DyNAMIC STIFFNESS MATRIX OF SAGGING CABLE

By Uwe Starossek!

ABsTRACT: The dynamic behavior of an extensible sagging cable is investigated.
A dynamic stiffness matrix is presented whose coefficients are functions of the
frequency of motion, and that is suitable for dynamic direct-stiffness analysis of
composed systems such as cable-stayed bridges and guyed masts. The study is
restricted to small displacements (linear theory) and considers motion within the
vertical cable plane only. Viscous damping due to external fluid is taken into
account. Trigonometrical solution functions with complex arguments are utilized,
which implies a substantial simplification in the analysis of damped vibrations. By
means of example calculations, stiffness functions are discussed and compared to
the results of other authors. For tightly stretched inclined cables, utilization of the
more accurate theory presented in this paper is indispensable.

INTRODUCTION

The static analysis of a mechanical system usually requires knowledge of
the load-deformation behavior of the system elements. This behavior can
be described in compact form by stiffness matrices. Limited to the steady-
state response, it is possible to transfer this concept to the investigation of
dynamic processes, which implies the development of dynamic impedance
or stiffness matrices (Clough and Penzien 1975).

In this paper the dynamic stiffness matrix of an extensible, flexible, sagging
cable is presented. This matrix can be utilized for the dynamic analysis of
composed systems such as cable-stayed bridges or guyed masts. The cable
is considered as a continuum. Only small displacements are admitted (linear
theory) and only motions and forces within the vertical cable plane are
regarded. Viscous damping—for example due to external fluid forces—is
taken into consideration.

As far as 1s known, previous solutions to the defined problem have been
confined essentially to one element of the here computed 4 X 4 matrix: the
horizontal stiffness at the upper end of an inclined cable that is fixed at the
lower end. Treatises by Davenport and Steels (1965) and Irvine (1981) give
formulas that according to the findings of this study are not sufficiently
precise for tightly stretched inclined cables. The paper by Davenport and
Steels (1965) also considers damping, but the numeric evaluation of infinite
series is required. Veletsos and Darbre (1983) developed a more accurate
closed-form expression for the damped cable, which can be transformed
into the corresponding element of the matrix presented here, although a
small correction must be made.

This study partly follows the course revealed by Irvine and Caughey (1974)
and Irvine (1978, 1981), but the scope is different (stiffness matrix) and
greater generality is obtained (damping). Initially, the derivation proceeds
in a local coordinate system and is valid for a horizontal cable. The result
is then generalized to apply to an inclined cable and transformed to global
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coordinates. A discussion of example calculations and a detailed comparison
with the results of other authors conclude this paper.

The utilization of trigonometrical solution functions with complex argu-
ments is novel and remarkable; with the help of these functions the analysis
of damped cable vibrations can be managed with astonishing elegance.
Beyond the particular problem discussed herein, this method may be applied
to most kinds of damped oscillations that can be described by linear dif-
ferential equations.

Basic EQUATIONS

The static form of a horizontal cable (see Fig. 1) is approximated by a
quadratic parabola. For a steel cable with sufficiently small sag (d/l =
1/20), the condition of dynamic equilibrium of the vertical forces (see Fig.
2) leads to the equation of motion
9% d?y 0% dv

+ — = e A e R NS R PR E R SRR S EE o o w
e i T " T 1
in which H = horizontal component of the static cable tension; m = cable
mass per unit length; and ¢ = damping force per unit length and velocity.
The auxiliary quantity 4. is defined as

H

R i T et (2)

FIG. 1. Horizontal Cable

T+T +3(T+T)

FIG. 2. Differential Cable Element
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where T = dynamic part of the total cable tension that is supposed to be
invariable along the cable (quasi-static elastic deformation). The second
basic equation

h, (ds)3_@a_v+a_u

=] =2 L e 3
EA \dx dx ox ox (3)

provides for the elastic and geometric compatibility of the cable element.
Egs. (1) and (3) were derived in Starossek (1990). When the damping term
is omitted and the quantity /. is substituted by 4 (dynamic part of horizontal
component of total cable tension), they conform to the equations presented
by Irvine and Caughey (1974). As shown in Starossek (1990), these relations
can be derived without limitatiocn of the horizontal displacement u. They
can therefore be taken as a basis for the analysis of a cable with displaceable
boundaries presented herein.

