

Prof. Dr.-Ing. Gerhard Bauch

Master Thesis

March 2017

Information Optimum Design of

Discrete LDPC Decoders for

Irregular Codes

 Author: Maximilian Stark

 Supervisor: Prof. Dr.-Ing. Gerhard Bauch

Contents

1 Introduction 1

2 Fundamentals of Information Theory and the Information

Bottleneck Method 5

2.1 Mutual Information . 6

2.2 Information Geometry . 8

2.3 Kullback-Leibler Divergence 9

2.4 Jensen-Shannon Divergence 10

2.5 Rate Distortion Theory . 11

2.6 Information Bottleneck Method 13

2.7 Information Bottleneck Algorithms 16

2.7.1 Sequential Information Bottleneck Algorithm 17

2.7.2 Modified Sequential Information Bottleneck Algorithm 17

2.7.3 Symmetric Sequential Information Bottleneck Algorithm 18

2.7.4 Prior Selection . 19

3 Information Bottleneck Graphs 21

3.1 Factor Graphs . 22

3.1.1 Sum-Product Algorithm 22

3.2 Information Bottleneck Graphs 24

4 Low-Density Parity-Check Codes 27

4.1 Encoding LDPC Codes . 30

4.1.1 Gauß-Jordan Elimination 30

4.1.2 Backward and Forward Substitution 31

4.2 Tanner Graphs . 32

4.3 Decoding LDPC Codes . 35

4.3.1 Bit Flipping Decoding 36

4.3.2 Belief Propagation Decoding 37

4.3.3 Min-Sum Decoding . 39

v

vi CONTENTS

5 Density Evolution 41

5.1 Prerequisites . 42
5.2 Density Evolution for Regular LDPC Codes 43
5.3 Threshold Improvement using Irregular LDPC Codes 47
5.4 Density Evolution for Irregular LDPC Codes 47

6 Construction of Discrete Decoders 49

6.1 Relevant Information Preserving Quantizer Design 50
6.1.1 Channel Model . 51
6.1.2 Information Optimum Quantizer 51

6.2 Discrete Density Evolution . 52
6.3 Generating a Discrete LDPC Decoder 56

7 Information Optimum Decoding of Regular LDPC Codes 59

7.1 Simulation Environment . 59
7.1.1 Programming Language 59
7.1.2 HPC Cluster Computing 59
7.1.3 Implementation . 60

7.2 Decoder Analysis . 61
7.3 Results for Regular LDPC codes 63
7.4 Simple Approach to Irregular LDPC Codes 65

8 Message Alignment 67

8.1 Consensus of Meanings . 67
8.2 Mathematical Problem Formulation 71
8.3 Quantifying the Mismatch Loss in Discrete Density Evolution. 72
8.4 Message Alignment in Information Bottleneck Graphs 76
8.5 Discrete Decoder Design for Irregular LDPC Codes 77

9 Information Optimum Decoding of Irregular LDPC Codes 81

9.1 Results and Discussion for irregular IEEE 802.11 WLAN Code 81
9.2 Results and Discussion for DVB-S2 Code 83

10 Performance Evaluation for Irregular LDPC Codes with Higher

Order Modulation 87

10.1 Quantizer Design for 64-QAM Modulation 87
10.2 Results and Discussion for IEEE 802.11 WLAN Code with

64-QAM . 90
10.3 Quantizer Design for 8-PSK Modulation 90
10.4 Results and Discussion for DVB-S2 Code with 8-PSK 93

11 Conclusion 95

CONTENTS vii

Appendix A Additional Simulation Results for Regular LDPC

Code from MacKay Database 101

Appendix B Additional Simulation Results for Irregular LDPC

Code from IEEE 802.11 Standard 105

Appendix C Additional Simulation Results for Irregular LDPC

Code from DVB-S2 Standard 109

viii CONTENTS

Acronyms

AWGN additive white Gaussian noise

BI-AWGN binary-input AWGN

BEC binary erasure channel

LDPC low-density parity-check

LLR log-likelihood ratio

SPA sum-product algorithm

IB node Information Bottleneck node

FEC forward error correction

BER bit error rate

QAM quadrature amplitude modulation

PSK phase-shift keying

BPSK binary phase-shift keying

ASK amplitude-shift keying

WLAN wireless LAN

DVB-S2 digital video broadcasting – satellite 2

ix

x CONTENTS

Chapter 1

Introduction

In the last decade, a small number of young entrepreneurs in the Silicon
Valley started no more, no less than a digital revolution. By developing
smartphone apps they facilitated people all over the world to connect easily
and share nearly everything. To a certain extent, they rediscovered the Latin
origin of the word ”communicare” meaning ”to share”.

One major technical prerequisite allowing these new opportunities to
spread around the world was the wide coverage of mobile Internet access.
Providing wide coverage paired with high data rates was driving the commu-
nication technology sector in the past decades and enormous progress in the
field of mobile broadband technologies was made. With the standardization
and launch of Long Term Evolution (LTE) high-speed mobile data traffic be-
came available for the mass market and laid the groundwork for many new,
revolutionizing applications. However, since people have encountered these
new possibilities, the demand for higher data rates at minimum latency grew
further.

Due to several degrading physical effects, the mobile radio channel is
one of the most challenging propagation environments. Anyway, engineers
were able to develop and apply clever tricks to overcome the impairments of
this transmission medium. In this context, channel coding plays and always
played an important role because it helps to provide a guaranteed quality of
service. Nevertheless, if existing, where is the theoretical upper limit of data
rates for a certain channel, when a channel code is applied?

The seminal work ”A Mathematical Theory of Communication” [Sha01]
by Claude E. Shannon laid the foundation of modern coding theory. It an-
swered the question on the maximum possible data rate from a theoretical
perspective. Furthermore, it introduced the concept of mutual information
which will be used throughout this work. Finally, Shannon determined the
maximum achievable rate of a channel code which allows error-free transmis-

1

2 CHAPTER 1. INTRODUCTION

sion over a disturbed channel. Unfortunately, Shannon’s seminal work did
not cover construction tools for this code.

Anyway, this publication marked the beginning of a race in which re-
searchers tried to find capacity achieving codes. This race should last for
over 50 years until in 2001 the theoretical boundary was reached up to 0.0045
dB over Eb/N0 [CFRU01]. The utilized code was a so-called irregular low-
density parity-check (LDPC) code with a very large block length. Until this
breakthrough, turbo codes were the best-known codes that came closest to
the theoretical channel capacity [BGT93].

Although capacity approaching channel codes have been found in the
past, their decoding requires complex algorithms that prohibit their practi-
cal implementation in consumer hardware. To achieve future demands on
latency and data rates efficient encoding and decoding of error correcting
codes are of crucial importance. Furthermore, reducing the power consump-
tion of encoder and decoder is a current subject in communications engi-
neering. This issue will gain integral importance in the future, especially, for
mobile users and tiny sensor nodes with strict energy constraints.

An all new approach to design error correction units with low complexity
are so-called discrete decoders. This idea was successfully applied to LDPC
codes in [LB15] and [LSB16a]. For decades, it was a scientific consensus in
the communication and signal processing community, that the most promis-
ing approach guaranteeing the best performance, would be to represent all
received samples in the real or complex domain as precisely as possible. How-
ever, the real or complex domain are continuous, which can be impossibly
represented in hardware accurately. Therefore, high precision floating-point
data types or fixed point arithmetic with long bit words are often used in
modern hardware in order to achieve close to optimal performance. To real-
ize such high precision floating point operations, computationally expensive
hardware, much processing time and a significant amount of memory are
required.

In contrast to state-of-the-art implementations, discrete decoders avoid
high precision processing but try to process and extract only relevant in-
formation needed for the decoding. This information theoretical approach
exploits the Information Bottleneck method [TPB00]. The Information Bot-
tleneck method is able to maintain relevant information about a variable
of interest and simultaneously discretizes the event space of an observation
coarsely.

A drawback of the so far existent discrete LDPC decoders is there limited
applicability solely to regular LDPC codes. However, the full error correction
potential of LDPC codes can only be exploited by irregular codes, which
have different node degrees involved in the iterative decoding process. In

3

fact, most standardized LDPC codes are irregular codes, e.g in [IEE12] or
[ETS14]. Hence, for practical applications, discrete decoders for irregular
codes are of great interest. Different from state-of-the-art decoders, this
generalization is not straightforward but requires a new design framework
for discrete decoders. This work aims to extend the decoding principles
from [KYK08] to irregular codes, based on the promising results from [LB15]
for regular codes. In summary, the objectives of this work are to

1. broaden the applicability of discrete decoders to a wider class of codes

2. increase the practical relevance of the discrete LDPC decoders from
[LB15]

3. describe and solve an information theoretical problem occurring in the
construction of discrete LDPC decoders for irregular codes

4. evaluate the performance of the resulting decoders in numerical simula-
tions for several irregular LDPC codes from communication standards

5. generalize the found solution to higher order modulation schemes, which
are often paired with irregular LDPC codes in practice

To highlight the practical relevance, an irregular LDPC code from the
wireless LAN (WLAN) standard IEEE 802.11n is taken for performance
evaluation [IEE12]. Furthermore, another code from the digital video broad-
casting – satellite 2 (DVB-S2) standard is investigated [ETS14]. The most
important properties of the used codes are

• WLAN: code rate = 0.5, codeword length = 1296 bits

• DVB-S2: code rate = 0.5, codeword length = 64800 bits

In the next chapter, the Information Bottleneck method is introduced.
Furthermore, a graphical framework called Information Bottleneck graph
[LSB16a] is explained. Chapters 4-5 focus on LDPC codes and density evo-
lution. Afterwards, Chapters 6-7 introduce discrete receiver design and re-
produce results for regular LDPC codes from [LB15]. The following Chapter
8 presents and investigates message alignment, a newly developed technique
needed to generalize discrete decoder design from regular to irregular LDPC
codes. In Chapter 9 these findings are evaluated using simulations. Finally,
before concluding the thesis, message alignment is applied to higher order
modulation schemes in Chapter 10.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals of Information

Theory and the Information

Bottleneck Method

Asking people on the street how they would define information, probably,
results in very versatile answers. Moreover, when trying to even measure
information, it turns out that one deals with a quite fuzzy quantity. Claude
Elwood Shannon is known as the father of information theory. He figured
out how to describe information in a probabilistic manner. Shannon defined
the self-information of an event x ∈ X with probability Pr(X = x) as

I(x) = log2
1

Pr(X = x)
. (2.1)

If, as done in (2.1), the log2 is chosen, then the self-information is measured
in the pseudo unit bits. A simple example can help to check the credibility.
Imagine the weather forecast app on your smartphone tells you that it will
not rain tomorrow with a probability of 99%. Given this probability, one can
compute the self-information

I(X = no rain) = log2
1

Pr(X = no rain)
= log2

1

0.99
= 0.0145 bit (2.2)

I(X = rain) = log2
1

Pr(X = rain)
= log2

1

0.01
= 6.6438 bit. (2.3)

Waking up the next day and observing that it, against all odds, rains
will be probably really surprising. One would argue that this unexpected
observation is really informative, i.e. contains a lot of new information. This

5

6 CHAPTER 2. FUNDAMENTALS OF INFORMATION THEORY

is not the case, if does not rain, as expected. This little example illustrates
that (2.1) is a proper proposal to quantify information.

The example also shows that the self-information does not depend on
the event space X of a random variable X. It does not matter if X refers
to weather conditions or any other probabilistic event. Instead, the self-
information is only a function of X’s statistics. This makes information
theory a very general framework with applications in many different fields,
like physics, medicine, biology, computer science, economics etc. [CT12].

The concept of self-information can be generalized to a measure of uncer-
tainty, also called entropy. The entropy H(X) of a discrete random variable
X is defined as

H(X) =
∑

x∈X

p(x) log2
1

p(x)
, (2.4)

i.e. as expectation of the self-information for all events x in the event space
X .

Self-information and entropy are essential fundamentals of information
theory. These quantities can be used to derive a variety of very advanced
concepts as, for example, done in [CT12]. However, this chapter will only
cover a small selection of mathematical concepts integral to understand the
Information Bottleneck method, like, for example, mutual information, in-
formation divergences and rate distortion theory. An overview on different
Information Bottleneck algorithms concludes the chapter.

In between, another helpful framework called information geometry is
introduced.

2.1 Mutual Information

Two coupled random variables X and Y carry information about each other,
the so-called mutual information I(X;Y) [CT12]. At the same time, this
quantity denotes the reduction in the uncertainty of one random variable
due to the knowledge of the other. The resulting definition is as follows

2.1. MUTUAL INFORMATION 7

I(X;Y) = H(X)−H(X|Y) (2.5)

= −
∑

x∈X

p(x) log2 p(x)−
(

−
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log2 p(x|y)
)

(2.6)

= −
∑

x∈X

p(x) log2 p(x) +
∑

y∈Y

∑

x∈X

p(x|y)p(y) log2 p(x|y) (2.7)

=
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log2
p(x|y)
p(x)

(2.8)

=
∑

x∈X

∑

y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)
. (2.9)

Rewriting (2.9) as

I(X;Y) = H(Y)−H(Y |X), (2.10)

reveals the mutual information as symmetric. In other words, what X says
about Y is as informative as what Y says about X.

Figure 2.1 visualizes the relationship between H(X), H(Y), H(X|Y),
H(Y |X) and I(X;Y) using a Venn diagram. Here, the mutual information
is the intersection of the blue and orange set. In most interesting cases, the in-
tersection should be large, corresponding to a significant mutual information.
For example for detection problems based on the output of a communication
channel, the output random variable Y should be highly informative about
the channel input X.

Investigating the extrema allows deepening the understanding of mutual
information. In case of two statistically independent random variables X
and Y , i.e. p(x, y) = p(x) · p(y), (2.9) simplifies to

I(X;Y) =
∑

x,y

p(x, y) log2
p(x, y)

p(x)p(y)
(2.11)

=
∑

x,y

p(x)p(y) log2
p(x)p(y)

p(x)p(y)
︸ ︷︷ ︸

0

= 0. (2.12)

This result is reasonable, because if X and Y are independent, knowing one
variable gives you no information about the other. The second interesting
case is full correlation between the random variables X and Y , i.e. p(x, y) =
p(x, x) = p(x).

8 CHAPTER 2. FUNDAMENTALS OF INFORMATION THEORY

H(X|Y)H(Y |X)

H(Y)H(X)

I(X;Y)

Figure 2.1: Venn diagram showing the connection between entropy, condi-
tional entropy and mutual information

In this case the mutual information becomes

I(X;Y) =
∑

x∈X

p(x, x)
︸ ︷︷ ︸

p(x)

log2
1

p(x)
(2.13)

= H(X). (2.14)

2.2 Information Geometry

Information theory deals solely with probabilities and other fuzzy quanti-
ties. Thus, the problems are often hard to imagine and barely tangible. In
mathematics, geometry can be helpful to understand the shape of functions
and objects. Geometry also visualizes distances and helps to understand
corresponding cost functions. Exploring information theory using geometric
methods is the basic idea of information geometry [Ama16].

At first, a mathematical concept to describe a general kind of space, called
manifold, is needed. An n-dimensional manifold M can be understood as a
deformed n-dimensional Euclidean space, with some different properties, as
described in [Ama16]. Admittedly, manifolds are a very abstract extension.
However, understanding the properties of manifolds is not essential for this
thesis.

Usually, coordinate systems are introduced to explore manifolds. Differ-
ent coordinate systems can be used for the same manifold. Sometimes it is
even required to use more than one coordinate system to reach all points in
a manifold [Ama16]. Among others, the 2-dimensional Euclidean space can
be described using an orthonormal coordinate system or a polar coordinate
system.

2.3. KULLBACK-LEIBLER DIVERGENCE 9

Information theory deals with probability distributions, thus one has to
investigate the manifold of probability distributions. The focus of this thesis
lies on the class of discrete probability distributions.

Consider a discrete random variableX with event space X = {0, 1, · · · , n}
and probability mass function p(x). For discrete random variables the prob-
ability mass function function is often represented as a point in the n + 1-
dimensional space using the vector notation

p = [Pr(X = 0),Pr(X = 1), · · · ,Pr(X = n)]T

or in matrix notation, if more than one random variable is involved. Validity
of a probability mass function is only given, if

∑

x∈X

p(x) = 1, Pr(X = x) > 0 ∀x ∈ X . (2.15)

The set of all possible probability mass functions p forms an n-dimensional
manifold. A possible coordinate system is

ξ = (ξ1, ξ2, . . . , ξn) = (Pr(X = 1), . . . ,Pr(X = n)),

where the parameter Pr(X = 0) is constrained according to

Pr(X = 0) = 1−
n∑

i=1

ξi.

The resulting manifold is a simplex [Ama16]. Figure 2.2 shows two such
probability simplices, denoted Sn. If n = 2, the corresponding manifold S2

is the interior of a triangle, whereas S3, i.e. n = 3, denotes the interior of
the 3-simplex.

It is also possible to introduce another coordinate system θ, which will
be very useful in the next section, namely

θi = log
pi
p0
, i = 1, · · · , n.

2.3 Kullback-Leibler Divergence

When applying information geometry, probability distributions are inter-
preted as points inside a high-dimensional manifold. The distance between
these points is determined using a so-called divergence D{p(x)||q(x)} [CT12],
[Ama16]. In contrast to a metric, which is used to measure distances in the

10 CHAPTER 2. FUNDAMENTALS OF INFORMATION THEORY

p0
p1

p2

1 1

1

(a)

p0
p1

p2

p3

(b)

Figure 2.2: In (a) the S2 simplex is visualize. The right subfigure (b) shows
a S3 simplex.

Euclidean space, divergences have different, maybe on the first glance, cu-
rious properties. Most importantly, a divergence is usually not symmetric,
raising questions on how to order the arguments. However, interpreting a di-
vergence as distance measure between two probability distributions is valid
and appropriate [CT12].

A common divergence known as Kullback-Leibler divergence DKL or rel-
ative entropy is defined as [Ama16], [CT12]

DKL{p(x)||q(x)} =
∑

x

p(x) log
p(x)

q(x)
. (2.16)

In the context of source coding, the relative entropy determines the penalty,
i.e. the number of additional bits needed to encode X if the distribution q(x)
is considered as the source distribution instead of the true distribution p(x).
The Kullback-Leibler divergence is always positive and only for p(x) = q(x),
DKL{p(x)||q(x)} = 0.

2.4 Jensen-Shannon Divergence

In some applications, e.g. the Information Bottleneck method, a symmet-
ric generalization of the Kullback-Leibler divergence DKL{p(x)||q(x)} is re-
quired, called the Jensen-Shannon divergence JS{p(x)||q(x)}. The Jensen-
Shannon divergence with weights π1 and π2 is defined as [Slo02]

JSΠ{p(x)||q(x)} = π1DKL{p(x)||p̄(x)}+ π2DKL{q(x)||p̄(x)}, (2.17)

2.5. RATE DISTORTION THEORY 11

Y1

Y2

t1

t2

Y T

p(t|y)

I(Y ;T)

Figure 2.3: The general procedure of compression is shown. A subset of input
sequences Y1, taken from a large set Y is mapped onto one single point t1 in
the reduced set T . The mapping is denoted by p(t|y) [Slo02].

where Π = {π1, π2}, 0 < π1, π2 < 1, π1 + π2 = 1 and p̄(x) = π1p(x) + π2q(x).

2.5 Rate Distortion Theory

The field of rate distortion theory deals with finding an optimum trade-off
between distortion and compression, when quantization is applied.

Quantization is a well-known concept in signal processing if a continuous
signal has to be represented by a limited number of N states. In most
technical applications this number is a power of 2, i.e. N = 2n because then
n is the number of bits required to store a sample. Sometimes, mainly in
the field of source coding, this problem is also referred to as compression.
Rate distortion theory allows determining optimal representatives, given a
distortion measure d.

Compression or quantization is not solely referring to representing a con-
tinuous variable as discrete, it might be also required if a discrete variable has
a large event space. Consider a discrete random variable Y with probability
distribution p(y) and finite event space Y , with cardinality |Y|. If |Y| is too
large to be handled, e.g. by the system architecture, a compression variable
T is introduced with a much smaller cardinality |T |. The ratio between |T |
and |Y| defines the compression rate, an important characteristic.

A compression can be visualized as a mapping from one large set to a
smaller compression set, as shown in Figure 2.3. This mapping p(t|y) can
either be stochastic or deterministic as shown in Figure 2.4. Figure 2.4

12 CHAPTER 2. FUNDAMENTALS OF INFORMATION THEORY

(a) (b)

Figure 2.4: Compression can also be interpreted as clustering. Each orange
ellipse is one different cluster. The mapping of y ∈ Y onto a cluster t ∈ T
is described by the transition probability p(t|y). The mapping can either be
stochastic as shown in (a) or deterministic shown in (b).

visualizes also another notion of compression, namely clustering, because
compression means to map different values y ∈ Y onto a cluster t ∈ T . This
can be one particular cluster t (deterministic mapping) or different clusters
with a certain probability (stochastic mapping).

The term clustering will be used throughout this thesis because it em-
phasizes that, in contrast to typical quantization problems, determining a
representative is not necessary. In later chapters, it will be introduced how
to process only cluster indexes without the necessity of representatives.

However, no matter how the mapping from Y onto T is called, the ques-
tion is how to accomplish it optimally. From an information theoretical per-
spective, it is straightforward to consider the mutual information I(Y ;T),
usually termed compression information. The more compact Y is repre-
sented, the lower the compression information [Slo02]. In the extreme case
of |T | = 1, i.e. only one cluster exists, I(Y ;T) = 0. Alternatively, when
|T | = |Y| no compression is achieved and there will be a one-to-one mapping
resulting in I(Y ;T) = H(Y).

The above consideration highlights, considering the compression infor-
mation alone is not sufficient to determine the costs of compression. Hence,
in rate distortion theory the distortion measure d(x, t) is introduced. This
measure allows to determine the expected costs, respectively expected dis-
tortion [Slo02]

Ep(y)p(t|y) {d(x, t)} =
∑

x∈X ,t∈T

p(y)p(t|y)d(x, t). (2.18)

2.6. INFORMATION BOTTLENECK METHOD 13

In the next step, it is possible to set up the rate-distortion function R(D)
describing the trade-off between compression and expected distortion

R(D) = min
{p(t|y):Ep(y)p(t|y){d(x,t)}≤D}

I(Y ;T) (2.19)

Consequently, R(D) is the minimal compression information considering all
p(t|y) which satisfy the constraint. An implicit solution can be found [Slo02],
[CT12]

p(t|y) = p(t)

Z(y, β)
e−βd(x,t), (2.20)

where Z(y, β) is a normalization function. Furthermore, β is a Lagrange
multiplier which can be determined by

δR

δD
= −β. (2.21)

It is interesting to investigate β in more detail. If β −→ ∞ the focus is
solely on minimizing the distortion, whereas if β −→ 0 one is interested in
compression only meaning that also the rate R −→ 0.

