
Chapter 16
Non-Autonomous Evolutionary
Equations

Previously, we focussed on evolutionary equations of the form

(
∂t,νM(∂t,ν) + A

)
U = F.

In this chapter, where we turn back to well-posedness issues, we replace the material
law operator M(∂t,ν), which is invariant under translations in time, by an operator
of the form

M + ∂−1
t,ν N ,

where both M and N are bounded linear operators in L2,ν(R; H). Thus, it is the
aim in the following to provide criteria on M and N under which the operator

∂t,νM + N + A (16.1)

is closable with continuously invertible closure in L2,ν(R; H). In passing, we shall
also replace the skew-selfadjointness of A by a suitable real part condition. Under
additional conditions on M and N , we will also see that the solution operator
is causal. Finally, we will put the autonomous version of Picard’s theorem into
perspective of the non-autonomous variant developed here.

In order to get grip on the domain of the anticipated operator sum, we need to
assume a commutator condition of the coefficient operators and the time-derivative.
Thus, the replacement for the assumption of the coefficient to be a “material
law operator” (i.e., a bounded analytic function of the time-derivative) is to be
evolutionary and to have a bounded commutator with the time-derivative (in a
suitable sense). Since we proved in Theorem 8.2.1 that bounded analytic functions
of the time-derivative are exactly the ones that are causal and autonomous (and
evolutionary), one may view the following theorem as a direct generalisation of
Picard’s theorem in the way that “autonomous” is dropped.
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16.1 Examples

In principle finding examples for the non-autonomous theory is relatively simple.
The prototype case focusses on time-dependent multiplication operators. In order
to illustrate our findings below, we shall revisit the heat equation and Maxwell’s
equations.

Non-Autonomous Heat Equation
Let � ⊆ R

d be open and a : R × � → R
d×d bounded and measurable. Assume

there exists c > 0 such that

Re a(t, x) � c (a.e. (t, x) ∈ R × �).

Then the non-autonomous variant of the equations describing heat conduction are

∂t,νθ + div0 q = Q

q(t, x) = a(t, x) grad θ(t, x) ((t, x) ∈ R × �).

The resulting block operator matrix

∂t,ν

(
1 0
0 0

)
+

(
0 0
0 a−1

)
+

(
0 div0

grad 0

)

is then closable and continuously invertible in L2,ν

(
R; L2(�) × L2(�)d

)
for all

ν > 0 by Theorem 16.3.1.

Non-Autonomous Maxwell’s Equations
Let � ⊆ R

3 be open and ε, μ, σ : R×� → R
3×3 bounded and measurable. Assume

that ε and μ are Lipschitz continuous w.r.t. the temporal variables uniformly in
space; that is, there exists L � 0 such that

‖ε(s, x) − ε(t, x)‖R3×3 + ‖μ(s, x) − μ(t, x)‖R3×3 � L |t − s| (s, t ∈ R, x ∈ �).

Assume ε(t, x)� = ε(t, x) and μ(t, x)� = μ(t, x) for all t ∈ R, x ∈ �.
Furthermore, assume there exist c, ν0 > 0 such that for all ν � ν0 we have

μ(t, x) � c, and νε(t, x) + 1

2
ε′(t)(x) + Re σ(t, x) � c ((t, x) ∈ R × �).

Then it will not be difficult to see that the operator

∂t,ν

(
ε(mt , mx) 0

0 μ(mt , mx)

)
+

(
σ(mt , mx) 0

0 0

)
+

(
0 − curl

curl0 0

)
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is closable and continuously invertible in L2,ν

(
R; L2(�)3 × L2(�)3

)
for all ν � ν0

by Theorem 16.3.1; see also Exercise 16.1.

16.2 Non-Autonomous Picard’s Theorem—The ODE Case

Let H be a Hilbert space and ν > 0. In this section we will focus on the ODE-case
first, which is modelled by A = 0 in (16.1).

