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Abstract. Although self-assembled quantum dots are grown on wetting
layers, most simulations exclude the wetting layer. The neglected effects
on the electronic structure of a pyramidal InAs quantum dot embedded in
a GaAs matrix are investigated based on the effective one electronic band
Hamiltonian, the energy and position dependent electron effective mass
approximation, and a finite height hard-wall 3D confinement potential.
By comparing quantum dots with wetting layers and a dot without a
wetting layer, we find that the presence of a wetting layer may effect the
electronic structure essentially.

1 Introduction

Semiconductor nanostructures have attracted tremendous attention in the past
few years because of their unique physical properties and their potential for
applications in micro– and optoelectronic devices. In such nanostructures, the
free carriers are confined to a small region of space by potential barriers, and
if the size of this region is less than the electron wavelength, the electronic
states become quantized at discrete energy levels. The ultimate limit of low
dimensional structures is the quantum dot, in which the carriers are confined in
all three directions.

Quantum dots can be produced today by the Stranski–Krastanov process
which uses the relief of the elastic energy when two materials with a large lattice
mismatch form an epitaxial structure. The deposited layer initially grows as a
thin two dimensional (2D) wetting layer. As the deposited layer exceeds a critical
thickness, the growth mode switches from 2D to 3D leading to the formation of
a self-assembled quantum dot on top of the wetting layer.

Most simulations neglect the effect of wetting layers on the electronic struc-
ture of self-assembled quantum dots (cf. [5, 6, 8–11, 19, 20] and the literature
given therein). In this paper we report on numerical simulations investigating the
effect of a wetting layer on the electronic structure of a pyramidal InAs quantum
dot embedded in a GaAs matrix. We consider the one-band envelope-function
formalism for electrons and holes assuming non-parabolicity for the electron’s
dispersion relation and an electron effective mass depending on the position and
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the energy level. Then the discretization of the Schrödinger equation results in a
sparse eigenvalue problem depending nonlinearly on the eigenparameter. Similar
experiments are contained in [12–15] where the authors assumed an axially sym-
metric quantum dot and an electron effective mass which does not depend on
the energy level. These assumptions lead to linear eigenvalue problems of much
smaller dimension.

Our paper is organized as follows. In Section 2 we state the rational eigen-
value problem which models the electronic behavior of a quantum dot (possibly
including a wetting layer) assuming a position and energy dependent quasipar-
ticle effective mass approximation. Discretization by a Galerkin method yields
a sparse rational matrix eigenvalue problem which allows a minmax character-
ization of its eigenvalues. Section 3 describes the iterative projection methods
introduced already in [20], and discusses the solution of the projected rational
eigenproblems by safeguarded iteration. Numerical results are given in Section
4 demonstrating that the effect of the wetting layer on the electronic structure
of a quantum dot is essential.

2 Position dependent effective mass model

We consider the problem to compute relevant energy states and corresponding
wave functions of a three dimensional semiconductor quantum dot with or with-
out a wetting layer. Let Ωq ⊂ R3 be a domain occupied by the quantum dot with
the possible inclusion of a wetting layer, which is embedded in a bounded matrix
Ωm of different material. A typical example is an InAs pyramidal quantum dot
grown on a wetting layer, which is embedded in a cuboid GaAs matrix (cf. Fig.
1).

We consider the one-band envelope-function formalism for electrons and holes
in which the effective Hamiltonian is given by

Ĥ = −~2

2
∇ ·

(
1

m(λ, x)
∇

)
+ V (x) (1)

where ~ is the reduced Planck constant, and ∇ denotes the spatial gradient.
Assuming non-parabolicity for the electron’s dispersion relation, the electron

effective mass m(λ, x) is constant on Ωq and on the matrix Ωm for every fixed
energy level λ, and is taken as [1, 3]
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for j ∈ {m, q}, where the confinement potential Vj := V |Ωj is piecewise constant,
and Pj , Eg,j and ∆j are the momentum matrix element, the band gap, and the
spin-orbit splitting in the valence band for the quantum dot material (j = q)
and the matrix (j = m), respectively.
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Fig. 1: Quantum dot with wetting layer

To determine the relevant energy states and corresponding wave functions ψ
we have to solve the governing Schrödinger equation

−∇ ·
(

~2

2mj(λ)
∇ψ

)
+ V (x)ψ = λψ, x ∈ Ωq ∪Ωm. (3)

