
Chapter 2
Unbounded Operators

We will gather some information on operators in Banach and Hilbert spaces.
Throughout this chapter let X0, X1, and X2 be Banach spaces and H0, H1, and
H2 be Hilbert spaces over the field K ∈ {R,C}.

2.1 Operators in Banach Spaces

We define the set of continuous linear operators

L(X0,X1) :=
{

B : X0 → X1 ; B linear, ‖B‖ := sup
x∈X0\{0}

‖Bx‖
‖x‖ < ∞

}

with the usual abbreviation L(X0) := L(X0,X0). In contrast to a bounded linear
operator, a discontinuous or unbounded linear operator only needs to be defined on
a proper albeit possibly dense subset of X0. In order to define unbounded linear
operators, we will first take a more general point of view and introduce (linear)
relations. This perspective will turn out to be the natural setting later on.

Definition A subset A ⊆ X0 × X1 is called a relation in X0 and X1. We define the
domain, range and kernel of A as follows

dom(A) := {x ∈ X0 ; ∃y ∈ X1 : (x, y) ∈ A} ,

ran(A) := {y ∈ X1 ; ∃x ∈ X0 : (x, y) ∈ A} ,

ker(A) := {x ∈ X0 ; (x, 0) ∈ A} .
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16 2 Unbounded Operators

The image, A[M], of a set M ⊆ X0 under A is given by

A[M] := {y ∈ X1 ; ∃x ∈ M : (x, y) ∈ A} .

A relation A is called bounded if for all bounded M ⊆ X0 the set A[M] ⊆ X1 is
bounded. For a given relation A we define the inverse relation

A−1 := {(y, x) ∈ X1 × X0 ; (x, y) ∈ A} .

A relation A is called linear if A ⊆ X0 × X1 is a linear subspace. A linear relation
A is called linear operator or just operator from X0 to X1 if

A[{0}] = {y ∈ X1 ; (0, y) ∈ A} = {0}.

In this case, we also write

A : dom(A) ⊆ X0 → X1

to denote a linear operator from X0 to X1. Moreover, we shall write Ax = y instead
of (x, y) ∈ A in this case. A linear operator A, which is not bounded, is called
unbounded.

For completeness, we also define the sum, scalar multiples, and composition of
relations.

Definition Let A ⊆ X0 ×X1, B ⊆ X0 ×X1 and C ⊆ X1 ×X2 be relations, λ ∈ K.
Then we define

A + B := {(x, y + w) ∈ X0 × X1 ; (x, y) ∈ A, (x,w) ∈ B} ,

λA := {(x, λy) ∈ X0 × X1 ; (x, y) ∈ A} ,

CA := {(x, z) ∈ X0 × X2 ; ∃y ∈ X1 : (x, y) ∈ A, (y, z) ∈ C} .

For a relation A ⊆ X0 × X1 we will use the abbreviation −A := −1A (so that the
minus sign only acts on the second component). We now proceed with topological
notions for relations.

Definition Let A ⊆ X0 ×X1 be a relation. A is called densely defined if dom(A) is
dense in X0. We call A closed if A is a closed subset of the direct sum of the Banach
spaces X0 and X1. If A is a linear operator then we will call A closable, whenever
A ⊆ X0 × X1 is a linear operator.
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Proposition 2.1.1 Let A ⊆ X0 × X1 be a relation, C ∈ L(X2,X0) and B ∈
L(X0,X1). Then the following statements hold.

(a) A is closed if and only if A−1 is closed. Moreover, we have (A)−1 = A−1.
(b) A is closed if and only if A + B is closed.
(c) If A is closed, then AC is closed.

Proof Statement (a) follows upon realising that X0 × X1 � (x, y) 	→ (y, x) ∈
X1 × X0 is an isomorphism.

For statement (b), it suffices to show that the closedness of A implies the same
for A + B. Let ((xn, yn))n be a sequence in A + B convergent in X0 × X1 to some
(x, y). Since B ∈ L(X0,X1), it follows that ((xn, yn − Bxn))n in A is convergent to
(x, y −Bx) in X0 ×X1. Since A is closed, (x, y −Bx) ∈ A. Thus, (x, y) ∈ A+B.

For statement (c), let ((wn, yn))n be a sequence in AC convergent in X2 ×
X1 to some (w, y). Since C is continuous, (Cwn)n converges to Cw. Hence,
(Cwn, yn) → (Cw, y) in X0 × X1 and since (Cwn, yn) ∈ A and A is closed, it
follows that (Cw, y) ∈ A. Equivalently, (w, y) ∈ AC, which yields closedness of
AC. 
�
We shall gather some other elementary facts about closed operators in the following.
We will make use of the following notion.