The optimal solution described in (2.20) can always be found using the
Blahut-Arimoto algorithm [CT12]. This iterative optimization algorithm
makes use of the induced structure of the problem [Bla72]. As long as the
optimization problem influenced by the chosen distortion function is convex,
a global minimum can be found [Slo02].

Rate distortion theory is a broad field, but the most relevant concepts for
this thesis are summarized in this section. It will be important to remember
that mapping continuous variables to discrete ones always causes distortion,
that a solution for a given convex distortion measure can be found using the
Blahut-Arimoto algorithm and that the notation clustering, mapping and
compression are closely related and will be often used synonymously.

2.6 Information Bottleneck Method

In the previous section rate distortion theory was introduced. In contrast to
rate distortion theory, where an arbitrary and explicit distortion measure, e.g.
the quadratic distance, has to be defined, the Information Bottleneck focuses
on preserving the mutual information between the compression variable T
and a so-called relevant variable X.

The Information Bottleneck method is a closed form information theo-
retical framework originating from the field of machine learning [TPB00]. It

14 CHAPTER 2. FUNDAMENTALS OF INFORMATION THEORY

is framed by the idea that the self-information of a random variable can be
classified into relevant and irrelevant information with respect to an appro-
priately defined relevant random variable. The main goal of the method is to
keep as much relevant information contained in an observation of a random
variable Y as possible, when a lossy compression of this variable is applied.

As mentioned above the Information Bottleneck is an extension of rate
distortion theory where finding the right distortion measure is not needed
anymore. Instead, a compression only with respect to the loss of relevant
information is performed. The most important and crucial parameters that
have to be defined in the Information Bottleneck framework are the relevant
variable X and the joint probability p(x, y) between this relevant variable X
and the observed variable Y . In some applications both tasks, i.e. finding X
and determining p(x, y) can be tough.

Following the argumentation from above, the mutual information between
observed and relevant variable I(X;Y) contains not only relevant but also
irrelevant information. The overall Information Bottleneck setup is visualized
in Figure 2.5. The key idea of the Information Bottleneck is to extract the
relevant part by squeezing this information through a compact bottleneck.

Therefore, a third variable, the compression variable T is introduced. In
the previous section it was explained, that compression can be seen as a
classification problem, where a classifier has to be found mapping y ∈ Y to
t ∈ T in an optimal way. Consequently, the classifier p(t|y) results from
minimizing the compression information I(Y ;T) because minimizing this in-
formation results in a compression of Y . The extreme case of compression
namely I(T ;Y) = 0 and I(T ;Y) = H(Y) were investigated in detail while
discussing rate distortion theory.

Especially, I(Y ;T) = 0, i.e. the representation of Y in T is as compact as
possible, reveals that looking only for the minimum compression information
does not guarantee that our resulting clustering contains any information
about the relevant variable. This violates the central requirement of the In-
formation Bottleneck approach. Thus, the second constraint is to maximize
the kept relevant information between T and X. Virtually, the Informa-
tion Bottleneck tries to minimize the compression information I(Y ;T) by
mapping Y to a compact variable T which simultaneously maximizes the
information I(T ;X) between T and the relevant variable X.

The resulting optimization problem is also called the Information Bot-
tleneck variational principle and can be expressed mathematically by the
minimization of the so-called Information Bottleneck functional L [Slo02]

L[p(t|y)] = I(T ;Y)− βI(T ;X). (2.22)

2.6. INFORMATION BOTTLENECK METHOD 15

observed
random variable Y

y ∈ Y

relevant
random variable X

x ∈ X

compressed
random variable T

t ∈ T

I(X;Y)

compression information
I(Y ;T)

relevant information
I(T ;X)

p(t|y) p(x|t)

Figure 2.5: Information Bottleneck setup [LB15].

The applied optimization technique is Lagrange optimization [TPB00].
Hence, β denotes a Lagrange multiplier which is connected to the informa-
tion constraint on I(T ;X). The extreme case β = 0 indicates maximum
compression and β −→ ∞ means maximum preservation of the relevant in-
formation. Thus, the parameter β is called trade-off parameter in literature
and plays a similar role as the Lagrange multiplier in the solution of the rate
distortion setup [Slo02], [TPB00].

In later chapters, when the construction of discrete LDPC decoders is
explained, choosing β in order to get a high compression is not desirable.
Instead, the aim is to keep as much relevant information as possible, i.e.
a large β is used. The desired level of compression can also be achieved by
restricting the event space cardinality of the compression variable T , i.e. |T |.

After having explained the Information Bottleneck setup, the next step
is to find a solution for this optimization problem. In the previous section,
it was shown that deriving a solution for the quite similar rate distortion
problem was possible. Unfortunately, applying the result obtained in rate
distortion theory is not feasible, because the dependency of I(T ;X) in p(t|y)
is non-linear, whereas the constraint in the rate distortion problem was linear
[Slo02]. Furthermore, there is no distortion measure defined in advance,
which was present in the optimal solution (2.20).

Tishby et al. [TPB00] were able to evade these problems and derived an
implicit solution, namely

p(t|y) = p(t)

Z(y, β)
e−βDKL{p(x|y)||p(x|t)}, ∀t ∈ T , ∀x ∈ X , (2.23)

where Z(y, β) is again a normalization function, as in (2.20).

It should be highlighted at this point that the Kullback-Leibler divergence
DKL{p(x|y)||p(x|t)} in (2.23) emerges during the derivation and was not

16 CHAPTER 2. FUNDAMENTALS OF INFORMATION THEORY

assumed as distortion measure in advance. This is quite interesting since
this very common information theoretical concept underlines its significance,
by raising autonomously as the correct measure for this problem.

Although the Information Bottleneck is a very powerful framework and
has an implicit solution, the applications in the field of communication tech-
nologies and signal processing are quite rare [LB15], [LSB16a], [LSB16b]. So
far, the utility of the Information Bottleneck method was primarily illustrated
in a variety of fields, e.g. gene analysis [JL10], bio-informatics [BSCG13], ma-
chine learning [TZ15], predictive inference [Sti14], word clustering [ST00].

2.7 Information Bottleneck Algorithms

In the previous section, the basic concepts of the Information Bottleneck
method were introduced. Furthermore, an implicit solution of the Informa-
tion Bottleneck functional (2.22) was derived resulting in (2.23). In this
section, different algorithms able to construct optimal or approximated so-
lutions to the Information Bottleneck problem are introduced.

One major challenge of the optimization problem is the convex/concave
structure. Thus, it cannot be guaranteed that a global optimum is found.
Hence, the presented algorithms need to be performed multiple times with
different, randomly chosen, initial conditions. In the end, the best local
minimum of L[p(t|y)] found is chosen. ”Best” in this context refers to the
amount of kept relevant information I(T ;X), which should be maximized
according to the Information Bottleneck setup. Although maybe not a global
optimum is found, this approach yields good results very often.

Before explaining the algorithms and their implementation in detail, the
concept of deterministic mapping and its counterpart the stochastic mapping
shall be recapped. As shown in Figure 2.4, if p(t|y) is a deterministic mapping
it means that each realization y ∈ Y is mapped into exactly one cluster
that is represented by the assigned element t ∈ T . This can also be called
“hard” clustering. Whereas in case of a stochastic mapping, the clustering
is “soft”, i.e. p(t|y) can take any value between 0 and 1 for several t as long

as
∑

t∈T

p(t|y) = 1.

The role of the Lagrange multiplier β in the Information Bottleneck so-
lution (2.23) was already discussed in the previous section. When being
interested in only maintaining relevant information, i.e. β −→ ∞, hard clus-
tering algorithms turn out as beneficial approach [Slo02]. Hence, all three
presented algorithms are hard clustering algorithms. Further algorithms are
explained in [Slo02].

2.7. INFORMATION BOTTLENECK ALGORITHMS 17

2.7.1 Sequential Information Bottleneck Algorithm

The sequential Information Bottleneck algorithm aims to minimize the Infor-
mation Bottleneck functional (2.23) using a deterministic clustering. Starting
from an initial clustering, the current event y is drawn from its cluster. Af-
terwards, the costs of putting a certain event y ∈ Y in one of the |T | clusters
t ∈ T are determined. These so-called merger costs ∆L can be computed
as [Slo02]

∆L(ti, tj) = p(t̄) · d̄(ti, tj), (2.24)

where

d̄(ti, tj) = JSΠ{p(y|ti)||p(y|tj)} − β−1JSΠ{p(x|ti)||p(x|tj)}. (2.25)

and
p(t̄) = p(ti) + p(tj). (2.26)

In this work, maximum preservation of relevant information is desired. Hence,
the limit β −→ ∞ is of interest and thus the second term can be neglected.
Only one event y is handled at a time, all other elements stay in their clus-
ters. After the costs are computed for each cluster candidate, y is assigned
to its new cluster tnew, which causes the smallest merger costs

tnew = argmin
t

∆L(t, tj). (2.27)

This procedure is performed sequentially for every event and repeated un-
til a stable solution is found, i.e. no elements y ∈ Y are shifted between differ-
ent clusters anymore. Using several different random initial cluster mappings
tries to counteract the problem of local optimality. For input distributions
with a large event space |Y| the sequential structure of the algorithm causes
long computation times.

2.7.2 Modified Sequential Information Bottleneck Al-

gorithm

The computation time of the sequential Information Bottleneck algorithm
can be significantly reduced if the event space of the observed random variable
Y can be uniquely sorted by the log-likelihood ratio (LLR) L(y|x). A mod-
ified sequential Information Bottleneck algorithm was introduced in [LB15].
The main adaptation is that due to the mentioned order of the event space
of Y , only cluster borders between two neighbored clusters have to be opti-
mized. The theoretical background was elaborately investigated in [KY14].

18 CHAPTER 2. FUNDAMENTALS OF INFORMATION THEORY

1. initial clustering

2. check last entry in first cluster

3. check first entry in second cluster

4. check last entry in second cluster

...

Figure 2.6: Visualization of the modified sequential Information Bottleneck
algorithm.

Especially, for an interesting Information Bottleneck application, namely in-
formation optimum quantizer design, this algorithm is very useful.

At first, the initialization procedure is modified. Instead of initially choos-
ing random clusters for each event, the cluster sizes are chosen randomly.
Each cluster only consists of subsequent elements (cf. step 1. in Figure
2.6). The cumulative sum of the cluster sizes equals the sequence contain-
ing the boundaries of each of the |T | quantizer regions. The event space is
now clustered according to these borders. Starting from this initial mapping
the sequential Information Bottleneck algorithm from section 2.7.1 is used.
However, instead of computing the merger costs for each event, only the first
and the last element in a cluster are checked (cf. steps 2. and 3. in Figure
2.6). This implements the desired shifting of the quantizer region borders.
Similarly to the sequential Information Bottleneck algorithm this procedure
is repeated until the clustering does not change anymore (cf. step 4. in Fig-
ure 2.6). Obviously, the number of merger cost computations is drastically
reduced from |Y| to 2|T | − 1 per iteration.

2.7.3 Symmetric Sequential Information Bottleneck Al-

gorithm

If the ordered event space of Y is symmetric, in the sense that L(x|Y = y) =
−L(x|Y = |Y | − 1 − y) ∀y ∈ Y , the algorithm’s complexity of the modified
sequential Information Bottleneck algorithm can be halved. Optimization
over the first |T |/2 clusters only and using a flipped version of the obtained
clustering for the second half of the event space results in a symmetric clus-
tering. For a symmetric clustering, also p(x|t) is symmetric in the sense that
p(x|T = t) = 1−p(x|T = |T |− t−1) ∀t ∈ T . Sometimes it might be possible

2.7. INFORMATION BOTTLENECK ALGORITHMS 19

that the event space of Y contains duplicates, preventing a unique sort. In
this case, an additional pre-clustering is applied to group such duplicates in
order to be able to apply the modified variants of the sequential Information
Bottleneck algorithm.

2.7.4 Prior Selection

The sequential Information Bottleneck algorithm starts with choosing initial
cluster sizes. This equals the problem of prior selection in Bayesian statistics
and is well known in machine learning [Bis07]. A really useful distribu-
tion is the Dirichlet distribution Dir(α). This family is commonly used as
conjugated prior of multinomial variables and is basically a family of multi-
variate probability distributions parameterized by a vector α. Each realiza-
tion drawn from a Dirichlet distribution is a valid probability mass function.
However, the moments of this distribution, e.g. the mean, are only reached
when considering infinitely many realizations. The idea developed during
the implementation of the algorithms for this thesis is to use a Dirichlet dis-
tribution to create the initial cluster sizes for the modified and symmetric
Information Bottleneck. Doing so one creates a new degree of freedom by
putting a prior on the cluster size. In this thesis, the Dirichlet distribution
was chosen such that each entry in α is the same, i.e. αi = const, ∀i. Hence,
on average one samples a valid uniform distribution for p(t), which is a so
called non-informative prior.

20 CHAPTER 2. FUNDAMENTALS OF INFORMATION THEORY

Chapter 3

Information Bottleneck Graphs

In reality, when trying to infer a certain parameter given some observation
one is facing two different kinds of problems, namely detection and estima-
tion. If the relevant quantity X is continuous, i.e. x ∈ R the process of
inferring x given the observation y ∈ Y is called estimation. In case of X
being discrete with a finite event space cardinality |X | the inference task is
called detection.

In the previous section, it was shown that the Information Bottleneck
method is perfectly suited for classification problems. Moreover, it turns
out that the Information Bottleneck method is able to simplify processing of
inference problems [LSB16a].

Quantities, of interest for solving inference problems are, e.g,

maximum a-posteriori estimate x̂ = argmax
x

p(x|y)

marginal posterior p(xi|y)

marginal distribution of Y p(y).

Depending on the dimensionality of X obtaining the mentioned quantities
can result in an exponentially increasing workload. Factor graphs are a
graphical framework reducing the complexity by exploiting conditional inde-
pendence in a systematic way [KFL01], [Loe04]. This framework is used in
every field that involves estimation or detection and is used extensively in
the development of decoding algorithms for error correcting codes [Ksc03].

The first section of this chapter will explain how to factorize a joint dis-
tribution and transform it into a factor graph.

The algorithm used to determine the three quantities mentioned above
works on factor graphs and is called the sum-product algorithm or belief-
propagation. Using this technique and combining it with the fundamental

21

22 CHAPTER 3. INFORMATION BOTTLENECK GRAPHS

purpose of the Information Bottleneck, i.e. extracting relevant information,
results in a framework that allows to control and understand the flow of
relevant information through a complex system. This framework, called In-
formation Bottleneck graphs, was invented by Lewandowsky et al. [LSB16a]
and can be understood as information preserving extension of factor graphs.
Information Bottleneck graphs will be used throughout this thesis to explain
discrete decoder design in a graphical manner. Hence, this framework will
be introduced in detail in the second part of this chapter.

3.1 Factor Graphs

Let us assume a set of random variables X1, X2, . . . , Xn−1, Xn and the cor-
responding joint distribution p(x1, x2, . . . , xn−1, xn). According to the chain
rule [CT12], every joint distribution can be factorized as

p(x1, x2, . . . , xn−1, xn) = p(x1|x2, . . . , xn−1, xn) · p(x2| . . . , xn−1, xn) . . .

p(xn−1|xn)p(xn). (3.1)

Depending on the setting there might exist conditional independences,
such that a factorization of four random variables could be

p(x1, x2, , x3, x4) = pA(x1) · pB(x1, x2) · pC(x1, x3, x4). (3.2)

Having obtained a simplified factorization of a joint distribution by ex-
ploiting setting specific conditional independences as in (3.2), one can con-
struct a factor graph according to the following rules [Ksc03]:

1. Create a vertex for every variable Xi

2. Create a vertex for every factor pk

3. Create an edge between vertex Xi and pk if xi is an argument of pk

The corresponding factor graph to the factorization from (3.2) is shown
in Figure 3.1.

3.1.1 Sum-Product Algorithm

The main motivation to introduce factor graphs was to use their capabilities,
regarding the complexity reduction when computing marginal posteriors or
maximum a-posteriori estimates. In the previous section the construction of

3.1. FACTOR GRAPHS 23

pA

x1

pC

x4

x2

pB

x3

Figure 3.1: Factor graph corresponding to the factorization from (3.2).

factor graphs was explained. This section introduces the powerful class of
messages passing algorithms.

Starting from a factorization of a probability distribution visualized in a
graph as in Figure 3.1, the idea is to send messages which contain interme-
diate results created at one factor along an edge to the connected variable
nodes. According to some update rules, the messages are propagated further
to the connected factor nodes. This procedure is repeated until all messages
are distributed through the whole graph. Depending on the desired quan-
tity the algorithm is either called sum-product algorithm (SPA) to compute
marginal posteriors or max-product algorithm to compute the maximum a-
posteriori decision.

The outgoing message µpk−→Xj
(xj) at a factor node pk, or factor vertex,

to a variable node xj for the SPA is computed as

µpk−→Xj
(xj) =

∑

∼xj

pk(x1, . . . , xj)
∏

j 6=i

µpk−→Xi
(xi), (3.3)

where µpk−→Xi
(xi) denotes the incoming messages and pk(x1, . . . , xj) is a so-

called local function. Another more detailed example how to partition a
global function in these local functions will be given in Chapter 6.

Furthermore, ∼ xj means that the summation is about all xi except xj.
The corresponding SPA update rule to determine the outgoing message from
a variable node xj to a factor node pk is just

µXj−→pk(xj) =
∏

k 6=l

µpl−→Xj
(xj), (3.4)

The update rules for the max-product algorithm are quite similar, the
only difference is that the sum operator in (3.3) needs to be replaced by the
max operator [Bis07].

In order to determine the desired marginal distribution for a certain vari-
able Xj, all incoming messages are multiplied.

24 CHAPTER 3. INFORMATION BOTTLENECK GRAPHS

t

y1

y2

yN

. . .

tx

y1

y2

yN

. . .

=⇒

Figure 3.2: Replacing a factor vertex with an IB node transforms a general
factor graph into an Information Bottleneck graph that focuses solely on
transporting relevant message through the graph.

The sum-product algorithm only works exactly in cycle-free factor graphs.
In most practically relevant applications related to error correction decoding
these cycles exist, which requires an iterative execution of the sum-product
algorithm. A more detailed discussion on how to adapt the sum-product
algorithm for graphs with cycles is done in [Bis07]. Another common as-
sumption is that the cycles are long enough, such that their influence can
be neglected [Joh09]. This and further insides on iterative decoding will be
given in the next chapters.

3.2 Information Bottleneck Graphs

On the one hand, factor graphs help to understand complex dependencies be-
tween different random variables in a graphical manner. On the other hand,
exchanging messages between factors inside the graph allows determining
really useful quantities, e.g. maximum a-posteriori estimates and marginal
posterior distributions.

The messages exchanged while performing message passing algorithms
are probability distributions. In the previous chapter, it was discussed that
observations of an event contain not only relevant information. The idea of
the Information Bottleneck method was to extract this relevant information
and generate a compression variable T that is highly informative about the
relevant variable X and simultaneously compresses the observation Y .

Exchanging only this compression variable T instead of the original Y
during message passing would result in a significant reduction of overhead.
This is the original idea of a so-called Information Bottleneck graph [LSB16a].

Information Bottleneck graphs use a new node symbol to illustrate com-
pression mappings p(t|y), which were designed with the Information Bottle-
neck method, in a factor graph. In Figure 3.2 it is shown how a factor vertex
representing p(t|y) is replaced by an Information Bottleneck node (IB node).
This replacement transforms a general factor graph into an Information Bot-

3.2. INFORMATION BOTTLENECK GRAPHS 25

x t1 x t2 . . . tN−2 x t

p (t|y)
y1 y2 y3 yN

Figure 3.3: This Information Bottleneck graph basically visualizes a Markov
chain like concatenation of compressions. The original operation from Figure
3.2 is split up into several simpler compression steps. Hence, a box is drawn
around all these partial operations corresponding to the IB node in Figure
3.2.

tleneck graph that focuses solely on transporting relevant messages through
the graph. The IB node is a trapezoid, where a vector of observations
y = [y1, y2, . . . , yN]

T is connected to all but the shortest sides and the com-
pression variable is connected to the shortest side. The relevant variable is
written in the center of this node.

The shape of this IB node was chosen wisely [LSB16a] since message pass-
ing in an Information Bottleneck graph is not exactly the sum-product algo-
rithm with compressed messages. The trapezoid acts like an arrow indicating
in which direction the relevant information is propagated through the graph.
Hence, in more complex systems like in Figure 3.3 Information Bottleneck
graphs visualize the flow of relevant information inside a system [LSB16a].

Figure 3.3 could be the corresponding Information Bottleneck graph ob-
tained from a simple Markov chain [Bis07]. Observations gathered in the past
are combined with a new evidence or observation. In state-of-the-art message
passing moving only forward in time is referred to as filtering, whereas also
allowing messages propagating backwards is denoted as smoothing [Bis07].
In the shown Information Bottleneck graph the focus is solely on transport-
ing the relevant information obtained in the past to future steps, but not on
backward propagation. This is also indicated by the shape of the IB node.
Once the compression is applied, it is not possible to infer the original input
sequence y uniquely.

Furthermore, there is another interesting relation between Figure 3.2 and
Figure 3.3. The Information Bottleneck graph shown in Figure 3.2 indicates
that all inputs y are compressed at a time. It is also possible to split up the
compression in several partial compression, where the output of the previous
IB nodes is one input together with a new observation yi at the next IB node.
Hence, one obtains a Markov chain like concatenation of simple compression
operations. This approach is sometimes referred to as opening the node

26 CHAPTER 3. INFORMATION BOTTLENECK GRAPHS

[KYK08], [LSB16a], [LSB16b]. A box is drawn around all these IB nodes in
Figure 3.3 to indicate that they perform the same task as the single node in
Figure 3.2. The chosen notation is mathematically rigor, since

p(t|y) =
∑

∼t

p(t1, t2, . . . , tN−2, t|y). (3.5)

This simple example illustrates the possibility of hierarchical modeling
using Information Bottleneck graphs, meaning that a very complex systems
can be split into smaller systems with lower complexity.

Chapter 4

Low-Density Parity-Check

Codes

The first communication engineers designing digital communications systems
were convinced that transmitting information in the presence of additive
noise would always cause non-correctable transmission errors [Joh09]. In
1948, Claude Shannon’s work ”A Mathematical Theory of Communication”
[Sha01], proved all these engineers to be wrong. Shannon claimed that by
using forward error correction (FEC) codes it is possible to achieve error-
free transmission as long as the rate of this code is below the capacity of a
channel. This statement was formalized as

R < C, (4.1)

where R denotes the code rate and C denotes the channel capacity. He found
the capacity of a channel to be the maximum mutual information between
channel input X and output Y

C = max
f(X)

I(X;Y), (4.2)

where f(X) is the probability density function of the channel input signal.
His findings created an all new field of research, called information theory.

