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Greedy algorithms for image approximation from scattered Radon data
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Positive definite kernels are powerful tools for multivariate approximation from scattered data. This contribution discusses
kernel-based image approximation from scattered Radon data. To this end, we use weighted kernels for the reconstruction.
Moreover, we propose greedy algorithms, which are used to adaptively select suitable approximation spaces. This reduces the
complexity of the resulting image reconstruction method and, moreover, it improves the numerical stability quite significantly.
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1 Introduction

Computerized tomography (CT) requires reconstruction of an attenuation function f : R?> — R from line integrals

Rf(t,0) = flz,y)dedy = /R f(tcos(0) — ssin(f), tsin(f) + s cos(d)) ds, (D

Li0

where ¢, 9 C R?, for (t,6) € R x [0,7), denotes the unique straight line which passes through (¢ cos(6), ¢sin(6)) and is
perpendicular to the unit vector (cos(f),sin(f)). The Radon transform R : L'(R?) — LY(R x [0,7)) in (1) maps a
bivariate function f = f(x,y) in Cartesian coordinates (x, y) to a bivariate function R f (¢, #) in polar coordinates (¢, 6).

The inversion of the Radon transform is given by the filtered back projection (FBP) formula [1]. The FBP formula, however,
is highly sensitive to noise, where stabilization by low-pass filters diminish the shortcomings of FBP. Moreover, the application
of the FBP formula relies on regular data, e.g. parallel beam geometry, which further limits the applicability of FBP in CT.

More flexible reconstructions are kernel-based scattered data approximation schemes. Just recently in [2], kernel-based
approximation was adapted to the specific requirements of functional approximation from bivariate scattered Radon data. The
method in [2] works with weighted kernels for the well-posedness of the reconstruction problem. Following along the lines
of [2], we use greedy algorithms to select suitable approximation spaces. This leads to significant improvements on both the
efficiency and the numerical stability of the kernel-based reconstruction.

2 Kernel-based reconstruction from scattered Radon data

To briefly explain the problem of kernel-based scattered Radon data reconstruction, let £ = {3, o, };V:l C R? be a fixed set
of N pairwise distinct straight lines in the plane. Any f € L'(R?) gives a data vector Rz (f) = ((Rf)(¢;, Gj))j»\;l € RN
containing IV scattered Radon samples from f, where from now we let R;(f) := (Rf)(t;,0;), forj = 1,...,N. Now,
kernel-based reconstruction of f from R . (f) requires finding a solution to the interpolation problem R (f) = R (s) by an
interpolant s : R? — R of the form

N
s(z) = chRgK(m,y) for z € R? 2)

j=1
where R]y denotes action of the Radon transform R ; on variable y and where K = K (x,y) is a positive definite kernel, i.e.,

. NxN
Ar i = <R§RZK(m’y))1§j,k§N e RYX
is a symmetric positve definite matrix for any choice of finitely many pairwise distinct Radon lines £. Therefore, the coeffi-
cients ¢ = (c1,...,cn) € RY of sin (2) are uniquely determined by the interpolation conditions Rz (f) = R, (s). Moreover,
according to [2], the matrix entries in A, i are well-defined for weighted kernels K, : R? x R? — R of the form

Eyw(z,y) = ¢(|lz — y|Hw(ll)w(lyl®)  forz,y e R?,

where ¢ = ¢(|| - ||) € L*(R?) N € (R?) is a positive definite kernel that is radially symmetric with respect to the Euclidean
norm || - || on R? and where w € L!(R?) N €' (R?) is a positive weight function.
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3 Greedy algorithms for data reduction

To reduce the complexity of the interpolation problem R, (f) = R.(s), we determine a suitable small subset S C L of
significant Radon lines of size n = |S| < |£| = N. Then, the solution to the reconstruction problem boils down to
solving the reduced interpolation problem on the Radon lines in §. Hence, with the selection of the subset S C L, the linear
approximation space As := span{(R(t,0))YK(-,y): {19 € S} has small dimension n < N.

However, the selection of the subset S C L, and so the selection of the corresponding approximation space As C A,
requires particular care. This is mainly for the sake of numerical stability, which may be critical in situations where two
Radon lines in S are close, where two Radon lines ¢; o and €t~’§ are said to be close, iff their (unique) parameter points

(t,0), (£,0) € R x [0, ) are close with respect to the Euclidean norm on R2. This yields a metric on the set of planar Radon
lines, whereby we can apply greedy data reduction. Adaptive thinning [3,4] is only one example for a greedy data reduction
scheme, which works with recursive point removals. We apply adaptive insertion of Radon lines from £ by adaptive insertion
of points from the large set P = {(¢;, 9j)}§y:1 of parameters that are defining L.

We remark that related greedy methods were published in [5], where the terms P-greedy and h-greedy for two variants of
greedy data reduction schemes were coined (for details we refer to [5]). This has led us to include two greedy algorithms:
Each insertion of the next parameter point (¢, 6,) € R x [0, 7), from a current set of Radon parameter points Ps C Pp, is
characterized by

(ty,04) = argmax min ||(¢,0) — (s,0)]| (h-greedy),
(t,0)eP.\Ps (5:0)€Ps

whereas each insertion of the next Radon functional R = R(t4, 04 ) is characterized by

Ry = argmax  min [(R(L0)'K(y) —pllc  (P-greedy),
(t,0)€P\Ps HEAS

where || - ||k denotes the native norm of the reproducing kernel Hilbert space (RKHS) generated by K.

4 Numerical example

We have performed numerical experiments, where we used the weighted kernel function
Ko(z,y) = e~ 3/2lel3 . g=2000le—yll3 , o—3/2]lyll3 for 2,y € R2.

We generated N = 15,000 Radon lines to reconstruct the bull’s eye phantom. From each of the two greedy removal schemes
we obtained a subset of n = 5, 000 significant Radon lines. For comparison, we also included a set of n random Radon lines.
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Fig. 1: Reconstruction of bull’s eye with different algorithms (left); spectral condition numbers cond(As, i ) as a function of n = |S| (right)
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