Definition Let A : dom(A) ⊆ X0 → X1 be a linear operator. Then the graph norm
of A is defined by dom(A) � x 	→ ‖x‖A :=

√
‖x‖2 + ‖Ax‖2.

Lemma 2.1.2 Let A : dom(A) ⊆ X0 → X1 be a linear operator. Then the
following statements are equivalent:

(i) A is closed.
(ii) dom(A) equipped with the graph norm is a Banach space.
(iii) For all (xn)n in dom(A) convergent in X0 such that (Axn)n is convergent in

X1 we have limn→∞ xn ∈ dom(A) and A limn→∞ xn = limn→∞ Axn.

Proof For the equivalence (i)⇔(ii), it suffices to observe that dom(A) � x 	→
(x,Ax) ∈ A, where dom(A) is endowed with the graph norm, is an isomorphism.
The equivalence (i)⇔(iii) is an easy reformulation of the definition of closedness of
A ⊆ X0 × X1. 
�
Unless explicitly stated otherwise (e.g. in the form dom(A) ⊆ X0, where we regard
dom(A) as a subspace of X0), for closed operators A we always consider dom(A)

as a Banach space in its own right; that is, we shall regard it as being endowed with
the graph norm.

Lemma 2.1.3 Let A : dom(A) ⊆ X0 → X1 be a closed linear operator. Then A is
bounded if and only if dom(A) ⊆ X0 is closed.
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Proof First of all note that boundedness of A is equivalent to the fact that the
graph norm and the X0-norm on dom(A) are equivalent. Hence, the closedness and
boundedness of A implies that dom(A) ⊆ X0 is closed. On the other hand, the
embedding

ι : (dom(A), ‖·‖A) ↪→ (dom(A), ‖·‖X0
)

is continuous and bijective. Since the range is closed, the open mapping theorem
implies that ι−1 is continuous. This yields the equivalence of the graph norm and
the X0-norm and, thus, the boundedness of A. 
�
For unbounded operators, obtaining a precise description of the domain may be
difficult. However, there may be a subset of the domain which essentially (or
approximately) describes the operator. This gives rise to the following notion of
a core.

Definition Let A ⊆ X0 × X1. A set D ⊆ dom(A) is called a core for A provided
A ∩ (D × X1) = A.

Proposition 2.1.4 Let A ∈ L(X0,X1), and D ⊆ X0 a dense linear subspace. Then
D is a core for A.

Corollary 2.1.5 LetA : dom(A) ⊆ X0 → X1 be a densely defined, bounded linear
operator. Then there exists a unique B ∈ L(X0,X1) with B ⊇ A. In particular, we
have B = A and

‖B‖ = sup
x∈dom(A),x �=0

‖Ax‖
‖x‖ .

The proofs of Proposition 2.1.4 and Corollary 2.1.5 are asked for in Exercise 2.2.

2.2 Operators in Hilbert Spaces

Let us now focus on operators on Hilbert spaces. In this setting, we can additionally
make use of scalar products 〈·, ·〉, which in this course are considered to be linear in
the second argument (and anti-linear in the first, in the case when K = C).

For a linear operator A : dom(A) ⊆ H0 → H1 the graph norm of A is induced
by the scalar product

(x, y) 	→ 〈x, y〉 + 〈Ax,Ay〉 ,

known as the graph scalar product of A. If A is closed then dom(A) (equipped with
the graph norm) is a Hilbert space.
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Of course, no presentation of operators in Hilbert spaces would be complete
without the central notion of the adjoint operator. We wish to pose the adjoint within
the relational framework just established. The definition is as follows.

Definition For a relation A ⊆ H0 × H1 we define the adjoint relation A∗ by

A∗ := −
((

A−1
)⊥)

⊆ H1 × H0,

where the orthogonal complement is computed in the direct sum of the Hilbert
spaces H1 and H0; that is, the set H1 × H0 endowed with the scalar product(
(x, y), (u, v)

) 	→ 〈x, u〉H1
+ 〈y, v〉H0

.

Remark 2.2.1 Let A ⊆ H0 × H1. Then we have

A∗ = {
(u, v) ∈ H1 × H0 ; ∀(x, y) ∈ A : 〈u, y〉H1

= 〈v, x〉H0

}
.

In particular, if A is a linear operator, we have

A∗ = {
(u, v) ∈ H1 × H0 ; ∀x ∈ dom(A) : 〈u,Ax〉H1

= 〈v, x〉H0

}
.

