
Applied Mathematical Modelling 64 (2018) 265–284 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

Modeling, simulation and optimization of general solar 

updraft towers 

Hannes von Allwörden 

a , Ingenuin Gasser a , ∗, Muhammad Junaid Kamboh 

b 

a Department Mathematik, Universität Hamburg, Bundesstraße 55, Hamburg 20146, Germany 
b Institute of Micro System Technology, Hamburg University of Technology, Eißendorfer Straße 42 (M), Hamburg 21073, Germany 

a r t i c l e i n f o 

Article history: 

Received 4 October 2017 

Revised 2 July 2018 

Accepted 11 July 2018 

Available online 20 July 2018 

Keywords: 

Solar updraft tower 

Sloped collector field 

Humidity 

Small Mach number 

a b s t r a c t 

A model to describe a solar chimney power plant with a generally sloped collector field 

and for the general situation of humid air is presented. This is a significant development 

of existing simple models for solar updraft towers with planar collector fields for the sit- 

uation of purely dry air. The model describing the gas dynamics in the collector and in 

the chimney includes a turbine model, friction and heat transfer losses, evaporation and 

condensation models etc. However, the relevant physics can be modeled in one space di- 

mension. It is the result of a fully compressible gas dynamic model in the small Mach 

number limit. A numerical algorithm is defined which admits very fast simulations. There- 

fore optimization procedures can easily be applied. Numerical results on optimization with 

respect to geometric and physical parameters which may be considered both in the plan- 

ning and the operational phase are presented. The results are compared qualitatively and 

– if available – quantitatively to prototype data and to simulations from the literature. 
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1. Introduction 

The global demand for electrical energy continues to grow due to increasing global population and industrialization.

On the other hand, the mineral resources e.g. oil, natural gas, and coal, on which we have traditionally relied to produce

electricity, are depleting. This is only one of the reasons that the prices of these resources are rising. In addition, nowadays,

environmental concerns like emissions and greenhouse effect, saf ety and health hazards pertaining to electricity production

are becoming more important, particularly in the highly industrialized countries. Numerous examples of disasters related to

nuclear energy have been witnessed, the most recent of them being at Fukushima, Japan 2011. Therefore, sustainable and

environment friendly methods to produce electricity are gaining more and more importance. Developed countries around

the world are devoting more and more special effort s to this challenge. 

The focus of this study is to analyze so called “solar chimney power plants with sloped collectors” which are based on

the solar thermal principle. The idea has been pioneered by Bilgen and Rheault in [1] and originated as an offspring of so

called “solar updraft towers” (SUT). For an overview on SUTs see [2–6] . 
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Fig. 1. General design of solar updraft towers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SUT consists of three components, namely collector, chimney, and a turbine. The collector section is like a roof made

up of glass or some transparent material which stands at a few meters height from the ground. A high vertical chimney

stands in the center of the collector section, or, in case of a sloped collector field, at its uphill end. A turbine is installed at

the bottom of the chimney where it meets the collector. The power plant operates on two well-known physical phenomena,

i.e. the greenhouse effect and the chimney effect. The air inside the collector is heated up due to greenhouse effect as the

solar radiation falls on the glass roof. The less dense heated air tends to rise up due to buoyancy forces and therefore a flow

of air is generated towards the chimney. This resulting air flow drives the turbine. Clearly, the output increases heightening

chimney and enlarging the collector area. See Fig. 1 for components and working principle of a solar updraft tower. 

In this paper we discuss two important issues regarding extended modeling and applications of SUTs. One is a variant

proposed in [1] to consider mountainous regions. The second issue is to generalize the model to the situation of humid air

in order to understand the possible influences of humidity on the performance. 

Let us start with the possibility of mountainous regions. This implies building a collector field along the slope of a

mountain or a hill which then also functions as chimney such that on top only a smaller vertical chimney is needed. As an

example we can imagine a triangular collector area on a hill directed versus south. See Fig. 1 (b) for the working principle

for such a solar chimney power plant. This variant has big advantages. On one side the construction costs for the (smaller)

chimney are much lower and on the other side – suppose the direction of the collector field is appropriately chosen versus

south – the angle of incidence of the radiation on the collector field (depending on the latitude) is higher and therefore a

higher output of power is obtained. In addition in many regions it is easier to find hills or mountains instead of large flat

areas (as it is needed for the classical variant of the solar updraft tower). Therefore this idea was proposed in particular for

mountainous areas at higher latitude [1] . 

Now let us come to the issue of humid air. Considering the temperature range the air experiences on its way through

the plant and its influence on the material properties, it is natural to ask how water vapor affects the operation of a SUT by

condensation and evaporation. This is done by Kröger and Blaine in [7] , where it is found that “moist air generally improves

the draft and that condensation may occur in the chimney under certain conditions”. The paper does, however, only consider

the chimney, i.e the different amounts of energy needed for heating and evaporation in the collector are not accounted for. 

Therefore the influence of humidity for the whole power plant is not yet studied and not obvious. Most models neglect

water vapour completely for the sake of simplicity. The usual argument for the restriction to dry models is the assump-

tion that typical areas of operation, e.g. deserts, would be highly arid. On the other hand, especially here the recovery of

condensated water could be a desirable side-effect, making plants more cost effective. To this end, several variations to use

SUTs for sea water desalination have been proposed, either adding closed stills to the collector ground [8,9] or attempting

to re-gain water vapour at the top of the chimney by a high-efficiency condenser [10] . 

Given its enormous area demand, agricultural use of parts of the collector is desirable. In his dissertation, Pretorius inves-

tigates the role of evapotranspiration in an elaborate model and finds the potential power production lowered significantly

compared to classic conditions [11] . 

The idea of this paper is to model, simulate and to optimize a Solar Updraft Tower with sloped collector in the general

situation of humid air. The main focus is on using a model which allows very fast simulations such that optimization (i.e.

with respect to certain parameters) can easily be done. In Section 3 the model is presented, in Section 3.5 the crucial

small Mach number asymptotics is explained, in Section 4 different numerical schemes are proposed and tested, and in

Section 5 the related optimizations with respect to certain parameters are performed. 
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We summarize the main features of the model: 

• The model is derived from the fully compressible fluid dynamic equations. 
• The small Mach number is used to simplify the model. 
• There are no assumptions on the density or the temperature profiles in the collector or the chimney. 
• Here the core is the fluid dynamic part, in [1] the attention is mainly given to the thermal transfer model. 
• It is a continuous time dependent model. With this it allows transient simulations and we obtain automatically the stable

stationary solutions (as long time behavior). 
• It is easy to include time dependencies in the data, e.g. a daily radiation profile. With this it is easy to simulate a (longer)

time period and to average over it. 
• For even faster simulations, the steady state system can be considered. For many questions the stationary solution con-

tains sufficient information. 
• We apply the model to (easily) optimize the power output. 

2. History and model evolution 

In the context of renewable and sustainable energies, over the years a multitude of proposals have been made. As with

any technology, there is never ending room for improvement and innovation in this field. However, very special considera-

tion is being given to electrical energy production from solar radiation, the reason being simply that the solar radiation is

virtually infinite over time. Moreover, there are several regions where sunlight is readily available in quantitatively accept-

able levels of power density, particularly desert areas. 

