain from using ε in this context and prefer Grad instead. Again, the index 0
in the operators refers to generalised Dirichlet (for Grad0) or Neumann (for Div0)
boundary conditions.

We are now properly equipped to formulate the equations of poro-elasticity; see
also [69] and below for further details. In an elastic body � ⊆ R

d , the displacement
field, u : R × � → R

d , and the pressure field, p : R × � → R, of a fluid diffusing
through � satisfy the following two energy balance equations

∂tρ∂tu − grad ∂tλ divu − DivC Gradu + gradα∗p = f,

∂t (c0p + α divu) − div k gradp = g.

The right-hand sides f : R × � → R
d and g : R × � → R describe some

given external forcing. We assume homogeneous Neumann boundary conditions
for the diffusing fluid as well as homogeneous Dirichlet (i.e. clamped) boundary
conditions for the elastic body. The operator ρ ∈ L(L2(�)d) describes the density
of the medium � (usually realised as a multiplication operator by a bounded,
measurable, scalar function). The bounded linear operators C ∈ L(L2(�)d×d

sym )

and k ∈ L(L2(�)d) are the elasticity tensor and the hydraulic conductivity of
the medium, whereas c0, λ ∈ L(L2(�)) are the porosity of the medium and the
compressibility of the fluid, respectively. The operator α ∈ L(L2(�)) is the so-
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called Biot–Willis constant. Note that in many applications ρ, c0, λ and α are just
positive real numbers, and C and k are strictly positive definite tensors or matrices.

The reformulation of the equations for poro-elasticity involves several ‘tricks’.
One of these is to introduce the matrix trace as the operator

trace : L2(�)d×d
sym → L2(�)

(�jk)j,k∈{1,...,d} �→
d∑

j=1

�jj .

Note that the adjoint is given by trace∗ f = diag(f, . . . , f ) ∈ L2(�)d×d
sym . It is then

elementary to obtain traceGrad ⊆ div as well as grad = Div trace∗. Hence, we
formally get

∂tρ∂tu − Div
( (

∂t trace∗ λ trace+C
)
Gradu − trace∗ α∗p

) = f,

∂t (c0p + α traceGradu) − div k gradp = g.

Next, we introduce a new set of unknowns

v := ∂tu,

T := C Gradu,

ω := λ traceGrad v − α∗p,

q := −k gradp.

Here, v is the velocity, T is the stress tensor and q is the heat flux. The quantity
ω is an additional variable, which helps to rewrite the system into the form of
evolutionary equations.

In order to finalise the reformulation we shall assume some additional properties
on the coefficients involved. Throughout the rest of this section, we assume that

ρ = ρ∗ � c,

c0 = c∗
0 � c,

Re λ � c,

Re k � c, and

C = C∗ � c

for some c > 0, where all inequalities are thought of in the sense of positive
definiteness (compare Chap. 6). As a consequence, we obtain

traceGrad v = λ−1ω + λ−1α∗p.
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Rewriting the defining equations for T , ω, and q together with the two equations
we started out with, we obtain the system

∂tρv − Div
(
T + trace∗ ω

) = f,

∂tc0p + αλ−1ω + αλ−1α∗p + div q = g,

λ−1ω + λ−1α∗p − traceGrad v = 0,

∂tC
−1T − Grad v = 0,

k−1q + gradp = 0.

Note that at this stage of modelling we assumed that we can freely interchange the
order of differentiation, so that Grad ∂tu = ∂t Gradu. Introducing

M0 :=

⎛

⎜⎜
⎜
⎜
⎜
⎝

ρ 0 0 0 0
0 c0 0 0 0
0 0 0 0 0
0 0 0 C−1 0
0 0 0 0 0

⎞

⎟⎟
⎟
⎟
⎟
⎠

, M1 :=

⎛

⎜⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 αλ−1α∗ αλ−1 0 0
0 λ−1α∗ λ−1 0 0
0 0 0 0 0
0 0 0 0 k−1

⎞

⎟⎟
⎟
⎟
⎟
⎠

, (7.1)

V :=

⎛

⎜⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 trace 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟
⎟
⎟
⎟
⎠

, A :=

⎛

⎜⎜
⎜
⎜
⎜
⎝

0 0 0 −Div 0
0 0 0 0 div0
0 0 0 0 0

−Grad0 0 0 0 0
0 grad 0 0 0

⎞

⎟⎟
⎟
⎟
⎟
⎠

, (7.2)

we obtain

(
∂tM0 + M1 + V AV ∗)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v

p

ω

T

q

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f

g

0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

This perspective enables us to prove well-posedness for the equations of poro-
elasticity by applying Theorem 6.2.1.