Lemma 2.2.2 Let A ⊆ H0 × H1 be a relation. Then A∗ is a linear relation.
Moreover, we have

A∗ = −
((

A⊥)−1
)

=
(
(−A)−1

)⊥ =
(
−

(
A−1

))⊥ =
(
(−A)⊥

)−1 =
(
−

(
A⊥))−1

.

The proof of this lemma is left as Exercise 2.3.

Remark 2.2.3 Let A ⊆ H0×H1. Since A∗ is the orthogonal complement of −A−1,
it follows immediately that A∗ is closed. Moreover, A∗ = (

A
)∗

since A⊥ = (
A

)⊥
.

Lemma 2.2.4 Let A ⊆ H0 × H1 be a linear relation. Then

A∗∗ := (
A∗)∗ = A.

Proof We compute using Lemma 2.2.2

A∗∗ =
((− (

A∗))−1
)⊥ =

((
−

(
−

((
A⊥)−1

)))−1
)⊥

=
(
A⊥)⊥ = A. 
�

Theorem 2.2.5 Let A ⊆ H0 × H1 be a linear relation. Then

ran(A)⊥ = ker(A∗) and ran(A∗) = ker(A)⊥.
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Proof Let u ∈ ker(A∗) and let y ∈ ran(A). Then we find x ∈ dom(A) such that
(x, y) ∈ A. Moreover, note that (u, 0) ∈ A∗. Then, we compute

〈u, y〉H1
= 〈0, x〉H0

= 0.

This equality shows that ran(A)⊥ ⊇ ker(A∗). If on the other hand, u ∈ ran(A)⊥
then for all (x, y) ∈ A we have that

0 = 〈u, y〉H1
,

which implies (u, 0) ∈ A∗ and hence u ∈ ker(A∗). The remaining equation follows
from Lemma 2.2.4 together with the first equation applied to A∗. 
�
The following decomposition result is immediate from the latter theorem and will
be used frequently throughout the text.

Corollary 2.2.6 Let A ⊆ H0 × H1 be a closed linear relation. Then

H1 = ran(A) ⊕ ker(A∗) and H0 = ker(A) ⊕ ran(A∗).

We will now turn to the case where the adjoint relation is actually a linear operator.

Lemma 2.2.7 Let A ⊆ H0 × H1 be a linear relation. Then A∗ is a linear operator
if and only if A is densely defined. If, in addition, A is a linear operator, then A is
closable if and only if A∗ is densely defined.

Proof For the first equivalence, it suffices to observe that

A∗[{0}] = dom(A)⊥. (2.1)

Indeed,A being densely defined is equivalent to having dom(A)⊥ = {0}. Moreover,
A∗ is an operator if and only if A∗[{0}] = {0}. Next, we show (2.1). For this, apply
Theorem 2.2.5 to the linear relation A−1. One obtains (ranA−1)⊥ = ker(A−1)∗.
Hence, (dom(A))⊥ = ker(A∗)−1 = A∗[{0}], which is (2.1). For the remaining
equivalence, we need to characterise A being an operator. Using Lemma 2.2.4 and
the first equivalence, we deduce that A = (A∗)∗ is a linear operator if and only if
A∗ is densely defined. 
�
Remark 2.2.8 Note that the statement “A∗ is an operator if A is densely defined”
asserted in Lemma 2.2.7 is also true for any relation. For this, it suffices to observe
that (2.1) is true for any relation A ⊆ H0 × H1. Indeed, let A ⊆ H0 × H1 be a
relation; define B := linA. Then dom(B) = lin dom(A). Also, we have

A∗ = −(A⊥)−1 = −(B⊥)−1 = B∗.
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With these preparations, we can write

dom(A)⊥ = (lin dom(A))⊥ = dom(B)⊥ = B∗[{0}] = A∗[{0}],

where we used that (2.1) holds for linear relations.

Lemma 2.2.9 Let A ⊆ H0 × H1 be a linear relation. Then A ∈ L(H0,H1) if and
only if A∗ ∈ L(H1,H0). In either case, ‖A∗‖ = ∥∥A

∥∥.
Proof Note that A ∈ L(H0,H1) implies that A is closable and densely defined.
Thus, by Lemma 2.2.7, A∗ is a densely defined, closed linear operator. For u ∈
dom(A∗) we compute using Lemma 2.2.4

∥∥A∗u
∥∥ = sup

x∈H0\{0}
|〈A∗u, x〉|

‖x‖ = sup
x∈H0\{0}

∣∣〈u,Ax
〉∣∣

‖x‖ �
∥∥A

∥∥ ‖u‖ ,

yielding ‖A∗‖ �
∥∥A

∥∥. On the one hand, this implies that A∗ is bounded, and on
the other, since A∗ is densely defined we deduce A∗ ∈ L(H1,H0) by Lemma 2.1.3.
The other implication (and the other inequality) follows from the first one applied
to A∗ instead of A using A∗∗ = A. 
�
We end this section by defining some special classes of relations and operators.

