
Chapter 13
Continuous Dependence
on the Coefficients I

The power of the functional analytic framework for evolutionary equations lies in
its variety. In fact, as we have outlined in earlier chapters, it is possible to formulate
many differential equations in the form

(∂tM(∂t ) + A)U = F.

In this chapter we want to use this versatility and address continuity of the above
expression (or more precisely of the solution operator) in M(∂t ). To see this more
clearly, fix F and take a sequence of material laws (Mn)n. We will address the
following question: what are the conditions or notions of convergence of (Mn)n to
some M in order that (Un)n with Un given as the solution of

(∂tMn(∂t ) + A) Un = F

converges to U , which satisfies

(∂tM(∂t ) + A)U = F ?

In the first of two chapters on this subject, we shall specialise to A = 0; that is, we
will discuss ordinary differential equations with infinite-dimensional state space. To
begin with, we address the convergence of material laws pointwise in the Fourier–
Laplace transformed domain and its relation to the convergence of material laws
evaluated at the time derivative.
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206 13 Continuous Dependence on the Coefficients I

13.1 Convergence of Material Laws

Throughout, let H be a Hilbert space. We briefly recall that a sequence (Tn)n in
L(H) converges in the strong operator topology to some T ∈ L(H) if for all x ∈ H

we have

Tnx → T x (n → ∞).

(Tn)n is said to converge in the weak operator topology to T ∈ L(H) if for all
x, y ∈ H we have

〈y, Tnx〉 → 〈y, T x〉 (n → ∞).

We denote the set of material laws on H with abscissa of boundedness less than or
equal to ν0 ∈ R by

M(H, ν0) := {M : dom(M) → L(H) ; M material law, sb (M) � ν0} .

Remark 13.1.1 Let ν0 ∈ R, ν > ν0. ThenM(H, ν0) is an algebra andM(H, ν0) �
M �→ M(∂t,ν) ∈ L

(
L2,ν(R; H)

)
is an algebra homomorphism which is one-to-one

by Theorem 8.2.1.

Definition Let ν0 ∈ R. A sequence (Mn)n∈N inM(H, ν0) is called bounded if

sup
n∈N

‖Mn‖∞,CRe>ν0
< ∞.

Theorem 13.1.2 Let ν0 ∈ R, (Mn)n in M(H, ν0) be bounded. Assume that for
all z ∈ CRe>ν0 the sequence (Mn(z))n converges in the weak operator topology
of L(H) with limit M(z) and let ν > ν0. Then M ∈ M(H, ν0) and Mn(∂t,ν) →
M(∂t,ν) as n → ∞ in the weak operator topology of L

(
L2,ν(R,H)

)
.

If, in addition, (Mn(z))n converges in the strong operator topology of L(H) for
all z ∈ CRe>ν0 , then, as n → ∞, Mn(∂t,ν) → M(∂t,ν) in the strong operator
topology of L

(
L2,ν(R,H)

)
.

Proof Let z0 ∈ CRe>ν0 , r ∈ (0,Re z0 − ν0). For x, y ∈ H , by Cauchy’s integral
formula, we deduce

〈y,Mn(z0)x〉 = 1

2π i

∫

∂B(z0,r)

〈y,Mn(z)x〉H
z − z0

dz (n ∈ N).

As (Mn)n is bounded, Lebesgue’s dominated convergence theorem yields

〈y,M(z0)x〉 = 1

2π i

∫

∂B(z0,r)

〈y,M(z)x〉H
z − z0

dz.



13.1 Convergence of Material Laws 207

Since

|〈y,M(z)x〉|H � ‖x‖H ‖y‖H sup
n∈N

‖Mn‖∞,CRe>ν0
(z ∈ CRe>ν0), (13.1)

〈y,M(·)x〉H is holomorphic in a neighbourhood of z0. By Exercise 5.3 we obtain
that M : CRe>ν0 → L(H) is holomorphic. In fact, the estimate (13.1) even implies
that M ∈ M(H, ν0).

If z ∈ CRe>ν0 and (Mn(z))n even converges in the strong operator topology, then
the limit is clearly M(z).