Theorem 7.1.2 Put H := L2(�)d × L2(�) × L2(�) × L2(�)d×d
sym × L2(�)d and

let M0,M1, V ∈ L(H) and A be given as in (7.1) and (7.2). Then there exists
ν0 > 0 such that for all ν � ν0 the operator ∂t,νM0 + M1 + V AV ∗ is continuously
invertible on L2,ν(R; H). The inverse Sν of this operator is causal and eventually
independent of ν. Moreover, supν�ν0

‖Sν‖ < ∞ and F ∈ dom(∂t,ν) implies SνF ∈
dom(∂t,ν) ∩ dom(V AV ∗).
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We will provide two prerequisites for the proof. We ask for the details of the proof
of Theorem 7.1.2 in Exercise 7.1.

Proposition 7.1.3 Let H0, H1 be Hilbert spaces, B : dom(B) ⊆ H0 → H0 skew-
selfadjoint, V ∈ L(H0,H1) bijective. Then (V BV ∗)∗ = −V BV ∗.

The proof of Proposition 7.1.3 is left as (part of) Exercise 7.1.

Proposition 7.1.4 Let H be a Hilbert space, N0, N1 ∈ L(H) with N0 = N∗
0 .

Assume there exist c0, c1 > 0 such that 〈x,N0x〉 � c0 ‖x‖2 for all x ∈ ran(N0) and
Re 〈y,N1y〉 � c1 ‖y‖2 for all y ∈ ker(N0). Then for all 0 < c′

1 < c1 there exists
ν0 > 0 such that for all ν � ν0 we have that

νN0 + ReN1 � c′
1.

Proof Note that by the selfadjointness of N0 we can decompose H = ran(N0) ⊕
ker(N0), see Corollary 2.2.6. Let z ∈ H , and x ∈ ran(N0), y ∈ ker(N0) such that
z = x + y. For ε, ν > 0 we estimate

ν 〈x + y,N0(x + y)〉 + Re 〈x + y,N1(x + y)〉
= ν 〈x,N0x〉 + Re 〈y,N1y〉 + Re 〈x,N1x〉 + Re 〈x,N1y〉 + Re 〈y,N1x〉
� νc0 ‖x‖2 + c1 ‖y‖2 − ‖N1‖ ‖x‖2 − 2 ‖N1‖ ‖x‖ ‖y‖

� νc0 ‖x‖2 + c1 ‖y‖2 − ‖N1‖ ‖x‖2 − 1

ε
‖N1‖2 ‖x‖2 − ε ‖y‖2

=
(

νc0 − 1

ε
‖N1‖2 − ‖N1‖

)
‖x‖2 + (c1 − ε) ‖y‖2 ,

where we have used the Peter–Paul inequality (i.e., Young’s inequality for products
of non-negative numbers). For 0 < c′

1 < c1 we find ε > 0 such that c1 − ε > c′
1.

Then we choose ν0 > 1
c0

(
c′
1 + 1

ε
‖N1‖2 + ‖N1‖

)
. With this choice of ν0 we deduce

for all ν � ν0 that

ν 〈z,N0z〉 + Re 〈z,N1z〉 � c′
1

(
‖x‖2 + ‖y‖2

)
= c′

1 ‖z‖2 ,

which yields the assertion. ��

7.2 Fractional Elasticity

Let � ⊆ R
d be open. In order to better fit to the experimental data of visco-elastic

solids (i.e., to incorporate solids that ‘memorise’ previous force applied to them) the
equations of linearised elasticity need to be extended in some way. The balance law
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for the momentum, however, is still satisfied; that is, for the displacement u : R ×
� → R

d we still have that

∂tρ∂tu − Div T = f,

where ρ ∈ L(L2(�)d) models the density and f : R × � → R
d is a given external

forcing term. The stress tensor, T : R × � → R
d×d
sym , does not follow the classical

Hooke’s law, which, if it did, would look like

T = C Gradu

for C ∈ L(L2(�)d×d
sym ). Instead it is amended by another material dependent

coefficient D ∈ L(L2(�)d×d
sym ) and a fractional time derivative; that is,

T = C Gradu + D∂α
t Gradu,

for some α ∈ [0, 1], where ∂α
t := ∂t∂

α−1
t , see Example 5.3.1(e). We shall simplify

the present consideration slightly and refer to Exercise 7.2 instead for a more
involved example. Throughout this section, we shall assume that