Definition Let H be a Hilbert space and A ⊆ H × H a linear relation. We call
A (skew-)Hermitian if A ⊆ A∗ (A ⊆ −A∗). We say that A is (skew-)symmetric if
A is (skew-)Hermitian and densely defined (so that A∗ is a linear operator), and A

is called (skew-)selfadjoint if A = A∗ (A = −A∗). Additionally, if A is densely
defined, then we say that A is normal if AA∗ = A∗A.

2.3 Computing the Adjoint

In general it is a very difficult task to compute the adjoint of a given (unbounded)
operator. There are, however, cases, where the adjoint of a sum or the product can
be computed more readily. We start with the most basic case of bounded linear
operators.

Proposition 2.3.1 Let A,B ∈ L(H0,H1), C ∈ L(H2,H0). Then (A + B)∗ =
A∗ + B∗ and (AC)∗ = C∗A∗.

The latter results are special cases of more general statements to follow.

Theorem 2.3.2 Let A,B ⊆ H0 × H1 be relations. Then A∗ + B∗ ⊆ (A + B)∗. If,
in addition, B ∈ L(H0,H1), then (A + B)∗ = A∗ + B∗.

Proof In order to show the claimed inclusion, let (u, r) ∈ A∗ + B∗. By definition
of the sum of relations, we find v,w ∈ H0, r = v + w, with (u, v) ∈ A∗ and
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(u,w) ∈ B∗. We compute for all (x, s) ∈ A + B, that is, (x, y) ∈ A and (x, z) ∈ B

for some y, z ∈ H1 with s = y + z

〈x, r〉H0
= 〈x, v + w〉H0

= 〈x, v〉H0
+ 〈x,w〉H0

= 〈y, u〉H1
+ 〈z, u〉H1

= 〈y + z, u〉H1
= 〈s, u〉H1

.

This shows the desired inclusion. Next, we assume in addition that B ∈ L(H0,H1).
For the equality, it remains to show that (A+B)∗ ⊆ A∗ +B∗, which in conjunction
with the above follows if dom((A+B)∗) ⊆ dom(A∗+B∗) = dom(A∗)∩dom(B∗).
By Lemma 2.2.9, we have dom(B∗) = H1. Hence, it suffices to show that dom((A+
B)∗) ⊆ dom(A∗). For this, let (u, v) ∈ (A + B)∗. Then we compute for all (x, y) ∈
A using Lemma 2.2.9 again

〈x, v〉H0
= 〈y + Bx, u〉H1

= 〈y, u〉H1
+ 〈

x,B∗u
〉
H0

.

Thus, 〈x, v − B∗u〉H0
= 〈y, u〉H1

, which yields (u, v − B∗u) ∈ A∗; whence, u ∈
dom(A∗) as desired. 
�
Corollary 2.3.3 Let A ⊆ H0 × H1, B ∈ L(H0,H1). If A is densely defined, then
A∗ + B∗ is an operator and (A + B)∗ = A∗ + B∗.

Theorem 2.3.4 Let A ⊆ H0 × H1 and C ⊆ H2 × H0. Then C∗A∗ ⊆ (AC)∗. If,
in addition, A ⊆ H0 × H1 is closed and linear as well as C ∈ L(H2,H0), then
(AC)∗ = C∗A∗.

Proof For the first inclusion, let (u,w) ∈ C∗A∗. Thus, we find v ∈ H0 such that
(u, v) ∈ A∗ and (v,w) ∈ C∗. Next, let (r, y) ∈ AC. Then we find x ∈ H0 such that
(r, x) ∈ C and (x, y) ∈ A. We compute

〈y, u〉H1
= 〈x, v〉H0

= 〈r,w〉H2
.

Since (r, y) ∈ AC were chosen arbitrarily, we infer C∗A∗ ⊆ (AC)∗. As every
adjoint is closed, we obtain C∗A∗ ⊆ (AC)∗.

Next, we assume that A is closed and linear as well as that C is bounded and
linear. Then, by what we have just shown, we obtain AC ⊆ (C∗A∗)∗. Next, let
(w, y) ∈ (C∗A∗)∗. Then for all (u, v) ∈ A∗ and z = C∗v we obtain

〈u, y〉H1
= 〈z,w〉H2

= 〈
C∗v,w

〉
H2

= 〈v,Cw〉H0
.