Since the wave function decays outside the quantum dot (and possibly the wet-
ting layer) very rapidly, it is reasonable to assume homogeneous Dirichlet condi-
tions ψ = 0 on the horizontal part ∂Ωh of the outer boundary of Ωm (cf. Fig. 1).
Following [12] we impose Neumann boundary conditions ∂ψ

∂n = 0 on the vertical
part ∂Ωv of the outer boundary of Ωm, since far away from the quantum dot
wave functions must approach asymptotically ordinary quantum well envelope
functions where the wetting layer is the quantum well. On the interface between
the quantum dot material and the matrix the Ben Daniel–Duke condition [7]
holds

1
mq

∂ψ

∂nq
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∂Ωq

=
1
mm

∂ψ

∂nm

∣∣∣∣
∂Ωm

, x ∈ ∂Ωq ∩ ∂Ωm. (4)

Here nq and nm denote the outward unit normal on the boundary of Ωq and
Ωm, respectively.

Let Ω := Ω̄q ∪ Ωm and H := {ψ ∈ H1(Ω) : ψ = 0 on ∂Ωh}. Multiplying
equation (3) by φ ∈ H and integrating by parts, one gets the variational form
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of the Schrödinger equation

a(ψ, φ;λ) :=
~2

2mq(λ)

∫
Ωq

∇ψ · ∇φdx+
~2

2mm(λ)

∫
Ωm

∇ψ · ∇φdx+ Vq

∫
Ωq

ψφdx

+Vm
∫
Ωm

ψφdx = λ

∫
Ω

ψφdx =: λb(ψ, φ) for every φ ∈ H. (5)

In a similar way as in [20] it can be shown, that problem (5) has a countable
set of positive eigenvalues 0 < λ1 ≤ λ2 ≤ · · · → ∞ of finite multiplicity which
satisfy a minmax characterization. Namely, for fixed ψ 6= 0 the real equation

f(λ;ψ) := λb(ψ,ψ)− a(ψ,ψ;λ) = 0 (6)

has a unique positive solution p(ψ). Hence, equation (6) defines a functional
p : H → R called Rayleigh functional (which generalizes the Rayleigh quotient
for linear eigenproblems), and the k:th smallest eigenvalue of (5) satisfies

λk = min
dimV=k

max
u∈V,u 6=0

p(u). (7)

Moreover, an eigenvalue λ̃ of (5) is the k:th smallest eigenvalue if and only if
µ = 0 is the k:th largest eigenvalue of the linear eigenvalue problem

λ̃b(ψ, φ)− a(ψ, φ; λ̃) = µb(ψ, φ) for every φ ∈ H. (8)

Discretizing the Schrödinger equation (3) with the boundary and interface
conditions specified above by a Galerkin method (finite elements, e.g.) one gets
a rational matrix eigenvalue problem

S(λ)x := λMx− 1
mq(λ)

Aqx−
1

mm(λ)
Amx−Bx = 0 (9)

where
Aj =

( ∫
Ωj

∇φk · ∇φ` dx
)
k,`
, j ∈ {q,m}

M =
( ∫
Ω

φkφ` dx
)
k,`

and B =
(
Vq

∫
Ωq

φkφ` dx+ Vm

∫
Ωm

φkφ` dx
)
k,`

and φi denotes a basis of the ansatz space.
Aq, Am and B are symmetric and positive semi–definite, and M is positive

definite, and for λ ≥ 0 the matrix

~2

2mq(λ)
Aq +

~2

2mq(λ)
Aq

is positive definite. Hence, the eigenvalues of the dicretized problem (9) satisfy
a minmax principle as well, and it follows from the minmax characterization (7)
of the nonlinear Schrödinger equation that the k:th smallest eigenvalue of the
discretized problem (9) is an upper bound of the corresponding eigenvalue of
problem (3).
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3 Solving the discretized problem

In this section we consider the problem to compute a few eigenvalues and corre-
sponding eigenvectors at the lower end of the spectrum of the discretization (9)
of the Schrödinger equation (3).

For linear sparse eigenproblems S(λ) = λB−A very efficient methods are iter-
ative projection methods like the Lanczos, the Arnoldi, and the Jacobi–Davidson
method, e.g., where approximations to the wanted eigenvalues and eigenvectors
are obtained from projections of the eigenproblem to subspaces of small dimen-
sion which are expanded in the course of the algorithm.