The convergence statements for (Mn(∂t,ν))n (in the weak and strong operator
topology) are then implied by Fourier–Laplace transformation. 
�
Remark 13.1.3 In Theorem 13.1.2, it suffices to assume that (Mn(z))n converges
only for z belonging to a countable subset of CRe>ν0 with an accumulation point in
CRe>ν0 .

The next statement is essential for the convergence statement for “ordinary”
evolutionary equations.

Proposition 13.1.4 Let (Tn)n be a sequence in L(H) converging in the strong
operator topology to some T ∈ L(H) with 0 ∈ ⋂

n∈N ρ(Tn), supn∈N
∥
∥T −1

n

∥
∥ < ∞

and ran(T ) ⊆ H dense. Then T is continuously invertible and (T −1
n )n converges to

T −1 in the strong operator topology.

Proof We set K := supn∈N
∥
∥T −1

n

∥
∥. We show that T is continuously invertible first.

For this, let x ∈ H . Then

‖x‖ =
∥∥
∥T −1

n Tnx

∥∥
∥ � K ‖Tnx‖ → K ‖T x‖ (n → ∞).

Hence, T is one-to-one and it follows that ran(T ) ⊆ H is closed. Hence, 0 ∈ ρ(T ).
For x ∈ H we conclude

∥
∥
∥T −1

n x − T −1x

∥
∥
∥ =

∥
∥
∥T −1

n (T − Tn)T
−1x

∥
∥
∥ � K

∥
∥
∥(T − Tn)T

−1x

∥
∥
∥ → 0

as (n → ∞). 
�
We are now in the position to obtain the first result on continuous dependence.

Theorem 13.1.5 Let ν0 ∈ R, (Mn)n a bounded sequence inM(H, ν0), c > 0 such
that for all n ∈ N and z ∈ CRe>ν0 we have

Re zMn(z) � c.
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If (Mn(z))n converges in the strong operator topology for all z ∈ CRe>ν0 then for
the limit M(z) we have M ∈ M(H, ν0) with Re zM(z) � c for all z ∈ CRe>ν0 and
for ν > ν0 we have

(
∂t,νMn(∂t,ν)

)−1 → (
∂t,νM(∂t,ν)

)−1

in the strong operator topology.

Proof By Theorem 13.1.2, we observe M ∈ M(H, ν0). Let z ∈ CRe>ν0 . Then
we have Re zM(z) = limn→∞ Re zMn(z) � c and hence zM(z) is continuously
invertible. Since 0 ∈ ⋂

n∈N ρ(zMn(z)) and
∥∥(zMn(z))

−1
∥∥ � 1/c by Proposi-

tion 6.2.3(b), we deduce by Proposition 13.1.4 applied to Tn = zMn(z) that
(zMn(z))

−1 → (zM(z))−1 in the strong operator topology. By Theorem 13.1.2,
for ν > ν0 we infer

(
∂t,νMn(∂t,ν)

)−1 → (
∂t,νM(∂t,ν)

)−1 in the strong operator
topology. 
�

13.2 A Leading Example

We want to illustrate the findings of the previous section with the help of an ordinary
differential equation. Also, we shall provide an argument on the limitations of the
theory presented above. Let (�,�,μ) be a finite measure space.

Note that for V ∈ L∞(μ) with associated multiplication operator V (m) as in
Theorem 2.4.3 we have that

M : z �→ 1 + z−1V (m) ∈ L(L2(μ))

is a material law with sb (M) = 0 unless V = 0 (in case V = 0 we have sb (M) =
−∞). The corresponding evolutionary equation is given by

∂t,νu + V (m)u = f.

We want to study sequences of material laws of this form; that is, material
laws induced by sequences (Vn)n in L∞(μ). First, we provide the following
characterisation of the convergence of multiplication operators. We recall that for
a Banach space X the weak∗ topology σ(X′,X) on X′ is the coarsest topology such
that all the mappings X′ � x ′ �→ x ′(x) (x ∈ X) are continuous.

Proposition 13.2.1 Let (Vn)n in L∞(μ) and V ∈ L∞(μ). Then the following
statements hold.