Thus, we obtain (Cw, y) ∈ A∗∗ = A = A. Thus, (w, y) ∈ AC. Hence,

AC = (
C∗A∗)∗ ,

which yields the assertion by adjoining this equation. 
�
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Corollary 2.3.5 Let A ⊆ H0 × H1 be a linear relation and C ∈ L(H2,H0). Then(
AC

)∗ = C∗A∗.

Proof The result follows upon realising that A∗ = A∗∗∗ = (
A

)∗
. 
�

Corollary 2.3.6 Let A ⊆ H0 × H1 be a linear relation and C ∈ L(H2,H0). If AC

is densely defined, then C∗A∗ is a closable linear operator with C∗A∗ = (
AC

)∗
.

Remark 2.3.7 Let us comment on the equalities in the prevoius statements.

(a) Note that if B ∈ L(H1,H2) and A ⊆ H0 × H1 is linear, then
(
BA

)∗ = A∗B∗.
Indeed, this follows from Theorem 2.3.4 applied to A∗ and B instead of A and

C∗, respectively, since then we obtain (A∗B∗)∗ = B∗∗A∗∗ = BA. Computing
adjoints on both sides again and using that A∗B∗ is closed by Proposition 2.1.1,
we get the assertion.

(b) We note here that in Corollary 2.3.5 and Corollary 2.3.6 AC cannot be replaced
byAC and encourage the reader to find a counterexample forA being a closable
linear operator. We also refer to [94] for a counterexample due to J. Epperlein.

We have already seen that A∗ = A
∗
. We can even restrict A to a core and still obtain

the same adjoint.

Proposition 2.3.8 Let A ⊆ H0 × H1 be a linear relation, D ⊆ dom(A) a linear
subspace. Then D is a core for A if and only if (A ∩ (D × H1))

∗ = A∗.

Proof We set A|D := A ∩ (D × H1). Then

D core ⇐⇒ A|D = A ⇐⇒ A|D⊥ = A
⊥ ⇐⇒ A|D⊥ = A⊥ ⇐⇒ A|∗D = A∗. 
�

2.4 The Spectrum and Resolvent Set

In this section, we focus on operators acting on a single Banach space. As such,
throughout this section let X be a Banach space over K ∈ {R,C} and let
A : dom(A) ⊆ X → X be a closed linear operator.

Definition The set

ρ(A) :=
{
λ ∈ K ; (λ − A)−1 ∈ L(X)

}
is called the resolvent set of A. We define

σ(A) := K \ ρ(A)

to be the spectrum of A.
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We state and prove some elementary properties of the spectrum and the resolvent
set. We shall see natural examples for A which satisfy that σ(A) = K or σ(A) = ∅

later on.
For a metric space (X, d), we will write B (x, r) = {y ∈ X ; d(x, y) < r} for the

open ball around x of radius r and B [x, r] = {y ∈ X ; d(x, y) � r} for the closed
ball.

Proposition 2.4.1 If λ,μ ∈ ρ(A), then the resolvent identity holds. That is

(λ − A)−1 − (μ − A)−1 = (μ − λ) (λ − A)−1 (μ − A)−1 .

Moreover, the set ρ(A) is open. More precisely, if λ ∈ ρ(A) then
B

(
λ, 1

/ ∥∥(λ − A)−1
∥∥) ⊆ ρ(A) and for μ ∈ B

(
λ, 1

/ ∥∥(λ − A)−1
∥∥)

we have

(μ − A)−1 =
∞∑

k=0

(λ − μ)k
(
(λ − A)−1

)k+1

as well as

∥∥∥(μ − A)−1
∥∥∥ �

∥∥(λ − A)−1
∥∥

1 − |λ − μ| ∥∥(λ − A)−1
∥∥ .

The mapping ρ(A) � λ 	→ (λ − A)−1 ∈ L(X) is analytic.

Proof For the first assertion, we let λ,μ ∈ ρ(A) and compute

(λ − A)−1 − (μ − A)−1 = (λ − A)−1((μ − A) − (λ − A)
)
(μ − A)−1

= (λ − A)−1(μ − λ)(μ − A)−1

= (μ − λ)(λ − A)−1(μ − A)−1.

Next, let λ ∈ ρ(A) and μ ∈ B
(
λ, 1/

∥∥(λ − A)−1
∥∥)
. Then

∥∥∥(λ − μ)(λ − A)−1
∥∥∥ < 1.