Dynamic BEHAVIOR OF HORIZONTAL CABLE

General Terms
The ends of the cable are supported at the same level. It is assumed that
the vibration is described by the products

U(X, 1) = D(X)e e (4a)
i, £] = @XIE™ s smpiems smuruns s imA R RE S HE G FE e (4b)
where i? = —1and &, v, ® € (Consequently, the expression

hix,t) = h(x)e®;  h EC ..., (4c)

will hold and analogous product descriptions are valid for the boundary
forces and displacements. That is, only harmonic vibrations and vibrations
with an exponentially variable amplitude (modified-harmonic vibrations)
are admitted. With this approach, the steady-state system response to har-
monic excitation, as well as damped free vibrations, can be investigated. In
every case, the dynamic stiffness functions are defined as time-independent
relations between boundary forces and boundary displacements of the cable
as a part of a vibrating system.

With the adoption of approach (4), the equation of motion (1) leads to
the ordinary differential equation

0°0 . 8d -
H@ + wimv = A H e (5)
The introduction of the auxiliary parameter
W= WV = & (6a)
where
C‘ N
£E:= S T TTTTTTTUTTIEIsaaeeaiiieiiiiie (6b)

provides a substantial simplification of further derivations. They can now
be formally carried out as if damping were not present. The definition of
the dimensionless quantities
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will later prove useful. From the compatibility condition (3)

~ 3
h, [ds dy 00 ol
] BRI o e e mom s nm oW p s e e s B Y 5

EA (dx) dx ox  ox @)

is obtained.

The investigation proceeds separately for horizontal and vertical boundary
displacements. A distinction between symmetric and antisymmetric contri-
butions is made. Egs. (5) and (8) are solved for the different sets of boundary
conditions, and the corresponding stiffness functions are calculated. Trig-
onometrical solution functions with complex arguments are utilized. For
example, in the case of symmetric horizontal boundary displacements, the
utilized solution of (5) is

- 1, Q. . Ox Q.x
v = (1 tan 2 Sin— cos — ) ..................... 9)

Displacement function #(x) in (8) is eliminated by integration. Solutions
for all necessary sets of boundary displacements and derivation of corre-
sponding stiffness functions are presented in detail in Starossek (1990).

Local Dynamic Stiffness Matrix
The elements k; (i,j = 1, ..., 4) of the local dynamic stiffness matrix
k are defined by the transformation '

in which

h

1= ﬁ R (11a)

fs

are the vectors of the local force and displacement quantities according to
Fig. 3. Matrix k is found by superposing stiffness contributions, which are
calculated for different sets of boundary conditions. When neglecting con-
tributions of minor influence, three of the four antisymmetric stiffness con-
tributions vanish, and the stiffness function k&, (see the following) is slightly
simplified (Starossek 1990). The local dynamic stiffness matrix then is given

by
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fa f,
f f
1y 5, 2y 5,
_..53 L 61-

FIG. 3. Local Force and Displacement Quantities

_ (K. K, .
= (S ) a3
where
1 -1
hu = K (_1 1) .................................... (13a)

o 7= Kha

ks, = kS, (‘i }) ...................................... (13¢)

P 1 1
ki, =K. 1 1) ........................................ (134d)
; ; 1 -1
ke, = k%, (_1 1) ..................................... (13e)
The stiffness functions are
EA 1
S = 7 s e e AN e TR R (14)
. A
1 + 63 (K — 1)
1
EA E S(K - 1)
ki, =ki,= 3 " G W FWEE FDE ANES ERGamme e nmee s (15)
n A
1+ *ﬂ—g (k = 1)
I & A\?
i QZ e e _—
EA4N C[K Qi(K 1)]
ks, = — i3 e (16)
. A
1 + ﬁg (K — 1)
EA €% 1
k2 = T e s e E R R RN KR B R NN GRS ESE RN EEE B
=S (17)
where

2819



s\ d\’
Le::J;)(%) dx=l[1+8(+l-):| .......................... (20)

are cable parameters and

tan -QE)
2

K = K(()) 1= e (21)
L
2
is an auxiliary function dependent solely on (). Because kj, ., = K}, and
hence kj,, = (ki )7, the stiffness matrix is symmetric (but non-Hermitian

if damping is taken into account).