Currently there are two main approaches to produce electricity from solar radiation: The photovoltaic technology, con-

verting radiation directly into electrical current, and the solar thermal technology, converting solar energy into electrical

energy indirectly. The solar updraft tower technology considered in this paper is a solar thermal power plant. 

Historically, the concept of solar updraft towers has been around for over a century now. One of the earliest descriptions

of the solar chimney concept was presented by Spanish Colonel Isidoro Cabanyes in 1903 [12] , for more details, also see [13] .

In 1926, French Engineer Bernard Dubos proposed a solar chimney plant with its chimney resting on a mountain slope [3] .

In 1931, the German Hanns Günther illustrated such a solar power plant more concretely [14] . Some pictures of each of these

proposals can be found in [3] . Finally, the first experimental prototype of a solar updraft tower on an “industrial” scale was

constructed at Manzanares, Ciudad Real, Spain in 1982. The project was funded by German government and supervised by

Jörg Schlaich [5,15,16] . However, there have been built many other smaller prototypes in the last decades [17–19] . 

Solar updraft towers have certain merits which make them worth considering and comparable to other renewable energy

proposals at present. No sophisticated technology is involved, it is almost free of deterioration, their operation and main-

tenance costs are low and the technology permits to work even over decades. However, for a full scale commercial power

plant to have desirable power output, large land area is required for the collector field and construction of a high chimney

can lead to civil engineering problems and therefore high costs [20,21] . The associated problems can be solved to a rea-

sonable extent. Nevertheless, the technology is in direct competition with the hightech photovoltaic technology and other

solar thermal approaches. Apart from the already mentioned advantages, the solar updraft technology has the possibility to

store (again in a lowtech manner) a part of the absorbed energy over the range of up to a day. This is done by installing a

water storage system in the collector ground which absorbs energy (heat) during the day and releases it during the night

to maintain continuous (non-constant) supply of electrical energy [2] . 

There are many variants and ideas around this technology. For an overview see [22,23] . 

A somehow related idea, based on an inverted downward flow, is the so called energy tower. There the energy production

originates in the evaporation energy of the employed water (see [24,25] for details). This is important because for the energy

tower a detailed description of the humidity and the evaporation is needed. 

Apart from the ones mentioned before there are papers concerning the modeling approaches to study solar updraft tow-

ers from a range of different perspectives. Some papers concern specific (modeling) questions related to the collector [26,27] ,

the chimney [7,28–30] , the turbine [31] or the power output [32] . In the literature which considers the full power plant

there are some approaches which do significant simplifications, i.e. no losses in the energy balance [17,18,33,34] , linear den-

sity profiles [1] , stationary conditions only [35,36] etc. Other papers focus on full 3 dimensional fluid dynamic simulations

of the air flow in a Solar Updraft Tower [37,38] . These are clearly very expensive simulations and not appropriate for fast

optimization issues. Generally we can conclude that there is still a need for reasonably complex models, which adequately

describe the physical features of the system, permit fast simulations, and allow for optimization procedures. In the context

of solar chimney power plants with sloped collectors, there is almost no literature except the fundamental idea in [1] . 

3. Modeling 

In this section, we explain how the basic model introduced in [39] for a SUT with flat collector and dry air can be

extended to account for the general setting of sloped collector fields and condensation or evaporation on surfaces. In addi-

tion we explore further possible refinements and simplifications in the approach. One is to consider the collector-turbine-

chimney unit as a simple network. The other one is the use of the steady state equations for describing the quasi-stationary

situation where changes in the external data (radiation, outside temperature etc.) occur on a slow time scale. 
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In Section 3.1 we set up the 2d Euler equations for wet air in a SUT with a very general geometry. The corresponding

initial and boundary conditions are discussed in Sections 3.2 and 3.3 , respectively. By integration perpendicular to the main

air movement, we obtain a 1d model in Section 3.4 , where source and sink terms for evaporation and condensation arise

from the surface boundary conditions. This model is further simplified in Section 3.5 and the steady state equations are

considered in Section 3.6 . 

The experimental data from the Manzanares prototype [15,16] show that the temperature rise in the collector is approxi-

mately around 20 Kelvins and the flow velocities are of order 10 m/s [2] . Comparable values are obtained in [1] for the case

of power plants with sloped collector, and in [35] and [7] for SUTs with humidity. 

In light of the small velocities (compared to the speed of sound), we have to deal with a small Mach number flow and

a compressible model seems not to be suitable, an incompressible model might seem appealing. But on the other hand, the

chimney effect is based on density changes and therefore the flow cannot be treated as incompressible. The fact that the

flow is driven by buoyancy forces as a result of small density changes may point to the possibility of using the Boussinesq

approximation [40] . There are examples where the Boussinesq approximation is proved not to work well, i.e. in the case

of a simple chimney with fire as a heat source [41] . We do not generally exclude the possibility of using the Boussinesq

approximation for solar updraft towers, but here we use a more general approach. The small Mach number approach we

choose in this paper allows us to identify whether the typical features of the Boussinesq approximation – linear profiles

in pressure, density and temperature – are confirmed by simulations or not. In this sense we reduce the uncertainness

introduced by using an approximative model like the Boussinesq approximation. Similar considerations concerning small 

Mach number approximations are discussed in [30] in case of high chimneys. 

The aim of this study is to present a simple one-dimensional model to describe gas/air dynamics inside the power plant

with sloped collector field and humidity. A typical air particle enters the collector section, travels through the turbine and

leaves the system at the top of chimney. The particle path can be considered as one spatial dimension in modeling analysis.

The cross sectional area perpendicular to the particle path is rectangular in the collector opening which becomes, assuming

constant roof height, linearly small and eventually becomes constant and circular in the chimney due to constant radius.

This one dimensional approach was already used successfully in [39] to model the simplest case with completely dry air

and a flat collector. There is no indication that multidimensional effects are crucial (or cannot be modeled in the one dimen-

sional approach). Moreover, a one dimensional model has many significant advantages with respect to a multidimensional

approach. The model presented in [39] considers the full power plant and is aimed to permit very fast numerical simula-

tions. This is necessary to be applied for optimising a power plant with respect to parameters or in the operational phase. 

3.1. 2d Euler equations 

We assume the SUT to be symmetric to its center axis and the flow to have no angular component. Therefore we can

denote the position of a particle within the plant in cylinder coordinates by ( ̃ r , ̃  h ) . While the chimney is assumed to have

a cylindrical shape for simplification, we have more freedom of choice in the collector, as long as all “typical” particle

trajectories remain comparable. This allows for the deviation from strictly cylindrical collectors e.g. to (not necessarily linear)

“funnel” approaches suitable for sloped collectors or for a modification of the collector roof profile in order to address the 

change of density resulting from the cross-sectional change. In this manner, we can describe a variety of possible collector

geometries. For instance, the collector length L coll is to be understood as the arc length of the typical particle path, i.e. the

collector radius in the case of a planar circular collector, or the triangle height in the case of an isosceles triangle. 