Hence, 1 − (λ − μ)(λ − A)−1 admits an inverse in L(X) satisfying

(
1 − (λ − μ)(λ − A)−1

)−1 =
∞∑

k=0

(
(λ − μ)(λ − A)−1

)k

. (2.2)

We claim that μ ∈ ρ(A). For this, we compute

μ − A = λ − A − (λ − μ) = (λ − A)
(
1 − (λ − μ)(λ − A)−1

)
.
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Since
(
1 − (λ − μ)(λ − A)−1

)
is an isomorphism in L(X), we deduce that the

right-hand side admits a continuous inverse if and only if the left-hand side does.
As λ ∈ ρ(A), we thus infer μ ∈ ρ(A). The estimate follows from (2.2). Indeed, we
have

∥∥∥(μ − A)−1
∥∥∥ �

∥∥∥(λ − A)−1
∥∥∥

∥∥∥∥∥
∞∑

k=0

(
(λ − μ)(λ − A)−1

)k

∥∥∥∥∥
�

∥∥∥(λ − A)−1
∥∥∥ ∞∑

k=0

∥∥∥(λ − μ)(λ − A)−1
∥∥∥k =

∥∥(λ − A)−1
∥∥

1 − ∥∥(λ − μ)(λ − A)−1
∥∥ .

For the final claim of the present proposition, we observe that

(μ − A)−1 =
(
1 − (λ − μ)(λ − A)−1

)−1
(λ − A)−1

=
∞∑

k=0

(λ − μ)k
(
(λ − A)−1

)k+1
,

which is an operator norm convergent power series expression for the resolvent at μ
about λ. Thus, analyticity follows. 
�
For a given measure space (�,�,μ) we shall consider multiplication operators
in L2(μ) next. For a measurable function V : � → R we will use the notation
[V � c] := V −1

[
(−∞, c]

]
for some constant c ∈ R (and similarly for other

relational symbols).

Remark 2.4.2 Before we turn to more general multiplication operators, we like
to reason our notation for them by illustrating the example case of multiplication
operators in L2(R). A multiplication operator that immediately comes to mind is the
so-called multiplication-by-the-argument operator on L2(R), which we shall denote
by m. Expressed differently, let

m : dom(m) ⊆ L2(R) → L2(R), f 	→ (x 	→ xf (x)),

where dom(m) consists of all those L2(R)-functions f such that (x 	→ xf (x)) ∈
L2(R). Being a multiplication operator, m admits what is called a ‘functional
calculus’: It is possible to define functions of m, which will turn out to be operators
themselves. Thus, if V : R → C is measurable, we can define V (m) to denote an
operator in L2(R) acting as follows

(V (m)f )(x) := V (x)f (x)

for suitable f . To apply V to m turns out to be the same as the operator
of multiplication by V . This correspondence serves to justify the notation of
multiplication operators acting on L2(μ) for some measure space (�,�,μ). We
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will re-use the notation V (m) to denote the operator of multiplication-by-V , even
in cases where there is no well-defined multiplication-by-argument-operator m in
L2(μ).

Theorem 2.4.3 Let (�,�,μ) be a measure space and V : � → K a measurable
function. Then the operator

V (m) : dom(V (m)) ⊆ L2(μ) → L2(μ)

f 	→ (
ω 	→ V (ω)f (ω)

)
,

with dom(V (m)) := {
f ∈ L2(μ) ; (

ω 	→ V (ω)f (ω)
) ∈ L2(μ)

}
satisfies the fol-

lowing properties:

(a) V (m) is densely defined and closed.
(b) (V (m))∗ = V ∗(m) where V ∗(ω) = V (ω)∗ for all ω ∈ � (here V (ω)∗ denotes

the complex conjugate of V (ω)).
(c) If V is μ-almost everywhere bounded, then V (m) is continuous. Moreover, we

have ‖V (m)‖L(L2(μ)) � ‖V ‖L∞(μ).

(d) If V �= 0 μ-a.e. then V (m) is injective and V (m)−1 = 1
V

(m), where

1

V
(ω) :=

{
1

V (ω)
, V (ω) �= 0,

0, V (ω) = 0,

for all ω ∈ �.

Proof For the whole proof we let �n := [|V | � n] and put 1n := 1�n .

(a) We first show that V (m) is densely defined. Let f ∈ L2(μ). Then, we have
for all n ∈ N that 1nf ∈ dom(V (m)). From � = ⋃

n �n and �n ⊆ �n+1 it
follows that 1nf → f in L2(μ) as n → ∞.
Next, we confirm that V (m) is closed. Let (fk)k in dom(V (m)) convergent in
L2(μ) with (V (m)fk)k be convergent in L2(μ). Denote the respective limits by
f and g. It is clear that for all n ∈ N we have 1nfk → 1nf as k → ∞. Also,
we have

1ng = lim
k→∞1nV (m)fk = lim

k→∞ V (m)(1nfk) = V (m)(1nf ) = 1nVf.