Theorem 16.2.1 Let M,M′,N ∈ L(L2,ν(R; H)) with M, N causal and
ReM � 0. Assume

M∂t,ν ⊆ ∂t,νM − M′

and

Re
〈
φ,

(
∂t,νM + N )

φ
〉
� c 〈φ, φ〉

for some c > 0 and all φ ∈ dom
(
∂t,νM

)
. Then

0 ∈ ρ
(
∂t,νM + N )

,

∥∥(∂t,νM + N )−1
∥∥ � 1/c, and

(
∂t,νM + N )−1

is causal. Moreover,

Re
〈
φ,

(
∂t,νM + N )∗

φ
〉
� c 〈φ, φ〉 (

φ ∈ dom
((

∂t,νM + N )∗))
.

Remark 16.2.2 The only non-trivial condition in Theorem 16.2.1 is the commutator
condition

M∂t,ν ⊆ ∂t,νM − M′.

This condition is satisfied for multiplication operators induced by a Lipschitz
continuous function, see also Exercise 16.1.

We leave the proof of 0 ∈ ρ
(
∂t,νM + N )

and the norm estimate as Exercise 16.4.
For the proof of causality, we need some preparations. The first result will also be
of some value in the next chapter. It deals with a reformulation of causality for
resolvents.

Proposition 16.2.3 Let B : dom(B) ⊆ L2,ν(R; H) → L2,ν(R; H) be linear, 0 ∈
ρ(B), and assume that there exists c > 0 such that for all φ ∈ dom(B) we have

Re 〈φ,Bφ〉L2,ν (R;H) � c 〈φ, φ〉L2,ν (R;H) .
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Then the following two statements are equivalent:

(i) B−1 is causal.
(ii) For all φ ∈ dom(B) and all a ∈ R we have

Re
〈
1(−∞,a]φ,Bφ

〉
L2,ν(R;H)

� c
〈
1(−∞,a]φ, φ

〉
L2,ν (R;H)

.

Proof (ii)⇒(i): Let f ∈ L2,ν(R; H) and a ∈ R with spt f ⊆ [a,∞). Then, using
(ii), for φ := B−1f ∈ dom(B) we have

0 = Re
〈
1(−∞,a]φ, f

〉
L2,ν (R;H)

= Re
〈
1(−∞,a]φ,Bφ

〉
L2,ν(R;H)

� c
〈
1(−∞,a]φ, φ

〉
L2,ν(R;H)

= c
∥∥1(−∞,a]φ

∥∥2
L2,ν(R;H)

,

which yields spt φ ⊆ [a,∞). Thus, B−1 is causal.
(i)⇒(ii): Let a ∈ R, φ ∈ dom(B), and f := Bφ. Then φ1 := B−11(−∞,a]f ∈
dom(B) and, using causality of B−1, we obtain

1(−∞,a]φ1 = 1(−∞,a]B−11(−∞,a]f = 1(−∞,a]B−1f = 1(−∞,a]φ.

We thus compute

Re
〈
1(−∞,a]φ,Bφ

〉
L2,ν (R;H)

= Re
〈
1(−∞,a]φ1, f

〉
L2,ν (R;H)

= Re
〈
φ1,1(−∞,a]f

〉
L2,ν (R;H)

= Re 〈φ1,Bφ1〉L2,ν (R;H) � c 〈φ1, φ1〉L2,ν (R;H)

� c
∥∥1(−∞,a]φ1

∥∥2
L2,ν (R;H)

= c
∥∥1(−∞,a]φ

∥∥2
L2,ν (R;H)

= c
〈
1(−∞,a]φ, φ

〉
L2,ν (R;H)

,

where in the last estimate we used that multiplication by 1(−∞,a] is a contraction.
�

Lemma 16.2.4 Let B : dom(B) ⊆ L2,ν(R; H) → L2,ν(R; H) be linear. Let
λ,μ ∈ ρ(B) be contained in the same connected component of ρ(B). Assume that
(μ − B)−1 is causal. Then (λ − B)−1 is causal.