In (4.1) the code rate achieving error-free transmission is upper bounded,
but it was not stated how to construct such a code. It was just a proof of
existence. In another theorem, the so-called ”Separation Theorem”, Shannon
stated that it is most beneficial to remove all the redundancy in a message
first and then add redundant bits in a defined manner in a second step. The
first step is called source compression, whereas the second step is referred to
as channel coding. Consequently, having a message of K information bits the
insertion of additional bits yields a longer vector of length N . This vector

27

28 CHAPTER 4. LOW-DENSITY PARITY-CHECK CODES

is called the codeword. The ratio of information bits to codeword length
defines the code rate R

R =
K

N
. (4.3)

Obviously, for decoding a codeword at the receiver the insertion of redundant
bits needs to follow predefined rules, which are known to the receiver. The
process of adding redundant bits is called encoding. One strategy of encoding
is to take one block of K information bits at a time and generate a block of
N code bits. FEC codes which are generated this way are called block codes.
Many different block codes exist, but from a mathematical perspective all of
them, which are linear, can be represented using the simplified vector-matrix
notation

c = Gu, (4.4)

where u is a column vector of length K holding the information bits, c is
a column vector length N holding all code bits and finally G denotes the
N ×K generator matrix. It is interesting to mention that a particular code
can be generated using different generator matrices. A code is defined by the
set of codewords, as long as this set is identical, it is still the same code with
its same properties and only a different encoding rule. In order to explain
how a block code works it is easiest to consider a special kind of block codes,
namely systematic block codes. A code is called systematic if the information
bits used for encoding are still a visible part of the codeword. Therefore, the
generator matrix consists of two parts

G =

[
IK
P

]

, (4.5)

namely a K × K identity matrix IK and a (N − K) × K matrix P. The
matrix P holds the equations used to calculate parity bits. The combination
of these equations characterizes the code and defines how the redundant bits
are constructed. These equations are also used at the receiver to distinguish
between valid and non-valid codewords. A codeword is called valid if it
satisfies all parity-check equations. Therefore, at the receiver

s = Hc = 0 (4.6)

needs to be fulfilled, where s is called syndrome. H is the parity-check matrix.
For a systematic code, the parity-check matrix H can be written as [Joh09]

H =
[
−P, IN−K

]
. (4.7)

29

Since all operations are performed in the Galois Field 2 (GF(2)), the minus
sign in (4.7) equals the logical negation.

After Shannon’s publication in 1948 many ideas about how to design
codes came up and many of them were block codes. What they had in com-
mon was that the code design started with the generator matrix, admittedly
an intuitive approach. By doing so many code properties could be set easily
and the error correction ability is often known and fixed.

In his Ph.D. thesis from 1962 Gallager proposed a new class of codes
low-density parity-check (LDPC) codes [Gal62]. The results of his Ph.D.
thesis gained only minor practical relevance for a long time until they were
resurrected by MacKay et al. [MN95]. One main reason was that at the
time of their invention, LDPC codes could not be simulated accurately for
large block lengths with existent computers. Furthermore, from a classical
perspective, considering block codes being well structured and having known
error correction performance, LDPC codes are the complete opposite. In
contrast to classical codes, like Hamming codes, the design does not start at
the transmitter by finding a generator matrix. LDPC code design starts with
constructing a parity-check matrix. As the name implies this parity-check
matrix is generally not well structured, but rather sparse.

There is no unique way to design a ”good” LDPC code nor is there a pos-
sibility to make distinct statements about the error correction performance
after the construction. In contrast to short Hamming codes, LDPC codes
have to be quite long. Many different code construction techniques exist and
are well explained in [Joh09] and [RL09], but will not be addressed further
in this thesis.

Although the error correction performance cannot be predicted for one
particular code, code ensembles can be used to yield probabilistic perfor-
mance measures. One approach to determine the so-called ensemble thresh-
old is density evolution. Density evolution and its discretized version are
integral topics of this thesis and will be covered in more detailed in Chapter
5 and Chapter 6.

So far, channel coding using block codes was introduced in general. In
the following, the briefly mentioned structure and properties of LDPC codes
will be explained in more detail, but from a practical, applied perspective.
Since the main work in this thesis focuses on discrete LDPC decoding the
structure of this chapter is oriented towards a communication chain. Hence,
the first section will focus on how to encode codewords for a given block of
information bits. Since the parity-check matrix is of main importance for
the decoding, a different, graphical notion of this matrix is brought up, so-
called Tanner graphs. Accompanied by own remarks and descriptions most
formulas in these two sections are derived according to [Joh09]. Finally,

30 CHAPTER 4. LOW-DENSITY PARITY-CHECK CODES

the decoder of an LDPC code is explained. In addition, different decoding
algorithms with varying complexity and accuracy are introduced briefly.

4.1 Encoding LDPC Codes

In the first part of this chapter it was shown how to derive the parity-check
matrix H for a given generator matrix G. Usually, LDPC code encoding
addresses the inverse problem. For systematic codes, this does not cause big
problems because analogous to (4.7) for a given parity-check matrix [Joh09]

H =
[
P IN−K

]
(4.8)

a generator matrix satisfying

HG = 0, (4.9)

can be found as

G =

[
IN−K

−P

]

. (4.10)

The assumed orthogonality between generator and parity-check matrix in
(4.9) follows directly from the generalization of the syndrome check equation
in (4.6).

In general, randomly generated sparse parity-check matrices do not have
the structure from (4.8) and therefore a systematic generator matrix cannot
be found as easy as in (4.10). Hence, different techniques need to be used.
The first approach is to transform an arbitrary parity-check matrix into the
form from (4.8) by applying Gauß-Jordan elimination. A second option is
to avoid calculating the generator matrix and encode using the parity-check
matrix. This can be done by applying forward and backward substitution.
Both techniques will be explained more precisely in the next sections.

4.1.1 Gauß-Jordan Elimination

The first intuitive approach is to transform the given parity-check matrix
into the form from (4.8). This can be done by applying the Gauß-Jordan
elimination as explained in [AORS11]. This algorithm is an extension of
the well know Gauß elimination. When performing Gauß elimination the
resulting matrix is called to be in row echelon form, which basically means
that it has an upper triangular matrix at the left side:

4.1. ENCODING LDPC CODES 31

A =

1 a1,2 . . . a1,K b1,1 . . . b1,N−K

0 1 . . . a2,K b2,1
. . .

...
... 0

. . .
...

...
. . .

...
0 . . . 0 1 bN−K,1 . . . bN−K,N−K

(4.11)

This can be achieved by applying elementary row operations, namely
interchanging and addition. As mentioned earlier one code can have different
encoders, or generator matrices, as long as the set of codewords is the same.
Elementary row operations do not change the generator matrix of a code. The
next step is to transform the parity-check matrix into reduced row echelon
form. A matrix is called to be in reduced row echelon form if the left part
of (4.11) is basically the identity matrix, meaning that all coefficients are
zero, except the diagonal which contains entries equal to one. Again, this
can be achieved by performing elementary row operations. Finally, applying
column permutations results in the desired, transformed parity-check matrix
from (4.8).

Although all computations are done in advance, the generator matrix is
not sparse resulting in a cumbersome vector-matrix multiplication for every
sequence of information bits that has to be transmitted. The resulting com-
plexity O(N2) for matrix multiplication becomes problematic. On the one
hand, in practically relevant scenarios LDPC codes have long codewords con-
taining hundreds or thousands of bits. On the other hand, when analyzing
the code using simulations large numbers of codewords have to be transmit-
ted to yield sufficient error statistics [Joh09]. Hence, this approach is neither
relevant for most practical implementations nor during the design evaluation.

4.1.2 Backward and Forward Substitution

Another approach is generating the codeword directly from parity-check ma-
trix. Starting with (4.6), we can split up c into two parts

c =
[
cTK , c

T
N−K

]T
, (4.12)

where cK holds the known information bits and cN−K holds the desired,
unknown parity bits. Splitting up H similarly and solving for cN−K results
in

[
HK ,HN−K

] [
cTK , c

T
N−K

]T
= 0 (4.13)

HN−KcN−K = HKcK (4.14)

cN−K = H−1
N−KHKcK . (4.15)

32 CHAPTER 4. LOW-DENSITY PARITY-CHECK CODES

Due to the sparseness of the matrix in the first multiplication, this op-
eration is computational less expensive. On the other hand, calculating the
inverse of a large square matrix is O(N3) complex. Hence, one rather stops
at (4.14) and solves the system of equations. In order to solve

HN−KcN−K = HKcK , (4.16)

HN−K is first decomposed in an upper triangular matrix U and a lower
triangular matrix L. An efficient algorithm, called LU-decomposition, exists
[AORS11]. The LU-decomposition in its general form is written as

PHN−K = LU, (4.17)

where P denotes a pivot matrix, permuting the rows in HN−K . Please note,
that all computations need to be performed in the GF(2). Once the decom-
position is calculated, the vector z which solves

Lz = PHKcK (4.18)

is determined by forward substitution. Finally,

UcN−K = z (4.19)

is solved by backward substitution to determine the missing parity bits.
The overall complexity reduction results from an efficiency backward and

respectively forward substitution and the LU-decomposition with complexity
2
3
O(N3) According to [Joh09], this approach allows encoding of LDPC codes

in almost linear time. The only requirement is that HN−K can be inverted
in GF(2), otherwise column or row permutations have to be applied.

Since one part of this master thesis is verifying approaches for discrete
decoder design by simulations and compare obtained results to state-of-
the-art decoder, implementing an encoder to generate codewords is essen-
tial. Following the discussion above, the second encoding method using LU-
decomposition was implemented.

4.2 Tanner Graphs

Block codes are typically investigated using tools from linear algebra. When
dealing with LDPC codes the structure of the parity-check matrix is of crucial
importance. However, investigating sparse matrices with only very few non-
zero entries can be confusing. Therefore, a graphical representation of the
parity-check matrix was introduced, namely Tanner graphs. Tanner graphs

4.2. TANNER GRAPHS 33

c1 c2 c3 c4 c5 c6

(a)

c1 c2 c3 c4 c5 c6

(b)

Figure 4.1: Tanner graph for a regular LDPC code. The colored edge corre-
sponds to the colored one in matrix (4.20).

belong to the class of bipartite graphs. This kind of graphs is used to visual-
ize the connections between two disjoint sets. The two sets of an LDPC code
tanner graph are called variable or bit nodes and check nodes. Although this
section deals with Tanner graphs, outlining relations to the matrix represen-
tation are necessary to understand the construction of Tanner graphs.

The given parity-check matrix

H =

1 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 1 1
0 0 1 1 0 1

(4.20)

is considered. It should be mentioned that (4.20) defines a bad LDPC code
because H is not sparse and also very small. However, the corresponding
Tanner graph is shown in Figure 4.1a. The upper set represented by blue
circles corresponds to variable nodes. The lower set of orange rectangles
illustrates check nodes. Each row in (4.20) represents one check node equa-
tion. According to the vector-matrix multiplication from (4.6) each column
of (4.20) is multiplied by one information bit and specifies in which parity-
check equation a bit is involved. Consequently, each column represents a
variable node and each row corresponds to a check node. Since a connection
between a check node and variable node can only either exist or not, a one in
the matrix indicates a connection, whereas zero means no connection. This
relation is visualized by an edge in the graph. For illustration purposes, one
edge is colored in red and the corresponding entry in the parity-check matrix
(4.20) is colored in red too.

Having transferred the parity-check matrix representation into a Tanner
graph allows analyzing the graph. In section 4.3 message passing algorithms
will be introduced sending extrinsic information along the edges of a Tanner
graph. It can be seen that so-called cycles exist in the graph. A cycle
is a sequence of connected nodes which starts and ends at the same node

34 CHAPTER 4. LOW-DENSITY PARITY-CHECK CODES

and does not touch other nodes in between more than once. The length
of such cycles can influence the decoding performance significantly. Long
cycles are preferred, whereas the shortest one, called girth [Joh09], bounds
the performance.

Further important quantities are the node degree and the closely related
node-degree distribution. In a first step, all possible node degrees are deter-
mined by counting the number of connections at a node. The parity-check
matrix (4.20) has only one variable node degree dv and one check node degree
dc

dv = 2, ∀v ∈ V (4.21)

dc = 3, ∀c ∈ C (4.22)

A code with one distinct check node degree and also only one particular
variable node degree is called regular. Consequently, the code from (4.20) is
regular.

Figure 4.1b shows a Tanner graph of a code which is different in terms of
the so-called degree distribution. The degree distribution can be described in
two different ways. One possibility is providing the fraction of nodes with a
particular node-degree in vector notation. This approach yields the so-called
node-degree distribution [Joh09]. To characterize a code, two vectors

dv = [dv,1, dv,2, · · · , dv,max]
T

and
dc = [dc,1, dc,2, · · · , dc,max]

T,

holding the fraction of rows or columns having the same weight i, are defined.
The smallest possible weight is i = 1 and the fraction of rows or columns
with weight one are stored in the first entry of dv, i.e. dv,1, or respectively
in the first entry of dc, i.e. dc,1. For the example shown in Figure 4.1b this
yields

dv =

[
1

2
,
1

3
,
1

6

]T

(4.23)

dc =

[

0, 0,
2

3
,
1

3

]T

. (4.24)

In contrast to the first example this code has different node degrees and is
called to be irregular.

Another possibility of characterizing an LDPC code ensemble is from an
edge perspective. Hence, this approach is called edge-degree distribution

4.3. DECODING LDPC CODES 35

[Joh09]. This distribution is better suited to understand density evolution
in Chapter 5 and also for the generalization of discrete density evolution in
Chapter 8. When using the edge-degree distribution the fraction of edges
connected to variable nodes with degree i is denoted as λi. The fraction of
edges connected to check nodes with degree i is denoted as ρi. It is possible
to transform the node-degree into the edge-degree distribution by applying

dv,i =
λi/i

∑

j λj/j
(4.25)

dc,i =
ρi/i

∑

j ρj/j
(4.26)

In (4.3) it was defined how to compute the rate of a block code in general.
For an LDPC code, this formula can be expressed in terms of the degree
distribution as

R =
K

N
= 1−

∑

i dv,ii∑

j dc,jj
= 1−

∑

j ρj/j
∑

i λi/i
(4.27)

for a full rank parity-check matrix.
For a regular LDPC code (4.27) simplifies to

R = 1− dv
dc

(4.28)

4.3 Decoding LDPC Codes

Digital transmission over noisy channel always suffers from bit errors. The
task of a decoder is to detect and correct errors if possible. For block codes
measures like the Hamming distance can be used to predict the detection and
correction capabilities of a code. The optimum decoding strategy in terms of
the word error rate is maximum a-posteriori decoding because it minimizes
the expected posterior loss for detection problems. This decoding approach
compares the received sequence to all possible codewords and chooses the
most likely one. This can be formulated as

û = argmax
u

p(u|y). (4.29)

In this notation p(u|y) is the a-posteriori probability for a given received vec-
tor y, which considers the statistics of the channel and a-priori knowledge.
For short codes this approach is optimum and the comparison is feasible. For

36 CHAPTER 4. LOW-DENSITY PARITY-CHECK CODES

LDPC codes this approach would also be optimal but the number of code-
words to compare with is huge, since for a code with K information bits,
2K codewords exist. However, other techniques with much less complexity
performing close to bitwise a-posteriori performance exist. Such techniques
make use of the induced structure of the code, e.g. the sparseness of the
parity-check matrix. As shown in the previous section parity-check matrices
can be visualized using Tanner graphs. The idea is to send extrinsic informa-
tion along the edges of the graph. This class of decoding algorithms is called
message passing. The message exchange has to be repeated iteratively until
all information needed to decode the received sequence is distributed through-
out the entire graph. Therefore, message passing algorithms belong to the
class of iterative decoding techniques. It turns out that if the girth is large,
this iterative message exchange yields near optimum performance [Joh09].

The main complexity reduction compared to maximum a-posteriori de-
coding is achieved by message passing decoding, but the graph based receiver
design offers another degree of freedom, that is, the complexity of the applied
node operations. One bottleneck of iterative decoding is the limited speed
when the number of iterations increases. Hence, two options exist, namely
simplifying the node operations, resulting in a speed up due to complexity
reduction or reducing the number of iterations. The second option is typ-
ically not a good idea because especially for signal-to-noise ratios close to
the decoding threshold many iterations are required to obtain good error
correction performance.

Hence, three state-of-the-art decoding algorithms performing different op-
erations at the variable and check nodes are introduced. The bit flipping algo-
rithm belongs to the class of hard decision decoding techniques, whereas the
two other algorithms are soft decision decoding algorithms. The name hard
decision indicates a high compression of the transmitted messages because
they can take only binary states, namely 0 and 1. Soft decision techniques,
however, exchange probabilities or more precise, scalar representatives called
log-likelihood ratio (LLR). These LLRs can take a high dynamic range and
need to be represented with high resolution in order to obtain the best de-
coding results. The different advantages and drawbacks of the three briefly
mentioned message passing algorithms will be discussed in more detail in the
next sections.

4.3.1 Bit Flipping Decoding

As mentioned above the messages sent along an edge in the Tanner graph
are binary. Hence, this hard decision message passing algorithm causes only
small overhead when messages are exchanged and also the operations at the

4.3. DECODING LDPC CODES 37

variable and check nodes are quite simple. The algorithm starts with an
initialization of all variable nodes. The values used for this step are obtained
from the detector directly and binary. In the first iteration these bits are
passed along the edges to connected check nodes. The task of a check node is
to generate extrinsic information. For generating extrinsic information about
bit i at the jth check node, the incoming knowledge about bit i is ignored
and the value that satisfies the jth parity-check equation, by taking the other
incoming bits into account, is determined. The result is the outgoing bit on
the ith edge of the jth check node. This procedure is repeated at all check
nodes for all outgoing bits. In the next step, the situation has changed and
the messages are sent from the check nodes to the variable nodes. The node
operation at a variable node is similar to a repetition code. A majority
decision is performed on all incoming bits and if the majority differs from
the received bit then it is flipped. Now one iteration is done. This procedure
is repeated until all parity-checks are satisfied or until the maximum number
of iterations is reached. The drawback of this approach is the rather poor
decoding performance, caused by the limited number of states, which cannot
maintain any information about the certainty of the decision.

4.3.2 Belief Propagation Decoding

As mentioned above the missing presence of an uncertainty measure generally
impairs the performance of hard decision algorithms. This is taken care of
when performing belief propagation decoding. As the name implies, the idea
is that a more or less save belief propagates through the graph. The belief
is a probabilistic quantity and generated from a probability distribution. In
the most general setting, the belief is just a probability distribution itself.
When dealing with a discrete, binary event space a scalar representative can
be computed. This value is called log-likelihood ratio (LLR). For a binary
random variable X, the LLR L(x) is defined as

L(x) = log
Pr(X = +1)

Pr(X = −1)
. (4.30)

It is interesting to notice that the sign of L(x) provides the same information
about x as obtained from hard decision and the magnitude |L(x)| indicates
the reliability of the belief. From a practical perspective, it can be seen that
numerical instabilities can occur if the ratio inside log approaches 0 or if
Pr(X = −1) is close to zero. Furthermore, on the first glance already quite
small magnitudes like 10 express high certainties

Pr(X = +1) =
eL(x)

1 + eL(x)
=

e10

1 + e10
= 0.99995 (4.31)

38 CHAPTER 4. LOW-DENSITY PARITY-CHECK CODES

In the next step, the node operations need to be adapted to handle this
new measure of belief. However, the general procedure is quite similar to bit
flipping decoding. The majority vote at the variable node for hard decision
is replaced by a multiplication of beliefs. Multiplying beliefs corresponds to
a summation of LLRs. Denoting the channel output LLR as Lc(xi), and
extrinsic LLRs received from check nodes over edge j as Lext,j(xi), yields

Li(x̂i) = Lc(xi) +
∑

j

Lext,j(xi) (4.32)

at the ith variable node for the final bit decision. Since only the extrinsic
information should be sent back along the edge, the LLR received from this
edge is excluded during the iterative decoding

Lext,j(xi) = Lc(xi) +
∑

j 6=j′

Lext,j′(xi). (4.33)

The channel output LLR Lc(xi) is computed using conditional probabilities
[Joh09]

Lc(xi) = log
Pr(Xi = +1|yi)
Pr(Xi = −1|yi)

(4.34)

= log
Pr(yi|Xi = +1)Pr(Xi = +1)

Pr(yi|Xi = −1) Pr(Xi = −1)
(4.35)

= log
Pr(yi|Xi = +1)

Pr(yi|Xi = −1)
︸ ︷︷ ︸

channel information

+ log
Pr(Xi = +1)

Pr(Xi = −1)
︸ ︷︷ ︸

a-priori information

(4.36)

This formula serves as a starting point in later chapters when information
optimum quantizer for the channel outputs are derived. Since all soft decision
decoding algorithms are initiated with these LLRs, keeping as much relevant
information as possible about the channel output is of crucial importance.

Deriving the operation applied to LLRs at the check nodes is a bit cum-
bersome. As for hard decision decoding the parity-check equations have to
be solved. The elementary operation for this task is the (mod 2)-sum. Com-
puting L(xi ⊕ xj) results in

L(xi ⊕ xj) =
eL(xi)eL(xj) + 1

eL(xi) + eL(xj)
= L(xi)⊞ L(xj), (4.37)

where L(xi) ⊞ L(xj) is called the box-plus operation [HOP96]. The overall
equation for a general check node equals

Lext,j(xi) =
∑

j 6=j′

⊞Lext,j′(xi). (4.38)

4.3. DECODING LDPC CODES 39

Similar to the bit flipping decoding the belief propagation algorithms stops
if all check equations are satisfied or the maximum number of iterations is
reached.

4.3.3 Min-Sum Decoding

The box-plus operation performed at the check nodes is very computationally
expensive and different ways to simplify this expression exist. One alternative
is to use min-sum decoding instead of pure belief propagation. Rewriting
(4.38) as

∑

j 6=j′

⊞Lext,j′(xi) = log
1 +

∏

j 6=j′ tanh (Lext,j′(xi)/2)

1−∏j 6=j′ tanh (Lext,j′(xi)/2)
(4.39)

indicates that the product term is dominated by the Lext,j′(xi) with the
smallest magnitude |Lext,j′(xi)|. Furthermore, the (mod 2)-sum performed
for hard decision equals the multiplication of Lext,j′(xi) signs. Consequently,
this approximation yields

Lext,j(xi) ≈
∏

j 6=j′

sign {Lext,j′(xi)}min {|Lext,j′(xi)|} (4.40)

The resulting complexity reduction follows directly from the simplified node
operation. However, the exchanged messages need to be represented with
high precision, so there is no complexity reduction during the message ex-
change.