Hence, g = Vf μ-almost everywhere and since g ∈ L2(μ), we have that
f ∈ dom(V (m)).

(b) It is easy to see that V ∗(m) ⊆ V (m)∗. For the other inclusion, we let u ∈
dom(V (m)∗). Then, for all f ∈ L2(μ) and n ∈ N we have 1nf ∈ dom(V (m))

and, hence,

〈f,1nV
∗u〉 = ∫

�n
f ∗V ∗u dμ = 〈V (m)(1nf ), u〉 = 〈1nf, V (m)∗u〉

= 〈f,1nV (m)∗u〉 .
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It follows that 1nV
∗u = 1nV (m)∗u for all n ∈ N. Thus, � = ⋃

n �n implies
V ∗u = V (m)∗u and therefore u ∈ dom(V ∗(m)) and V ∗(m)u = V (m)∗u.

(c) If |V | � κ μ-almost everywhere for some κ � 0, then for all f ∈ L2(μ)

we have |V (ω)f (ω)| � κ |f (ω)| for μ-almost every ω ∈ �. Squaring
and integrating this inequality yields boundedness of V (m) and the asserted
inequality.

(d) Assume that V �= 0 μ-a.e. and V (m)f = 0. Then, f (ω) = 0 for μ-a.e. ω ∈ �,
which implies f = 0 inL2(μ). Moreover, if V (m)f = g for f, g ∈ L2(μ), then
for μ-a.e. ω ∈ � we deduce that f (ω) = 1

V
(ω)g(ω), which shows 1

V
(m) ⊇

V (m)−1. If on the other hand g ∈ dom
(

1
V

(m)
)
, then a similar computation

reveals that 1
V

(m)g ∈ dom(V (m)) and V (m) 1
V

(m)g = g. 
�
The spectrum of V (m) from the latter example can be computed once we consider a
less general class of measure spaces. We provide a characterisation of these measure
spaces first.

Proposition 2.4.4 Let (�,�,μ) be a measure space. Then the following state-
ments are equivalent:

(i) (�,�,μ) is semi-finite, that is, for every A ∈ � with μ(A) = ∞, there exists
B ∈ � with 0 < μ(B) < ∞ such that B ⊆ A.

(ii) For all measurable V : � → K with V (m) ∈ L(L2(μ)), we have V ∈ L∞(μ)

and ‖V ‖L∞(μ) � ‖V (m)‖L(L2(μ)).

Proof (i)⇒(ii): Let ε > 0 and Aε := [|V | � ‖V (m)‖L(L2(μ)) + ε]. Assume that
μ(Aε) > 0. Since (�,�,μ) is semi-finite we find Bε ⊆ Aε such that 0 < μ(Bε) <

∞. Define f := μ(Bε)
−1/21Bε ∈ L2(μ) with ‖f ‖L2(μ) = 1. Consequently, we

obtain

‖V (m)‖L(L2(μ)) � ‖V (m)f ‖L2(μ) � ‖V (m)‖L(L2(μ)) + ε,

which yields a contradiction, and hence (ii).
(ii)⇒(i): Assume that (�,�,μ) is not semi-finite. Then we find A ∈ � with
μ(A) = ∞ such that for each B ⊆ A measurable, we have μ(B) ∈ {0,∞}. Then
V := 1A is bounded and measurable with ‖V ‖L∞(μ) = 1. However, V (m) = 0.
Indeed, if f ∈ L2(μ) then [f �= 0] = ⋃

n∈N[|f |2 � n−1]. Thus,

[V (m)f �= 0] = [f �= 0] ∩ A =
⋃
n∈N

[|f |2 � n−1] ∩ A.

Since μ([|f |2 � n−1]) < ∞ as f ∈ L2(μ), we infer μ([|f |2 � n−1] ∩ A) = 0
by the property assumed for A. Thus, μ([V (m)f �= 0]) = 0 implying V (m) = 0.
Hence, ‖V (m)‖L(L2(μ)) = 0 < 1 = ‖V ‖L∞(μ). 
�
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Remark 2.4.5 Any σ -finite measure space is semi-finite. Indeed, let (�,�,μ) be
σ -finite and A ∈ � with μ(A) = ∞. We find a sequence (Gn)n of pairwise disjoint,
measurable sets with finite measure satisfying

⋃
n Gn = �. Hence, μ(Gn ∩ A) �

μ(Gn) < ∞. If μ(Gn ∩ A) = 0 for all n, then μ(A) = 0 by the σ -additivity of μ.
Thus, as μ(A) �= 0, we find n such that 0 < μ(Gn ∩ A) < ∞ and (�,�,μ) is
semi-finite.