Let V ∈ Rn×k be an (orthonormal) basis of the current search space V ⊂ Rn,
and assume that θ is an eigenvalue of the projected eigenvalue problem

V TS(λ)V y = 0, (10)

y ∈ Rk is a corresponding eigenvector, and denote by x := V y the corresponding
Ritz vector. To obtain an improved approximation it is reasonable to expand V
by a direction with a high approximation potential for the eigenvector wanted
next.

There are two approaches in the literature for expanding the search space,
both approximating inverse iteration: a Jacobi–Davidson type method [2] and
the Arnoldi method [18] based on the residual inverse iteration. Here we restrict
ourselves to the latter one.

Residual inverse iteration (introduced by Neumaier [16]) suggests the expan-
sion

v = S(σ)−1S(θ)x, (11)

of the search space V, where σ is a fixed parameter close to the wanted eigen-
values.

For a linear eigenproblem S(λ) = A−λB this is exactly the Cayley transform
with pole σ and zero θ, and since (A−σB)−1(A−θB) = I+(σ−θ)(A−σB)−1B
and Krylov spaces are shift-invariant the resulting projection method expanding
V by v is nothing else but the shift-and-invert Arnoldi method.

If the linear system S(σ)v = S(θ)x is too expensive to solve for v we may
choose as new direction v = K−1S(θ)x with K ≈ S(σ), and for the linear
problem we obtain an inexact Cayley transform or a preconditioned Arnoldi
method. The resulting iterative projection method given in Algorithm 1 therefore
is called nonlinear Arnoldi method, although no Krylov space is constructed and
no Arnoldi recursion holds.

There are many details that have to be considered when implementing the
nonlinear Arnoldi method concerning the choice of the initial basis, when and
how to update the preconditioner, and how to restart the method. A detailed
discussion is given in [18].

A crucial point in iterative projection methods for general nonlinear eigen-
value problems when approximating more than one eigenvalue is to inhibit the
method from converging to the same eigenvalue repeatedly. For linear eigenvalue
problems this is easy to do by using Schur forms or generalized Schur forms for
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Algorithm 1 Nonlinear Arnoldi Method
1: start with an initial pole σ and an initial orthonormal basis V , V T V = I
2: determine preconditioner K ≈ S(σ), σ close to first wanted eigenvalue
3: k=1
4: while k ≤ number of wanted eigenvalues do
5: compute the k:th smallest eigenvalue µ and corresponding normalized eigenvector

y of the projected problem V T S(µ)V y = 0
6: determine Ritz vector u = V y and residual r = S(µ)u
7: if ‖r‖ < ε then
8: accept eigenvalue λk = µ, and eigenvector xk = u,
9: choose new pole σ and update preconditioner K ≈ S(σ) if indicated

10: restart if necessary
11: k = k + 1
12: end if
13: solve Kv = r for v
14: v = v − V V T v ,ṽ = v/‖v‖, V = [V, ṽ]
15: reorthogonalize if necessary
16: end while

the projected problem and then locking or purging certain eigenvectors. For non-
linear problems, however, such Schur forms do not exist and this presents one
of the most difficult tasks in achieving good convergence.

For symmetric nonlinear eigenproblems satisfying a minmax characterization
however, its eigenvalues can be computed safely one after the other. The mini-
mum in (7) is attained by the invariant subspace of S(λk) corresponding to the
k:th largest eigenvalues, and the maximum by every eigenvector corresponding
to the eigenvalue 0. This suggests the safeguarded iteration for computing the
k:th smallest eigenvalue which reads as follows for the projected eigenproblem
P (λ)y := V TS(λ)V y = 0:

Algorithm 2 Safeguarded iteration
1: Start with an approximation µ1 to the k-th smallest eigenvalue of P (λ)y = 0
2: for ` = 1, 2, . . . until convergence do
3: determine an eigenvector u corresponding to the k:th largest eigenvalue of the

matrix P (µ`)
4: evaluate µ`+1 = p(u), i.e. solve uT P (µ`+1)u = 0 for µ`+1

5: end for

The safeguarded iteration has the following convergence properties [17]: It
converges globally to the smallest eigenvalue λ1. The (local) convergence to
simple eigenvalues is quadratic. If P ′(λ) is positive definite, and u in Step 3 of the
last algorithm is replaced by an eigenvector of P (µ`)u = µP ′(µ`)u corresponding
to the k:th largest eigenvalue, then the convergence is even cubic. Moreover, a
variant exists which is globally convergent also for higher eigenvalues.
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4 Numerical experiments