40 CHAPTER 4. LOW-DENSITY PARITY-CHECK CODES

Chapter 5

Density Evolution

In the previous chapter, LDPC codes were introduced. These codes are very
powerful error correction codes, which can operate close to the theoretical
optimum. But this is only true, if the degree distribution and other prop-
erties are set correctly. The error correcting behavior of an LDPC code is
strongly non-linear, i.e once a channel parameter, e.g. the noise variance of
an additive white Gaussian noise (AWGN) channel, reaches the threshold,
the bit error rate (BER) drops dramatically. This region is called the water-
fall region. Due to cycles inside the Tanner graph, the assumption that only
extrinsic information is exchanged in every iteration, is violated if the num-
ber of iterations extends twice the girth. Hence, even for high signal-to-noise
ratios (SNR), the BER does not fall below a certain value. This behavior is
called error floor and the corresponding region is known as error floor region.

When constructing LDPC codes, one is interested in the threshold at
which the code starts correcting all errors after a sufficient number of per-
formed iterations. Ideally, one would like to determine this point in advance,
in order to evaluate the suitability of an LDPC code for a certain applica-
tion. Due to the often random construction and other factors the perfor-
mance prediction for a specific code is not possible yet and still a big field of
research [Joh09].

As mentioned earlier, an approach evading this impairment is to con-
sider a probabilistic quantity the so-called code ensemble. A code ensemble
represents the set of all possible realizations of a code with certain proper-
ties, like the degree distribution. A technique called density evolution allows
evaluating the average threshold performance of a code ensemble. As the
name implies, the idea is to track the evolution of probability distributions
of the messages, which are passed around during the iterative decoding. In
the end, the resulting probability distribution indicates if errors remain or
not. Thus, one can adjust the noise power in a simulation accordingly un-

41

42 CHAPTER 5. DENSITY EVOLUTION

til the threshold is found. Passing around continuous probability density
functions with an event space bounded by ±∞ can hardly be realized on
a computer. Hence, discretized and simplified versions of density evolution
were developed [KYK08]. In general, performing density evolution fast and
with limited complexity but the same precision and validity is of interest.
One alternative concept to approximate density evolution is designing ex-
trinsic information transfer (EXIT) charts. When using EXIT charts only
the mutual information of LLRs with underlying Gaussian densities are con-
sidered, instead of tracking the original, maybe not Gaussian, probability
density function [Joh09].

The main focus of this thesis is on a different, more general approach
firstly presented by Kurkoski, et. al. in 2008 [KYK08]. In their publication
”Noise Thresholds for Discrete LDPC Decoding Mappings” [KYK08] they
proposed an intelligent way of splitting up check and variable nodes and
compressing the obtained intermediate results of the partial node operations
without significantly reducing the amount of exchanged information.

A detailed explanation of this new, discrete density evolution scheme will
follow in the next chapter. Beforehand, continuous density evolution will
be explained together with all assumptions and requirements. Thereafter,
density evolution for regular LDPC codes will be introduced. The following
two sections explain how to lower the threshold by using irregular codes and
how density evolution can be adopted for irregular LDPC codes.

5.1 Prerequisites

Density evolution is a powerful, generic technique to find the decoding thresh-
old of LDPC codes. However, the concept itself is based upon several as-
sumptions regarding the properties of iterative LDPC code ensembles. These
assumptions will be listed, introduced and explained in the following. The
main references for this section are [Joh09] and [RL09].

Symmetric distributions For density evolution symmetry of the trans-
mission channel is assumed, meaning that the channel transition prob-
ability density function satisfies f(y) = p(y|X = 1) = p(−y|X = −1).
Consequently, the output LLRs are also symmetric.

All-zeros codeword For symmetric channel distribution it can be proven
that the iterative decoding performance is independent of the actual
transmitted codeword. Consequently, for simplicity, only the all-zeros
codeword is used to evaluate the decoding performance.

5.2. DENSITY EVOLUTION FOR REGULAR LDPC CODES 43

Concentration theorem This theorem states that the a randomly chosen
code from the ensemble will show a performance close to the ensemble
average performance with high probability when the codeword length
tends to infinity.

Cycle-free graphs For codeword length approaching infinity the perfor-
mance achieved by an iterative decoder approaches the one obtained
in a cycle-free graph. As mentioned above, as long as the number of
iteration is smaller than two times the girths, exchanged message can
be assumed as independent.

Density evolution is a general approach and works for any symmetric
channel. In this thesis, the binary-input AWGN (BI-AWGN) channel will
be used for simulation. However, the simpler binary erasure channel (BEC)
is better suited for an easy understanding of density evolution. In Figure
5.1a the conditional probability density functions of a BI-AWGN channel
output are shown. It can be seen that the channel output y is continuous,
i.e. y ∈ R. Figure 5.1b visualizes the BEC model. In contrast to the AWGN
channel, the channel output of a BEC is discrete and can take only three
states y ∈ {−1, e,+1}. The probability that a bit is erased is ǫ and 1 − ǫ
denotes the probability of a correct transmission.

Since only the all-zeros codeword needs and will be considered, what
density evolution basically does, is a simultaneous, probabilistic, iterative
decoding of all possible channel outputs of the transmitted all-zeros code-
word. Repeating this procedure for different channel parameters, like noise
variance, finds the threshold for an LDPC code ensemble which partitions
the channel parameter space in one region where error free transmission is
possible and another where errors remain.

The last assumption regarding cycle-free graphs contains a common in-
formation theoretical prerequisite, namely that most of the obtained theo-
retical results are only true for infinitely long codewords as well as infinitely
many iterations. Obviously, this assumption will be violated in practice.
Nevertheless, it turns out the performance degradation is often acceptably
small [Joh09].

5.2 Density Evolution for Regular LDPC Codes

At first finding the threshold of a regular LDPC code ensemble T (dc, dv)
with check node degree dc and variable node dv is derived. Density evolution
models the exchanged messages m as random variables. The probability
density function of a message m(v), which is passed from a variable node v

44 CHAPTER 5. DENSITY EVOLUTION

−1.5 −1 −0.5 0 0.5 1 1.5

0.5

1

1.5

2

2.5

p(y|x = −1) p(y|x = +1)

y

p(y|x)

(a) Conditional probabilities for a
BI-AWGN channel output

-1

+1

-1

e

+1

1− ǫ

ǫ

ǫ

1− ǫ

(b) Binary erasure channel

Figure 5.1: In this figure two very common channel models are shown. The
BI-AWGN channel will serve as channel model for simulations throughout
the thesis. The binary erasure channel is better suited as a simplified intro-
duction to density evolution.

to a check node at iteration l is denoted as p
(v)
l . Since only the all-zeros

codeword u = [0, 0, . . . , 0]T is sent, the sequence x = [+1,+1, . . . ,+1]T will
be transmitted according to the defined bit mapping. Consequently, an error
is made if any variable node a has negative LLRs Ltotal(x̂i) after the maximum
number of iterations. In mathematical terms, no errors are made if

lim
l→∞

∫ 0

−∞

p
(v)
l (α)dα = 0, (5.1)

because Ltotal(x̂i) cannot be negative if (5.1) holds. p
(v)
l (α) depends on the

channel parameters α. For a BEC α is the erasure probability ǫ and α is
the standard deviation σ of the Gaussian channel noise for a BI-AWGN.
Consequently, the threshold can be defined as [RL09]

α∗ = sup

{

α : lim
l→∞

∫ 0

−∞

p
(v)
l (τ)dτ = 0

}

. (5.2)

5.2. DENSITY EVOLUTION FOR REGULAR LDPC CODES 45

Developing p
(v)
l and p

(c)
l for the BEC is straightforward. The check-to-variable

message m(c) will be e if any of the dc − 1 incoming processed messages m(v)

is e. Hence,

p
(c)
l = 1− (1− p

(v)
l)dc−1. (5.3)

The message m(v) at iteration l will be an erasure e, if all incoming messages
m(c) are erasures, which is true with probability p

(c)
l−1, as well as the initial

value also being an erasure. This can be denoted as

p
(c)
l = ǫ(p

(c)
l−1)

dv−1 (5.4)

and by substitution rewritten as

p
(c)
l = ǫ

(

1− (1− p
(v)
l−1)

dc−1
)dv−1

. (5.5)

Therefore, when denoting the initial value p
(v)
0 , with p

(v)
0 = ǫ, density evolu-

tion for T (dc, dv) and BEC equals

p
(v)
0 = ǫ, p

(v)
l = ǫ

(

1− (1− p
(v)
l−1)

dc−1
)dv−1

(5.6)

The general derivation of p
(v)
l and p

(c)
l requires some more mathematics. As

derived in section 4.3 the outgoing message at a variable node equals

m(v) = mchannel +
dv−1∑

j=1

m
(c)
j , (5.7)

where m0 denotes the channel message and m
(c)
j denotes the incoming check

messages. When assuming independence of the check node messages m(c) the
resulting probability density function is the convolution

p
(v)
l = pchannel ∗

[

p
(c)
l−1

]∗(dv−1)

. (5.8)

The (dv − 1) fold convolution can be applied, because the considered code

ensemble is regular, i.e. all probability density functions p
(c)
j , j > 0 are

identical. The computation of p
(v)
l can be implemented by a fast Fourier

transform

p
(v)
l = F−1

{

F {pchannel}
[

F
{

p
(c)
l−1

}]dv−1
}

(5.9)

46 CHAPTER 5. DENSITY EVOLUTION

Deriving a technique to compute p
(c)
l is more complicated. In section 4.3 it

was shown that determining the outgoing check node message involves the
box-plus operation. Rewriting (4.39), yields

m
(c)
j =

∑

j 6=j′

⊞m
(v)
j′ = log

1 +
∏

j 6=j′ tanh
(

m
(v)
j′ /2

)

1−∏j 6=j′ tanh
(

m
(v)
j′ /2

) . (5.10)

The necessary steps to compute p
(c)
l , by transforming the incoming message

probability density functions correctly according to (5.10), are quite long. A
very detailed derivation is given in [RL09]. For simplicity only the fundamen-
tal ideas will be introduced. The first step is to determine the probability
density function of the new auxiliary random variable

zi = φ
(

m
(v)
j

)

= − log tanh

(

m
(v)
j

2

)

.

The resulting transformation will be denoted as Γ
[

p
(v)
l

]

. The second

step starts with rewriting the product inside the log in (5.10) as sum. The
summation of the independent, transformed random variables zi involved, is
again a convolution. Similarly, to (5.8) this can be written as

p(w) = p(z)∗(dc−1) = Γ
[

p
(v)
l

]∗(dc−1)

, (5.11)

where w denotes another auxiliary random variable

w =
dc−1∑

i=1

zi.

Rewriting as sum requires an additional inversion φ−1 [RL09]. Hence, p
(c)
l

can be found compactly as

p
(c)
l = Γ−1

[

Γ
[

p
(v)
l

]∗(dc−1)
]

(5.12)

Substituting (5.12) in (5.8) yields the iterative general update equation for
density evolution considering regular LDPC code ensembles

p
(v)
l = pchannel ∗

[

p
(c)
l−1

]∗(dv−1)

(5.13)

= pchannel ∗
(

Γ−1

[

Γ
[

p
(v)
l−1

]∗(dc−1)
])∗(dv−1)

. (5.14)

5.3. THRESHOLD IMPROVEMENT USING IRREGULAR LDPC CODES47

A more detailed understanding of (5.14) is not required, since the more
important formulas for discrete density evolution are derived differently and
involve less complex computations. Nevertheless, (5.14) is not only given
for completeness but also needed as starting point for the generalization of
discrete density evolution for irregular LDPC codes in Chapter 8.

5.3 Threshold Improvement using Irregular

LDPC Codes

Having obtained a possibility to determine the decoding threshold, moving
this threshold closer to the theoretical limit is desirable. In the previous chap-
ter, a more flexible class of LDPC codes was introduced which improves the
decoding performance significantly, i.e. irregular LDPC codes. In a Tanner
graph, irregular codes have varying variable and check node degrees. Vari-
able nodes with a high node degree can generate high LLR values, indicating
low uncertainty and can thereby help to decode bits related to nodes with a
lower degree. When generalizing density evolution for irregular LDPC codes,
the fraction of edges connected to a certain node degree is of interest. In the
previous chapter, this representation was introduced as edge-degree distri-
bution. An alternative mathematical notion is to express the edge-degree
distribution as polynomials

λ(x) =

dv,max∑

i=1

λix
i−1 = λ1 + λ2x+ λ3x

2 + · · · (5.15)

ρ(x) =

dc,max∑

i=2

ρix
i−1 = ρ2x+ ρ3x

2 + · · · . (5.16)

5.4 Density Evolution for Irregular LDPC Codes

In this section, the update equations from (5.12) and (5.14) are extended to
irregular codes.

At first, (5.8) needs to be adapted, to account for all possible variable
node degrees and their appearance probabilities

p
(v)
l = pchannel ∗

dv,max∑

i=1

λi ·
(

p
(c)
l−1

)∗(i−1)

= pchannel ∗ λ∗

(

p
(c)
l−1

)

. (5.17)

48 CHAPTER 5. DENSITY EVOLUTION

According to (5.17), the weighting is done by computing the expectation over
the message distributions. The second line uses a compact notation similar to
(5.15) and (5.16), but with (i− 1)-fold convolution instead of multiplication.

The same approach has to be applied to (5.12) resulting in

p
(c)
l = Γ−1

[
dc,max∑

i=2

ρi · Γ
[

p
(v)
l

]∗(i−1)
]

(5.18)

= Γ−1
[

ρ∗

(

Γ
[

p
(v)
l

])]

. (5.19)

Obviously, combining (5.17) and (5.19) yields the general update rule for
irregular LDPC codes

p
(v)
l = pchannel ∗ λ∗

(

Γ−1
[

ρ∗

(

Γ
[

p
(v)
l−1

])])

. (5.20)

Density evolution itself only determines the threshold for a given pair of
degree distributions, but gives no information on how to find good degree
distributions. To find the degree distribution minimizing the threshold, an
additional optimization algorithm can be used [RL09].

Nevertheless, finding optimal codes or how to construct them is beyond
the scope of this thesis.

Chapter 6

Construction of Discrete

Decoders

Previous chapters served as general introduction to the broad fields of in-
formation theory, error correction codes, graphical models to solve inference
problems and LDPC code analysis. All these theoretical foundations are im-
portant because combining them lays the groundwork for this thesis. This
chapter will successively introduce and explain all parts needed for construct-
ing discrete decoders.

In state-of-the-art signal processing units, certain tasks can become a
major bottleneck regarding time or energy consumption. It is the central
aim of discrete decoder design to create decoders, which yield the same or
better performance as existing techniques, by executing only simple opera-
tions. These simplified operations require only a small word length, i.e. the
results can be represented using a small number of bits. LDPC decoders are
perfectly suited as application due to a couple of reasons. Firstly, decoding
belongs to the general class of detection problems which can be solved by
the Information Bottleneck method as described in Chapter 2. Furthermore,
since LDPC decoders use message passing algorithms and can be described by
factor graphs, it is easy to describe them in Information Bottleneck graphs.
Using this graphical extension of the Information Bottleneck method, the flow
of information through a complex system can be understood easily, resulting
in an intuitive and straightforward design strategy. Thirdly, the individual
node operations like box-plus are computationally complex and it is desirable
to simplify these operations. Consequently, LDPC decoders are a promising
application.

The Information Bottleneck requires a joint probability distribution p(x, y)
of the relevant variable X and the observed random variable Y . At first, this
joint probability distribution needs to be known to simplify the processing

49

50 CHAPTER 6. CONSTRUCTION OF DISCRETE DECODERS

chain with the Information Bottleneck method. A general discussion how
to find these functions for density evolution was carried out in Chapter 5.
As already outlined in the introduction the main focus of this thesis lies on
a different density evolution scheme firstly presented by Kurkoski [KYK08],
called discrete density evolution.

A detailed explanation of this technique will be the focus of this chapter.
Beforehand, the design of information optimum quantizers is explained, since
quantization is the mandatory first step when applying discrete decoders.

6.1 Relevant Information Preserving Quan-

tizer Design

Converting a continuous signal into a discrete one is known as quantiza-
tion [Kam13]. Finding optimal representatives of a quantizer is a well-known
problem in rate distortion theory. A lot of work on how to find these repre-
sentatives has been done and is summarized in [Kam13].

In contrast to state-of-the-art quantizers, the focus of information opti-
mum quantization is explicitly on maintaining relevant information. Thus, it
is possible to use the Information Bottleneck method to determine optimum
clusterings of numerous channel output states. In state-of-the-art signal pro-
cessing an analog, continuous signal is quantized such that only a limited
number of distinct representation levels exist. These levels are still closely
related to the original, possibly physical, quantity which the analog input
signal expressed. Using the representation points, one obtains an intuition of
the original input signal directly because, typically, the representatives are
still elements of the input signal’s domain.

Information optimum quantizers are much less intuitive to understand,
because they map the values of the continuous, physical domain directly
onto an abstract compression space spanned by the compression variable T .
As explained in Chapter 2 the Information Bottleneck method returns two
distributions. The first conditional distribution, often interpreted as a look-
up table, describes the mapping from the observation onto the compression
variable. The second conditional distribution p(x|t), holds the meanings of
distinct clusters t ∈ T for the relevant variable X. Therefore, the quantizer
outputs only the cluster indices according to the first table p(t|y) but does
not indicate any value allowing conclusions about the original physical input
value itself. To gain information about the relevant variable the appropriate
p(x|t) for a particular t has to be considered.

6.1. RELEVANT INFORMATION PRESERVINGQUANTIZER DESIGN51

6.1.1 Channel Model

As explained in Chapter 2 the Information Bottleneck method requires the
joint probability distribution p(x, y) between the observed random variable
Y and the relevant variable X. During the discussion of density evolution the
BI-AWGN channel was introduced. This channel model will be used from
now on. A given input bit u = 0 will be mapped onto a transmit symbol
x = +1 and the input bit u = 1 will be mapped onto x = −1. Hence, the
input alphabet Ain equals Ain = {−1,+1} and the output alphabet Aout is
Aout = R. The conditional probability distribution, also called transition
probability distribution [Kam13], of a BI-AWGN channel is given by

p(y|x = ±1) =
1

√

2πσ2
N

e
−

(y∓1)2

2σ2
N , (6.1)

where σ2
N denotes the noise variance.

6.1.2 Information Optimum Quantizer

Assuming a uniform prior on X, i.e. Pr(X = +1) = Pr(X = −1) = 0.5, an
information optimum quantizer [LB15] can be generated easily by calculation
of the joint distribution p(x, y) = p(y|x)p(x) using (6.1).

The structure of p(x, y) allows applying the symmetric sequential Infor-
mation Bottleneck algorithm from Chapter 2. Figure 6.1 shows the resulting
boundaries of the clusters obtained for a compression cardinality |Tc| = 16,
i.e. 4 bit quantization. It can be seen that the cluster borders are moving
closer together as the noise variance σ2

N decreases. This is a reasonable result
because if the variance decreases, the region where a wrong decision might
occur also gets smaller. Hence, the quantizer focuses on this smaller region,
because it is most relevant.

The quantizer is the first element in every digital receiver connecting the
physical domain with a digital signal processor. The outputs of this device
are forwarded to different signal processing units. As explained earlier, in
information optimum design dealing with cluster representatives, which need
to be represented as high precision floating point numbers, is not necessary
anymore. Instead, only integers are forwarded and thus all subsequent units
have to be simplified to work only on cluster indices.

52 CHAPTER 6. CONSTRUCTION OF DISCRETE DECODERS

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

y

σ
2 N

Figure 6.1: Cluster limits obtained by the symmetric sequential Information
Bottleneck algorithm for different channel noise variances σ2

N and |Tc| = 16.

6.2 Discrete Density Evolution

In the previous section, an information-optimal quantizer was derived. The
next challenge when constructing a discrete receiver is to design an LDPC
decoder, which solely works on a discrete output alphabet. Consequently, one
major task is to replace the complex node operations introduced in Chap-
ter 4 by more feasible and even simpler ones. Groundbreaking work in this
field was done by Brian M. Kurkoski et al. in 2008. In their publication
”Noise thresholds for discrete LDPC decoding mappings” [KYK08] the au-
thors proposed a framework that combines density evolution and clustering
algorithms.

The fundamental idea of this approach is to propagate compressed but
highly informative messages along the edges of a Tanner graph. An im-
portant continuation of Kurkoski’s findings was proposed by Lewandowsky
in [LB15] introducing the Information Bottleneck method as clustering tech-
nique. As mentioned in Chapter 2 the Information Bottleneck method has
exactly the required focal aim of preserving the mutual information about a
relevant random variable when compressing the observation. Lewandowsky
was able to show, that extending the ideas of Kurkoski et al. by applying the
Information Bottleneck method allows constructing a discrete LDPC decoder
with persuasive performance [LB15].

6.2. DISCRETE DENSITY EVOLUTION 53

y1

y2

... x t

...

yM

Figure 6.2: This Information Bottleneck graph visualizes the simultaneous
processing of all M incoming messages at a variable or check node.

The overall design principle of discrete LDPC decoders can be easily
visualized using Information Bottleneck graphs. Figure 6.2 visualizes the
processing of M incoming discrete messages y = [y1, . . . , yM]T.

The number of processed messages M can take three different values.
Firstly M = dc − 1 for a check node, secondly M = dv for a variable node
during the message passing and finally M = dv + 1 when computing the
output of a variable node considering all incoming messages as well as the
channel message. The output is a realization of the compression variable
T , i.e. t ∈ T and is determined by the mapping p(t|y), which is designed
using the Information Bottleneck method. The relevant variable x depends
on the node type. For a variable node, x represents the underlying bit of a
particular node. Whereas, if the clustering is designed for a check node, x
represents the (mod 2)-sum of the possibly different bits b1, . . . , bm.

To find the clustering as well as to mathematically define the relevant
variable for both node types likewise, the vector b = [b1, . . . , bm]

T is intro-
duced. The vector b contains all M bits represented by the messages in an
input vector y. Thus, the relevant variable for a variable node can be found
as

x = b1 = const. (6.2)

and for a check node as

x =
M∑

l=1

⊕bl. (6.3)

From a theoretical perspective, it would be possible to generate a cluster-
ing of y using the joint distribution p(x,y) and the Information Bottleneck
method. However, in practice, this is strictly not possible, since the vector
y with M entries, all taken from the discrete alphabet T , can take up to

54 CHAPTER 6. CONSTRUCTION OF DISCRETE DECODERS

x1 t1 x2 t2 . . . tM−2 xM−1 t

y1 y2 y3 yM

Figure 6.3: To reduce the amount of input combinations instead of com-
pressing all incoming message simultaneously, the problem is decomposed in
several partial node operations.

|T |M distinct combinations. Thus, implementing the mapping p(t|y) would
have exponential space complexity in the number of input messages, which
prohibits a direct, practical implementation.