C = 0, D = D∗ � c, and ρ = ρ∗ � c

for some c > 0. Thus, putting v := ∂tu and assuming the clamped boundary
conditions again, we study well-posedness of

∂tρv − Div T = f, (7.3)

T = D∂α
t Grad0 u. (7.4)

In order to do that, we first rewrite the second equation. We will make use of the
following proposition which will serve us to show bounded invertibility of ∂α

t (in
the space L2,ν), and which will also be employed to obtain well-posedness.

Proposition 7.2.1 Let ν > 0, z ∈ CRe�ν , α ∈ [0, 1]. Then

Re zα � (Re z)α � να.

Proof Let us prove the first inequality. Note that without loss of generality, we may
assume that Re z = 1. Let ϕ := arg z ∈ (−π

2 , π
2

)
. Since ln ◦ cos is concave on(−π

2 , π
2

)
(as (ln ◦ cos)′ = − tan is decreasing) and (ln ◦ cos)(0) = 0, we obtain

ln cos(αϕ) = ln cos(αϕ+(1−α)0) � α ln cos(ϕ)+(1−α) ln cos(0) = ln
(
cos(ϕ)α

)
,
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and therefore cos(αϕ) � cos(ϕ)α . Since Re z = 1 implies |z| = 1
cos(ϕ)

, we obtain

Re zα = cos(αϕ)

(cosϕ)α
� 1 = (Re z)α.

The second inequality follows from monotonicity of x �→ xα. ��
Applying Proposition 7.2.1 and noting that D is boundedly invertible we can
reformulate (7.4) as

∂−α
t,ν D−1T − Grad0 u = 0,

so that (7.4) and (7.3) read

(
∂t,ν

(
ρ 0
0 ∂−α

t,ν D−1

)
−

(
0 Div

Grad0 0

)) (
v

T

)
=

(
f

0

)
.

A solution theory for the latter equation, thus, reads as follows, where again v :=
∂t,νu.

Theorem 7.2.2 Put H := L2(�)d × L2(�)d×d
sym . Then for all ν > 0 the operator

∂t,ν

(
ρ 0
0 ∂−α

t,ν D−1

)
−

(
0 Div

Grad0 0

)

is densely defined and closable in L2,ν(R; H). The inverse of the closure is
continuous, causal and eventually independent of ν.

Proof The proof rests on Theorem 6.2.1. Since

(
0 Div

Grad0 0

)
is skew-selfadjoint

by Proposition 6.2.3(a), it suffices to confirm the positive definiteness condition for
the material law. For this let z ∈ CRe�ν and compute for x ∈ L2(�)d×d

sym , using
Proposition 7.2.1 and Proposition 6.2.3(b),

Re
〈
x, zz−αD−1x

〉
= Re

〈
x, z1−αD−1x

〉
� ν1−α

〈
x,D−1x

〉
� ν1−α c

‖D‖2 ‖x‖2 .

This yields the assertion. ��
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7.3 The Heat Equation with Delay

Let � ⊆ R
d be open. In this section we concentrate on a generalisation of the heat

equation discussed in the previous chapter. Although we keep the heat flux balance
in the sense that

∂tθ + div q = Q,

with q : R × � → R
d being the heat flux and θ : R × � → R being the heat, we

shall now modify Fourier’s law to the extent that

q = −a grad θ − bτ−h grad θ

for some a, b ∈ L(L2(�)d) with Re a � c for some c > 0, and h > 0. We shall
again assume homogeneous Neumann boundary conditions for q . Written in the
now standard block operator matrix form, this modified heat equation reads

(
∂t,ν

(
1 0
0 0

)
+

(
0 0
0 (a + bτ−h)

−1

)
+

(
0 div0

grad 0

)) (
θ

q

)
=

(
Q

0

)
.

In order to actually justify the existence of the operator (a + bτ−h)
−1 as a bounded

linear operator, we provide the following lemma.

Lemma 7.3.1 Let h > 0.

(a) There exists ν0 > 0 such that for all ν � ν0 the operator a + bτ−h is
continuously invertible on L2,ν(R; L2(�)d).