(a) Vn(m) → V (m) in L(L2(μ)) if and only if Vn → V in L∞(μ).
(b) Vn(m) → V (m) in the strong operator topology of L(L2(μ)) if and only if (Vn)

is bounded in L∞(μ) and Vn → V in L1(μ).
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(c) Vn(m) → V (m) in the weak operator topology of L(L2(μ)) if and only if
Vn → V in the weak∗ topology σ

(
L∞(μ), L1(μ)

)
.

Proof

(a) This is a direct consequence of Proposition 2.4.6.
(b) Assume Vn → V inL1(μ) and that (Vn)n is bounded inL∞(μ). Then (Vn−V )n

is also bounded in L∞(μ). For f ∈ L∞(μ) ⊆ L2(μ) we obtain

‖Vn(m)f − V (m)f ‖2L2(μ) =
∫

�

|Vn − V |2 |f |2 dμ

� sup
n∈N

‖Vn − V ‖L∞(μ) ‖f ‖2L∞(μ)

∫

�

|Vn − V | dμ → 0.

Since L∞(μ) is dense in L2(μ) and (Vn(m) − V (m))n is bounded by Propo-
sition 2.4.6, we obtain Vn(m) → V (m) in the strong operator topology of
L(L2(μ)).

Now, let Vn(m) → V (m) in the strong operator topology of L(L2(μ)). Then
(Vn(m))n is bounded in L(L2(μ)) by the uniform boundedness principle. Now
Proposition 2.4.6 yields boundedness of (Vn)n inL∞(μ). Moreover, since 1� ∈
L2(μ), we deduce Vn = Vn(m)1� → V (m)1� = V in L2(μ). Since L2(μ)

embeds continuously into L1(μ) we obtain Vn → V in L1(μ).
(c) The assertion follows easily upon realising that φ ∈ L1(μ) if and only if there

exists ψ1, ψ2 ∈ L2(μ) such that φ = ψ1ψ2. 
�
With the latter result at hand together with the results in the previous section, we
easily deduce the next theorem on continuous dependence on the coefficients.

Theorem 13.2.2 Let (Vn)n in L∞(μ) be bounded, V ∈ L∞(μ), and Vn → V in
L1(μ). Then there exists ν > 0 such that

(
∂t,ν + Vn(m)

)−1 → (
∂t,ν + V (m)

)−1

in the strong operator topology of L
(
L2,ν(R; L2(μ))

)
.

Note that the convergence statement can be improved, see Exercise 13.3.

Proof By Proposition 13.2.1(b) we obtain Vn(m) → V (m) in the strong operator
topology of L(L2(μ)). Note that for ν � 1 + supn∈N ‖Vn‖L∞(μ) we have

Re(z + Vn(m)) � 1 (z ∈ CRe>ν, n ∈ N).

Now Theorem 13.1.5 applied to Mn(z) = 1 + z−1Vn(m) yields the assertion. 
�
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Remark 13.2.3 Theorem 13.2.2 can be generalized in the following way. Let (Bn)n
in L(H), B ∈ L(H), Bn → B in the strong operator topology. Then there exists
ν > 0 such that

(
∂t,ν + Bn

)−1 → (
∂t,ν + B

)−1

in the strong operator topology of L
(
L2,ν(R; L2(μ))

)
.

In Theorem13.2.2 we assumed strong convergenceof the sequence of multiplication
operators (Vn(m))n. A natural question to ask is whether the stated result can be
improved to (Vn)n converging in the weak∗ topology σ

(
L∞(μ), L1(μ)

)
only. The

answer is neither ‘yes’ nor ‘no’, but rather ‘not quite’, as we will show in the
following. We start with a result on weak∗ limits of scaled periodic functions,
which will serve as the prototypical example for a sequence converging in the weak∗
topology of L∞.

Theorem 13.2.4 Let f ∈ L∞(Rd) be [0, 1)d -periodic; that is,

f (· + k) = f (k ∈ Z
d ).

Then

f (n·) →
∫

[0,1)d
f (x) dx1Rd

in the weak∗ topology σ
(
L∞(Rd), L1(R

d )
)
as n → ∞.