Tackling this drawback by decomposition of the overall compression into
several partial operations was also introduced by Kurkoski [KYK08]. The
equations (6.2) and (6.3) can be rewritten as a serial concatenation of only
two inputs, where one input depends on the result of the previous operation.
This decomposition is described mathematically in great detail in [LSB16b].
However, once again it is easier to the understand the approach in a graphical
manner, i.e. in terms of Information Bottleneck graphs. Figure 6.3 illustrates
the Information Bottleneck graph for such a so-called opened node.

After being split into several partial operations, the original IB node,
indicated by a black box in Figure 6.3, contains M − 2 intermediate results
and has still one output t. In contrast to the closed node, a relevant variable
at each so-called stage xl is introduced. According to (6.2) and (6.3), the
intermediate relevant variable xl for a variable node is denoted by [LSB16b]

xl = b1 = const (6.4)

and xl for a check node is

xl =
l+1∑

m=1

⊕bm, (6.5)

which is basically a running (mod 2)-sum. Especially (6.5) allows for an inter-
esting interpretation because it points out that the intermediate results push
forward only relevant information resulting in a so-called flow of relevant
information.

In a next step the remaining joint distributions of the partial node oper-
ations have to be derived. These distributions are necessary to design mes-
sage mappings for all intermediate stages using the Information Bottleneck
method. At first a length two vector y1 = [y1, y2]

T for l = 1 is introduced.

6.2. DISCRETE DENSITY EVOLUTION 55

For a variable node, independent of the decoder iteration, the first entry
in this vector, i.e. y1, holds the quantized channel output message for this
particular variable node by definition [LB15]. The input vector for subse-
quent partial operations, i.e. l > 1, equals yl = [tl−1, yl+1]

T. Consequently,
the missing distribution follows as p(xl,yl) ∀l = 1, 2, . . . ,M − 1 and can be
obtained for a check node and step l = 1 by marginalization

p(x1,y1) =
∑

b1

∑

b2

p(x1, b1, b2,y1)

=
∑

b1

∑

b2

p(x1, b1, b2, y1, y2)

=
∑

b1

∑

b2

p(x1|b1, b2)p(b1, b2, y1, y2)

=
∑

b1

∑

b2

p(x1|b1, b2)
︸ ︷︷ ︸

δ(b1⊕b2⊕x1)

p(y1|b1)p(y2|b2) p(b1|b2)
︸ ︷︷ ︸

p(b1)

p(b2)

=
∑

(b1,b2):
b1⊕b2=x1

p(y1, b1)p(y2, b2) (6.6)

and likewise for a variable node and step l = 1

p(x1,y1) =
∑

b1

∑

b2

p(x1, b1, b2,y1)

=
∑

b1

∑

b2

p(x1, b1, b2, y1, y2)

=
∑

b1

∑

b2

p(x1|b1, b2)p(b1, b2, y1, y2)

=
∑

b1

∑

b2

p(x1|b1, b2)
︸ ︷︷ ︸

δ(b1−x)δ(b2−x)

p(y1|b1)p(y2|b2) p(b1|b2)
︸ ︷︷ ︸

δ(b1−b2)

p(b2)

=
∑

(b1,b2):
b1=b2=x1

p(y1|b1)p(y2, b2). (6.7)

Similarly, this procedure can be applied for l > 1. Using (6.6) or (6.7) as
input for the Information Bottleneck method, one obtains a clustering p(tl|yl)
which maps a discrete vector yl onto a discrete intermediate result tl. As
described earlier one input of the next step is a previous output, thus the
output distribution of an intermediate stage p(x1, t1) has to be forwarded
during the design period. Exemplary, for l = 1

p(x1, t1) =
∑

y1∈Yvec

p(t1|y1)p(x1,y1), (6.8)

56 CHAPTER 6. CONSTRUCTION OF DISCRETE DECODERS

y1 find p(t1|y1) t1

y2 p(x1, t1) =
∑

y1∈Yvec

p(t1|y1)p(x1,y1) x1

Figure 6.4: This figure shows the generation of the compression variable t1
schematically, as well as the computation of the joint distribution p(x1, t1).

where Yvec denotes the set of all possible combinations of y1. Equation (6.8)
only holds for the first partial node operation, but can be generalized for any
yl easily.

All steps performed at a particular intermediate IB node are schemati-
cally illustrated and summarized in Figure 6.4.

It was shown in [LSB16b] that the calculation of p(x1,y1) is basically an
application of the sum-product algorithm to compute marginal posteriors. As
explained in Chapter 3 all incoming messages at a variable node need to be
multiplied to compute the marginals. However, this would result in p(x1,y),
i.e. the joint probability also containing information obtained during later
operations. As indicated in (6.6) and (6.7) as well as Figure 6.3 the relevant
information is only passed forward. Thus, the problem is related to filtering
without smoothing, also called forward propagation [Bis07].

Finally, it should be emphasized again, that the output distribution p(x, t)
of an outgoing message is always generated for one specific edge of the Tanner
graph. If p(x, t), i.e. the distribution of the transmitted message and the bit
represented by this message, is exchanged between variable and check node
iteratively, this process is referred to as discrete density evolution. Please
note the connection to classical density evolution where the evolution of
distributions was tracked as well.

The next section will summarize the major findings of this section and
analyze the newly designed fully discrete LDPC decoder.

6.3 Generating a Discrete LDPC Decoder

In the previous section discrete density evolution was derived. It was shown
how to find joint distribution serving as input for the Information Bottle-
neck method to obtain several distinct, deterministic clusterings or mappings
which can be understood as look-up tables. In the first part of this section
the resulting complexity reduction caused by decomposing the original set-
ting is analyzed. As explained earlier, in the first iteration the cardinality of

6.3. GENERATING A DISCRETE LDPC DECODER 57

Table 6.1: Number of entries in a look-up table without opening the node.

l = 1 l > 1

variable node |Tc| · |T |dv−1 |Tc| · |T |dv−1

check node |Tc|dc−1 |T |dc−1

Table 6.2: Number of entries in a look-up table for one iteration, a regular
(3,6)-LDPC code and |Tc| = |T | = 16.

variable node check node

closed node |T |dv = 163 = 4096 |T |dc−1 = 165 = 1048576

opened node (dv − 1)|T |2 = 2 · 162 = 512 (dc − 2)|T |2 = 4 · 162 = 1024

a check node input message is |Tc|. During the next iterations all incoming
messages will have cardinality |T |, which is also the cardinality of a check
and variable node output. Hence, at a check node |Tc|dc−1 input combina-
tions exist during the first iteration and |T |dc−1 input combinations for all
other iterations. During iterative message passing, the variable nodes always
process a channel message from the channel quantizer with cardinality |Tc|
and dv − 1 incoming messages from the check nodes with cardinality |T |.
This is summarized in Table 6.1.

For simplicity in the following example |Tc| = |T |. When opening the
node, the increase in space complexity is only linear in the number of input
messages. Thus for a check node dc − 2 look-up tables are necessary each
with |T |2 entries. Similarly, for a variable node dv − 1 look-up tables exist
also with |T |2 entries each. Thus, for |T | = 16 the memory demand, i.e.
the number of entries in a look-up table, for one iteration and a regular
(3,6)-LDPC code is determined and summarized in Table 6.2. Obviously,
the complexity reduction is enormous. Although, the overall complexity is
reduced finding the look-up tables online during decoding is not practical.
Hence, all tables are generated once for a so-called design-Eb/N0. Afterwards,
the decoder is used mismatched. The next chapter focuses on performance
analyses of such a mismatched discrete decoder. However, it turned out that
choosing the design-Eb/N0 value close to the original threshold-Eb/N0 found
by density evolution is beneficial [KYK08], [LB15]. To find this threshold-
Eb/N0 the mutual information between all dv+1 messages at a variable node
and the underlying code bit needs to be tracked for each iteration. This is
sketched in Figure 6.5 exemplarily. Once a feasible design-Eb/N0 was found

58 CHAPTER 6. CONSTRUCTION OF DISCRETE DECODERS

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

Iteration

I
(T

;X
)

Figure 6.5: Exemplary sketch of increase in mutual information during dis-
crete density evolution.

the generated look-up tables can be stored and used for decoding.
Decoding of LDPC codes using this new fully discrete technique will be

the main focus of the remaining chapters.

Chapter 7

Information Optimum

Decoding of Regular LDPC

Codes

In [LB15] bit error simulation results for a regular LDPC code using a dis-
crete LDPC decoder working only on integers were presented. At first, to
verify the own implementation developed for this thesis, a regular LDPC
code from the public MacKay-code-database [Mac] was selected. In this
chapter, the obtained results will be compared with the performance of a
belief propagation decoder and a min-sum decoder. Before analyzing the bit
error rate performance, the simulation environment is described as well as
the programming language.

7.1 Simulation Environment

7.1.1 Programming Language

Python 3.5 was chosen as programming language for this thesis. Further-
more, OpenCL, a programming language for heterogeneous programming
was used to enable simulations on GPUs and CPUs resulting in a signifi-
cantly increased simulation speed.

7.1.2 HPC Cluster Computing

The bit error simulations ran on an HPC cluster provided by the TUHH. A
cluster bundles a lot of powerful hardware. Processing time on this cluster
can be requested using a workload manager. OpenCL allows working on

59

60 CHAPTER 7. REGULAR LDPC DECODING

every computation node provided by the cluster, no matter if the node is a
CPU or GPU. A list of available cluster hardware can be found at https:
//www.tuhh.de/rzt/tuinfo/ausorg/hpc/hardware/.

7.1.3 Implementation

Prior to investigating the performance of discrete LDPC decoders, all units
forming a valid communication chain had to be implemented. The following
Python modules can be found on the attached CD

• Sequential Information Bottleneck algorithm

• Modified sequential Information Bottleneck algorithm

• Symmetric sequential Information Bottleneck algorithm

• Linearized input symmetric sequential Information Bottleneck algo-
rithm

• Discrete density evolution

• Min-sum LDPC decoder

• Belief propagation decoder

• LDPC encoder

• Discrete LDPC decoder

• Information optimum quantizer

• BI-AWGN channel

• PyOpenCL implementations of all decoder types

• Environments for decoder generation and bit error rate simulation

• etc.

7.2. DECODER ANALYSIS 61

0 10 20 30 40 50
0.6

0.8

1

Iteration

I
(T

;X
)

(a) Eb/N0 = 0.85 dB

0 10 20 30 40 50
0.6

0.8

1

Iteration

I
(T

;X
)

(b) Eb/N0 = 1.35 dB

Figure 7.1: Evolution of mutual information for different design-Eb/N0 values
and a regular (3,6) LDPC code.

7.2 Analysis of Generated Discrete Decoders

for Regular LDPC codes

The code used from the MacKay database is labeled 8000.4000.3.483. The
codeword length is N = 8000 and the code rate R = 0.5. The variable node
degree is dv = 3 and the check node degree equals dc = 6.

The first step is to generate a decoder. As explained in the previous
chapter, the most important design parameter is the so-called design-Eb/N0.
The decoder is only generated for this specific Eb/N0 and will not be up-
dated during the simulation. When simulating bit error rates for different
Eb/N0-values only the channel quantizer is updated. Thus, all look-up tables
required for decoding only need to be generated once. Furthermore, this can
be done offline which is a major advantage.

One possibility to analyze a generated decoder is the mutual information
curve as shown in Figure 7.1. If the Eb/N0 used for the decoder generation is
chosen too low, the mutual information between the variable node decision
variables and the bit they represent saturates at a certain level and does not
increase even for a large number of iterations (cf. Figure 7.1a). However, as
soon as the design-Eb/N0 passes the threshold-Eb/N0, the mutual information
approaches 1 for a huge number of iterations. This behavior impacts the BER
curves and will be investigated in the next section.

In Appendix A more mutual information curves are shown for different
design-Eb/N0-values.

62 CHAPTER 7. REGULAR LDPC DECODING

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

-5.65

1

-4.1

2

-3.1

3

-2.33

4

-1.73

5

-1.19

6

-0.7

7

-0.23

8

0.23

9

0.7

10

1.19

11

1.73

12

2.33

13

3.1

14

4.1

15

5.65

0

-5.67

1

-4.02

2

-3.06

3

-2.34

4

-1.74

5

-1.19

6

-0.69

7

-0.23

8

0.23

9

0.69

10

1.19

11

1.74

12

2.34

13

3.06

14

4.02

15

5.67

0

-5.66

1

-3.97

2

-3.04

3

-2.36

4

-1.75

5

-1.25

6

-0.79

7

-0.27

8

0.27

9

0.79

10

1.25

11

1.75

12

2.36

13

3.04

14

3.97

15

5.66

0 1 2 3 4 5 6 7 8 9 10 11

12
13

14

1
5

0
1
2
3

4 5 6 7 8 9

10
11

12

1
3
1
4

1
5

0
1

2
3
4

5 6 7 8 9

10
11

1
2
1
3

1
4

1
5

0
1
2

3
4
5

6 7 8 9

10
11

1
2

1
3
1
4

1
5

0

1
2
3

4
5

6 7 8 9

10
11

1
2
1
3

1
4

1
5

0

1

2
3

4
5

6 7 8 9

10

1
1
1
2

1
3

1
4

1
5

0

1
2

3

4
5

6 7 8 9

10

1
1
1
2

1
3

1
4

1
5

0
1
2

3
4

5

6 7 8 9

10

1
1
1
2

1
3

1
4

1
5

0

1
2

3
4

5

6 7 8 9

10

1
1
1
2

1
3
1
4

1
5

0

1

2

3
4

5

6 7 8 9

10
11

1
2

1
3
1
4

1
5

0

1

2

3
4

5

6 7 8 9

10
11

1
2
1
3

1
4

1
5

0

1

2

3

4
5

6 7 8 9

10
11

1
2
1
3
1
4

1
5

0

1
2

3

4
5

6 7 8 9

10
11

12

1
3
1
4
1
5

0

1

2
3

4
5

6 7 8 9 10

11
12

13

1
4
1
5

0

1
2

3
4
5

6 7 8 9 10 11

12
13

14
15

0

1
2
3

4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11

12
13

14

1
5

0
1
2
3
4

5 6 7 8 9 10

11
12

13

1
41
5

0
1

2
3
4
5

6 7 8 9

10
11

12

1
3

1
4

1
5

0
1
2

3
4
5

6 7 8 9

10
11

1
2
1
3

1
4

1
5

0
1

2
3

4
5

6 7 8 9

10
11

1
2

1
3

1
4

1
5

0
1

2
3

4
5

6 7 8 9

10

1
1
1
2

1
3

1
4

1
5

0

1
2

3

4
5

6 7 8 9

10

1
1
1
2

1
3

1
4

1
5

0

1
2

3
4

5

6 7 8 9

10

1
1
1
2

1
31
41
5

0
1 2

3
4

5

6 7 8 9

10

1
1
1
2

1
3
1
4

1
5

0
1

2

3
4

5

6 7 8 9

10
11

1
2

1
3
1
4

1
5

0

1

2

3
4

5

6 7 8 9

10
11

1
2
1
3

1
4

1
5

0

1

2

3

4
5

6 7 8 9

10
11

1
2
1
3

1
4
1
5

0

1
2
3

4
5

6 7 8 9

10
11

12

1
3
1
4
1
5

0

1

2

3
4
5

6 7 8 9

10
11

12
13

1
4
1
5

0

1

2
3
4

5 6 7 8 9 10

11
12

13
14

15

0

1
2
3

4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11

12
13

14

1
5

0
1
2
3
4

5 6 7 8 9 10

11
12

1
3
1
4

1
5

0
1

2
3
4
5

6 7 8 9

10
11

1
2
1
3

1
4

1
5

0

1
2

3
4
5

6 7 8 9

10
11

1
2

1
3
1
4

1
5

0
1

2
3

4
5

6 7 8 9

10

1
1
1
2

1
3

1
4

1
5

0

1 2
3

4
5

6 7 8

9
10

1
1
1
2

1
3

1
4

1
5

0
1
2

3

4
5

6 7 8

9
10

1
1
1
2

1
3

1
4

1
5

0

1
2

3

4
5

6 7 8 9

10
11

1
2

1
3

1
4

1
5

0
1

2

3

4
5

6 7 8 9

10
11

1
2

1
3
1
4

1
5

0

1
2

3
4

5
6

7 8 9
10

11

1
2

1
3
1
4

1
5

0

1

2

3
4

5
6

7 8 9

10
11

1
2
1
3

1
4

1
5

0

1

2

3
4

5

6 7 8 9

10
11

1
2
1
3

1
4
1
5

0

1
2

3

4
5

6 7 8 9

10
11

12

1
3
1
4

1
5

0

1

2
3

4
5

6 7 8 9
10

11
12

13

1
4
1
5

0

1
2

3
4

5 6 7 8 9 1011
12

13
14

15

0

1
2
3

4 5 6 7 8 9 10 11 12 13 14 15

(a) Variable node iteration = 0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

-4.09

1

-2.93

2

-2.24

3

-1.92

4

-1.61

5

-1.12

6

-0.64

7

-0.2

8

0.2

9

0.64

10

1.12

11

1.61

12

1.92

13

2.24

14

2.93

15

4.09

0

-3.

1

-2.06

2

-1.53

3

-1.1

4

-0.82

5

-0.57

6

-0.21

7

-0.09

8

0.09

9

0.21

10

0.57

11

0.82

12

1.1

13

1.53

14

2.06

15

3.

0

-2.65

1

-1.91

2

-1.46

3

-1.07

4

-0.78

5

-0.52

6

-0.2

7

-0.07

8

0.07

9

0.2

10

0.52

11

0.78

12

1.07

13

1.46

14

1.91

15

2.65

0

-2.4

1

-1.78

2

-1.38

3

-1.03

4

-0.74

5

-0.46

6

-0.19

7

-0.06

8

0.06

9

0.19

10

0.46

11

0.74

12

1.03

13

1.38

14

1.78

15

2.4

14 15

13

1
2

1
1

1
0

9

8

7

6

5

4

3

2

0
1

15

13 14

12

1
1

1
0

9

8

7

6

5
4

3

1
2

0

14
15

13

12

1
1

1
0

9

8

7

6

5

4
3

2

0
1

14
15

13

12

1
0
1
1

9

8

7

6

4
5

3

2

0
1

13 14 15

11
12

9
1
0

8

7

5
6

3
4

0
1

2

12 13 14 15

10
11

8
9

6
7

4
5

0
1

2
3

11 12 13 14 15

8
9
10

5
6
7

0
1
2
3
4

8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

8 9 10 11 12 13 14 15

0
1
2
3
4

5
6
7

8
9
10

11 12 13 14 15

0
1

2
3

4
5

6
7

8
9

10
11

12 13 14 15

0
1

2

3
4

5
6

7

8

9
1
0

11
12

13 14 15

0
1

2

3

4
5

6
7

8

9

1
0
1
1

12

13

14
15

0
1

2

3
4

5

6

7

8

9

1
0

1
1

12

13

14
15

0

1
2

3
4

5

6

7

8 9

1
0

1
1

12

13 14

15

0
1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

13

14 15

13 14 15

12

1
1

1
0

9

8

7

6

5

4

3

0
1

2

14
15

12 13

11

1
0

9

8

7

6

5

4
2

3

0
1

13
14

15

12

11

1
0

9

8

7

6

5
4

3

0
1

2

1
4
1
5

12
13

11

10

9
8

7

6

5

4

2
3

0
1

1
3
1
4
1
5

11
12

10

9

8

7
6

5

3
4

0
1

2

1
3
1
4
1
5

11
12

10

9

8

7

6

53
4

0
1

2

11
12

13
14

15

9 10

8

7

5
6

0
1
2
3
4

12
13

14
15

8 9 10 11

4
5
6
7

0
1
2
3

0
1
2
3

4
5
6
7

8 9 10 11

12
13

14
15

0
1
2
3
4

5
6

7

8

9 10

11
12

13
14

15

0
1

2
3

4

5

6

7

8

9

10

11
12

1
3
1
4
1
5

0
1

2

3
4

5

6

7

8

9

10

11
121

3
1
4
1
5

0
1

2
3

4

5

6

7

8
9

10

11

12
131

4
1
5

0
1

2

3

4
5

6

7

8
9

1
0

11

12

13
14

15

0
1

2
3

4
5

6

7

8
9

1
0

11

12 13

14
15

0
1

2

3

4

5

6

7
8

9
1
0

1
1

12

13 14 15

13 14 15

121
1

1
0

9

8

7
6

5

4

3

0
1

2

13 14 15

12

1
1

1
0

9

8

7

6

5
4

3

0
1

2

13 14 15

11
12

1
0

9

8

7
6

5

3
4

0
1

2

13 14 15

11
12

1
0

9

8

7

6

5

3
4

0
1

2

12 13 14 15

10
11

9

8

7

6

4
5

0
1

2
3

11 12 13 14 15

9
10

8

7

5
6

0
1

2
3

4

11 12 13 14 15

8
9
10

5
6
7

0
1
2
3
4

8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

8 9 10 11 12 13 14 15

0
1
2
3
4

5
6
7

8
9
10

11 12 13 14 15

0
1

2
3

4

5
6

7

8 9
10

11 12 13 14 15

0
1

2
3

4
5

6

7
8

9

10
11

12 13 14 15

0
1

2

3
4

5

6

7

8

9
1
0

11
12

13 14 15

0
1

2

3
4

5

6

7

8

9

1
0

11
12

13 14 15

0
1

2

3

4

5

6

7

8

9

1
0

1
1

12

13 14 15

0
1

2

3

4

5

6

7

8

9

1
0

1
1

12

13 14 15

13 14 15

12

1
1

1
0

9

8

7

6

5

4

3

0
1

2

13 14 15
12

1
1

1
0

9

8

7

6

5
4

3

0
1

2

13 14 15

11
12

1
0

9

8

7

6

5

3
4

0
1

2

13 14 15

11
12

9
1
0

8

7
5

6

3
4

0
1

2

12 13 14 15

10
11

9

8

7

6

4
5

0
1

2
3

11 12 13 14 15

9
10

8

7
5
6

0
1

2
3

4

11 12 13 14 15

8
9
10

5
6
7

0
1
2
3
4

8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

8 9 10 11 12 13 14 15

0
1
2
3
4

5
6
7

8
9
10

11 12 13 14 15

0
1

2
3

4

5
6

7

8

9
10

11 12 13 14 15

0
1

2
3

4
5

6

7

8

9

10
11

12 13 14 15

0
1

2
3

4

5
6

7

8

9
1
0

11
12

13 14 15

0
1

2

3
4

5

6

7

8

9
1
0

11
12

13 14 15

0
1

2

3

4

5

6

7

8

9

1
0

1
1

12

13 14 15

0
1

2
3

4
5

6

7

8

9

1
0

1
1

12

13 14 15

(b) Check node iteration = 0

Figure 7.2: Trellis diagram displaying the 16 possible output mappings cor-
responding to an input vector yl at each partial node operation for both node
types and |T | = 16.