Collector and chimney are coupled by an inner “box” in which the air is guided from horizontal to vertical motion and

energy is extracted by one or more turbines (see Fig. 2 (a) for general model geometry nomenclature). 

The air in collector and chimney can be described by the well-known 2d Euler equations on a cylinder for a mixture of

dry air and water vapour with molar amounts ˜ n a , ̃  n h , respectively, on the domain � = �coll ∪ �chim 

(see Fig. 2 (a)). As usual,

unscaled quantities are denoted by tildas. The Euler equations are a set of four balance equations and an additional closing

relation for the five unknowns ˜ n a , ˜ n h , velocity u , pressure ˜ p , and temperature ˜ T : 

D 

D ̃

 t 
( ̃ r ̃  n ) = 0 (1a) 

D 

D ̃

 t 
( ̃ r ̃  n h ) − ˜ ∇ 

(
D ̃

 n ̃

 r ̃  ∇ 

(
˜ n h 

˜ n 

))
= 0 (1b) 

D 

D ̃

 t 
( ̃ r ̃  ρ ˜ u ) + ̃

 r ̃  ∇ ̃

 p − g ̃ r ̃  ρ − μ
(

˜ ∇ 

(
˜ r ̃  ∇ ̃

 u 

)
+ 

1 

3 

˜ ∇ 

2 ( ̃ r ̃  u ) 

)
= 0 (1c) 

D 

D ̃

 t 

(
˜ r ̃  ρ

(
c ̃  T + 

˜ u 

2 / 2 + ̃

 h g 
))

+ 

˜ ∇ ( ̃ r ̃  p ̃  u ) − ˜ ∇ 

(
k ̃  ∇ ̃

 T 
)

= 0 (1d) 

R ̃

 T ( ̃  n a + 

˜ n h ) = 

˜ p . (1e) 
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Fig. 2. Nomenclature. 

Table 1 

Derived variables. 

Symbol Definition Meaning 

˜ n ˜ n a + ̃  n h Molar amount of wet air 

˜ ρ M a ̃ n a + M h ̃ n h Mass density 

c ( c a ̃ n a + c h ̃ n h ) / ̃ n Spec. heat capacity of wet air 

Table 2 

Operators. 

Symbol Definition 

˜ ∇ 

(
∂ / ∂ ̃ r 

∂ / ∂ ̃ h 

)
D 
D ̃ t 

∂ / ∂ ̃ t + ̃  u ̃  ∇ 

Table 3 

Fixed parameters. 

Symbol Dimension Value Meaning 

M a M 

1 N −1 0.0289 kg/mol Molar mass of dry air 

M h M 

1 N −1 0.018 kg/mol Molar mass of water 

D L 2 T −1 2 . 3 · 10 −5 m 

2 / s Diffusion coefficient water vapour - air 

g L 1 T −2 9.81 m/s 2 Gravitational acceleration 

μ M 

1 L −1 T −1 17 . 1 · 10 −6 Pa s Dynamic viscosity of dry air 

c a L 2 T −2 θ−2 718 J/(kg K) Specific heat capacity of dry air 

c h L 2 T −2 θ−1 1556 J/(kg K) Specific heat capacity of water 

k M 

1 L 1 T −3 θ−1 0.0262 W/(m K) Thermal conductivity of dry (!) air 

R M 

1 L 2 T −2 N −1 θ−1 8.314 J/(mol K) Gas constant 

 

 

 

 

The newly introduced variables, operators and parameters are explained in Tables 1 , 2 , and 3 , respectively. 

After scaling, we obtain 

D 

Dt 
( rn ) = 0 (2a)

D 

Dt 
( rn h ) − �∇ 

(
rn ∇ 

(
n h 

n 

))
= 0 (2b)

D 

Dt 
( rρu ) + 

1 

ε
r ∇p − e 2 

Fr 2 
r ρ − 1 

Re 

(
∇ ( r ∇u ) + 

1 

3 

∇ 

2 ( r u ) 

)
= 0 (2c)

D 

Dt 

(
r 

(
( c 1 n h + n a ) T + ( γ − 1 ) ερ

u 

2 

2 

+ ( γ − 1 ) 
ε

Fr 2 
ρh 

))
+ ( γ − 1 ) ∇ ( rup ) − ∇ 

(
r 

Re 

Pr 
∇T 

)
= 0 (2d)
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Table 4 

Reference values for Manzanares test plant. 

Symbol Dimension Value Interpretation 

l r L 1 320 m Collector length + chimney height 

u r L 1 T −1 10 m/s Typical gas velocity at turbine 

p r M 

1 L −1 T −2 101328 Pa Typical pressure at ground level 

T r θ1 300 K Typical temperature at ground level 

Table 5 

Dimensionless numbers. 

Symbol Definition Value Name 

� D 
l r u r 

7 . 54 · 10 −9 Diffusion coefficient 

1 
ε

(
= 

1 

γ Ma 2 

)
p r 

u 2 r ρr 
861 related to Mach number 

1 

Fr 2 
gl r 
u 2 r 

29.9 Froude number 
1 

Re 
μ

l r u r ρr 
2.09 · 10 8 Reynolds number 

(γ − 1) R 
c a 

0.29 Adiabatic exponent (dry) 
Re 
Pr 

k 
u r c a ρr l r 

7 . 27 · 10 −9 Reynolds over Prandtl number 

c 1 
c h M h 
c a M a 

1.28 quotient of specific heat capacities 

c 2 
M h 
M a 

0.62 quotient of molar masses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nT = p (2e) 

where the reference values for scaling and the definitions and values of the dimensionless numbers can be found in Tables 4

and 5 . Note that the given values refer to the Manzanares test plant and will vary for some of the examples considered later.

Of course, (2a) or (2b) could be replaced by an analogous equation for n a . 

Let us make a few comments on the modeling of condensation phenomena. We assume that surface condensa-

tion/evaporation is of particular importance because of the cooled chimney walls and the high available surface area, es-

pecially for comparably small chimney radii. Therefore general condensation mechanisms such as droplets inside the air

stream are assumed to be of lower relevance and to become important only for higher values of humidity which are not

of particular interest for SUTs. Thus potential condensation energy carried by n h can be neglected in energy conservation

(2d) and our model by design cannot show precipitation effects inside the chimney as predicted by Kröger and Blaine [7] . 

Droplet condensation in SUTs has been considered in [42] . In our model it could be incorporated by appropriate source

and sink terms and additional conservation laws. We refrain from doing so due to the mentioned arguments and in favor

of model simplicity, although we cannot completely rule out the forming of clouds in the chimney. A comparable model for

down-draft “energy towers” including evaporation from droplets instead of films has been proposed in [25] . Further ideas

for the implementation of droplets can be found in [43,44] . 

3.2. Initial conditions 

For transient simulations, we have to prescribe appropriate initial conditions in t = 0 for the unknowns n a , n h , T, u ,

and p . Note that, because of relation (2e) , only four conditions have to be specified. A natural choice are the profiles for

temperature, pressure and density given in the surrounding atmosphere. These profiles vary very much depending on the

circumstances. For consistency, we choose the adiabatic atmosphere formulas obtained by solving a stationary version of

(2a) –(2d) as shown in [39] . 