Proof Without loss of generality, we may assume
∫
[0,1)d f (x) dx = 0. By the

density of simple functions in L1(R
d ) and the boundedness of (f (n·))n in L∞(Rd),

it suffices to show
∫

Q

f (nx) dx → 0 (n → ∞)

for Q = [a, b] := [a1, b1] × . . . × [ad, bd ] where a = (a1, . . . , ad), b =
(b1, . . . , bd) ∈ R

d . By translation and the periodicity of f we may assume a = 0.
Thus, it suffices to show

∫

[0,b]
f (nx) dx → 0 (n → ∞)
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for all b ∈ (0,∞)d . So, let b = (b1, . . . , bd) ∈ (0,∞)d . Let n ∈ N. Then we find
z ∈ N

d
0 and ζ ∈ [0, 1)d such that nb = z + ζ . We compute

∫

[0,b]
f (nx) dx

= 1

nd

∫

[0,nb]
f (x) dx

= 1

nd

∫

[0,z1]×[0,nb2]×...×[0,nbd ]
f (x) dx + 1

nd

∫

(z1,z1+ζ1]×[0,nb2]×...×[0,nbd ]
f (x) dx.

We now estimate
∣
∣
∣∣
1

nd

∫

(z1,z1+ζ1]×[0,nb2]×...×[0,nbd ]
f (x) dx

∣
∣
∣∣ �

1

nd

∫

(z1,z1+ζ1]×[0,nb2]×...×[0,nbd ]
|f (x)| dx

� 1

nd

∫

(0,1]×[0,nb2]×...×[0,nbd ]
dx ‖f ‖L∞(μ)

= 1

n
b2 · . . . · bd ‖f ‖L∞(μ) .

Continuing in this manner and using zj � nbj for all j ∈ {1, . . . , d}, we obtain
∣∣
∣
∣

∫

[0,b]
f (nx) dx

∣∣
∣
∣ �

1

nd

∣∣
∣
∣

∫

[0,z]
f (x) dx

∣∣
∣
∣ + 1

n

d∑

j=1

b1 · . . . · bd

bj

‖f ‖L∞(μ) .

Since f is [0, 1)d -periodic and z ∈ N
d
0 we observe

∫

[0,z]
f (x) dx =

d∏

j=1

zj

∫

[0,1)d
f (x) dx = 0.

Thus,

∣
∣
∣∣

∫

[0,b]
f (nx) dx

∣
∣
∣∣ �

1

n

d∑

j=1

b1 · . . . · bd

bj

‖f ‖L∞(μ) ,

which tends to 0 as n → ∞. 
�
Remark 13.2.5 Note that Theorem 13.2.4 also yields

f (n·) →
∫

[0,1)d
f (x) dx1�
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in the weak∗ topology σ(L∞(�),L1(�)) for all measurable subsets � ⊆ R
d with

non-zero Lebesgue measure.

We now present an example which shows that weak∗ convergence of (Vn)n does not
yield the result of Theorem 13.2.2.

Example 13.2.6 Let (�,�,μ) = ((0, 1) ,B((0, 1)), λ|(0,1)). For n ∈ N let Vn be
given by Vn(x) := sin(2πnx) for x ∈ (0, 1). Then, by Theorem 13.2.4, we obtain
Vn → 0 in σ

(
L∞((0, 1)), L1((0, 1))

)
as n → ∞. Let ν > 1. Then

(
∂t,ν + Vn(m)

)

is continuously invertible as an operator in L2,ν
(
R; L2((0, 1))

)
. Let f̃ ∈ C([0, 1])

and denote f : t �→ 1[0,∞)(t)f̃ . Then f ∈ L2,ν
(
R; L2((0, 1))

)
. The solution un ∈

L2,ν
(
R; L2((0, 1))

)
of

(
∂t,ν + Vn(m)

)
un = f

is given by the variations of constants formula; that is,

un(t, x) = 1[0,∞)(t)

∫ t

0
exp

( − (t − s) sin(2πnx)
)
dsf̃ (x) (t ∈ R, x ∈ (0, 1)).