It should be noted that the stiffness terms appearing in (12) become
infinite for certain values of (1.. In the case of real ()., these values must
coincide with the natural frequencies of an undamped cable suspended from
rigid end supports. This condition leads to frequency equations that conform
to the findings of Irvine and Caughey (1974).

GENERALIZATION TO INCLINED CABLE

Extending the theory of the horizontal cable developed in Irvine and
Caughey (1974), Irvine (1978) gave solutions for the free vibration of an
inclined rigidly supported cable. It can be shown that only one additional
assumption is necessary for this extension: that the weight component par-
allel to the cable chord can be neglected. The results of Irvine (1978) cor-
respond well with those of the more precise theory of Triantafyllou (1984)
and Triantafyllou and Grinfogel (1986), as long as the cable parameters A\’
and e as well as the angle of inclination ® do not exceed certain limits. In
particular, A? should maintain a certain distance (about 20%) from the so-
called crossover points 4n’w? (n = 1, 2, . . .); and &€ and O should not be
too large. The theory presented here corresponds to Irvine and Caughey
(1974) in its essential assumptions. Neglecting once again the weight com-
ponent parallel to the cable chord, the transition to an inclined cable is
made by the following substitutions: (1) g is replaced by the gravitational
component g cos ©, which acts perpendicular to the cable chord (where ©
is the chord inclination); and (2) the quantity 7, = H/cos ® must be
substituted for the horizontal component H of the static cable tension—it
represents the static cable tension at the section where the cable is parallel
to the chord, and corresponds approximately to the average cable tension.

The other free parameters remain unchanged but now / denotes the chord
length and d is the sag perpendicular to the chord. All coordinates and
displacements relate to the local cordinate system, where the x-axis is parallel
to the chord. The dependent parameters become
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Q= ol [70 (22a)
Q. = ol -7’% ............................................. (22b)
) 2
e = ’"Tgl cos O = % ........................................ (24)
where

Ty = CO’: [ crons s s s e i e S S (25)

L, =1 [1 + 8 (‘7’” ....................................... (26)

With these new terms, the theory presented here can be used for an inclined
cable, if the limiting conditions

i (27a)
and
d 1
® = 60° and ¢ = 0.10 (7 = 8_0)
or
d 1
® = 30°and e = 0.24 (7 = 5) ............................. (27b)

are satisfied. The specified range of validity is inferred from the numeric results
of Irvine (1978) and Triantafyllou and Grinfogel (1986); a conservative criterion
relative to A? is employed, hereby taking into account that the problems in-
vestigated are similar but not identical [movable supports in this paper, fixed
supports in Irvine (1978) and Triantafyllou and Grinfogel (1986)].

TRANSFORMATION TO GLOBAL COORDINATES

The global force and displacement vectors (according to Fig. 4)
F,

are converted into the local quantities given by Fig. 3 through the orthogonal
transformations
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=T A
L E cos a E sin o

T:= (—Esina o a) .................................. (29¢)
(1 0

E:= (0 1) ............................................. (294)

(In practical applications the angle of rotation « is often equal to the incli-
nation angle ©, defined in the previous section.) When substituting for the
local vectors into (10) and premultiplying by T !, this leads to

F = K - A (30)
where
K=T7KT = TTKT ...t (31)

is the global dynamic stiffness matrix. In systems such as guyed masts and
cable-stayed bridges, the axial deformations of the beams are relatively
small. If the axes of the global coordinate system lie parallel to the beams,
the elements K,;, K,,, and also K,,, K, of the dynamic stiffness matrix K
will be of special interest. By following (31) and utilizing the properties of
symmetry previously stated, it is found that