3.3. Boundary conditions 

We now impose boundary conditions for the solid surfaces, i.e. chimney walls ∂�chim.wall , collector roof ∂�coll.roof and

-ground ∂�coll.ground (see Fig. 2 (a)): 

u ⊥ := 

�
 n ( � n · �

 u ) = 

�
 u (3a) 

n h = n 

sat 
h := 

1 

T 
exp 

(
11 . 96 − 3984 

T T r 
1 K 

− 38 . 15 

)
1 bar 

p r 
(3b) 

J a := n a u ⊥ − �n 

∂ 

∂ � n 

(
n a 

n 

)
= 0 (3c) 
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Table 6 

Parameters. 

Symbol Value Meaning 

h 43900 J/mol Enthalpy of vaporization 

˜ α 10 W/(m 

2 K) Heat transfer coefficient 

˜ q 0.3 · 10 3 W/m 

2 Solar radiation energy 

Table 7 

Dimensionless numbers. 

Symbol Definition Value 

1 
Ja 

hn r 
c a ρr T r 

5.03 

α ˜ αt r 
c a ρr l r 

1 . 14 · 10 −3 

Q ˜ q t r 
c a ρr l r T r 

1 . 14 · 10 −4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂T 

∂ � n 

= 

1 

Ja 

Pr 

Re 
J h −

{
α( T ex − T ) on ∂ �chim . wall ∪ ∂ �coll . roof 

Q cos ( θ − β) on ∂�coll . ground , 
(3d)

where the new parameters and dimensionless numbers are given in Tables 6 and 7 . 

Condition (3a) represents the usual no-slip condition. If condensation or evaporation occurs, there will be at least a thin

layer of liquid water on the surfaces, saturating the air in the vicinity with water vapour. We assume that during operation,

the surfaces are drained where necessary so that the plant is not flooded and the water layer remains thin, not affecting

thermal conductivity etc. The parametrization of saturation vapour pressure by the Antoine equation in (3b) was taken from

[45] . In (3c) we express the assumption that the dry portion of the air cannot pass through walls, whereas we will have

negative J h for condensation and positive J h for evaporation. Due to this unambiguousness, we will write J instead of J h .

The Robin-type condition (3d) represents Newton’s cooling law, complemented by the term 

1 
Ja 

Pr 
Re J representing released or

absorbed condensation energy. For the collector roof and chimney wall, the heat transfer coefficient ˜ α models both heat

conduction through the material and the (wind-dependent) transfer to the ambient air. 

The solar radiation is given by Q . It enters through the collector ground, because most of the solar energy is absorbed

by the ground and transferred to the air convectively (note that the imposed initial condition does not account for this).

This allocation of the heat source turns out to be crucial for the calculation of evaporation rates. Of course, Q is a function

of time and could be enhanced – if known and available – with factors for spatial dependent shading, reflectivity, etc. For

simplicity and due to lack of available data we assume Q only to be time dependent. Since Q changes only slowly and

significantly only on a timescale of hours, for many of our short time simulations Q does not even change in time. But there

is no difficulty to include its time dependence when running simulations over many hours. 

We resign from establishing a more elaborate time-dependent heat transition model, i.e. incorporating time- and spatial

dependent submodels for Q and α, or more sophisticated setups including e.g. water bags or multiple glazing. These are

described in detail in [11] and [35] and could easily be integrated, but do not lie in the focus of this work. 

Next, we model the transition from the collector outlet to the chimney entrance. The SUT can be regarded as a system

of coupled pipes, suggesting a treatment similar to [46] . The turbine section is treated as a “black box” instead of trying to

precisely model the streamlines inside by means of balance equations. These connect the values integrated over chimney

entrance ∂�chim.in and collector exit ∂�coll.out with area A coll.out . The resulting time delay is neglected. ∫ 
∂�coll . out 

r f ( � x ) d 

�
 x = 

∫ 
∂�chim . in 

r f ( � x ) d 

�
 x ∀ f ∈ { T , n, ρ, n a , n h } (4a)

∫ 
∂�coll . out 

rρ�
 u ( � x ) d 

�
 x = S 

(
π

2 

+ θ
)

·
∫ 
∂�chim . in 

rρ�
 u ( � x ) d 

�
 x . (4b)

∫ 
∂�coll . out 

rp( � x ) d 

�
 x − A coll . out �p = 

∫ 
∂�chim . in 

rp( � x ) d 

�
 x . (4c)

(4a) states that while the properties should be preserved overall, we do not attempt to construct a point-to-point map

between collector exit and chimney entrance. In (4b) , where S denotes a rotation matrix, we describe the air being guided

from its motion parallel to the ground to vertical ascend. The pressure Eq. (4c) as well as the lack of a sink term in (4b) are

due to the fact that the turbines used in SUTs are pressure-staged [47] . Note that instead of a pressure loss factor f the

absolute pressure drop �p is used in this model. 

The SUT is coupled to its surroundings at ∂�coll.in and ∂�chim.out by the usual inflow conditions for ρ , n , and T , and

Dirichlet boundary condition for p [25,39] : 

p = p ex + �p wind (5a)
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ρ = ρex , n = n ex , T = T ex , if �
 u · �

 n > 0 . (5b) 

The term �p wind = �p wind (x, t) is introduced to account for a potentially higher or lower effective pressure due to am-

bient wind. Due to the assumed radial symmetry, this is only directly applicable to collector geometries in which the air

can only enter in one direction, such as the described triangular sloped collector field. If this is not the case, our modeling

approach allows to split the collector into sectors which could then be treated separately. 

3.4. 1d model 

In order to simplify our model, we now integrate over collector height and chimney radius. By doing this, boundary

conditions (3a) –(3d) will be transformed to source terms. In the conservation of momentum (2c) , the no-slip condition

(3a) will be replaced by the well-known friction term ξu | u |. To determine the mass flow J , follow [48] : First solve (3c) for

u ⊥ and plug it into the analogous definition of J : 

J h = −�

(
1 

1 − n h 
n 

)
n 

∂ 

∂ � n 

(
n h 

n 

)
. 

Assuming J to be constant over a thin boundary layer of thickness δ yields 

J h = 

1 

δ

δ∫ 
0 

J h d x ⊥ = −�n 

δ

δ∫ 
0 

(
1 

1 − n h 
n 

)
∂ 

∂ � n 

(
n h 

n 

)
d x ⊥ = 

�n 

δ
ln 

(
1 − n h (δ) 

n 

1 − n h (0) 
n 

)
. (6) 

An expression for the energy source term 

� := c 1 T J h −
Re 

Pr 

∂T 

∂ � n 

(7) 

in conservation law (2d) can be achieved in a similar manner: The ansatz ( �) �
 n = 0 leads to 

T = T (0) + ( T (δ) − T (0) ) 
exp 

(
c 1 

Pr 
Re 

J h x ⊥ 
)

− 1 

exp 

(
c 1 

Pr 
Re 

J h δ
)

− 1 

. 