Thus, if a variant of Theorem 13.2.2 were true also in this case, (un)n needs to
converge (in some sense) to the solution u of

∂t,νu = f,

which is given by

u(t, x) = 1[0,∞)(t)tf̃ (x) (t ∈ R, x ∈ (0, 1)).

However, by Theorem 13.2.4, for x ∈ (0, 1) we deduce

∫ t

0
exp

( − (t − s) sin(2πnx)
)
ds →

∫ t

0
J (−(t − s)) ds (n → ∞)

in σ
(
L∞((0, 1)), L1((0, 1))

)
for each t � 0, where

J (s) :=
∫ 1

0
exp

(
s sin(2πx)

)
dx (s ∈ R)
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denotes the 0-th order modified Bessel function of the first kind, cf. [1, p. 9.6.19].
Moreover, for ϕ ∈ C∞

c (R), A ∈ B((0, 1)) and using dominated convergence we
obtain

〈un, ϕ1A〉L2,ν (R;L2((0,1)))

=
∫ ∞

0

∫ 1

0

∫ t

0
exp

( − (t − s) sin(2πnx)
)
dsf̃ (x)∗1A(x) dxϕ(t)e−2νt dt

→
∫ ∞

0

∫ 1

0

∫ t

0
J (−(t − s)) dsf̃ (x)∗1A(x) dxϕ(t)e−2νt dt

= 〈̃u, ϕ1A〉L2,ν(R;L2((0,1)))

with

ũ(t, x) := 1[0,∞)(t)

∫ t

0
J (−(t − s)) dsf̃ (x) (t ∈ R, x ∈ (0, 1)).

Since (un)n is bounded in L2,ν
(
R; L2((0, 1))

)
and, by Lemma 3.1.9, the set{

ϕ1A ; A ∈ B((0, 1)), ϕ ∈ C∞
c (R)

}
is total in L2,ν

(
R; L2((0, 1))

)
, we infer

un → ũ weakly in L2,ν
(
R; L2((0, 1))

)
as n → ∞. In particular, ũ �= u.

Furthermore, ũ is not of the form

∫ t

0
exp

( − (t − s)Ṽ (x)
)
dsf̃ (x)

for some Ṽ ∈ L∞((0, 1)) and hence, we cannot hope for ũ to satisfy an equation of
the type

(
∂t,ν + Ṽ (m)

)
ũ = f.

As we shall see next, in the framework of evolutionary equations it is possible to
derive an equation involving suitable limits of (Vn)n and f as a right-hand side.

13.3 Convergence in the Weak Operator Topology

In this section, we consider a particular class of material laws and characterise
convergence of the solution operators of the corresponding evolutionary equations
in the weak operator topology. The main theorem that will serve to compute the
limit equation satisfied by ũ in Example 13.2.6 reads as follows.
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Theorem 13.3.1 LetH be a Hilbert space, (Bn)n a bounded sequence in L(H) and
ν > supn∈N ‖Bn‖. Then

(
(∂t,ν + Bn)

−1
)
n
converges in the weak operator topology

of L(L2,ν(R; H)) if and only if for all k ∈ N the sequence (Bk
n)n converges in the

weak operator topology of L(H). In either case, we have

(∂t,ν + Bn)
−1 →

∞∑

k=0

( − ∂−1
t,ν

)k
Ck∂

−1
t,ν

in the weak operator topology of L(L2,ν(R; H)), where Ck ∈ L(H) denotes the
weak limit of (Bk

n)n for k ∈ N and C0 := 1H .

Remark 13.3.2 In the situation of Theorem 13.3.1, let Bk
n → Ck in the weak

operator topology for all k ∈ N. Let L := supn∈N ‖Bn‖, ν > 2L, and f ∈
L2,ν(R; H). By Theorem 13.3.1, if (∂t,ν + Bn)un = f for all n ∈ N, then
(un)n converges weakly in L2,ν(R; H) to some element ũ ∈ L2,ν(R; H). In
order to determine the differential equation satisfied by ũ, we make the following
observations: by weak convergence,

‖Ck‖ � lim inf
n→∞

∥
∥
∥Bk

n

∥
∥
∥ � Lk.