(b) For all 0 < c′ < c/ ‖a‖2 there is ν1 � ν0 such that for all z ∈ CRe�ν1 we have

Re
(
a + be−zh

)−1 � c′.

Proof Note that a is invertible with
∥∥a−1

∥∥ � 1
c

and Re a−1 � c

‖a‖2 by

Proposition 6.2.3(b).

(a) By Example 5.3.4(c), for all ν > 0 we obtain

‖bτ−h‖L(L2,ν)
� ‖b‖L(L2(�)d) sup

t∈R

∣∣
∣e−(it+ν)h

∣∣
∣ = ‖b‖L(L2(�)d) e

−hν.

Thus, we find ν0 > 0 such that for all ν � ν0 we obtain
∥
∥bτ−ha

−1
∥
∥

L(L2,ν)
�

1
c
‖bτ−h‖L(L2,ν)

< 1. Thus,

a + bτ−h =
(
1 + bτ−ha

−1
)

a

is continuously invertible by a Neumann series argument.
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(b) Let 0 < c′ < c/ ‖a‖2, and set d(z) := −be−zha−1. Moreover, we choose
ν1 � ν0 such that ‖d(z)‖L(L2(�)d) � min{ 12 , ε} for all z ∈ CRe�ν1 , where

0 < ε � 1
2c

(
c

‖a‖2 − c′
)
. For z ∈ CRe�ν1 we compute

Re
(
a + be−zh

)−1 = Re a−1 (1 − d(z))−1 = Re

(

a−1
∞∑

k=0

d(z)k

)

= Re

(

a−1 +
∞∑

k=1

a−1d(z)k

)

� c

‖a‖2 −
∥
∥
∥
∥
∥

∞∑

k=1

a−1d(z)k

∥
∥
∥
∥
∥
� c

‖a‖2 − 1

c

∞∑

k=1

‖d(z)‖k

= c

‖a‖2 − 1

c

‖d(z)‖
1 − ‖d(z)‖ � c

‖a‖2 − 1

c
2ε � c′.

��

With this lemma we are in the position to provide the well-posedness for the
modified heat equation.

Theorem 7.3.2 Let H = L2(�) × L2(�)d . There exists ν0 > 0 such that for all
ν � ν0 the operator

∂t,ν

(
1 0
0 0

)
+

(
0 0
0 (a + bτ−h)

−1

)
+

(
0 div0

grad 0

)

is densely defined and closable with continuously invertible closure on L2,ν(R; H).
The inverse of the closure is causal and eventually independent of ν.

Proof The proof rests on Theorem 6.2.1 and Lemma 7.3.1. ��

7.4 Dual Phase Lag Heat Conduction

The last example is concerned with a different modification of Fourier’s law. The
heat flux balance

∂tθ + div q = Q (7.5)

is accompanied by the modified Fourier’s law

(
1 + sq∂t + 1

2
s2q∂2t

)
q = −(1 + sθ ∂t ) grad θ, (7.6)

where sq ∈ R, sθ > 0 are given numbers, which are called ‘phases’.
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Remark 7.4.1 The modified Fourier’s law in (7.6) is an attempt to resolve the
problem of infinite propagation speed which stems from a truncated Taylor series
expansion of a model given by

τsq q = −τsθ grad θ.

Note that it can be shown that such a model would even be ill-posed, see [34].

Let us turn back to the system (7.5) and (7.6). Notice, since sθ > 0, and due to
a strictly positive real part of the derivative in our functional analytic setting, we
deduce that (1 + sθ ∂t,ν) is continuously invertible for ν � 0. Thus, we obtain

∂t,ν

(
∂−1
t,ν + sq + 1

2
s2q∂t,ν

)
(1 + sθ ∂t,ν)

−1q = − grad θ.

The block operator matrix formulation of the dual phase lag heat conduction model
is thus
(

∂t,ν

(
1 0
0

(
∂−1
t,ν + sq + 1

2s
2
q∂t,ν

)
(1 + sθ ∂t,ν)

−1

)

+
(

0 div0
grad 0

))(
θ

q

)
=

(
Q

0

)
.

Theorem 7.4.2 Let H = L2(�) × L2(�)d . Assume sq ∈ R \ {0}, sθ > 0. Then
there exists ν0 > 0 such that for all ν � ν0 the operator

∂t,ν

(
1 0
0

(
∂−1
t,ν + sq + 1

2 s
2
q∂t,ν

)
(1 + sθ ∂t,ν)

−1

)

+
(

0 div0
grad 0

)

is densely defined and closable with continuously invertible closure on L2,ν(R; H).
The inverse of the closure is causal and eventually independent of ν.