Evaluating � at x ⊥ = 0 and x ⊥ = δ yields the symmetric expression 

� = c 1 J h 
T 0 + T δ

2 

− c 1 J h 
T δ − T 0 

2 

exp 

(
c 1 

Pr 
Re 

J h δ
)

+ 1 

exp 

(
c 1 

Pr 
Re 

J h δ
)

− 1 

. (8) 

The first term in (8) can be interpreted as energy carried by the mass flux J , whereas the second represents the heat transfer

by convection which is augmented or obstructed by J via a factor of the shape f (x ) = 

x ( exp (x )+1 ) 
exp (x ) −1 

. Straightforward analysis

shows that f has a removable singularity and nice asymptotic behavior: 

f ( x ) = f ( −x ) ; lim 

x → 0 
f ( x ) = 2 ; lim 

x → 0 
f ′ ( x ) = 0 ; lim 

x →±∞ 

f ( x ) − | x | = 0 . (9) 

Plug (3d) into (7) : 

0 = � + J h 

(
1 

Ja 
− c 1 T 0 

)
− Re 

Pr 

{
α( T ex − T 0 ) on ∂�chim . wall ∪ ∂�coll . roof 

Q cos ( θ − β) on ∂�coll . ground 
. (10) 

For the collector roof and the chimney wall, (10) is equivalent to the corresponding equations presented in [45,48] ; for

the collector ground it can be viewed as a modified Penman equation [49] . The properties of � derived in (9) facilitate an

asymptotic analysis of (10) : While | J h | → 0 implies 

� = 

Re 

Pr 

{
α( T ex − T 0 ) on ∂ �chim . wall ∪ ∂ �coll . roof 

Q cos ( θ − β) on ∂�coll . ground 
(11) 

and 

T 0 − T δ
δ

= 

{
α( T ex − T 0 ) on ∂ �chim . wall ∪ ∂ �coll . roof 

Q cos ( θ − β) on ∂�coll . ground , 
(12) 

i.e. regular heat flow as in the dry scenario, for | J h | → ∞ we get 

1 

Ja 

Pr 

Re 
J h = 

{
α( T ex − T 0 ) on ∂ �chim . wall ∪ ∂ �coll . roof 

Q cos ( θ − β) on ∂�coll . ground , 
(13) 

where all energy exchange through surfaces is used for condensation heat. 
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The derivation of J and � was based on the assumption of wet surfaces in (3b) , implying that evaporation is always

possible. To avoid unrealistically high rates, introduce a scalar function J max on the surfaces as an upper bound. J max will

usually be 0 on the walls and the roof, but can be positive for the collector ground in case water is provided constantly

by appropriate irrigation 

1 . This irrigation can be thought e.g. as coming from additional use of the collector for desalination

or agriculture. In the latter case, water consumption is a cost factor so restriction of water access appears natural. If J

exceeds J max , set J := J max , find the corresponding T 0 by solving (6) , and solve (10) or (12) for �. This procedure allows us to

determine the mass and energy source terms J w 

, �w 

from the chimney wall and the collector roof as well as J g , �g from

the ground for any given state of n a , n h , T and p in the SUT. The effect of varying J max will be studied in Section 5.6 . 

After integration, the Euler equations for collector and chimney are simplified respectively to become the non-

conservative system 

( n a ) t + ( n a u ) x = −A x 

A 

n a u 

( n h ) t + ( n h u ) x = −A x 

A 

n h u + �surf 

L 

A 

J 

ρ( u t + uu x ) + 

1 

ε
p x = −u �surf 

L 

A 

M h 

M a 
J − A x 

A 

ρu 

2 + 

ρ

Fr 2 
sin θ + �surf 

L 

A 

ξρu | u | 

p t + γ ( pu ) x = (γ − 1) up x − ε(γ − 1) 

(
u �surf ρ

L 

A 

ξu | u | − u 

2 

2 

�surf 

L 

A 

M h 

M a 
J 

)

−ε(γ − 1) 
1 

Fr 2 
�surf 

L 

A 

M h 

M a 
J − A x 

A 

c 4 up + �surf 

L 

A 

�

p = T (n a + n h ) . (14)

Note that on the transition from 2d to 1d, h and r have been replaced by the new variable x ∈ ( x coll.in , x coll.out ) ∪ ( x chim.in ,

x chim.out ). A ( x ) and L ( x ) denote the cross-sectional area and the surface length at position x , while �surf is a reminder that

the source terms (i.e. friction ξρu | u | and condensation/evaporation J ) have to be evaluated and summated over the types of

surfaces relevant at x . 

The systems on the intervals are coupled by integrated versions of (4a) –(4c) , where equality of the cross-sectional areas

A coll . out = A chim . in , which can be achieved by slightly shifting the transition between collector and turbine section, allows for

simplification: 

f (x coll . out ) = f (x chim . in ) ∀ f ∈ { T , n h , n a , u } (15a)

p(x coll . out ) − �p = p(x chim . in ) (15b)

(10) is used in order to determine T g and T w 

and the outer boundary conditions (5a) and (5b) are still valid. 

3.5. Low Mach number asymptotics 

After performing low Mach number asymptotics as in [25,39,50] , the systems can in first order be approximated by: 

u (x ) = 

A coll . out 

A (x ) 
u coll . out −

1 

A (x ) 

∫ x coll . out 

x 

L (y ) 

c 4 
( �(T w 

) + �(T g ) ) d y (16a)

( n a ) t + u ( n a ) x = − L (x ) 

A (x ) 

n L 

c 4 
( �(T w 

) + �(T g ) ) (16b)

( n h ) t + u ( n h ) x = 

L (x ) 

A (x ) 

(
J(T g ) + J(T w 

) − n h 

c 4 
( �(T w 

) + �(T g ) ) 

)
(16c)

( u t ) t = − 1 ∫ 
coll ρ d x + 

∫ 
chim 

ρ d x 

(∫ chim 

coll 

λρu | u | − sin ( θ ) 

Fr 2 

(
ρex 

ρ
− 1 

)
+ ρu ( u ) x d x 

+ 

∫ 
coll 

u c 2 
L 

A 

( J(T g ) + T w 

) ) − ρ

(
1 

A 

∫ x coll . out 

x 

L 

c 4 
( �(T w 

) + �(T g ) ) d y 

)
t 

d x 

+ 

∫ 
chim 

u c 2 
L 

A 

J(T w 

) − ρ

(
1 

A 

∫ x 

x chim . in 

L 

c 4 
�(T w 

) d y 

)
t 

d x + �p 

)
, (16d)
1 For brevity, we will also write J max = y, with y ∈ R + denoting the constant rate of irrigation on the collector ground, or J max = f (x ) for sector-wise 

irrigation. 
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where 

c 3 := 

c 1 n h + n a 

n 

; c 4 := 

γ + c 3 − 1 

c 3 
. 