Hence, since
∥
∥
∥∂−1

t,ν

∥
∥
∥

L2,ν
� 1

ν
(see Sect. 3.2) we infer that

∞∑

k=1

( − ∂−1
t,ν

)k
Ck

converges in L(L2,ν(R; H)) and

∥
∥
∥
∥∥

∞∑

k=1

( − ∂−1
t,ν

)k
Ck

∥
∥
∥
∥∥
�

∞∑

k=1

∥
∥
∥∂−1

t,ν

∥
∥
∥

k ‖Ck‖ <

∞∑

k=1

1

2k
= 1.

Hence, since C0 = 1H we deduce that
∑∞

k=0

( − ∂−1
t,ν

)k
Ck is boundedly invertible

by the Neumann series. Thus, we obtain

f = ∂t,ν

( ∞∑

k=0

( − ∂−1
t,ν

)k
Ck

)−1

ũ = ∂t,ν

(

1H +
∞∑

k=1

( − ∂−1
t,ν

)k
Ck

)−1

ũ

= ∂t,ν

∞∑

�=0

(

−
∞∑

k=1

( − ∂−1
t,ν

)k
Ck

)�

ũ = ∂t,ν ũ + ∂t,ν

∞∑

�=1

(

−
∞∑

k=1

( − ∂−1
t,ν

)k
Ck

)�

ũ.

Before we prove Theorem 13.3.1 we revisit Example 13.2.6.
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Example 13.3.3 (Example 13.2.6 Continued) By Theorem 13.3.1, we need to
compute the limit of (sink(2πn·))n in the weak∗ topology of L∞((0, 1)) for all
k ∈ N. By Theorem 13.2.4, we obtain for all k ∈ N

lim
n→∞ sink(2πn·) =

∫ 1

0
sink(2πξ) dξ1(0,1)

=
⎧
⎨

⎩

(2m)!
(m!2m)2

1(0,1), k = 2m for some m ∈ N,

0, k odd,

in σ
(
L∞((0, 1)), L1((0, 1))

)
. Hence, un → ũ weakly, where ũ satisfies

∂t,ν ũ + ∂t,ν

∞∑

�=1

(

−
∞∑

m=1

∂−2m
t,ν

(2m)!
(m!2m)2

)�

ũ = f

for ν > 2 by Remark 13.3.2.

Proof of Theorem 13.3.1 Before we prove the equivalence, we make some obser-
vations. Since ν > supn∈N ‖Bn‖ =: L, by a Neumann series argument we deduce
that

(
∂t,ν + Bn

)−1 =
∞∑

k=0

( − ∂−1
t,ν Bn

)k
∂−1
t,ν =

∞∑

k=0

( − ∂−1
t,ν

)k
Bk

n∂−1
t,ν .

The series
∑∞

k=0

( − ∂−1
t,ν

)k
Bk

n∂−1
t,ν is absolutely convergent in L(L2,ν(R; H)). Also

note that for Mn : CRe>L � z �→ ∑∞
k=0(− 1

z
)kBk

n
1
z
we have Mn ∈ M(H, ν).

Assume now that (Bk
n)n converges in the weak operator topology to some Ck for

all k ∈ N. A little computation reveals that as n → ∞,

Mn(z) →
∞∑

k=0

(
−1

z

)k

Ck
1

z
=: M(z) (z ∈ CRe>L)

in the weak operator topology, where the series on the right-hand side converges in
L(H) since

‖Ck‖ � lim inf
n→∞

∥∥
∥Bk

n

∥∥
∥ � Lk (k ∈ N).

Moreover, since ν > L, the sequence (Mn)n is bounded in M(H, ν) and thus,
M ∈ M(H, ν) and

Mn(∂t,ν) → M(∂t,ν)

in the weak operator topology by Theorem 13.1.2.
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Now, we assume that
(
(∂t,ν + Bn)

−1
)
n
converges in the weak operator topology.

