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Abstract
Abstract: Magnetic Particle Imaging (MPI) is a tracer based medical imaging modality with great potential due to
its high sensitivity, high spatial and temporal resolution, and ability to quantify the tracer concentration. Image
reconstruction in MPI is an ill-posed problem that can be addressed by regularization methods that each lead to a
bias. Reconstruction bias in MPI is most apparent in a mismatch between true and reconstructed tracer distribution.
This is expressed globally in the spatial support of the distribution and locally in its intensity values. In this work,
MPI reconstruction bias and its impact are investigated and a two-step debiasing method with significant bias
reduction capabilities is introduced.

I Introduction
MPI is a quantitative medical imaging method which
is based on the non-linear magnetization response of
magnetic nanoparticles to static and dynamic magnetic
fields [1]. Image reconstruction in MPI can be formu-
lated as an ill-posed inverse problem, which requires
regularization methods to be solved [2]. Tikhonov is the
most commonly used regularization functional in MPI.
Other typical regularization functional choices in imag-
ing applications are L 1 and total variation (TV) [3]. The
former is usually used to promote sparsity and the latter
is applied to preserve edges. However, the use of regular-
ization introduces bias in the reconstructed signals and
images and has been addressed for some medical imag-
ing techniques, such as, PET/CT [4]. This work aims to
investigate bias in MPI and introduce a method to reduce
it. Therefore, we adopt a two-step debiasing method [5].

II Material and methods

The first step of the two-step debiasing method proposes
to obtain the support of the true solution by solving the
standard variational problem

cα = argmin
c

1

2
||S c −u ||22+αJ (c ) , (1)

with a convex regularization functional J and a regular-
ization parameter α> 0. While the second step aims to
reduce the bias by minimizing the data fidelity term over
all the c values that share the support of the first step
solution. This sharing support condition can be refor-
mulated using a vanishing Bregman distance constraint

ĉαargmin
c

1

2
||S c −u ||22 s.t D pα

J (c , cα) , (2)

where Pα ∈δ J (cα). The first-order primal dual algorithm
proposed in [6] is used to solve the two minimization
problems (1) and (2).
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Figure 1: TV reconstruction vs. Bregman debiasing.

The bias and its reduction are investigated using a
three circles phantom for TV regularization and a sparse
dots phantom for L 1 regularization in a simulation study.
The phantoms are shown in Fig. 1 and Fig. 2 for TV and
L 1 regularization, respectively.

III Results

III.I Analysis of reconstruction bias

The first row of Fig. 1 and Fig. 2 display the original phan-
toms and their Tikhonov reconstruction using 10 Kacz-
marz iterations. We notice that the converged Kaczmarz
solution of the circles phantom has a non-homogeneous
structure and suffers from an overshooting in the inten-
sities and the Kaczmarz solution of the dots phantom is
blurred and has a drop in the intensities.

The other three rows of the first column of Fig. 1 and
Fig. 2 display the TV and L 1 reconstruction results for
three different regularization parameter values, respec-
tively. Fig. 1 shows that the TV reconstruction result for
α= 5 ·10−5 successfully recovers the correct intensities
of the original phantom but fails to get a homogeneous,
edge preserving solution. For α= 0.001, we notice that
the phantom structure is better recovered but its values

Figure 2: L 1 reconstruction vs. Bregman debiasing.

are biased, i.e. we obverse an overall drop in the inten-
sities. Increasing α to 0.01 causes over-regularization
and a further reduction of the signal intensities. For α =
0.001 in Fig. 2, the L 1 reconstruction is able to recover the
sparse structure of the phantom but significantly overes-
timates the intensities. The choice of α= 0.0025 results
in a better recovery of the overall phantom and lower
deviation in the intensity values compared to the other
reconstructions shown. When α value is increased fur-
ther to 0.005, the over-regularization effect causes some
of the dots of the phantom to disappear and an underes-
timation of the intensities.

III.II Reduction of reconstruction bias
The second columns of Fig. 1 and Fig. 2 show the debi-
ased results for the circles phantom and the dots phan-
tom, respectively. Starting with Fig. 1, for α = 5 · 10−5,
the debiasing step has an overall negative impact on the
reconstruction due to the noise amplification and the
overestimation of intensities. While the debiasing step
for α= 0.001 results an optimal solution with nearly per-
fect intensities recovery and an overall improvement in
the phantoms structure.

Forα= 0.01, the debiased solution yields better inten-
sities but still shows over-regularization. From Fig. 2, the
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Figure 3: The sum of the intensities for each circle relative
to the value obtained from the original circles phantom for
different α values.

debiasing step yields the optimal solution for α= 0.0025,
a nearly perfect recovery of the intensities values and a
perfect recovery of the phantoms structure. However, for
α= 0.001 the solution intensities are overestimated and
some noise is reintroduced in the debiased result and
for α= 0.005, the solution is improved but still affected
by the over-regularization of the L 1 result. As a measure
for the bias reduction success, in Fig. 3 we divided the
sum of the intensities for each circle of the circles phan-
tom by the sum of the intensities of the large, medium,
and small circles in the original phantom which are 216,
90.3, 40.5, respectively. This implies that the closer the
intensity ratio is to 1, the less biased is the reconstruction.
For the optimal regularization parameter, α= 0.001, the
intensities are 206, 80.1, 34.0 before and 214, 89.5, 39.7
after debiasing. A similar improvement can be observed
for all α values greater than the optimal one, where the
summed intensities are closer to the ones of the phantom

after debiasing. For small α values, where the impact of
the regularization term is neglectible, the ration is close
to one. Here, debiasing leads to a significant overestima-
tion of the summed intensities.

IV Discussion and Conclusion

For small α values the debiasing step should not be used
as it increases the bias compared to the non-debiased
reconstruction. For sufficiently large α values the debi-
asing step actually reduces the bias but stays affected
by the over-regularization in the first step since it oper-
ates on the support of the non-debiased reconstruction.
Therefore, with an appropriate choice of the regulariza-
tion parameter the proposed two-step debiasing method
yields an effective reduction of bias and thus an improve-
ment in the quantifiability of the reconstruction.
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