7.3. RESULTS FOR REGULAR LDPC CODES 63

Another possibility to analyze a discrete LDPC decoder is to investigate
the resulting message mappings. As mentioned in earlier chapters, two in-
put messages combined in the vector yl are mapped to a compression value
tl. This can be visualized using a trellis diagram as shown in Figure 7.2.
These plots are generated automatically using a Python script which was
developed during this thesis. Each trellis segment represents the transition
from one current partial node operation to the next one. For example, the
input vector y0 = [15, 1]T would result in an output t0 = 14 which is au-
tomatically the first input of the second partial node operation. It can be
seen that due to the construction of the mappings, namely by using the sym-
metric sequential Information Bottleneck algorithm, the trellis itself is also
symmetric. The states in the upper half correspond to positive LLRs, i.e.

log
(

Pr(X=+1|t)
Pr(X=−1|t)

)

> 0, ∀t > |T |/2. Consequently, the states in the lower half

correspond to negative LLRs. This observation is quite useful when perform-
ing hard decisions, because t > |T |/2 corresponds to a transmit bit u = 0
and t < |T |/2 corresponds to u = 1. The LLRs expressed by a cluster are
also included in Figure 7.2 as red labels below the states.

7.3 Results for Regular LDPC codes

In the previous section different generated decoders were analyzed. The next
step is to perform bit error rate simulations. As explained earlier a regular
code with rate R = 0.5 was chosen.

The number of clusters, i.e. |T |, was set to |T | = 16, i.e. only 4 bits are
needed to express all possible states. In general, it is possible to choose a
channel quantizer |Tc| cardinality different from |T |. Nevertheless, the simu-
lation results were generated using |Tc| = |T | = 16, i.e. the quantizer was also
limited to 4 bit, which is a quite coarse quantization, for example, compared
to double precision with 64 bits. Using |Tc| = |T | offers the advantage that
storing messages from the channel and the messages passed during decoding
requires the same amount of bits in the hardware.

Despite the short bit width, the results shown in Figure 7.3 are quite im-
pressive in comparison to the included performance of a belief propagation
decoder working with double precision. Although only 16 different inte-
gers were processed by the discrete decoder, the performance degradation
in terms of bit error rate is only 0.1dB. The operations performed during
discrete decoding are only simple look-ups in the priorly generated look-up
tables, whereas the belief propagation reference simulation processed double
precision channel output values and also performed double precision box-plus
operations. The green curve in Figure 7.3 shows a fair reference because the

64 CHAPTER 7. REGULAR LDPC DECODING

0.0 0.5 1.0 1.5 2.0
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant. reference

Min-Sum

0.85 dB

0.95 dB

1.05 dB

1.15 dB

Figure 7.3: BER curves of different discrete decoders compared to state of the
art decoders like belief propagation, min-sum decoder or belief propagation
with quantized input values. The curve label corresponds to the design-
Eb/N0 of the discrete decoders.

belief propagation decoder only obtained 16 distinct input LLRs from the
channel output quantizer. As a consequence, both decoders, discrete and
quantized belief propagation, suffered from the same information loss due
to channel output quantization. However, even quantized LLRs processed
by belief propagation are double precision floating points and the operations
during message passing are still computationally expensive box-plus opera-
tions. The alternative state-of-the-art decoding technique to achieve simpli-
fied node operations is min-sum decoding. Although the min-sum decoder
can exchange double precision LLRs, the performance is very poor compared
to the discrete, information based decoding technique.

Some further insides about the discrete decoders can be gained from the
simulation results shown in Figure 7.3. It can be seen that the evolution
of mutual information, observed during the decoder generation, as visual-
ized in Figure 7.1, has a direct influence on the error floor of the discrete
decoder. If the design-Eb/N0 for the decoder generation is set to low, the
bit error rate does not decrease further even for high signal-to-noise ratios.
As shown in Figure 7.1a this corresponds to a saturated mutual information
evolution. The decoder underestimates the certainty of the received samples
and thus high reliabilities cannot propagate through the graph during mes-
sage passing. If the design-Eb/N0 is chosen high enough, i.e. the mutual

7.4. SIMPLE APPROACH TO IRREGULAR LDPC CODES 65

0 0.5 1 1.5 2 2.5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant. reference

Min-Sum

0.7 dB

0.8 dB

0.95 dB

0.9 dB

Figure 7.4: Applying discrete decoders to irregular codes results in an early
error floor even if high Eb/N0-values are used for the generator construction.

information slowly approaches 1, no uncertainty remains and the early error
floor can be overcome. As shown in Figure 7.3 the error floor of the discrete
decoders decreases with increasing Eb/N0 used for generation, until it is not
ascertainable in the investigated bit error rate region.

7.4 Simple Approach to Irregular LDPC Codes

In previous chapters, it was outlined that irregular LDPC codes approach the
theoretical channel capacity much closer than regular codes can [CFRU01].
Hence, applying discrete decoders also to this kind of codes is highly desir-
able.

For higher practical relevance of the results and a possible comparison
to other scientific publications it is beneficial to use codes from an official
standard. As a first approach the implementation of the previously described
discrete decoder generation was applied to an irregular LDPC code from the
IEEE 802.11 WLAN standard. The code is quite short with a length of 1296
bits. The selected rate is R = 0.5 with the following node-degree distributions

66 CHAPTER 7. REGULAR LDPC DECODING

dc =

[

0, 0, 0, 0, 0, 0,
10

12
,
2

12

]T

(7.1)

dv =

[

0,
11

24
,
9

24
,
1

24
, 0, 0, 0, 0, 0, 0,

3

24

]T

. (7.2)

From an implementation perspective no major changes need to be per-
formed to apply the present decoder generation technique to irregular codes.
It is sufficient to generate look-up tables for the highest node degree and
take the appropriate intermediate results as output for lower node degrees.
All distributions are weighted accordingly with respect to the edge-degree
distribution of the irregular code, as described in (5.17) and (5.19), during
discrete density evolution.

The resulting decoders are used for bit error simulations. The correspond-
ing bit error rate curves are shown in Figure 7.4 for several decoders generated
for different Eb/N0-values. Obviously, the chosen code is not very strong, i.e.
the waterfall region is not very steep, which is caused by the short length.
However, even for this quite weak code the discrete decoder is not able to
follow the reference curve into low bit error regions. Although the Eb/N0-
value used for generation is quite high, an error floor cannot be avoided. Of
course, it would be possible to increase the Eb/N0-value for decoder construc-
tion further and further but this as a negative influence on the performance in
higher bit error regions. As visualized in Figure 7.4 the design-Eb/N0 for one
particular decoder moves to higher Eb/N0’s when the Eb/N0-value used for
decoder generation is increased. Consequently, there seems to exist a crucial
problem which occurs when applying discrete decoders generated with the
available discrete density evolution scheme to irregular codes. In the next
chapters, this problem is analyzed deeply and solutions will be developed
and evaluated to overcome the discussed problems.

Chapter 8

Message Alignment

Discrete decoders build a new powerful class of LDPC decoders combining
low complexity and high performance. However, the previous chapter already
outlined that discrete decoders constructed using the available discrete den-
sity evolution technique are not as versatile as other techniques like belief
propagation or min-sum decoding.

This chapter will investigate why the implementation used for regular
LDPC codes cannot be applied to irregular codes directly. The findings will
not be limited to irregular LDPC codes or decoding in general, but will also
help to understand the flow of relevant information in distributed tasks.

Since the addressed problem is very sophisticated, it is beneficial to start
with a simple example in the first section. Afterwards, the problem will be
formalized and a new technique called message alignment will be derived.

8.1 Consensus of Meanings

The Information Bottleneck solely focuses on maintaining relevant informa-
tion about a certain random quantity. To understand the problem which
occurs when trying to apply the discrete evolution scheme to irregular codes
it is important to recap two quantities from previous chapters, namely belief
and uncertainty. The mutual information helps to reduce the uncertainty of
a variable X when knowing Y . The belief itself is a probability mass function
that allows guessing the value of X when knowing Y . This belief is often ex-
pressed using LLRs if X is binary. The belief is important for detection and
estimation tasks. When compressing the observation in order to keep all rel-
evant information the belief is not anymore expressed by L(x|y) = Pr(X=+1|y)

Pr(X=−1|y)

but L(x|t) = Pr(X=+1|t)
Pr(X=−1|t)

, i.e. each cluster has a certain meaning with respect

to X. The conditional probability p(x|t) expresses a certain meaning for X

67

68 CHAPTER 8. MESSAGE ALIGNMENT

Y1

X ? Combiner

Y2

p(x|t1)

p(x|t2)

Figure 8.1: Two distributed nodes measure the same quantity and forward
their compressed belief, where due to limited number of clusters, a cluster
with the same cluster index can have different meanings.

for a given t. However, the meaning of a cluster can change depending on
the input distribution p(x, y). Assume a setting as shown in Figure 8.1. Two
nodes gather independent observations Y0 and Y1 of a relevant variable X,
in a possibly distributed system.

For instance, consider two students who have written the same exam. Af-
terwards, they are asked by an evaluation team of the university to grade the
exam with the following options O = {easy, . . . , not sure, . . . , brutal}. Each
of these options is only a subset of the possible student’s feelings which are in
reality more versatile. Hence, the limited amount of answers equals a com-
pression. For computer based analysis the evaluation team enumerates the
possible outcomes in O, i.e. T = {0, 1, . . . , |T | − 1}. In the previously used
notation the enumerated events correspond to realizations of the compression
variable T . Furthermore, there exists a relation between a cluster t ∈ T and
a corresponding meaning o ∈ O. To simplify the notation p(x|o) = p(x|t),
but t corresponds to the enumerated outcomes in T . The relevant variable
X in this example is the true difficulty of the exam which can either be hard
or easy, i.e. X is binary. The validity of the poll is limited if the interviewed
students are from two different experience levels, e.g. experienced and be-
ginner. If the old student, who has written many exams, says it was hard
it will have a different meaning or reliability as if a student writes its first
exam and finds it hard.

The evaluation team does not know which student is more experienced
and gives more reliable results, they just know that there are two groups
of students S = {beginner, experienced} and a student is experienced with
Pr(S = experienced) and a beginner with Pr(S = beginner). Moreover,
the students are asked to tell the evaluation team the corresponding relia-
bilities for each cluster in terms of LLRs and the corresponding conditional
probabilities denoted as p(x|tbeginner) or p(x|texperienced). The crucial task of
the evaluation team is to ascertain the real difficulty of the exam without

8.1. CONSENSUS OF MEANINGS 69

0 5 10 15

−5

0

5

t1, t2

L
(x
|t 1

),
L
(x
|t 2

)

L(x|t1)
L(x|t2)

(a)

0 5 10 15

−5

0

5

u

L
(x
|u
)

(b)

Figure 8.2: The left figure shows the different meanings of a cluster for the
two considered nodes from Figure 8.1 exemplary. The right graph shows the
naive combination of p(x|t1) and p(x|t2) resulting in a different belief.

knowing who out of the test set gave the feedback.
The random variable U represents the outcome of the poll, i.e. the com-

bined clusters, with the event space U = T and its corresponding probability
mass function p(u). A particular outcome of the poll u ∈ U can either be
caused by an experienced student or a beginner. Thus the distribution p(u)
can be written as

p(u) =
∑

s∈S

p(ts)p(s). (8.1)

Just as p(u), also the joint distribution p(x, u) is found by averaging the two
distributions p(x, tbeginner) and p(x, texperienced). Applying Bayes’ rule yields

p(x|U = u) =

∑

s∈S

p(x, Ts = u)p(s)

∑

x∈X

∑

s∈S

p(x, Ts = u)p(s)
=

p(x, U = u)

Pr(U = u)
, (8.2)

to obtain an averaged cluster meaning.
Figure 8.2a shows the conditional probabilities for two different students

and the resulting distribution p(x|u) the team will use for their decisions in
Figure 8.2b as LLRs.

For notational convenience the lengthy but intuitive labels tbeginner and
texperienced are replaced by t1 and t2 in the following.

Obviously, no matter if experienced student or beginner, in both cases
the initially intended meaning of their grading, i.e. expressed by L(x1|t1)

70 CHAPTER 8. MESSAGE ALIGNMENT

and L(x2|t2), will be changed significantly. The major occurring problem is
that the evaluation team has no information about the experience level of
the particular student who gave a particular test evaluation. The problem
could also appear if the two nodes in Figure 8.1 are not students but sensor
nodes measuring the same quantity or nodes in a Tanner graph with varying
degree.

Considering an irregular LDPC code the different node degrees can gen-
erate different reliabilities with respect to the same underlying bit. In this
context, the evaluation team is the other node type, e.g. a check node, which
receives the probability distribution from, e.g., a variable node during den-
sity evolution. Due to the random structure of the graph it is not possible
to track the degrees of all sending nodes for each receiving node. Hence, it
is only possible to describe the composition in a probabilistic manner using
the edge-degree distribution.

In the previous chapter discrete density evolution for regular codes was
applied to irregular codes directly, with the only difference that (5.17) and
(5.19) were used to determine an output distribution which is forwarded to
another node input. Comparing (5.17), or respectively (5.19), with (8.2)
underlines similarities between the simple example from above and density
evolution. The random relation between cluster indexes and meanings causes
a significant change in meaning when averaging over all possible degrees
weighted by the edge-degree in density evolution. Therefore, it is not pos-
sible to propagate the intended reliabilities through a randomly structured
graph without aligned meanings of messages. Especially variable nodes with
high degrees suffer from this problem because there typically high LLRs,
are attenuated causing an early error floor as seen in the previous chapter.
Thus, the central aim is to pair the newly developed message alignment with
discrete density evolution in order to construct discrete LDPC decoders for
irregular codes.

The labeling of the clusters is arbitrary and can be changed easily. In
contrast to the original observation, where each y ∈ Y had at least a physical
meaning this is not true for the cluster labels. Hence, it is possible to rela-
bel the clusters in order to align the resulting meaning of the independent
compressions. From an information geometrical perspective, the involved
conditional distributions p(x|t1) and p(x|t2), which are carrying the informa-
tion about the relevant variable X, are points on an S|X |−1 simplex. In case
of a binary variable X, as for the considered binary LDPC code, the resulting
S1 simplex is just a line. Consequently, p(x|t1) and p(x|t2) are two points on
that line spaced by a certain distance. The further the two points diverge
the larger the resulting information loss or Kullback-Leibler divergence. This
affects the misinterpretation in the belief of the relevant random variable X.

8.2. MATHEMATICAL PROBLEM FORMULATION 71

Of course, when considering a simple shape like an S1 simplex it would
be sufficient to measure the distance between the points or its scalar counter-
parts, i.e. LLRs, using the euclidean distance. However, for relevant random
variable with non-binary event space this is not necessarily true. Instead, the
Kullback-Leibler divergence is chosen as more generic distortion measure.

The next sections will focus on the mathematical formulation of the pre-
viously described problem as well as developing iterative algorithms to min-
imize the information loss caused by inappropriate averaging in the context
of discrete density evolution.

8.2 Mathematical Problem Formulation

Summarizing the previous sections, one concludes that combining clusters,
denoting diverging meanings or beliefs, with respect to the relevant variable
results in an undesirable loss in inference performance. The idea developed
during this thesis is to introduce a relabeling of the clusters, which can also
be seen as deterministic transformation

p(z1|t1) = δ(z1 − z∗1(t1)) (8.3)

where T1 is the original compression variable and Z1 is the newly introduced
aligned compression variable.

For simplicity only two different clustering results shall be combined. A
second application of the Information Bottleneck method creates another
clustering T2 with respect to the same relevant variable X. For the sake of
fairness, it is valid to argue that also this clustering should be aligned against
T1, but this more complicate case will be investigated in later sections.

Consequently, for a given t1 ∈ T , solely the deterministic mapping p(z1|t1)
needs to be found such that

p(x|Z1 = z1) ≈ p(x|Z2 = z2), if z1 = z2 (8.4)

The distortion measure used to align the message meaning as good as
possible is the Kullback-Leibler divergence. The Kullback-Leibler divergence
is not symmetric, raising the question, in which order to place the arguments.
In [M+05] common divergences in information theory were investigated in
detail. It turns out, that the reference distribution should be placed as
second argument to force the first distribution to lock on the dominant mode
of the second distribution. This is desirable for the message alignment and
thus the sought mapping p(z1|t1) should be designed such that

∀(t1, z1) : DKL {p(x|T1 = t1)||p(x|Z2 = z1)} −→ min . (8.5)

72 CHAPTER 8. QUANTIFYING THE MISMATCH LOSS

It is not possible to derive a closed form solution due to the structure
of the setting. This is a known and common problem [M+05]. Thus, it is
recommended in [M+05] and [WLW09] to develop iterative algorithms finding
stationary points.

A first design approach to find a suitable p(z1|t1) for a given t1 ∈ T is

z∗1(t1) = argmin
z1

DKL {p(x|T1 = t1)||p(x|Z2 = z1)} , ∀t1. (8.6)

In Chapter 9 it will be shown that already this simple algorithm yields
significant performance gains.

8.3 Quantifying the Mismatch Loss in Dis-

crete Density Evolution.

Message alignment can be interpreted as a Kullback-Leibler divergence min-
imization problem. However, minimizing this expression in closed form is
often not possible. The previously introduced iterative algorithm is limited
to two distinct posterior distributions p(x|t1) and p(x|t2), which should be
aligned, i.e. p(x|z1) ≈ p(x|t2) for t2 = z1. When considering irregular LDPC
codes, usually, more than two distinct node degrees exist. In this more com-
plex setting, it is not obvious which belief to use as reference. Hence, another
concept has to be defined, extending the original minimization, namely the
so called mismatch loss. This quantity measures the remaining information
mismatch after the alignment procedure.

After the message alignment, the resulting joint distribution p(x, u) is
obtained, which is used for density evolution at the other node type as

p(x, U = u) =
∑

s∈S

p(x|Zs = u) Pr(Zs = u)p(s), (8.7)

where p(s) is the corresponding probability mass function of the random vari-
able S. The random variable S represents the possible node degrees and their
corresponding probabilities are determined by the edge-degree distribution
as in the previous sections. By marginalization, p(u) can be found as

p(u) =
∑

x∈X

∑

s∈S

p(x|Zs = u) Pr(Zs = u)p(s) (8.8)

=
∑

s∈S

Pr(Zs = u)p(s)
∑

x∈X

p(x|Zs = u) (8.9)

=
∑

s∈S

Pr(Zs = u)p(s). (8.10)

73

The resulting conditional probability equals

p(x|U = u) =

∑

s∈S

p(x|Zs = u) Pr(Zs = u)p(s)

Pr(U = u)
, (8.11)

which expresses the meaning of the joint clusters with respect to the relevant
variable X after the alignment step. Please note that p(x|zs) already depends
on the corresponding transformation mappings p(zs|ts) for the particular
node degrees.

The joint distribution p(x, u) is forwarded as input to the other node type
since it corresponds to the joint distribution of the represented bits x and
the aligned messages zs.

The costs caused by the remaining mismatch can be determined using the
Kullback-Leibler divergence DKL{p(x|zs)||p(x|u)} for zs = u. Please note
that for simplicity from now on the ”*” in (8.6) is dropped, i.e. Zs represents
the optimally transformed version of Ts. For a certain node degree s which
outputs the aligned messages zs the ”local” expected costs are

Llocal =
∑

zs∈Zs

p(zs)DKL{p(x|zs)||p(x|U = zs)}, (8.12)

where ”local” indicates that the costs belong to one specific node degree
s. These costs describe the change in initially intended meaning due to the
remaining mismatch. If more than two nodes are involved the local costs are
weighted to obtain the global mismatch loss. The corresponding weighting
factors for each local clustering loss are given by p(s), i.e. the edge-degree
distribution. Consequently, the overall expected mismatch loss is

Lglobal =
∑

s∈S

p(s)
∑

zs∈Zs

p(zs)DKL{p(x|zs)||p(x|U = zs)}, (8.13)

where Lglobal is a function of all determined deterministic mappings δ(zs −
z∗s(ts)), ∀s.

Only when considering this cost function it is possible to make reliable
statements about different investigated alignment techniques.

Applying the initial minimization strategy would result in finding optimal
mappings p(zs|ts) for every node, except the one chosen as reference node zref
which was seen as most useful and reliable.

One of the main advantages of the Information Bottleneck method was
the absence of a predefined distortion measure. For this alignment strategy
a certain measure to select a reference node is required. The left bar chart in

74 CHAPTER 8. QUANTIFYING THE MISMATCH LOSS

IterativeOriginal
0

0.1

0.2

0.3

R
el
at
iv
e
C
os
ts

dref = 2 dref = 11 dref = 3
dref = 4 dref = max I(X;T) dref = maxE{|L(x|t)|}

Figure 8.3: Comparison of relative costs for different initial reference nodes
for two different optimization techniques. Lower relative costs translate di-
rectly to less message meaning divergence. Furthermore, dref denotes the
node degree of the reference node.

Figure 8.3 shows a comparison of all possible reference nodes for an irregular
LDPC code from the WLAN standard which will be used in later chapters
and their corresponding relative cost reduction compared to the case without
message alignment. Using (8.13) the relative costs can be found as

relative costs =
Lglobal, aligned

Lglobal, not aligned

. (8.14)

Consequently, in Figure 8.3 a relative cost of 1 would correspond to no gain
compared to the case without message alignment. The shown result is an
example for the first decoder iteration and a check node output messages.
It turns out that no matter which node is chosen as reference the costs are
reduced at least by a factor of 4. The best performance is achieved if the
node-degree with the highest average LLR magnitude is chosen. A more
detailed comparison with the second best option, namely choosing the node
with the highest mutual information, reveals that there is no big difference
between these two approaches. From a practical perspective, it is preferable
to choose the node with the highest mutual information. Since when consid-
ering the communication overhead generated by the alignment, the variable
node with the highest degree also contains the highest amount of mutual

75

z1

p(x|u1)

z2

p(x|u2)

z3

p(x|u3)

zref

p(x|uref)

p(x|zref)

Figure 8.4: Finding a consensus on the best message alignment iteratively.

information. Hence, the reference node is fixed in advance and does not need
to be determined for each iteration by exchanging average LLR magnitudes
between the nodes.