For a chimney with constant radius 2 , such as in the Manzanares prototype or the plants proposed by Bilgen and Rheault

[1] , (16a) –(16c) become 

u (x ) = u t + 

∫ x 

x chim . in 

2 

r chim 

�(T w 

) 

c 4 
d y. (17a) 

( n a ) t + u ( n a ) x = − 2 

r chim 

n a 

c 4 
�(T w 

) (17b) 

( n h ) t + u ( n h ) x = 

2 

r chim 

(
J(T w 

) − n h 

c 4 
�(T w 

) 
)
. (17c) 

In (16d) , the term 

∫ chim 

coll 
sin ( θ ) 

Fr 2 

(
ρex 
ρ − 1 

)
d x denotes the updraft, where integration over the collector can be omitted for

the flat setup. The turbine pressure loss factor f , which is often employed as a means for plant operation control, describes

the fraction of the updraft that is extracted for electrical energy production in the turbine and therefore cannot be used for

acceleration of the air flow, i.e. we define 

f := 

�p ∫ chim 

coll 
sin ( θ ) 

Fr 2 

(
ρex 

ρ − 1 

)
d x 

. (18) 

From the coupling conditions (15a) , only 

n a (x coll . out ) = n a (x chim . in ) and n h (x coll . out ) = n h (x chim . in ) (19) 

are still relevant, (10) still applies. The initial conditions are taken first order in ε, too, which yields 

ρ(0 , x ) = ρex ≡ 1 and T (0 , x ) = T ex ≡ 1 (20) 

in our scaling; note that the initial and boundary conditions on p still appear as part of (16d) . 

It is readily shown that for the dry case, i.e. J max = 0 and ( n h ) ex sufficiently low so that no condensation occurs, the

model simplifies to be very similar to [39] . 

3.6. Steady state 

In steady state, where the time derivatives vanish, the system (16a) –(16d) becomes 

u x = 

1 

c 4 
�surf 

L 

A 

� − u 

A x 

A 

(21a) 

( n a ) x = −1 

u 

n a 

c 4 
�surf 

L 

A 

� (21b) 

( n h ) x = 

1 

u 

(
�surf 

L 

A 

J − n h 

c 4 
�surf 

L 

A 

�
)

(21c) 

�p = 

∫ 1 

0 

−�surf 

L 

A 

ξρu | u | − u �surf 

L 

A 

M h 

M a 
J − ρuu x + 

sin ( θ ) 

Fr 2 
(1 − ρ) d x. (21d) 

4. Numerical simulations 

4.1. Algorithms 

In this section, we discuss the numerical simulation and optimization of the transient model (16a) –(16d) and the steady-

state model (21a) –(21d) . Eqs. ( 16b ), ( 16c ) and (16d) from the last section are evolution equations. For the unknown ρ( x, t )

we have a transport partial differential equation (PDE) and for v ( t ) we have an ordinary differential equation (ODE). Note

that the boundary conditions for pressure and the turbine pressure drop ( 5a ) and ( 15b ) are already incorporated in (16d) as
2 For non-constant radii r chim = r chim (x ) , u t in (17a) only gets an additional Bernoulli-like factor corresponding to the one in (16a) 
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Table 8 

Comparison of simulation times for a run in dry air 

conditions (with fixed parameters). 

Transient Simulation Steady-state simulation 

u 0 given �p given 

0.64 s 0.60 s 12.7 s 

Table 9 

Comparison of simulation times for a steady 

state simulation for dry and wet conditions 

(with fixed parameters). 

Dry Wet 

u 0 given 0.60 s 0.64 s 

�p given 12.60 s 12.66 s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

parameter. We have the boundary conditions (5b) for ρ and the initial conditions (20) for ρ and v . The following is a sketch

of our numerical (explicit forward in time) strategy to solve the system (16a) –(16d) : 

1. Update u from v in (16a) . 

2. Make an explicit upwind scheme in the PDEs (16b), (16c) for n a , n h . 

3. Make an explicit time step in the ODE (16d) for v . 

4. Repeat 1.–3. until steady state is reached. 

This is a very simple but reasonable algorithm. The stability is ensured by the Courant–Friedrichs–Lewy (CFL) condition.

Note that the CFL condition does not imply very restrictive time steps since due to Eqs. (16b) and (16c) it depends only

on the flow velocity. This is in contrast to a fully nonlinear fluid model (like (14) ) where the time steps in the small Mach

number regime become very restrictive since there the CFL condition is governed by the speed of sound. A more detailed

analysis related to efficiency from a numerical point of view in a similar model can be found in [46] . Moreover, it is possible

to define more sophisticated schemes as well but – as we will see – there seems to be no strong need. 

In many situations only the steady state solution is of deeper interest. There is more than one reason for that. One is

that the transient solutions in most of the realistic situations converge rapidly (order of magnitude is 10 min) to a stationary

state. A second reason is that, under the assumptions made, the changes in time of the data (boundary condition, solar

radiation rate etc.) are very slow over a typical 24 h cycle. Therefore it is a reasonable alternative to solve over a 24 h cycle

a few stationary problems, instead of running a transient problem over such a long time period. On top of that, later on

we will investigate qualitatively how variation in one parameter affects performance at a particular point in time while the

other parameters are kept constant. The natural choice for this is to consider equilibrium solutions. Thus we have, as an

alternative, a simple scheme to solve the steady-state system (21a) –(21d) : 

1. Make an initial guess for the velocity at the collector entrance u 0 . 

2. Integrate (21a) –(21c) with boundary condition (n ex 
a , n 

ex 
h 

, u 0 ) over collector and chimney employing a standard Runge–

Kutta-method. 

3. Calculate the corresponding turbine pressure loss �p ( u 0 ) from (21d) . 

4. To match a given turbine pressure loss �p ′ , use an iterative solver on steps 2.-3. to find u 0 satisfying �p(u 0 ) − �p ′ = 0 .

In the following we will use in a few examples both the long time transient and the stationary approach to obtain the

stationary solution. We will see that the two approaches lead – as expected – to the same result. Representative computation

times on a PC (Intel (R) Core(TM) i5-2400 CPU @ 3.10 GHz, 8 GB memory) are given in Tables 8 and 9 . 

In the application optimization is an important issue. Therefore in a second step we would like to optimize. For the

optimization of the power output we use 

1.–4. Run transient simulation from former algorithm to obtain corresponding turbine velocity u turb ( �p ) for given turbine

pressure loss �p 

5. Use standard Matlab optimization tool fminsearch on 1.–4. to find 

min 

�p> 0 
( −u turb (�p) · �p ) . 

Again, as an alternative (and as a crosscheck) for finding the optimal turbine pressure loss we can use a slightly changed

approach: 

1. Make an initial guess for velocity at collector entrance u 0 . 

2.-3. Find the turbine pressure loss �p ( u 0 ) to the given initial velocity u 0 as before. 

4. Use standard Matlab optimization tool fminsearch on 2.-3. to find 

min ( −u turb · �p(u 0 ) ) . 

u 0 > 0 
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Table 10 

Simulation time for the optimization of the Power 

P as function of the control parameter f ( Fig. 5 ). 

Transient Steady state 

ca. 148 s 23 s 

Table 11 

Parameter values for geometry and environment of the 

simulated plants. 