We consider a pyramidal quantum dot with width 12.4 nm and height 6.2 nm
embedded in a cuboid matrix of size 24.8 nm×24.8 nm×18.6 nm. We computed
the band structure for the pure dot without a wetting layer, for the combined
quantum dot and wetting layer structures (cf. Fig. 1) for two wetting layers of
thickness 1 nm and 2 nm, respectively, and for the pure wetting layer.

In the calculations of the electron energy spectra for a narrow gap InAs quan-
tum dot in a GaAs matrix we used the semiconductor band structure parameters
for InAs as: Pq = 0.8503, gq = 0.42, δq = 0.48, and Vq = 0, and for GaAs we
chose Pm = 0.8878, gm = 1.52, δm = 0.34, and Vm = 0.77 as in [9].

Using FEMLAB [4] we discretized the Schrödinger equation by the finite el-
ement method with quadratic Lagrangian elements on a tetrahedral grid. Since
the envelope functions are mainly concentrated on the quantum dot (which oc-
cupies only less than 3 % of Ω) and the wetting layer, and since they decay
very rapidly outside the quantum dot/wetting layer structure, we chose a non-
uniform grid such that roughly half of the degrees of freedom are in the InAs
structure and the remaining ones are in the GaAs matrix.

The arising rational eigenvalue problems were solved under MATLAB 7.0.4
on an Intel Pentium D processor with 4 GByte RAM and 3.2 GHz by the non-
linear Arnoldi method, where the projected eigenproblems were solved by the
safeguarded iteration. We started the method with a constant vector on Ωq∪Ωm
which is far away from an eigenvector, and we terminated the iteration for an
eigenvalue, if the residual norm was less than 10−8. Due to the symmetry of
the problem there exist multiple eigenvalues (for instance the second eigenvalue
in all cases). The Arnoldi method had no problems to detect these multiple
eigenvalues with the right multiplicity.

We first consider the pure quantum dot problem which has five energy eigen-
values smaller than the confinement potential Vm = 0.77 displayed in the second
column of Tab. 1. The discretized problem has 183124 degrees of freedom, and
it takes 297.8 seconds to solve it. The envelope functions ψj corresponding to
these states are essentially confined to the quantum dot. Fig. 2 - 4. show on the
left a cut {ψj(0, y, z) : (0, y, z) ∈ Ω} through ψj for j = 1, 2, 4. ψ3 is obtained
from ψ2 rotating it about the z-axis by 90 degrees, and ψ5 is skew-symmetric
with respect to the plain {0, y, z) : y, z ∈ R} (and therefore its cut is identical
to 0).

Next we added to the quantum dot a wetting layer of thickness 1 nm and
2 nm, respectively. In this case there are 18 and 31 eigenvalues smaller than
Vm, respectively, most of them being approximate quantum well eigenstates cor-
responding to pure the wetting layer. The smallest 5 eigenvalues are shown in
columns 3 and 4 in Tab. 1. They are substantially smaller than the correspond-
ing ones of the pure quantum dot. For instance, the ground state is smaller by
14 and 26 percent, respectively.

The envelope functions ψ1, ψ2 and ψ4 for the case of a wetting layer of
thickness 1 nm are displayed in Fig. 2 - 4. on the right. While the ground state
is localized quite well to the quantum dot, this property gets lost for excited
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eigenstates. For the wetting layer of thickness 2 nm this is even more pronounced.
The envelope functions ψ1 and ψ2 for this case are shown in Fig. 5.

Table 1. Electronic eigenstates

pure QD QD/WL 1 nm QD/WL 2nm pure WL 2 nm

dimension 183124 156479 152928 10903

CPU 297.8 251.2 235.0 46.4

λ1 0.41621 0.35741 0.30864 0.45720
λ2/3 0.59909 0.51472 0.43239 0.47149

λ4 0.71802 0.60738 0.46590 0.48545
λ5 0.72956 0.61991 0.47964 0.51246

Fig. 2: 1. eigenvector of quantum dot without and with wetting layer
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