Ky, = ki, cos’a + 2ki, cos asina + (k. + k2 )sina .. ....... (32a)
Ky = Ky = —[ki, + (k5, — k2,)] cos a sin a — KS oo (32b)
Ky = kK, sina + 2k3, cos a sin a + (k. + k2 )cos?a......... (32¢)

By neglecting several components of frequently minor influence, these equa-
tions are reduced to the simplified expressions

Ky = ki, cos?a + 2k$ ,CO8S QSIN O ©ovnennen (33a)



Kig = By = 5L, COBRBIBE ~ Ky snvinproesms snrsamemuems s (33b)
Ky = ki, sina + 2k3, COS 0 SIN O oo (33¢)

which will often give sufficiently accurate results.

Extension of the given theory to the spatial problem is possible without
major difficulty. In linearized theory the in-plane motion is uncoupled from
the transverse horizontal motion [see Irvine and Caughey (1974)]. The spa-
tial dynamic cable stiffness can therefore be described by a block diagonal
matrix if an appropriate coordinate system is chosen. Its first diagonal block
is already given by the 4 X 4 matrix of (31); the second one, a2 X 2 matrix,
must still be derived. The action of fluid forces must be considered if the
investigated cable is immersed in weighty mediums like water. This can be
accomplished by adequately establishing the parameters m, g, and £ [see
Davenport and Steels (1965)]. For a cable in air, this only concerns the
damping parameter §.

ExAMPLE ANALYSIS AND COMMENT

Example 1
The dynamic stiffness K, is calculated for the parameters

M 0217 (34a)

Te

1o 0.000633 34b

Fa = 0000633 ... (34b)

@2 = 0B chcimrsnimn e s e SEE R R PR (34¢)
14

O S G A R e R AR B BB rme fownm e e o (344d)

L

R e LML ES L e s s e i i3 e R (35a)
N2 = 2388 (35b)
£ = 0.1218 .o (35¢)

The limits of validity established by equations (27) are nearly met. The
stiffness function K, was computed according to (32a) and—for purposes
of comparison—according to the simplified equation (334). In the range of
extreme values the K, determined from various equations deviate at most
3% in their real and imaginary parts.

To obtain dimensionless graphs, the dynamic stiffness K, is related to
the elastic part Ki7 of the static stiffness K}, of a straight rod

Te
by = KT (1 + a tan’a ) ................................. (36a)
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e EA

TR COSZO vttt (36b)

Utilizing the simplified equation (33a), and neglecting the factor /L., the
expression

11 - te
11

)\2
1+'(Tg(l(—l)

is obtained, which provides a reasonably accurate approximation for the
cable considered here. The real and imaginary parts of this function are
depicted in Fig. 5. A comparison of these curves with the curves that Dav-
enport and Steels (1965) calculated for the same parameters shows similarity,
but not total agreement. Their solution requires numerical evaluation of
infinite series and so cannot be directly compared to the closed-form solution
given here. It appears, however, that the contribution of ks . was omitted.
This term is equal to kj, , (which they considered) and, according to (31),

has the same influence on the total stiffness. When expression (37) is trun-
cated by this contribution (by dividing the second term in the numerator
by 2), the curves plotted in Davenport and Steels (1965) can be precisely
reproduced. Moreover, it then coincides with a closed-form expression given
there for the special case of an undamped cable. In this example, &,
contributes approximately 15% to the total stiffness and therefore should
not be neglected.

For the special case of an undamped cable, Irvine (1981) gave a closed-
form expression for the dynamic stiffness K;;. When the simplified expres-
sion (37) is adapted to apply to an undamped cable and the second term in
the numerator (contributions of kj,, and k$,) is omitted this expression

coincides with Irvine’s equation; depending on the respective values of the
omitted contributions, the equation given in Irvine (1981) is less accurate.