The optimization criterion defined in (8.5) assumes only two nodes with
different cluster meanings. In this section, this approach was extended by
defining and evaluating the mismatch loss. However, in contrast to (8.6)
where the messages were always aligned with respect to the same reference
node, the combined meaning p(x|u) is used to compute the mismatch loss.
This is beneficial because, if a matching is always performed against the
initial cluster meanings of the reference node, the already changed distri-
bution after the previous partial alignments is not considered. Neglecting
this would result in an alignment that has been optimized for the static
reference p(x|zref) and a certain node p(x|zs) but is not necessarily opti-
mal for the intermediate matching result p(x|u) and p(x|zs), since in general
p(x|zref) 6= p(x|u).

Trying to minimize (8.13) directly is not trivial. A common technique
to minimize such problems is to use iterative algorithms. The invented al-
gorithm is schematically shown in Figure 8.4. A reference node is chosen
according to the same criterion as in the previous algorithm. The corre-
sponding cluster meanings are denoted as p(x|zref). The algorithms used
to align two nodes is applied to determine the resulting message alignment
between reference node and another randomly chosen node. The combined
conditional probability function p(x|u1) is computed using the normalized
weights of the two nodes, defined by the edge-degree distribution. Instead of
using again p(x|zref) as input distribution in the next alignment step, p(x|u1)
is used. This approach is beneficial because the knowledge that the original
message meanings of the reference node p(x|zref) are already adapted is not
ignored anymore. This pairwise aligning and combining is repeated several

76 CHAPTER 8. QUANTIFYING THE MISMATCH LOSS

times until all nodes are included in the alignment procedure.

The last step in the first iteration of one matching cycle is to match the
reference node against the current result, i.e all previous pairwise alignments
are considered.

The advantage of this second iterative technique is apparent from the
right bar chart in Figure 8.3. The iterative approach reduces the relative
costs even further. Especially the node degree suited worst as reference
node in the original setting reduces its costs significantly. However, choosing
the node degree with the highest mutual information or the highest average
LLR magnitudes still results in the largest gains. Selecting the node degree
with the highest mutual information together with the iterative algorithm
results in 10-times lower global alignment costs compared to the case without
alignment. This is an obvious performance gain.

Furthermore, the adjustment of the originally developed minimization
algorithm leads to 20% less relative costs compared to the original technique.

In the next chapter, these algorithms will be used to generate discrete
decoders for irregular LDPC codes. The effect of reduced costs is directly
related to the BER performance, which will be presented in the next chapter.

8.4 Message Alignment in Information Bot-

tleneck Graphs

In the previous section, message alignment was presented as new technique to
enlarge the number of possible applications of information optimum design.
It turned out that the optimal relabeling of cluster indices helps to harmo-
nize the different meanings of originally similar clusters. Another important
step is to include this technique in the framework of Information Bottleneck
graphs, which made it possible to visualize the flow of relevant information
in a complex system. In this section, a new shape representing the message
alignment procedure will be introduced. Figure 8.5 shows this new shape.

In the well-known factor graph notation a factor is a filled square. The
newly created message alignment node contains a circle inside this square
with two important characteristics, namely the color and the label. The
label x|. indicates that the alignment is for compression variables carrying
information or meanings about the relevant variableX. The color of the circle
is a second important property because it helps to understand which variables
participate in the alignment procedure. As explained in the previous section
it is possible that more than two variables are aligned using an iterative
algorithm. In a graph, it would be too confusing to draw solid, black lines

8.5. DISCRETE DECODERDESIGN FOR IRREGULAR LDPC CODES77

x|.x|.t1 z1

x|.x|.t2 z2

Figure 8.5: The new message alignment node is characterized by its label and
the color. Every variable node that is involved in the alignment is colored
the same way as the message alignment node itself. The label indicates the
relevant variable.

indicating links between factor and variable nodes, if many variables are
involved in the alignment. Hence, instead of a solid connection using a line,
the link is visualized using colors. If variables are found by message alignment
their nodes get the same color as the circle inside the message alignment node.
In the next section, this new IB node will be used to visualize a discrete
decoder for irregular LDPC codes.

8.5 Discrete Decoder Design for Irregular LDPC

Codes

In the previous sections of this chapter, a new technique called message
alignment was introduced as well as a new IB node. In this section the
major findings will be recapped and applied to a simple toy example. As
stated earlier, the main motivation of this thesis and the development of
message alignment is to enable discrete decoding of irregular LDPC codes.
A simple irregular LDPC code ensemble is given by the following edge-degree
distribution

λ(x) =
2

3
x2 +

1

6
x3 +

1

6
x5 (8.15)

ρ(x) =
1

6
x3 +

5

6
x4, (8.16)

i.e. distinct check node degrees are dc = 4 and dc = 5 and the existing
variable node degrees are dv = 3, dv = 4 and dv = 6.

In Figure 8.6 one iteration of the discrete decoder is illustrated using an
Information Bottleneck graph. Since the focus in this Information Bottleneck
graph is on message alignment, the IB nodes are closed although they will
be opened in practice as described in Chapter 6. Furthermore, the notation
from (6.4) and (6.5) in Chapter 6 is used. Thus, a relevant variable xl

78 CHAPTER 8. DISCRETE DECODER DESIGN

y1 ỹ1

...
x2 t1 x2|.x2|. z1 ... x̃2 t̃1

y3 ỹ3

...
...

ỹ′
1

...
...

...
...

...
... x̃3 t̃2

ỹ′
4

...
...

y′
1

ỹ′′
1

...
x3 t2 x2|.x2|. z2 ... x̃5 t̃3

y′
6

ỹ′′
6

x̃5|.x̃5|. x̃5|.x̃5|. x̃5|.x̃5|.

· · · · · · z̃3

...
...

z2

...
...

z̃1

π

π−1

check nodes variable nodes

to connected check nodes

Figure 8.6: Discrete message passing in discrete irregular LDPC decoders
using message alignment. One decoder iteration is shown starting at the
check nodes.

79

means that the discrete message t is an output of a check node with degree
dc = l + 2 or a variable node with degree dv = l + 1. The mapping which
determines this outgoing message is designed for one particular edge. Thus,
for each edge there exists a look-up table, which is similar if the node degree
of the sending node is the same. This structure offers high parallelism of the
decoding algorithm.

The illustrated discrete message passing iteration in Figure 8.6 starts at
the check nodes in the top left corner. According to (8.16) two check node
degrees exist. In the previous section, it was highlighted that the initial
reference node in message alignment should be the one with the highest
mutual information I(X;T) or the highest average LLRs. For check nodes,
the node with the lowest degree is most informative. Thus, the variable node
with degree dc = 4 is defined as initial reference. In Figure 8.6 this is indicated
by the label x2|. in the message alignment nodes on the left side (cf. message
alignment node with filled, orange circle). The two connected variable nodes
z1 and z2 are aligned as the color of the node implies. Since only two distinct
node degrees exist, algorithm (8.6) is used to obtain the mapping p(z2|t2) and
p(z1|t1) is just an identity mapping. The joint distribution p(x, u), defined in
(8.7), is forwarded to the input of the variables nodes during discrete density
evolution. Too many pseudo-random connections between variable and check
nodes to be tracked exist, hence the Tanner graph is modeled stochastically
which is illustrated by an interleaver π in Figure 8.6. Please note that in
the actual decoding realizations of Z1 and Z2 are sent to the variable nodes.
The distribution p(x, u) is found by substituting the appropriate values from
(8.16) in (8.7)

p(x, U = u) =
1

6
p(x|Z1 = u)p(Z1 = u) +

5

6
p(x|Z2 = u)p(Z2 = u). (8.17)

Please note that the event space U equals the original compression space
T . In a next step the variable nodes design independent mappings, i.e.
p(t̃1|ỹ), p(t̃2|ỹ′) and p(t̃3|ỹ′′), using the distributions received from the check
nodes and the channel. Since three different variable node degrees exist, the
iterative message alignment algorithm illustrated in Figure 8.4 is applied. At
first the node with degree dv = 6 is chosen as initial reference because the
variable node with the highest degree is most informative. Consequently,
after the alignment between reference and variable node with degree dv = 4
the first intermediate result p(x|u1) is determined. By considering the weights
defined in the edge-degree distribution and normalizing them, p(x|u1) equals

p(x|u1) =
p(x, u1)
∑

x∈X

p(x, u1)
, (8.18)

80 CHAPTER 8. DISCRETE DECODER DESIGN

where

p(x, U1 = u1) =
1
6
p(x, Z3 = u1) +

1
6
p(x, Z2 = u1)

1
6
+ 1

6

. (8.19)

In the next step p(x|u1) and p(x|t1), i.e. the variable node with the lowest
degree, are aligned. The aligned output variable is denoted by U2. According
to (8.6) and when putting p(x|u1) as reference, the minimization problem
follows as:

z∗1(t1) = argmin
z1

DKL {p(x|T1 = t1)||p(x|U1 = z1)} , ∀t1. (8.20)

Similar to the first step, the intermediate distribution p(x|u2) equals

p(x|u2) =
p(x, u2)
∑

x∈X

p(x, u2)
, (8.21)

where

p(x, U2 = u2) =
1
6
p(x, Z3 = u2) +

1
6
p(x, Z2 = u2) +

2
3
p(x, Z1 = u2)

1
6
+ 1

6
+ 2

3

. (8.22)

Finally, it is possible align the mappings of the initial reference node and
the latest intermediate result. At first the mapping p(z3|t3) is found

z∗3(t3) = argmin
z3

DKL {p(x|T3 = t3)||p(x|U2 = z2)} , ∀t3. (8.23)

Afterwards, intermediate result and newly designed mapping p(z3|t3) are
combined to obtain

p(x|ũ) = p(x, ũ)
∑

x∈X

p(x, ũ)
, (8.24)

where

p(x, Ũ = ũ) =
1
6
p(x, Z3 = ũ) + 1

6
p(x, Z2 = ũ) + 2

3
p(x, Z1 = ũ)

1
6
+ 1

6
+ 2

3

. (8.25)

As shown in Figure 8.6 p(x, ũ) is passed back to connected check nodes
over the random graph π−1 during discrete density evolution, whereas during
decoding z̃1, z̃2 and z̃3 are sent.

Chapter 9

Information Optimum

Decoding of Irregular LDPC

Codes

In previous chapters the superior performance of irregular LDPC codes was
outlined. Furthermore, a new strategy to harmonize meanings of clusters
received from different node degrees, which represent beliefs with respect to
the same relevant variable, was developed.

In this chapter, the new technique, called message alignment, will be
applied when constructing discrete decoders for irregular codes. The inves-
tigated irregular codes are selected from two different standards. In the first
part, BER performance analysis is realized for a short irregular code from
the IEEE 802.11 WLAN standard. Afterwards, BER performance analysis is
performed for a much longer and thus stronger irregular code from the DVB-
S2 standard. Analogously to Chapter 7, belief propagation decoding using
continuous respectively quantized input LLRs as well as min-sum decoding
are considered as reference systems.

9.1 Results and Discussion for irregular IEEE

802.11 WLAN Code

The WLAN standard is widely used if people want to establish a wireless
Internet connection. The standard considers different LDPC codes for error
correction with different codeword length [IEE12]. The selected code has
length N = 1296 and the node-degree distribution from (7.1).

Figure 9.1 shows the resulting BER curves for reference decoders and two
discrete decoders. Both discrete decoders are generated for one particular

81

82 CHAPTER 9. IRREGULAR LDPC DECODING

0 0.5 1 1.5 2 2.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant. reference

Min-Sum

0.8 dB not aligned

0.8 dB iterative

0.8 dB basic

Figure 9.1: BER performance comparison using the reference decoders and
discrete decoders generated for a design-Eb/N0 = 0.8 dB and |T | = 16.

design-Eb/N0 = 0.8 dB. During the simulation, only the channel quantizer
adapts to the current Eb/N0. The magenta curve in Figure 9.1 corresponds to
the discrete decoder which uses message alignment during the construction.
Obviously, the undesirable error floor disappears, when message alignment is
applied. Consequently, it can be concluded that the message alignment strat-
egy is a promising approach. As reference, the cyan curve displays BER re-
sults for a discrete decoder without the alignment strategy. Moreover, Figure
9.1 shows the improved performance due to the iterative message alignment
(magenta curve), which was developed as an extension of the firstly proposed
alignment technique (yellow curve). Performing the alignment pairwise and
iteratively resulted in lower global costs, introduced as a quality measure
in Chapter 8. Hence, the correlation between reduced global costs and im-
proved error correction performance is evidently demonstrated. Simulation
results for different design-Eb/N0 emphasizing this observation are included
in Appendix B for different examples. The performance degradation of the
discrete decoder is only around 0.1 dB. However, it is possible to close the
gap even further by increasing the number of clusters. As shown in Figure
9.2, when using 5 bit quantization, the discrete LDPC decoder does not suf-
fer from any practically relevant loss in comparison to the belief propagation
reference. Results for a variety of discrete decoders generated for different
design-Eb/N0 values and 32 clusters, i.e. 5 bits, are also included in Appendix
B.

9.2. RESULTS AND DISCUSSION FOR DVB-S2 CODE 83

0 0.5 1 1.5 2 2.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.8 dB not aligned

0.8 dB iterative

Figure 9.2: BER performance comparison using the reference decoders and
discrete decoders generated for a design-Eb/N0 = 0.8 dB and |T | = 32.

9.2 Results and Discussion for DVB-S2 Code

The results obtained for the WLAN code indicated that message alignment
is an expedient approach for the application of discrete decoders to irregular
LDPC codes. However, for a couple of reasons it is deeply interesting to
include an irregular LDCP code from the DVB-S2 standard in the investiga-
tion.

Firstly, the chosen code belongs to the common class of repeat-accumulate
codes, which are easy to encode. Secondly, the code is longer, stronger and
thus has a steep waterfall region and a low error floor. Being able to follow
this steep curve would again prove that message alignment is able to sup-
press the early error floor encountered during the simple implementation in
Chapter 7. Thirdly, applying the newly developed technique to another code
verifies the validity of earlier results.

Figure 9.3 shows BER simulation results for the DVB-S2 code. The BER
curves for the reference systems are again compared with the performance
of a discrete decoder generated for a design-Eb/N0 = 0.8 dB. In contrast to
the results obtained without message alignment (light blue), it is possible
to follow the belief propagation decoder curve with a gap of only 0.2 dB
(magenta), when using the new technique. Furthermore, the performance
improvement obtained by applying iterative message alignment outperforms
the basic approach (yellow) remarkably.

84 CHAPTER 9. IRREGULAR LDPC DECODING

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant. reference

Min-Sum

0.8 dB basic

0.8 dB iterative

0.8 dB not aligned

Figure 9.3: BER performance comparison using the reference decoders and
discrete decoders generated for a design-Eb/N0 = 0.8 dB and |T | = 16.

The chosen code from the DVB-S2 standard [ETS14] has a codeword
length of N = 64800 and the following node-degree distribution

dc =

[

0, 0, 0, 0, 0, 0,
1

32400
,
32399

32400

]T

(9.1)

dv =

[

1/64800,
32999

64800
,
19440

64800
, 0, 0, 0, 0,

12960

64800

]T

. (9.2)

Further BER simulations strengthening the observations are included in
Appendix C. Like for the WLAN code, it is possible to close the gap by
increasing |T |. Figure 9.4 shows BER curves for the reference systems and
a discrete decoder generated for a design-Eb/N0 = 0.8 dB and 32 clusters.
The remaining gap between fair belief propagation reference and discrete
decoder after spending one more bit, i.e. 5 bits in total, is below 0.1 dB.
Further simulation results for 32 clusters but different design-Eb/N0 values
are included in Appendix C.

9.2. RESULTS AND DISCUSSION FOR DVB-S2 CODE 85

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.8 dB iterative

0.8 dB not aligned

Figure 9.4: BER performance comparison using the reference decoders and
discrete decoders generated for a design-Eb/N0 = 0.8 dB and |T | = 32.

86 CHAPTER 9. IRREGULAR LDPC DECODING

Chapter 10

Performance Evaluation for

Irregular LDPC Codes with

Higher Order Modulation

Higher order modulation schemes are often used to increase the spectral
efficiency [Kam13]. According to the standard, also the previously inves-
tigated irregular LDPC codes are paired with such modulation schemes
[IEE12], [ETS14]. However, so far only information optimum quantizers
for binary phase-shift keying (BPSK) modulations were proposed in liter-
ature [KYK08], [LB15], [LSB16a]. It turns out, that generalizing quantizer
design poses quite similar challenges as the ones encountered during irregular
LDPC decoder design.

In this chapter, the newly developed message alignment technique is ap-
plied to quantizer design for higher order modulation, to outline its univer-
sality. Therefore, in the first part quadrature amplitude modulation (QAM),
which is used together with the WLAN code, is introduced. Afterwards, the
quantizer design is explained and simulation results are given to compare
the performance. In the second part, phase-shift keying (PSK) is investi-
gated. 8-PSK is used in the DVB-S2 standard. Again, the quantizer design
is explained and simulation results are given.

10.1 Quantizer Design for 64-QAM Modula-

tion

QAM schemes spread constellation points in the complex plane according to a
grid-like pattern. Depending on the number of symbols M , each symbol car-
ries log2 M bits. Thus, with each channel access the number bits transmitted

87

88 CHAPTER 10. HIGHER ORDER MODULATION

Re(s)

Im(s)

000000

000001

000011

000010

000110

000111

000101

000100

001000

001001

001011

001010

001110

001111

001101

001100

011000

011001

011011

011010

011110

011111

011101

011100

010000

010001

010011

010010

010110

010111

010101

010100

110 000

110 001

110 011

110 010

110 110

110 111

110 101

110 100

111000

111001

111011

111010

111110

111111

111101

111100

101000

101001

101011

101010

101110

101111

101101

101100

100000

100001

100011

100010

100110

100111

100101

100100

Figure 10.1: Constellation mapping of the investigated 64-QAM.

increases with M , resulting in a higher spectral efficiency. Simultaneously,
the bit error probability increases due to the decreased distance, since more
symbols need to be packed into the plane.

The considered 64-QAM is shown in Figure 10.1. Due to the arrange-
ment, the real and imaginary part can be treated independently, resulting in
two

√
M−amplitude-shift keying (ASK) modulations [Kam13]. Often, the

bit mapping is chosen such that the bits for a certain amplitude are identical.
Furthermore, the bit mappings of each

√
M−ASK modulation are identical

allowing to reuse the quantizer designed for the real part also for the imag-
inary part. Consequently, one quantizer designed to discretize the received
samples Re(ỹ) can also be applied to Im(ỹ).

Information optimum quantizer design always starts with a joint distri-
bution between the relevant quantity, i.e. the transmitted symbol S, and
the observation Ỹ . For a

√
M−ASK modulation the corresponding joint

10.1. QUANTIZER DESIGN FOR 64-QAM MODULATION 89

0 2 4 6 8 10 12 14 16
−20

−10

0

10

20

y

L
(b

1
|y
)

0 2 4 6 8 10 12 14 16

−5

0

5

y

L
(b

2
|y
)

0 2 4 6 8 10 12 14 16
−2

−1

0

1

2

y

L
(b

3
|y
)

Figure 10.2: Meanings of the different clusters for the three bits of an 8-
ASK constellation. Obviously, the meaning expressed by a cluster varies
significantly for different bits.

distribution is given by

p(ỹ, s) = p(ỹ|s)p(s) = 1
√

2πσ2
N/2

exp

(

− 1

2σ2
N/2

(ỹ − s)2
)

1√
M

. (10.1)

In the first step of the design procedure p(ỹ, s) is used as Information
Bottleneck input to determine p(y, s), where the random variable Y describes
the quantized version of Ỹ .

The bit labeling defines the relation between a symbol and the log2 M
bits and can be written as conditional distribution p(b0, b1, · · · bM |s). Using
this relation the joint distribution for one arbitrary bit and the compressed
observation can be derived as

90 CHAPTER 10. HIGHER ORDER MODULATION

p(bM , y) =
∑

s∈S

p(y|s)p(bM |s)p(s). (10.2)

Figure 10.2 shows the meaning of each cluster for all three different bits of
an 8-ASK modulation. The meanings expressed by a particular cluster differ
significantly for different bits. However, the decoder can cope only with one
particular distribution. Hence, it is necessary to align these meanings using
message alignment. Due to its superior performance, the iterative message
alignment algorithm is used for the quantizer generation.

10.2 Results and Discussion for IEEE 802.11

WLAN Code with 64-QAM

Figure 10.3 shows the bit error rate simulations for the same reference de-
coders as in previous chapters and the new discrete decoder. The belief
propagation algorithm which takes only |T | distinct LLRs obtains its inputs
from the newly designed 64-QAM quantizer. The loss caused by the informa-
tion optimum quantizer for 64-QAM is only 0.2 dB which is slightly higher
compared to results seen in previous chapters. However, in contrast to the
binary case, i.e. BPSK, the relevant variable can take 8 values. Thus, the ra-
tio |T |/|X | is decreased by a factor of four and the performance degradation
is still quite small. Consequently, applying message alignment to quantizer
design for higher order modulation schemes turns out as a promising ap-
proach. The additional penalty which the discrete decoder suffers is still
only 0.2 dB. Thus, in combination with the loss caused by the quantizer, the
overall gap between continuous belief propagation and discrete decoding is
0.4 dB. Min-sum decoding is still performing worse than the discrete decoder
although neither the input is quantized nor the word length is limited during
processing.

10.3 Quantizer Design for 8-PSK Modulation

QAM is a very common modulation scheme, e.g., if the spectral efficiency
shall be increased [Kam13]. However, due to the required fast amplitudes
changes amplifiers need to fulfill demanding linearity constraints. If cheap,
low-power amplifiers are used this linear region is often quite small. Hence,
another modulation scheme is used which encodes information only in the
phase instead of the amplitude. These schemes are called phase-shift key-
ing (PSK). In PSK all constellation points are placed on a unit circle. Often,

10.3. QUANTIZER DESIGN FOR 8-PSK MODULATION 91

0 2 4 6 8
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant. reference

Min-Sum

5.7 dB not aligned

5.7 dB iterative

Figure 10.3: BER curve comparison using reference decoders and discrete
decoders generated for a design-Eb/N0 = 5.7 dB and |T | = 16 for 64-QAM
modulation and an irregular code form the WLAN standard.

communication satellites cannot effort expensive, energy demanding ampli-
fiers. Thus, in the DVB-S2 standard LDPC decoders are paired with 8-PSK
modulation. The corresponding constellation diagram is shown in Figure
10.4.