A straightforward consequence of Theorem 2.4.3 (c) and Proposition 2.4.4 is the
following.

Proposition 2.4.6 Let (�,�,μ) be a semi-finite measure space, V : � → K

measurable and bounded. Then ‖V (m)‖L(L2(μ)) = ‖V ‖L∞(μ).

Theorem 2.4.7 Let (�,�,μ) be a semi-finite measure space and let V : � → K

be measurable. Then

σ (V (m)) = ess-ranV := {λ ∈ K ; ∀ε > 0 : μ ([|λ − V | < ε]) > 0} .

Proof Let λ ∈ ess-ranV . For all n ∈ N we find Bn ∈ � with non-zero, but finite

measure such that Bn ⊆
[
|λ − V | < 1

n

]
. We define fn :=

√
1

μ(Bn)
1Bn ∈ L2(μ).

Then ‖fn‖L2(μ) = 1 and

|V (ω)fn(ω)| � |V (ω) − λ| |fn(ω)| + |λ| |fn(ω)| �
(
1

n
+ |λ|

)
|fn(ω)|

for ω ∈ �, which shows that (fn)n is in dom(V (m)). A similar estimate, on the
other hand, shows that

‖(V (m) − λ) fn‖L2(μ) → 0 (n → ∞).

Thus, (V (m) − λ)−1 cannot be continuous as ‖fn‖L2(μ) = 1 for all n ∈ N.
Let now λ ∈ K\ess-ranV . Then there exists ε > 0 such thatN := [|λ − V | < ε]

is a μ-nullset. In particular, λ − V �= 0 μ-a.e. Hence, (λ − V (m))−1 = 1
λ−V

(m)

is a linear operator. Since,
∣∣∣ 1
λ−V

∣∣∣ � 1/ε μ-almost everywhere, we deduce that

(λ − V (m))−1 ∈ L(L2(μ)) and hence, λ ∈ ρ(V (m)). 
�
We conclude this chapter by sketching that multiplication operators as discussed in
Theorem 2.4.3, Propositions 2.4.4, 2.4.6, and Theorem 2.4.7 are the prototypical
example for normal operators. In fact it can be shown that normal operators are
unitarily equivalent to multiplication operators on some L2(μ). This fact is also
known as the ‘spectral theorem’. It is also important to note that, as we have seen
in Theorem 2.4.3, a multiplication operator in L2(μ) is self-adjoint if and only if V

assumes values in the real numbers, only.
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2.5 Comments

The material presented in this chapter is basic textbook knowledge. We shall thus
refer to the monographs [54, 139]. Note that spectral theory for self-adjoint operators
is a classical topic in functional analysis. For a glimpse on further theory of linear
relations we exemplarily refer to [7, 14, 25]. The restriction in Proposition 2.4.6
and Theorem 2.4.7 to semi-finite measure spaces is not very severe. In fact, if
(�,�,μ) was not semi-finite, it is possible to construct a semi-finite measure space
(�loc,�loc, μloc) such thatLp(μ) is isometrically isomorphic toLp(μloc), see [129,
Section 2].

Exercises

Exercise 2.1 Let A ⊆ X0 × X1 be an unbounded linear operator. Show that for
every linear operator B ⊆ X0 × X1 with B ⊇ A and dom(B) = X0, we have that
B is not closed.

Exercise 2.2 Prove Proposition 2.1.4 and Corollary 2.1.5. Hint: One might use that
bounded linear relations are always operators.

Exercise 2.3 Prove Lemma 2.2.2.

Exercise 2.4 Let A : dom(A) ⊆ H0 → H0 be a closed and densely defined linear
operator. Show that for all λ ∈ K we have

λ ∈ ρ(A) ⇐⇒ λ∗ ∈ ρ(A∗).

Exercise 2.5 Let U ⊆ H0 × H1 satisfy U−1 = U∗. Show that U ∈ L(H0,H1) and
that U is unitary, that is, U is onto and for all x ∈ H0 we have ‖Ux‖H1

= ‖x‖H0
.

Exercise 2.6 Let δ : C [0, 1] ⊆ L2(0, 1) → K, f 	→ f (0), where C [0, 1] denotes
the set of K-valued continuous functions on [0, 1]. Show that δ is not closable.
Compute δ.

Exercise 2.7 LetC ⊆ C be closed. Provide a Hilbert spaceH and a densely defined
closed linear operator A on H such that σ(A) = C.
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