/ i (a)
20 L Re (Kq)
1.0
_\ e
0 10 \J 20 30 O
-10
AIm(K,) &)
20
10
g 10 20 30 Q/T:

FIG. 5. Dynamic Stiffness Function (Example 1)
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Example 2
The dynamic stiffness K,, is calculated for the parameters

I =200m; 79 = 0.08 MN/m%; 2 = 500 MPa;
A A
E = 200,000 MPa; a =0 =30° £=001 .................. (38)
as function of real (). From (26), (23), and (24)
%—‘-’ = 1.0001 =1; A =03072; & =0.02771 ....... ... ... .. (39)

is obtained. The limits of validity defined by (27) are safely met. The in-
fluence of simplifications in the analysis of the dynamic stiffness is also
investigated here, as in example 1. In this case, however, the use of the
simplified equation (33c)—that is, the neglect of &}, and ki —Ileads to
completely wrong results. It is of particular interest that the imaginary part
K, of the total stiffness becomes negative due to the omission of &3 ,. The

work performed by the boundary force F, within one period is given by

2miw aA
W f (K44A4) ot dt — 1TKZ4|A4|2 ...................... (40)

Because this work is positive (as long as it is £), negative K;, may not occur;
otherwise, this system would be a perpetuum mobile. The contribution of
k2 ., must be considered, too, because considerable variations occur within

the range of the natural frequencies associated with antisymmetric modes
(i.e. of a cable fixed at both ends). These results seem to be typical for
tightly stretched inclined cables as they are employed in cable-stayed bridges.

The dynamic stiffness is again related to the elastic part K7; of the static
stiffness K, of a straight rod

Te
Kiy = KiS T 1 + == Cot20 | oot e e i e e 4
Ry 44 ( EA cot ) (41a)
Koy 1= Elé SIM2O v e (41b)

From the complete equation (32c¢) it is found that

1 +ecota(k — 1) —lpﬂz[x + —(K - 1)]
P

4
Kk = If‘,‘j, = += (42)
K
“ {4 (K - 1)
where the abbreviation
g Te
e o - 4
pi= 5 cot’a FA cot’a (43)

is used. The factor //L, is insignificant and is again neglected. The curves
resulting from (42) are shown in Fig. 6. The variations in the range of the
natural frequency associated with the first symmetric mode are small. The
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FIG. 6. Dynamic Stiffness Function (Example 2)

numeric analysis showed that here the various stiffness contributions nearly
cancel each other. The variations in the vicinity of the first antisymmetric
and second symmetric natural frequencies predominate.

Compared to example 1, the “resonance tubes” of the stiffness functions
are much narrower here; the variations are smaller, and the real part, K4,
remains positive. As a review of the applied equations shows, these differ-
ences are due to € and A* becoming much smaller. Consequently, the sag
as well as the influence of the geometrical stiffness (which is mainly induced
by transverse cable displacements) decrease. The elastic stiffness, now being
relatively small and therefore of dominant influence, is quasi-static. Hence
the resulting stiffness function approximates in a wide range (and especially
for small €)) the constant value that would have been determined for a
massless straight rod. Appreciable transverse displacements and the implied
dynamic stiffness effects occur only in the direct proximity to resonance
frequencies. Therefore, in the case of tightly stretched cables, less damping
seems to be necessary in order to limit the variations of the dynamic stiffness
functions.

The greater prominence of higher natural frequencies has its numeric
origin in a larger p. In addition to e and A?, this parameter is likewise of
importance. It corresponds to the ratio of rotational to elastic resistance of
a straight rod [see (41a) and (43)].