Parameter Manzanares Winnipeg 

L coll 120 m 1380 m 

H chim 200 m 60 m 

h coll 2 m 5 m 

D chim 10 m 54 m 

Slope θ 0 ° 45.1 °
Inclination β 39 ° 49.9 °
Average temperature T ex 27 °C 3 °C 
Average relative humidity 57% 61% 

Table 12 

Parameter values used for all simulations. 

Parameter Value 

α 10 

ξ 0.1 

p ex 101328 Pa 

�p wind 0 Pa 

q 300 W 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that both steady-state algorithms include an optimization. Therefore, finding the optimal pressure loss is not more

expensive than calculating the steady state for a given pressure loss: both only involve a simple iteration of the integration

of a first-order ODE system. Representative calculation times obtained for the optimization of the pressure loss factor are

summarized in Table 10 . 

The most time consuming part of the simulation is the solution of the nonlinear surface energy balance (10) which has

to be obtained at every grid point. This means that a significant speedup can be achieved where the asymptotic behavior in

(11) –(13) can be used for direct calculation of the source terms, i.e. especially in the classical arid scenario. 

4.2. Basic simulations 

To verify the simplified model (16a) –(16d) s.t. (5b), (20) here we focus first on the direct simulation. As an example with 

flat collector we use the example of Manzanares where good experimental data is available [16] . 

In the case of sloped collectors and for the case of humidity, the situation is worse. The only reference with some

simulations for solar updraft towers with sloped collectors is [1] , the case of humidity is treated in [7,11] . But in both cases

only long term simulations for some overall variables are presented such that direct comparisons for short term scenarios

(or parameter optimizations) are not possible. 

In the following we show two examples where we use the data in Tables 11 and 12 . The examples are the already

mentioned Manzanares SUT with flat collector and a potential SUT for high latitude with sloped collector in Winnipeg

proposed by [1] . We note that the Manzanares SUT is the only example where we have real data. The geometrical data

are given in Table 11 . For simplicity in both cases we use a mean annual temperature and a mean annual humidity for

the corresponding location given also in Table 11 . Similar for the external pressure (both SUT’s are at about sea level so

it appears reasonable to apply the same pressure profile for simplicity and comparability) and the overall solar radiation.

The initial conditions are obtained by inserting T ex and p ex into the small Mach number limit (20) of the adiabatic profiles.

Also, to compare the cases we use the same friction and heat loss parameters for all the cases (see Table 12 ). These two

parameters are a reasonable choice which guarantees that we can reproduce the existing real data of the Manzanares case

by our model (see also [39] ). In the sloped case – as in [1] – a triangular collector is considered, with triangle basis length

A ( x coll.in )/ h coll equal to the triangle height L coll (see Fig. 1 (b)). An exception is made for h coll i.e. the height of the glass

roof above the ground in the collector section. For h coll we considered a (constant) average value of 5 m whereas in [1] a

gradually increasing value from 1.7 m at the collector entrance up to 10 m at the turbine was used. This approximation does

not cause significant qualitative or quantitative changes in our analysis. Moreover, it seems more plausible from a design

point of view to take h coll constant [32,39,51] . 
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Fig. 3. Example of transient and steady state simulation for Manzanares and comparison with measurement data from [35] for validation. 

Fig. 4. Comparison between transient and steady state simulations (dry and wet) for Winnipeg. 

 

 

 

 

 

 

The results of the simulations can be seen in Figs. 3 and 4 , respectively. In Fig. 3 we start with two transient pictures

for temperature and velocity to get an idea of the time evolution. We see that after a short period of about 10 − 20 min

a stationary state is reached. The resulting profiles for temperature and velocity show nonlinear behavior. The velocity in-

creases in the collector because of two reasons: the cross sectional area is decreasing (linearly) and the heated air is ex-

panding. In the chimney the velocity is constant. The temperature shows a monotone (nonlinear) increasing profile too,

in the chimney there is no significant change in the temperature. We would like to underline that here – in contrary to
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Fig. 5. Variation of pressure loss factor f for different locations and comparison with literature data for validation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the Boussinesq approximation – there is no a priori assumption on a (linear) shape of the density or the temperature

profile. 

All the remaining results refer to the long time stationary case for temperature and velocity. In the Winnipeg example we

show the stationary result obtained by the two approaches explained above, a long time transient approach and a stationary

approach (see Fig. 4 ). As before, we include both the dry and the humid case to see the comparison. Note that here in these

first examples for simplicity we assume no pressure loss in the turbine (i.e. no energy production). Nevertheless, we note

that humidity in these cases has no influence on the performance. 

In the next section besides the qualitative (and quantitative) understanding of the various temperature and velocity pro-

files, the main objective is to study the dependence of the main quantities – velocity and power – on the various parameters

of the model. 

5. Optimization 

Here we present first results on optimizing with respect to certain parameters. The key quantity to be optimized is the

power output. We aim to maximize the power output with respect to the optimal pressure loss factor, an optimal geometry,

the optimal inclination of the collector, and optimality related to humidity. The pressure loss factor is an operational param-

eter (turbine control). Geometry and inclination are system parameters and relevant in the planning phase. Humidity can

partly be influenced by water under the collector. Unfortunately, as in the previous section, there are no previous simula-

tion results in the literature to compare our results with. However, in many cases the qualitative answer is reasonable. The

simulations allow for identifying quantitatively the optimal values. This is in fact the advantage of our approach, to obtain

rapidly reliable results in both the planning phase of a power plant and the operational phase of an existing power plant. 

5.1. Optimal pressure loss factor for different heat losses 

An interesting and important optimization parameter in the operational phase is the ratio of pressure loss at the tur-

bine to the total pressure potential. If there is no pressure loss at the turbine – i.e. “extracting” no power – the highest

possible velocity is reached. If we increase the pressure loss the air velocity becomes smaller and goes to zero. Since the

power output is given by P = c �p u turb , both extreme cases give zero power output. We expect a maximal power output

somewhere in between the two extreme cases. There is only one estimate for the optimal f = 2 / 3 in the literature [32] (see

also [36,52,53] ), valid only for the case of no friction, no heat losses and some other additional assumptions. 

The realistic and interesting case with general losses is not analytically solvable. Simulations in the literature [36] indicate

for a specific setting a value f ≈ 0.96 close to the limit f = 1 . 

In Fig. 5 we show the dependence of the power output P on f for all four locations (from the previous section) in both

the dry and the wet case. As in the previous section we assume a mean annual temperature and mean annual humidity for

the different locations. We see (in the dry case) that both the transient and the stationary approach give good agreement

in the results. Note that the different power plants give different optimal f , all the values lie between f ≈ 0.8 and f = 1 , but

not so close to f = 1 . In addition we see that when extracting significant power the humidity becomes important: higher

humidity gives higher power output. This relation was conjectured by Kröger and Blaine (see [7] ), with our approach we

can easily quantify the effect. 