Then (Mn(∂t,ν))n converges in the weak operator topology. Let k ∈ N. We need
to show that for all φ,ψ ∈ H the sequence (

〈
φ,Bk

nψ
〉
H

)n is convergent to some
number ck,φ,ψ as n → ∞. The Riesz representation theorem then yields the
existence of Ck ∈ L(H) with 〈φ,Ckψ〉 = ck,φ,ψ . So, let φ,ψ ∈ H . Moreover,
we consider the functions mn and hn given by

mn(z) :=
∞∑

k=0

(−z)kz
〈
φ,Bk

nψ
〉

H
(z ∈ B(0, 1/L), n ∈ N)

and

hn(z) := 〈φ,Mn(z)ψ〉H =
∞∑

k=0

1

z

(
−1

z

)k 〈
φ,Bk

nψ
〉

H
(z ∈ CRe>L, n ∈ N).

Clearly, mn and hn are holomorphic on their respective domains for each n ∈ N and
the sequences (mn)n and (hn)n are uniformly bounded on compact subsets (in other
words they form normal families). Moreover,

mn(z) = hn

(1
z

) (
z ∈ B

(
1/(2L), 1/(2L)

)
, n ∈ N

)
.

We aim to show that the coefficients of the power series of mn converge as n tends
to infinity. The proof will be done in two steps. In step 1, we will prove that the
sequence (hn)n converges to a holomorphic function h : CRe>L → C uniformly
on compact sets. Then, in the second step, we will use this to deduce that (mn)n
also converges uniformly on compact sets and prove the assertion with the help of
Cauchy’s integral formula.

Step 1: By Proposition 5.3.2, (Mn(im + ν))n converges in the weak operator
topology of L(L2(R; H)). For f, g ∈ L2(R) we thus obtain that

( 〈f, hn(im + ν)g〉L2(R)

)
n

= ( 〈f φ,Mn(im + ν)gψ〉L2(R;H)

)
n

is convergent. Thus, using L2(R) · L2(R) = L1(R), we obtain that

� : L1(R) � u �→ lim
n→∞

(∫

R

hn(it + ν)u(t) dt

)
∈ C

defines a linear functional, which is continuous, since

sup
n∈N

sup
t∈R

‖Mn(it + ν)‖L(H) = sup
n∈N

‖Mn(im + ν)‖L(L2(R;H)) < ∞
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by boundedness of (Bn)n. Hence, since L1(R)′ = L∞(R), we find a unique
h̃ ∈ L∞(R) with

lim
n→∞

∫

R

hn(it + ν)u(t) dt =
∫

R

h̃(t)u(t) dt (u ∈ L1(R)).

We now show that every subsequence (hnk )k of (hn)n has a subsequence (hnkl
)l

which converges locally uniformly to a holomorphic function h : CRe>L → C

such that h(i · +ν) = h̃ a.e., and that this implies that the limit h does not
depend on the subsequences. Then we conclude that (hn)n itself converges
locally uniformly to h.
So, let (hnk )k be a subsequence of (hn). By Montel’s theorem (see [104, Theorem
6.2.2]), we find a subsequence (hnkl

)l of (hnk )k such that hnkl
→ h as l →

∞ uniformly on compact subsets of CRe>L for some holomorphic function
h : CRe>L → C. In particular, we obtain

lim
l→∞

∫

R

hnkl
(it + ν)ϕ(t) dt =

∫

R

h(it + ν)ϕ(t) dt (ϕ ∈ Cc(R))

by dominated convergence and hence, h(it + ν) = h̃(t) for almost every t ∈ R.
This shows that the limit h is independent of choice of the subsequences (hnk )k
and (hnkl

)l . Indeed, if ĥ : CRe>L → C is the limit of another subsubsequence of

(hn)n as above, then ĥ(i·+ν) = h̃ = h(i·+ν) a.e. Since ĥ and h are holomorphic,
the identity theorem yields ĥ = h.
Now, assume for a contradiction that (hn)n does not converge locally uniformly
to h. Then we find a subsequence (hnk )k of (hn)n, a compact set K ⊆ CRe>L

and ε > 0 such that

∥
∥hnk − h

∥
∥∞,K

� ε (k ∈ N). (13.2)

However, the subsequence (hnk )k has a subsequence (hnkl
)l which converges

locally uniformly to h, contradicting (13.2). Thus, (hn)n itself converges locally
uniformly to h, and, in particular, hn → h pointwise on CRe>L.