At first, to simplify the processing, the complex plane is transformed from
Cartesian into polar coordinates using a bivariate transformation [Stü11]

p(θ, r|s) = r

2πσ2
N

exp

{

− 1

2σ2
N

(

r2 − 2
√
2r cos(θ − s) + 2

)}

. (10.3)

For computation of the bit error rate of PSK modulation only the phase
is considered. However, to provide LLRs for soft decision decoding also
the magnitude needs to be considered. Using the chain rule, the mutual
information between all three quantities can be written as

I(S; Θ, R) = I(S; Θ) + I(S;R|Θ). (10.4)

Figure 10.5 visualizes the normalized loss of mutual information, i.e. I(S;R|Θ)
I(S;R,Θ)

,

when considering solely the phase. Interestingly, only up to 4% mutual in-
formation are lost and this amount decreases for higher Eb/N0-values. Thus,
the developed simple low complexity quantizer quantizes only the phase. The
appropriate marginal distribution p(θ|s) can be found as

92 CHAPTER 10. HIGHER ORDER MODULATION

Re(s)

Im(s)

001

000

100

110

010

011

111

101

Figure 10.4: Constellation mapping of the investigated 8 PSK modulation.

0 1 2 3 4 5 6
0

1

2

3

4

Eb/N0 in dB

m
u
tu
al

in
fo
rm

at
io
n
lo
ss

in
%

Figure 10.5: Relative loss of mutual information when considering only the
phase.

10.4. RESULTS AND DISCUSSION FOR DVB-S2 CODE WITH 8-PSK93

0 1 2 3 4
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant. reference

Min-Sum

2.8 dB iterative

Figure 10.6: BER curve comparison using reference decoders and discrete
decoders generated for a design-Eb/N0 = 2.8 dB and |T | = 16 for 8-PSK
modulation and an irregular code form the DVB-S2 standard.

p(θ|s) = 1

π
exp

{

− 1

σ2
N

sin2(θ − s)

}

· (10.5)

∫ ∞

0

x exp

{

(x−
√

1

σ2
N

cos(θ − s))2

}

dx. (10.6)

Using this distribution allows generating an information optimum phase
quantizer. The desired distributions for each bit can be obtained using the
mapping, as shown in (10.2). Similarly to QAM quantization, the meanings
expressed by the same cluster for different bits differs significantly. Thus,
message alignment is used to harmonize the cluster meanings.

10.4 Results and Discussion for DVB-S2 Code

with 8-PSK

Figure 10.6 and 10.7 display BER simulation results for the newly designed
quantizer for |T | = 16 and |T | = 32 compared to reference systems.

The performance degradation of the discrete decoder is still only 0.2 dB
compared to belief propagation with quantized LLRs. However, the per-
formance loss caused by the quantizer is more severe than for 64-QAM or

94 CHAPTER 10. HIGHER ORDER MODULATION

0 0.5 1 1.5 2 2.5 3 3.5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant. reference

Min-Sum

2.4 dB iterative

Figure 10.7: BER curve comparison using reference decoders and discrete
decoders generated for a design-Eb/N0 = 2.4 dB and |T | = 32 for 8-PSK
modulation and an irregular code form the DVB-S2 standard.

BPSK. For |T | = 16 the quantizer adds a penalty of 0.6 dB and 0.4 dB for
|T | = 32. Nevertheless, in both cases the min-sum decoder is still outper-
formed, although with a smaller margin. Furthermore, it should be noted
again that only the phase is considered which is a significant complexity re-
duction. Hence, one can summarize that considering only the phase together
with message alignment for quantizer design in combination with discrete
decoders allows decoding irregular LDPC codes with 8-PSK modulation bet-
ter than min-sum decoding but in a less complex manner. Moreover, it is
observed that increasing the number of phase quantization levels to |T | = 32
allows to considerably outperform the min-sum decoder and decreases the
gap between discrete decoding and belief propagation decoding.

Chapter 11

Conclusion

The central aim of this thesis was to broaden the applicability of discrete
decoders to irregular LDPC decoders. In the first part existing discrete de-
coders for regular LDPC decoders were implemented and evaluated. Python
was chosen as programming language making it necessary to implement ex-
isting Information Bottleneck algorithms as well as reference systems and
receiver units.

Using bit error rate simulation, the competitive performance of discrete
decoders was verified using a regular LDPC code from a public database.

It was shown that a straightforward application of existing design ap-
proach is not possible for irregular codes. It turned out, that due to the
random structure of the graph, in combination with the significantly shrank
cardinality of the exchanged variable, unresolved conflicts in intended mean-
ings with respect to the relevant variable occurred. Since the belief expressed
by equivalent cluster indices can differ, an intermediate step aligning the
meaning of the message was introduced. Basically, message alignment can
be interpreted as Kullback-Leibler divergence minimization problem. The
Kullback-Leibler divergence helps to figure out which clusters generated by
different Information Bottlenecks express similar meanings. According to this
measure the labeling of the clusters is adapted to harmonize their meanings.

At first, an iterative algorithm was derived which aligned two different
node degrees. However, most irregular codes are composed of more than two
distinct degrees. Thus, as an extension of the first algorithm an iterative
pairwise alignment technique was developed aiming to minimize the overall
mismatch costs. It could be shown that this second approach results in an
even further increased performance.

Extensive bit error simulations were conducted to compare the perfor-
mance between the newly introduced discrete decoding construction tech-
nique and existing reference systems. Belief propagation decoders with and

95

96 CHAPTER 11. CONCLUSION

without quantized channel LLRs as well as min-sum decoders served as ref-
erence systems.

In a first simulation an irregular code from the WLAN standard was cho-
sen. The performance degradation of a discrete decoder was only 0.1-0.2
dB over the continuous belief propagation decoder, although the size of the
message alphabet was limited to only 16 unsigned integers. Furthermore, the
min-sum decoder was considerably outperformed. To validate the promising
results of this first simulation a second code from DVB-S2 was chosen. This
code was longer and also stronger. However, again the gap between contin-
uous belief propagation and discrete decoder was only 0.2 dB. In contrast,
the min-sum decoder lost around 0.7 dB.

This successful integration of message alignment in the irregular LDPC
decoder construction motivated to identify new applications. It was discov-
ered, that quantizers for higher order modulation schemes suffer from the
same problems as irregular LDPC codes in terms of an existing message
meaning conflict. Due to the nature of higher order modulation, distinct
bits in a symbol are protected differently. The resulting distinct reliabilities
cannot be recovered from the cluster indices directly. Thus, message align-
ment is needed. To increase the practical relevance of the findings of this
thesis, appropriate modulation schemes for the investigated codes defined in
the standards were considered. The WLAN standard pairs 64-QAM modu-
lation and the investigated irregular LDPC code, whereas DVB-S2 combines
8-PSK modulation and irregular codes.

Bit error rate simulation validated that the application of message align-
ment to information optimum quantization under higher order modulation
is beneficial. Especially the combination between WLAN code and 64-QAM
modulation showed only minor performance degradation. During the quan-
tizer design for 8-PSK, only the phase was quantized because it was shown
that neglecting the magnitude causes a loss in mutual information of only
less than 4 %. Although considering the phase of the received signal greatly
reduces the receiver complexity, the achieved bit error rate performance was
still very promising.

In conclusion, it can be summarized that message alignment increases
the number of applications of the Information Bottleneck method in sys-
tem design significantly. Especially the possibilities for distributed detection
problems are an interesting topic for further work. Furthermore, the influ-
ence of the neglected magnitude when designing quantizers for 8-PSK could
be investigated in more detail.

Irregular LDPC codes gain increasing importance for current and future
communication systems. Despite the findings of this thesis are mostly theo-
retical, they could help to adapt the decoding to hardware constraints with

97

almost no practically relevant performance degradation. In addition, the
provided generalization of information optimum quantizer design to higher
order modulation schemes allows to include discrete decoders in already ex-
isting standards as well as future high-speed communication systems. Thus
the findings of this thesis increase the practical applicability of discrete, in-
formation optimum LDPC decoders significantly.

98 CHAPTER 11. CONCLUSION

Appendix

99

Appendix A

Additional Simulation Results

for Regular LDPC Code from

MacKay Database

The regular LDPC code was chosen from the MacKay database [Mac] and
is labeled 8000.4000.3.483. The codeword length is N = 8000 and the node
degrees are dv = 3 and dc = 6. This Appendix contains mutual information
evolution curves for different Eb/N0-values.

101

102 APPENDIX A. REGULAR CODE FROM MACKAY DATABASE

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

Iteration

I
(T

;X
)

Figure A.1: Evolution of mutual information for design-Eb/N0 = 0.85 dB

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

Iteration

I
(T

;X
)

Figure A.2: Evolution of mutual information for design-Eb/N0 = 0.95 dB

103

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

Iteration

I
(T

;X
)

Figure A.3: Evolution of mutual information for design-Eb/N0 = 1.05 dB

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

Iteration

I
(T

;X
)

Figure A.4: Evolution of mutual information for design-Eb/N0 = 1.15 dB

104 APPENDIX A. REGULAR CODE FROM MACKAY DATABASE

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

Iteration

I
(T

;X
)

Figure A.5: Evolution of mutual information for design-Eb/N0 = 1.25 dB

0 10 20 30 40 50
0.6

0.7

0.8

0.9

1

Iteration

I
(T

;X
)

Figure A.6: Evolution of mutual information for design-Eb/N0 = 1.35 dB

Appendix B

Additional Simulation Results

for Irregular LDPC Code from

IEEE 802.11 Standard

The chosen code from the WLAN standard has length N = 1296, the node-
degree distribution is already defined in Chapter 9. This Appendix contains
BER simulation results for discrete decoders using only 16 or 32 distinct
clusters as indicated in the corresponding caption.

105

106 APPENDIX B. IRREGULAR WLAN CODE

0 0.5 1 1.5 2 2.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.7 dB not aligned

0.7 dB iterative

Figure B.1: Simulation results for design-Eb/N0 = 0.7 dB, |T | = 16

0 0.5 1 1.5 2 2.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.8 dB basic

0.8 dB not aligned

0.8 dB iterative

Figure B.2: Simulation results for design-Eb/N0 = 0.8 dB, |T | = 16

107

0 0.5 1 1.5 2 2.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.9 dB not aligned

0.9 dB iterative

Figure B.3: Simulation results for design-Eb/N0 = 0.9 dB, |T | = 16

0 0.5 1 1.5 2 2.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.7 dB not aligned

0.7 dB iterative

Figure B.4: Simulation results for design-Eb/N0 = 0.7 dB, |T | = 32

108 APPENDIX B. IRREGULAR WLAN CODE

0 0.5 1 1.5 2 2.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.8 dB not aligned

0.8 dB iterative

Figure B.5: Simulation results for design-Eb/N0 = 0.8 dB, |T | = 32

0 0.5 1 1.5 2 2.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.9 dB not aligned

0.9 dB iterative

Figure B.6: Simulation results for design-Eb/N0 = 0.9 dB, |T | = 32

Appendix C

Additional Simulation Results

for Irregular LDPC Code from

DVB-S2 Standard

The chosen code from the DVB-S2 standard has length N = 64800, the
node-degree distribution was already defined in Chapter 9. This Appendix
contains BER simulation results for discrete decoders using only 16 or 32
distinct clusters as indicated in the corresponding caption.

109

110 APPENDIX C. IRREGULAR DVB-S2 CODE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.6 dB iterative

0.6 dB not aligned

Figure C.1: Simulation results for design-Eb/N0 = 0.6 dB, |T | = 16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.7 dB iterative

0.7 dB not aligned

Figure C.2: Simulation results for design-Eb/N0 = 0.7 dB, |T | = 16

111

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.8 dB iterative

0.8 dB not aligned

Figure C.3: Simulation results for design-Eb/N0 = 0.8 dB, |T | = 16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.6 dB not aligned

0.6 dB iterative

Figure C.4: Simulation results for design-Eb/N0 = 0.6 dB, |T | = 32

112 APPENDIX C. IRREGULAR DVB-S2 CODE

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.7 dB not aligned

0.7 dB iterative

Figure C.5: Simulation results for design-Eb/N0 = 0.7 dB, |T | = 32

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

B
E
R

BP reference

BP quant reference

Min-Sum

0.8 dB iterative

0.8 dB not aligned

Figure C.6: Simulation results for design-Eb/N0 = 0.8 dB, |T | = 32

Bibliography

[Ama16] S.-i. Amari, Information geometry and its applications. Springer,
2016, vol. 194.

[AORS11] R. Ansorge, H. J. Oberle, K. Rothe, and T. Sonar, Mathematik
für Ingenieure: Differential-und Integralrechnung, Differentialgle-
ichungen, Integraltransformationen, Funktionen einer komplexen
Variablen. John Wiley & Sons, 2011, vol. 2.

[BGT93] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shan-
non limit error-correcting coding and decoding: Turbo-codes. 1,”
in Communications, 1993. ICC’93 Geneva. Technical Program,
Conference Record, IEEE International Conference on, vol. 2.
IEEE, 1993, pp. 1064–1070.

[Bis07] C. Bishop, “Pattern recognition and machine learning (informa-
tion science and statistics), 1st edn. 2006. corr. 2nd printing edn,”
2007.

[Bla72] R. Blahut, “Computation of channel capacity and rate-distortion
functions,” IEEE transactions on Information Theory, vol. 18,
no. 4, pp. 460–473, 1972.

[BSCG13] S. K. Buddha, K. So, J. M. Carmena, and M. C. Gastpar, “Func-
tion identification in neuron populations via information bottle-
neck,” Entropy, vol. 15, no. 5, pp. 1587–1608, 2013.

[CFRU01] S.-Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke,
“On the design of low-density parity-check codes within 0.0045
db of the shannon limit,” IEEE Communications letters, vol. 5,
no. 2, pp. 58–60, 2001.

[CT12] T. M. Cover and J. A. Thomas, Elements of information theory.
John Wiley & Sons, 2012.

113

114 BIBLIOGRAPHY

[ETS14] ETSI, “Second generation framing structure, channel coding and
modulation systems for broadcasting, interactive services, news
gathering and other broadband satellite applications,” 2014.

[Gal62] R. Gallager, “Low-density parity-check codes,” IRE Transactions
on information theory, vol. 8, no. 1, pp. 21–28, 1962.

[HOP96] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of bi-
nary block and convolutional codes,” IEEE Transactions on in-
formation theory, vol. 42, no. 2, pp. 429–445, 1996.

[IEE12] IEEE, “IEEE Standard for Information technology - Telecom-
munications and information exchange between systems - Local
and metropolitan area network - Specific requirements - Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) specifications.” IEEE Std. 802.11-2012, p. 1602, 2012.

[JL10] B. Jin and X. Lu, “Identifying informative subsets of the gene
ontology with information bottleneck methods,” Bioinformatics,
vol. 26, no. 19, pp. 2445–2451, 2010.

[Joh09] S. J. Johnson, Iterative error correction: turbo, low-density parity-
check and repeat-accumulate codes. Cambridge University Press,
2009.

[Kam13] K.-D. Kammeyer, Nachrichtenübertragung. Springer-Verlag,
2013.

[KFL01] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs
and the sum-product algorithm,” IEEE Transactions on informa-
tion theory, vol. 47, no. 2, pp. 498–519, 2001.

[Ksc03] F. R. Kschischang, “Codes defined on graphs,” IEEE Communi-
cations Magazine, vol. 41, no. 8, pp. 118–125, 2003.

[KY14] B. M. Kurkoski and H. Yagi, “Quantization of binary-input dis-
crete memoryless channels,” IEEE Transactions on Information
Theory, vol. 60, no. 8, pp. 4544–4552, 2014.

[KYK08] B. M. Kurkoski, K. Yamaguchi, and K. Kobayashi, “Noise thresh-
olds for discrete ldpc decoding mappings,” in IEEE GLOBECOM
2008-2008 IEEE Global Telecommunications Conference. IEEE,
2008, pp. 1–5.

BIBLIOGRAPHY 115

[LB15] J. Lewandowsky and G. Bauch, “Trellis based node operations
for ldpc decoders from the information bottleneck method,” in
Signal Processing and Communication Systems (ICSPCS), 2015
9th International Conference on. IEEE, 2015, pp. 1–10.

[Loe04] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal
Processing Magazine, vol. 21, no. 1, pp. 28–41, 2004.

[LSB16a] J. Lewandowsky, M. Stark, and G. Bauch, “Information bottle-
neck graphs for receiver design,” in Information Theory (ISIT),
2016 IEEE International Symposium on. IEEE, 2016, pp. 2888–
2892.

[LSB16b] J. Lewandowsky, M. Stark, and G. Bauch, “Optimum mes-
sage mapping ldpc decoders derived from the sum-product al-
gorithm,” in 2016 IEEE International Conference on Communi-
cations (ICC). IEEE, 2016, pp. 1–6.

[M+05] T. Minka et al., “Divergence measures and message passing,”
Technical report, Microsoft Research, Tech. Rep., 2005.

[Mac] D. J. C. MacKay, “Encyclopedia of sparse graph codes.” [Online].
Available: http://www.inference.phy.cam.ac.uk/mackay/codes/
data.html

[MN95] D. J. MacKay and R. M. Neal, “Good codes based on very sparse
matrices,” in IMA International Conference on Cryptography and
Coding. Springer, 1995, pp. 100–111.

[RL09] W. Ryan and S. Lin, Channel codes: classical and modern. Cam-
bridge University Press, 2009.

[Sha01] C. E. Shannon, “A mathematical theory of communication,”
ACM SIGMOBILE Mobile Computing and Communications Re-
view, vol. 5, no. 1, pp. 3–55, 2001.

[Slo02] N. Slonim, “The information bottleneck: Theory and applica-
tions,” Ph.D. dissertation, Hebrew University of Jerusalem, 2002.

[ST00] N. Slonim and N. Tishby, “Document clustering using word clus-
ters via the information bottleneck method,” in Proceedings of the
23rd annual international ACM SIGIR conference on Research
and development in information retrieval. ACM, 2000, pp. 208–
215.

116 BIBLIOGRAPHY

[Sti14] S. Still, “Information bottleneck approach to predictive infer-
ence,” Entropy, vol. 16, no. 2, pp. 968–989, 2014.

[Stü11] G. L. Stüber, Principles of mobile communication. Springer Sci-
ence & Business Media, 2011.

[TPB00] N. Tishby, F. C. Pereira, and W. Bialek, “The information bot-
tleneck method,” arXiv preprint physics/0004057, 2000.

[TZ15] N. Tishby and N. Zaslavsky, “Deep learning and the information
bottleneck principle,” in Information Theory Workshop (ITW),
2015 IEEE. IEEE, 2015, pp. 1–5.

[WLW09] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization
in wireless networks,” Proceedings of the IEEE, vol. 97, no. 2, pp.
427–450, 2009.

List of Figures

2.1 Venn diagram . 8

2.2 S2 simplex and S3 simplex . 10

2.3 Compression mappings . 11

2.4 Two notions of clustering . 12

2.5 Information Bottleneck setup [LB15]. 15

2.6 Visualization of the modified sequential Information Bottle-
neck algorithm. 18

3.1 Simple factor graph . 23

3.2 Transforming factor graphs in Information Bottleneck graphs . 24

3.3 Opening the IB node . 25

4.1 Tanner graph a regular LDPC code 33

5.1 Visualization of investigated channel models. 44

6.1 Boundaries of an information optimum quantizer. 52

6.2 Simple Information Bottleneck graph 53

6.3 Opening the node in discrete density evolution 54

6.4 Compression block diagram. 56

6.5 Exemplary sketch of increase in mutual information during
discrete density evolution. 58

7.1 Comparison of two mutual information curves. 61

7.2 Trellis diagram. 62

7.3 BER curves for regular code. 64

7.4 BER curve for irregular code without message alignment. . . . 65

8.1 The mismatch problem. 68

8.2 LLRs for two different node degrees. 69

8.3 Comparison of relative costs. 74

8.4 Iterative message alignment. 75

117

118 LIST OF FIGURES

8.5 IB node for message alignment. 77

8.6 Discrete message passing in discrete irregular LDPC decoders 78

9.1 BER performance comparison using the reference decoders
and discrete decoders generated for a design-Eb/N0 = 0.8 dB
and |T | = 16. 82

9.2 BER performance comparison using the reference decoders
and discrete decoders generated for a design-Eb/N0 = 0.8 dB
and |T | = 32. 83

9.3 BER performance comparison using the reference decoders
and discrete decoders generated for a design-Eb/N0 = 0.8 dB
and |T | = 16. 84

9.4 BER performance comparison using the reference decoders
and discrete decoders generated for a design-Eb/N0 = 0.8 dB
and |T | = 32. 85

10.1 Constellation mapping of the investigated 64-QAM. 88

10.2 Meanings of the different clusters for the three bits of an 8-
ASK constellation. 89

10.3 BER curve comparison using reference decoders and discrete
decoders generated for a design-Eb/N0 = 5.7 dB and |T | =
16 for 64-QAM modulation and an irregular code form the
WLAN standard. 91

10.4 Constellation mapping of the investigated 8 PSK modulation. 92

10.5 Relative loss of mutual information when considering only the
phase. 92

10.6 BER curve comparison using reference decoders and discrete
decoders generated for a design-Eb/N0 = 2.8 dB and |T | = 16
for 8-PSK modulation and an irregular code form the DVB-S2
standard. 93

10.7 BER curve comparison using reference decoders and discrete
decoders generated for a design-Eb/N0 = 2.4 dB and |T | = 32
for 8-PSK modulation and an irregular code form the DVB-S2
standard. 94

A.1 Evolution of mutual information for design-Eb/N0 = 0.85 dB . 102

A.2 Evolution of mutual information for design-Eb/N0 = 0.95 dB . 102

A.3 Evolution of mutual information for design-Eb/N0 = 1.05 dB . 103

A.4 Evolution of mutual information for design-Eb/N0 = 1.15 dB . 103

A.5 Evolution of mutual information for design-Eb/N0 = 1.25 dB . 104

A.6 Evolution of mutual information for design-Eb/N0 = 1.35 dB . 104

LIST OF FIGURES 119

B.1 Simulation results for design-Eb/N0 = 0.7 dB, |T | = 16 106
B.2 Simulation results for design-Eb/N0 = 0.8 dB, |T | = 16 106
B.3 Simulation results for design-Eb/N0 = 0.9 dB, |T | = 16 107
B.4 Simulation results for design-Eb/N0 = 0.7 dB, |T | = 32 107
B.5 Simulation results for design-Eb/N0 = 0.8 dB, |T | = 32 108
B.6 Simulation results for design-Eb/N0 = 0.9 dB, |T | = 32 108

C.1 Simulation results for design-Eb/N0 = 0.6 dB, |T | = 16 110
C.2 Simulation results for design-Eb/N0 = 0.7 dB, |T | = 16 110
C.3 Simulation results for design-Eb/N0 = 0.8 dB, |T | = 16 111
C.4 Simulation results for design-Eb/N0 = 0.6 dB, |T | = 32 111
C.5 Simulation results for design-Eb/N0 = 0.7 dB, |T | = 32 112
C.6 Simulation results for design-Eb/N0 = 0.8 dB, |T | = 32 112