The proof of Theorem 7.4.2 is again based on Theorem 6.2.1. Thus, we shall only
record the decisive observation in the next result. For this, we define

M(z) := z−1 + sq + 1
2s

2
qz

1 + sθ z
∈ C (z ∈ C \ {0,− 1

sθ
}).

Lemma 7.4.3 Let sq ∈ R \ {0}, sθ > 0. Then there exist ν0 ∈ R and c > 0 such
that for all z ∈ CRe�ν0 we have

Re zM(z) � c.

Proof We put σ := sq
sθ
. Let z ∈ C \ {0,− 1

sθ
}. We compute

zM(z) = 1 + sqz + 1
2 s

2
qz2

1 + sθ z
= 1

2
sqzσ + σ

(
1 − 1

2
σ

)
+

1 − σ
(
1 − 1

2σ
)

1 + sθ z
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and therefore

Re zM(z) = 1

2
sqσ Re z + σ

(
1 − 1

2
σ

)
+

(
1 − σ

(
1 − 1

2σ
) )

(1 + sθ Re z)

|1 + sθ z|2
.

By assumption

0 <
s2q

sθ
= sqσ,

and since

(
1 − σ

(
1 − 1

2σ
) )

(1 + sθ Re z)

|1 + sθ z|2
→ 0

as Re z → ∞, we obtain

Re zM(z) � 1

2
sqσ Re z − δ

for some δ > 0 and all z ∈ C with Re z large enough. ��

7.5 Comments

The equations of poro-elasticity have been proposed in [69] and were mathemati-
cally studied in [63, 103].

Equations of fractional elasticity are discussed in [20, 73, 87, 134]. The well-
posedness conditions stated here and in Exercise 7.2 can be generalised as it is
outlined in [87] to the case where both C and D are non-negative, selfadjoint
operators so that C and D satisfy the conditions imposed on N1 and N0 in
Proposition 7.1.4. We refrained from presenting this argument here, as it seemed too
technical for the time being. Note however that the proof is neither fundamentally
different nor considerably less elementary.

The heat equation with delay has also been studied in [55] with an entirely
different strategy; the dual phase lag models have been dealt with in [68, 127].

Other ideas to rectify infinite propagation speed of the heat equation can be found
in [3], where nonlinear models for heat conduction are being discussed.

The visco-elastic equations discussed in Exercise 7.6 are studied with convolu-
tion operators more general than below in [119]; see also [19, 27, 95, 116].
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Exercises

Exercise 7.1 (Solutions to the Equations of Poro-Elasticity)

(a) Prove Proposition 7.1.3.
(b) Prove Theorem 7.1.2.
(c) Let � ⊆ R

d be open, ν > 0, f ∈ H 1
ν (R; L2(�)d) and g ∈ H 1

ν (R; L2(�)).
With the help of Theorem 7.1.2 show that for large enough ν > 0 there exist
a unique u ∈ dom

(
∂2t,ν

) ∩ dom
(
gradλ div ∂t,ν

) ∩ dom (DivC Grad0) and p ∈
dom(∂t,ν) ∩ dom(gradα∗) ∩ dom(div0 k grad) such that

∂t,νρ∂t,νu − gradλ div ∂t,νu − DivC Grad0 u + gradα∗p = f

∂t,νc0p + α div ∂t,νu − div0 k gradp = g.

Exercise 7.2 Let � ⊆ R
d be open, C,D ∈ L(L2(�)d×d

sym ), D = D∗ � c for some

c > 0 and α ∈ [ 12 , 1]. Show that there exists ν0 > 0 such that for all ν � ν0 the
system

∂t,νρv − Div T = f,

T = (
C + D∂α

t,ν

)
Grad0 u,

where v = ∂t,νu, admits a unique solution (v, T ) ∈ L2,ν(R; L2(�)d × L2(�)d×d
sym )

for all f ∈ H 1
ν (R; L2(�)d).

The following exercises are devoted to showing the well-posedness of certain
equations in visco-elasticity, where the ‘viscous part’ is modelled by convolution
with certain integral kernels. The proof of the positive definiteness property requires
some preliminary results. We assume the reader to be equipped with the basics from
the theory of functions of one complex variable.