Under the same conditions, Veletsos and Darbre (1983) derived a formula
for the dynamic stiffness K,,. It can be compared with expression (42),
provided cot a is first replaced by tan «, in order to accomplish a transition
from K7, to Kj,. Initially, exact agreement could not be established. A
detailed review of Veletsos and Darbre (1983), however, showed that an
error apparently occurred at the derivation of its central equation [(38)].
When carrying out this derivation as specified, an expression that differs
from that given in Veletsos and Darbre is obtained. This result is also
somewhat simpler: the denominator [1 — i(2w{/®)] within the first part of
[(38) in Veletsos and Darbre (1983)] must be replaced by unity. The equation
modified in this way can be exactly transformed into expression (42) (except
for the factor /L, which is here neglected). Both expressions remain slightly
different in their external form, for they were obtained in different ways:
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the separation into symmetric and antisymmetric contributions is less distinct
in Veletsos and Darbre (1983) than in the formula given in this paper.
Without separation, equation (42) can be converted into the somewhat
shorter expression

: 2
[1+%£cota(|<—1):|
Ky = — 2 + pQ.cot Q. ... (44)
1+ ﬁ(K - 1)

which corresponds in its formal arrangement with [(38) and (41) of Veletsos
and Darbre (1983)]. A comparison of the derivations and results presented
in this study with those given in Veletsos and Darbre shows the advantage
of the limitation to trigonometrical solution functions with complex argu-
ments. Algebraic effort is reduced to a minimum. The resulting equations
are more concise and take the same external shape for damped and un-
damped cables (for an undamped cable, Q. is simply replaced by ().

An experimental verification of the theory presented here would be val-
uable, especially for a more accurate delimitation of the range of validity.
In view of the partial similarity of the theoretical results, the tests of Dav-
enport and Steels (1965) are cited. Their comparison of analytical results
with dynamic tests of a model cable immersed in a liquid bath produced
good agreement. The previously established and analytically considered
parameters (especially the damping coefficient), however, had to be greatly
altered in order to obtain a closer fit to the experimental data. This difficulty
seems to diminish when using the equations given in this study. The ex-
perimental results in Davenport and Steels (1965) also indicate a resonance
effect in the range of the antisymmetric natural frequency () = 2x. This is
predicted by the complete solutions (32) and the resulting (42).

CONCLUSIONS

A dynamic stiffness matrix for a damped cable that is suitable for dynamic
direct-stiffness analysis of composed systems was presented. By utilization
of trigonometrical solution functions with complex arguments, it was pos-
sible to strongly simplify the derivation. By means of example calculations,
stiffness functions were discussed and compared to the results of other
authors. For tightly stretched inclined cables, the use of the more accurate
theory presented here is indispensable. For very taut cables, the stiffness
functions approximate in a wide range the static stiffness terms of a straight
rod.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

= effective cross-sectional area of cable;

damping force per unit length and velocity;

cable sag perpendicular to cable chord;

= Young’s modulus of elasticity;

gravitational acceleration (decreased by buoyancy effect);
horizontal component of static cable tension;

dynamic part of horizontal component of total cable tension;
force quantity according to (2);

element of global dynamic stiffness matrix;

o dimensionless dynamic stiffness function defined by (37) and (42);

global dynamic stiffness matrix defined by (30);

& dynamic stiffness function related to specified set of boundary
displacements;

k’ . = submatrices according to (13);

local dynamic stiffness matrix defined by (10);

cable parameter according to (20) or (26);

length of cable chord;

= cable mass per unit length (increased by virtual mass effect due to
fluid);

static cable tension;

static cable tension at section where cable is parallel to chord, (25);
time,

displacement parallel to cable chord;

vertical component of static cable tension;

displacement perpendicular to cable chord;

coordinate of static cable line parallel to cable chord;

coordinate of static cable line perpendicular to cable chord;

angle of rotation of transformation to global coordinates, Fig. 4;
cable parameter according to (19) or (24);

angle of inclination of cable chord (measured from horizontal line);
().-dependent auxiliary term, (21);

fundamental cable parameter according to (18) or (23);

dynamic part of vertical component of total cable tension;
dimensionless damping parameter defined by (6b);

cable parameter according to (43);
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dynamic part of total cable tension;

dimensionless frequency, (7a) or (22a);

dimensionless frequency-damping parameter, (7b) or (22b);
circular frequency of motion according to (4); and
frequency-damping parameter defined by (6a).
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