Proof Let Z be the connected component of ρ(B) shared by both μ and λ. Define

M :=
{
η ∈ Z ; ∀a ∈ R : 1(−∞,a](m)(η − B)−11(−∞,a](m) = 1(−∞,a](m)(η − B)−1

}
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Then, μ ∈ M . Next, we show that M is open and closed in Z. For this, let η0 ∈ M .
By Proposition 2.4.1, we have B (η0, r) ⊆ ρ(B) with r := 1/‖(η0 − B)−1‖. As
B (η0, r) is connected, we infer B (η0, r) ⊆ Z. Furthermore, from Proposition 2.4.1,
we infer for η ∈ B (η0, r) that

(η − B)−1 =
∞∑

k=0

(η0 − η)k((η0 − B)−1)k+1.

Hence, since η0 ∈ M , we obtain for all a ∈ R,

1(−∞,a](m)(η − B)−1 = 1(−∞,a](m)

∞∑
k=0

(η0 − η)k((η0 − B)−1)k+1

=
∞∑

k=0

(η0 − η)k1(−∞,a](m)((η0 − B)−1)k+1

=
∞∑

k=0

(η0 − η)k1(−∞,a](m)((η0 − B)−1)k+11(−∞,a](m)

= 1(−∞,a](m)

∞∑
k=0

(η0 − η)k((η0 − B)−1)k+11(−∞,a](m)

= 1(−∞,a](m)(η − B)−11(−∞,a](m).

Thus, B (η0, r) ⊆ M and M is open in Z. Next, let (ηn)n be a sequence in M ,
convergent to some η ∈ Z. For n ∈ N the equality

1(−∞,a](m)(ηn − B)−1 = 1(−∞,a](m)(ηn − B)−11(−∞,a](m) (a ∈ R)

as well as the continuity of (· − B)−1 imply that η ∈ M . Hence, M is closed. We
infer M = Z from the connectedness of Z and, thus, λ ∈ M . �
Lemma 16.2.5 Let ν ∈ R andM ∈ L(L2,ν(R; H)) be causal. If there exists c > 0
such that

Re 〈φ,Mφ〉L2,ν(R;H) � c 〈φ, φ〉L2,ν (R;H) (φ ∈ L2,ν(R; H)),

thenM−1 is causal.
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Proof We have 0 ∈ ρ(M) by Proposition 6.2.3(b). In particular, we obtain for all
a ∈ R and φ ∈ L2,ν(R; H), using causality of M, that

Re
〈
1(−∞,a]φ,Mφ

〉
L2,ν(R;H)

= Re
〈
1(−∞,a]φ,1(−∞,a]Mφ

〉
L2,ν (R;H)

= Re
〈
1(−∞,a]φ,1(−∞,a]M1(−∞,a]φ

〉
L2,ν(R;H)

= Re
〈
1(−∞,a]φ,M1(−∞,a]φ

〉
L2,ν (R;H)

� c
〈
1(−∞,a]φ,1(−∞,a]φ

〉
L2,ν(R;H)

= c
〈
1(−∞,a]φ, φ

〉
L2,ν(R;H)

,

which yields causality of M−1 by Proposition 16.2.3 applied to B = M. �
Lemma 16.2.6 Let M,N ,M′ ∈ L(L2,ν(R; H)). Assume

M∂t,ν ⊆ ∂t,νM − M′

and

Re
〈
φ, (∂t,νM + N )φ

〉
� c 〈φ, φ〉 (φ ∈ dom(∂t,ν)).

Then

Z :=
{
η ∈ [0,∞) ; (

∂t,ν(M + η) + N )−1
causal

}

is closed.

Proof As it was mentioned before, the proof of 0 ∈ ρ
(
∂t,ν(M + η) + N )

for η ∈
[0,∞) is postponed to Exercise 16.4. For all η ∈ [0,∞) and φ ∈ dom(∂t,ν) we
have

Re
〈
φ, (∂t,ν(M + η) + N )φ

〉
� c 〈φ, φ〉 (φ ∈ dom(∂t,ν)).