For U ⊆ C open write Ũ := {
(x, y) ∈ R

2; x + iy ∈ U
}
, and for u : U → C

holomorphic, define fRe u : Ũ → R by fRe u(x, y) := Re u(x + iy) for (x, y) ∈ Ũ .
We put

HRe(U) := {fRe u ; u : U → C holomorphic} .

Exercise 7.3 Let U ⊆ C be open.

(a) Let f ∈ HRe(U). Show that f satisfies the mean value property; that is, for all
(x, y) ∈ Ũ and r > 0 with B ((x, y), r) ⊆ Ũ we have

f (x, y) = 1

2π

∫ 2π

0
f (x + r cos θ, y + r sin θ) dθ.
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(b) Let U := CIm>0 and f ∈ HRe(U) ∩ C(R × R�0). Moreover, assume that
f (x, 0) = 0 for each x ∈ R and f (x, y) → 0 as |(x, y)| → ∞. Show that
f = 0 on R × R�0.

Exercise 7.4 In this exercise we show a version of Poisson’s formula. Let U :=
CIm>0 and f ∈ HRe(U) ∩ C(R × R�0).

(a) Assume that f (·, 0) ∈ Lp(R) for some 1 � p < ∞. Show that CIm>0 � z �→
1
π

∫
R

Im z′+i(Re z−x ′)
(Re z−x ′)2+(Im z)2

f (x ′, 0) dx ′ is holomorphic.

(b) Assume that f (·, 0) ∈ L∞(R). Show that 1
π

∫
R

y

(x−x ′)2+y2)
f (x ′, 0) dx ′ →

f (x0, 0) as x → x0 and y → 0+.
(c) (Poisson’s formula) Assume that f (·, 0) ∈ Lp(R) for some 1 � p < ∞ and

f (x, y) → 0 as |(x, y)| → ∞ in R × R�0. Show that

f (x, y) = 1

π

∫

R

y

(x − x ′)2 + y2
f (x ′, 0) dx ′ ((x, y) ∈ R × R>0).

Hint: Apply Exercise 7.3(b).

Exercise 7.5 Let ν0 ∈ R and k ∈ L1,ν0(R;R) with spt k ⊆ R�0.

(a) Show that for all (x, ν) ∈ R × R>ν0 we have

Im(Lk)(ix + ν) = 1

π

∫

R

ν − ν0

(x − x ′)2 + (ν − ν0)2
Im(Lk)(ix ′ + ν0) dx ′.

Hint: Approximate k by functions in C∞
c (R�0;R) and use Poisson’s formula

(see Exercise 7.4).
(b) Assume there exists d � 0 such that for all x ∈ R

x Im(Lk)(ix + ν0) � d.

Show that for all ν � ν0 and x ∈ R we have

x Im(Lk)(ix + ν) � 4d.

Hint: Use the formula in (a) and split the integral into positive and negative part
of R; use symmetry of (Lk) under conjugation due to the realness of k.

Exercise 7.6 Let � ⊆ R
d be open, ν0 ∈ R and k ∈ L1,ν0(R;R) with spt k ⊆ R�0.

Assume there exists d � 0 such that

x Im(Lk)(ix + ν0) � d (x ∈ R).
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Show that there exists ν1 � ν0 such that for all ν � ν1 the operator

∂t,ν

(
1 0
0 (1 − k∗)−1

)
+

(
0 Div

Grad0 0

)

is well-defined, densely defined and closable in L2,ν(R; H) with H = L2(�)d ×
L2(�)d×d

sym . Further, show that its closure is continuously invertible, and that the
corresponding inverse is causal and eventually independent of ν.

Exercise 7.7 Let ν0 ∈ R and k ∈ L1,ν0(R;R) with spt k ⊆ R�0.

(a) Assume that k is absolutely continuous with k′ ∈ L1,ν0(R;R). Show that there
exist ν1 � ν0 and d � 0 with

x Im(Lk)(ix + ν1) � d (x ∈ R).

(b) Assume that k(t) � 0 for all t ∈ R and that k(t) � k(s), whenever s � t . Show
that there exists ν1 � ν0 with

x Im(Lk)(ix + ν1) � 0 (x ∈ R).

Hint: For part (b) use the explicit formula for Im(Lk) as an integral and the
periodicity of sin.
Remark: The condition in (a) is a standard assumption for convolution kernels
in the framework of visco-elastic equations; the condition in (b) is from [95].
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