Note also that the absolute values of the optimal power for the Manzanares power plant have the right order of magni-

tude (Manzanares was a 50 kW power plant). The same holds for the conjectured power output of the Winnipeg plant [1] in

the order of 3 MW. 
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Fig. 6. Results for variable αwall . 

Fig. 7. Simultaneous variation of collector radius and chimney height with fixed collector height and chimney radius. 

 

 

 

 

 

 

 

 

 

 

 

 

To further inquire the f dependence we look at the dependence of P on f for different values of the heat loss parameter

(see Fig. 6 ). This gives interesting insight and shows that the optimal f increases with decreasing heat loss parameter α. And

clearly, the higher the losses the lower the optimal power output (see Fig. 6 b)). 

5.2. Plant geometry 

In the planning phase one may ask about the optimal relation between the various parameters such as collector radius,

collector height, chimney height, chimney radius etc. In Fig. 7 we show as an example the relation between collector radius

and chimney height. The collector radius is related to the needed ground area and the chimney height goes with significant

financial costs. We keep the chimney radius fixed at 5 m and the collector height fixed at 2 m, as in the Manzanares case. 

It is interesting to see, that there is an optimal value for both, the optimal collector radius and the chimney height. Both

values remain theoretical because they are very high, the optimal collector radius at more than 10 0 0 m, and the optimal

chimney height a few thousands of meters. 

5.3. Influence of solar radiation Q 

Not surprisingly, the dependence of the power output on the solar radiation is monotone (see Fig. 8 (a)). It seems to be

almost linear and we can deduce a quantitative relation, power increases with a factor ≈ 4 
3 faster than the solar radiation.

The temperature and velocity profile are given in Fig. 8 (b) and (c), respectively. 

5.4. Optimal collector slope for different inclinations 

The issue of varying the collector slope can be approached in different ways. 

To test our approach we start with a simple theoretical example. We assume a given SUT (with fixed slope angle θ ,

collector and chimney values) and vary the geographical position, i.e. the latitude β . Then – increasing the β starting from

0 ° or low values – we increase the area exposed vertically to the radiation (by a factor 1 
sin β

) up to the slope angle θ ,
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Fig. 8. Variation of solar radiation Q . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for further increase the vertically exposed area decreases again. Therefore the optimal β (or latitude for the given SUT) is

expected to be the slope angle θ . In the Manzanares case with θ = 0 ◦ we expect the optimal inclination to be β = 0 ◦, i.e. at

the equator ( Fig. 9 (a)). The green and red arrows in the inlays indicate the optimal and the real latitude, respectively. For

the Winnipeg project with slope θ = 45 . 1 ◦ the optimal latitude is exactly that value (see the result in Fig. 9 (b)). 

Now we turn to a more realistic case. We fix the latitude β and vary only the slope of the collector θ . The collector length

and the chimney height is taken fixed (the total height varies). Then with varying slope θ we expect two phenomena. First

increasing θ the vertically exposed collector area increases up to θ = β, for further increase the exposed area decreases

again. The second effect is the chimney effect in the collector which increases monotonically with the slope θ . Therefore

we expect the optimal value for θ to be higher than the latitude angle β . This is confirmed by the simulations and shown

in Fig. 10 . On the left we have the Manzanares example with β = 39 . 9 ◦ and an optimal slope angle of θ ≈ 50 °. On the right

we have the Winnipeg example with β = 49 . 9 ◦ and an optimal slope angle of θ ≈ 70 °. 
Finally we discuss an even more complex case. As before, we vary the slope and keep collector dimensions fixed. In

addition we keep the total height of the power plant fixed, i.e. we vary the height of the chimney. Again we have two effects,

the maximal exposure at the latitude angle θ = β and a varying chimney effect. The chimney effect increases because of

the increasing slope of the collector but decreases because of the reduction of the chimney height. This possibly destroys

the monotonicity. The result can be seen in Fig. 11 , on the left for the Manzanares example, on the right for the Winnipeg

example. 

In summary we obtain an optimum for the Manzanares case at θ ≈ 25 ◦ < β = 39 ◦. In the Winnipeg case above θ ≈ 50 °
we have no chimney left and the collector is cut off. However the optimal value is above that value. 

This last example shows that such subtle dependencies are not always intuitively recognizable. However, with our model

approach it is easy to describe and to quantify. 

5.5. Influence of humidity without irrigation 

Now we study a few examples considering humidity. First we only vary the relative humidity of the incoming air. In that

case there are no evaporation and condensation phenomena to be expected in the power plant. In Fig. 12 we see higher
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Fig. 9. Varying the solar inclination β (latitude), and we obtain (as expected) βopt = θ . Insets: schematic view of SUP (green: normal inclination, red: 

optimal inclination). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Varying collector slope with fixed chimney height gives optimal slope angles which are higher than the latitude. Insets: schematic view of SUP 

(green: normal slope, red: optimal slope). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

incoming humidity leads to lower temperatures, higher velocities and in particular to a higher heat capacity. In summary

there is a weak dependence of the power on the incoming humidity. This was already conjectured by Kröger and Blaine [7] .

5.6. Influence of maximal available irrigation 

Finally we study the possibility of irrigation on the ground under the collector, e.g. from an additional agricultural usage.

In this case potentially we have evaporation on the ground and an increase of humidity. This may induce condensation at

the collector roof and at the chimney wall. In Fig. 13 (c) we see in detail the evaporation in the collector (solid lines) and the

condensation at the collector roof and at the chimney wall (dashed lines). If there is a lot of water available (at the ground)

both evaporation (only under the collector) and condensation takes place. The energy which is used for the evaporation

is only partially recovered by condensation and in overall missing for heating and for the chimney effect. Therefore with

increasing evaporation we expect decreasing power output. This can be seen in Fig. 13 (d). For higher evaporation we have

lower temperatures (a) and lower velocities (b). This result is in agreement with the statement of Pretorius in [11] that a

power reduction on the order of 50% has to be expected. 
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Fig. 11. Varying collector slope with fixed overall height. Insets: schematic view of SUP (green: normal slope, red: optimal slope). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Variation of outer humidity (Manzanares). 
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Fig. 13. Variation of maximal available irrigation J max in the collector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

We present a one-dimensional asymptotic fluid dynamic model for the simulation of solar updraft towers with sloped

collector which – according to [1] – are supposed to be much more efficient, in particular for higher latitudes. In addition the

model describes the general case of humid air, whose influences on the performance of such thermo solar power stations

was not clear up to now. The model describes the main physical effects and allows however – due to its simplicity –

very fast simulations (much faster than real time). We confirm the results of [1] regarding the sloped collectors and re-

discuss the results in [7,11] regarding the influence of the humidity. In addition the approach presented in this paper opens

the possibility to optimize rapidly such a solar updraft tower with respect to parameters both in the planning and in the

operational phase. This is of significant importance for the usability and the acceptance of such an alternative modeling and

simulation approach. 

More generally we can say that this is a valuable approach for general humid, buoyancy driven low Mach number flows.

In such a highly complex “multi physics” context, one of the main challenges is a fast simulation of the direct problem in

order to allow for optimization algorithms to be used on top. This is realised here in the context of a power station based

on renewable solar energy. 
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