Step 2: By what we have shown in Step 1, the sequence (mn)n∈N converges
pointwise on B

(
1/(2L), 1/(2L)

)
. Since (mn)n is also uniformly bounded on

compact subsets of B(0, 1/L), we derive that (mn)n converges uniformly on
compact subsets of B(0, 1/L) by Vitali’s theorem (see [104, Theorem 6.2.8]).
Choosing 0 < r < 1/L, we thus obtain by Cauchy’s integral formula

〈
φ,Bk

nψ
〉

H
= (−1)k

1

2π i

∫

∂B(0,r)

mn(z)

zk+2
dz.

Thus (Bk
n)n converges in the weak operator topology as n → ∞. 
�
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13.4 Comments

The problems discussed here are contained in [133, 138] for both the weak and
the strong operator topology. The case of differential-algebraic equations has been
invoked as well.

The appearance of memory effects; that is, the occurrence of higher order integral
operators due to a weak convergence of the coefficients has been first observed
by Tartar and can, for instance, be found in [113]. The limit equation, however,
is described by a convolution term rather than a power series of integral operators. It
is, however, possible to reformulate these resulting equations into one another, see
[135].

The last characterisation of weak convergence in Theorem 13.3.1 was formulated
for the first time in [89].

Exercises

Exercise 13.1 Let (Vn)n in L∞(Rd ) and V ∈ L∞(Rd). Characterise convergence
of Vn(m) → V (m) in the strong operator topology of L(L2(R

d )) in terms of
convergence of (Vn)n similar to as was done in Proposition 13.2.1.

Exercise 13.2 Show that there exists an unbounded sequence (Vn)n in L∞((0, 1))
and V ∈ L∞((0, 1)) with Vn → V in L1((0, 1)).

Exercise 13.3 Let (�,�,μ) be a finite measure space, (Vn)n a bounded sequence
in L∞(μ) and assume that Vn → V in L1(μ) for some V ∈ L∞(μ). Show that
there exists ν > 0 such that

(
∂t,ν + Vn(m)

)−1 → (
∂t,ν + V (m)

)−1

in the strong operator topology of L
(
L2,ν(R; L2(μ)),H 1

ν (R; L2(μ))
)
.

Exercise 13.4 Let D = ⋃
n∈Z [n + 1/2, n + 1], Vn := 1D(n·). For suitable ν > 0

compute the limit of

(
(∂t,ν + Vn(m))−1)

n

in the weak operator topology of L2,ν
(
R; L2((0, 1))

)
.

Exercise 13.5 Let H be a Hilbert space, c > 0 and c � Bn = B∗
n ∈ L(H) for all

n ∈ N. Characterise, in terms of convergence of (Bn)n in a suitable sense, that

(
(∂t,νBn)

−1)
n
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converges in the weak operator topology. In the case of convergence, find its limit
and a sufficient condition for which there exists a B ∈ L(H) such that

(∂t,νBn)
−1 → (∂t,νB)−1

in the weak operator topology.

Exercise 13.6 Let H be a Hilbert space. Show that BL(H) := {B ∈ L(H) ;
‖B‖ � 1} is a compact subset under the weak operator topology. If, in addition, H
is separable, show that BL(H) is also metrisable under the weak operator topology.

Exercise 13.7 Let H be a separable Hilbert space, (Bn)n in L(H) bounded. Show
that there exists a subsequence (Bnk )k of (Bn)n, a material law M : dom(M) →
L(H) and ν > 0 such that given f ∈ L2,ν(R; H) and (uk)k in L2,ν(R; H) with

∂t,νuk + Bnkuk = f (k ∈ N),

we deduce that (uk)k converges weakly to some u ∈ L2,ν(R; H) with the property
that

∂t,νM(∂t,ν)u = f.
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