Note that this inequality to hold for all φ ∈ dom(∂t,ν) is sufficient for it to hold
for all φ ∈ dom(∂t,ν(M + η)). Indeed, this is a consequence of dom(∂t,ν) being
a core for ∂t,ν(M + η), which is easily seen (see also Lemma 16.3.3). Hence, by
Proposition 16.2.3, η ∈ Z if and only if

Re
〈
1(−∞,a]φ, (∂t,ν(M + η) + N )φ

〉
� c

〈
1(−∞,a]φ, φ

〉
(φ ∈ dom(∂t,ν)).

Before we show closedness of Z, we shortly recall that integration by parts yields
for all a ∈ R

Re
〈
1(−∞,a]φ, ∂t,νφ

〉 = 1

2
‖φ(a)‖2 e−2νa + ν

〈
1(−∞,a]φ, φ

〉
(φ ∈ dom(∂t,ν)).
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In order to show that Z is closed, let (ηn)n be a sequence in Z, convergent to some
η ∈ [0,∞). Then we compute for all a ∈ R and φ ∈ dom(∂t,ν) and n ∈ N

Re
〈
1(−∞,a]φ,

(
∂t,ν(M + η) + N )

φ
〉

= Re
〈
1(−∞,a]φ,

(
∂t,ν(M + ηn) + N )

φ
〉 + Re

〈
1(−∞,a]φ, ∂t,ν(η − ηn)φ

〉

� c
〈
1(−∞,a]φ, φ

〉 + 1

2
(η − ηn) ‖φ(a)‖2 exp(−2νa) + (η − ηn)ν

〈
1(−∞,a]φ, φ

〉
.

Letting n → ∞, we infer

Re
〈
1(−∞,a]φ,

(
∂t,ν(M + η) + N )

φ
〉
� c

〈
1(−∞,a]φ, φ

〉

for φ ∈ dom(∂t,ν). Hence, η ∈ Z. �
Proof of Theorem 16.2.1 Keeping Exercise 16.4 in mind, we only need to show
that the solution operator (∂t,νM + N )−1 is causal.

By Lemma 16.2.6, it suffices to show that for all η > 0,

(∂t,ν(M + η) + N )−1

is causal. Hence, we may assume that 0 ∈ ρ(M) and, using Lemma 16.2.5, that
M−1 is causal. In this situation, it remains to show that

(∂t,νM + N )−1 = M−1(∂t,ν + NM−1)−1

is causal. As M−1 is causal, it furthermore suffices to show causality of

(∂t,ν + K)−1

where K := NM−1 is causal. Using ReM � 0 and the inequality assumed for
∂t,νM + N , we conclude that (∂t,ν + μ + K) is continuously invertible for all
μ � 0. Since ∂−1

t,ν is causal, Lemma 16.2.4 yields that (∂t,ν + μ)−1 is causal. From
Re(∂t,ν + μ) � ν + μ it follows that

∥∥(∂t,ν + μ)−1
∥∥ � 1/(ν + μ). Hence, we find

μ > 0 such that
∥∥(∂t,ν + μ)−1K∥∥ < 1. Thus,

(∂t,ν + μ + K)−1 = (
1 + (∂t,ν + μ)−1K)−1

(∂t,ν + μ)−1

=
∞∑

k=0

(−1)k
(
(∂t,ν + μ)−1K)k

(∂t,ν + μ)−1

is causal as a composition of causal operators. Finally, Lemma 16.2.4 implies
causality of (∂t,ν + K)−1 as desired. �
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16.3 Non-Autonomous Picard’s Theorem—The PDE Case

Let H be a Hilbert space. In Sect. 4.2, we have already discussed the notion of
uniformly Lipschitz continuous mappings. Here we concentrate on linear uniformly
Lipschitz continuous mappings, which we call evolutionary as a short hand:

Definition Let ν0 ∈ R. A mapping

M : Sc(R; H) →
⋂

ν�ν0

L2,ν(R; H)

is called evolutionary (at ν0) if it is linear and uniformly Lipschitz continuous
(at ν0); that is, for all ν � ν0, the mapping M : Sc(R; H) ⊆ L2,ν(R; H) →
L2,ν(R; H) is linear and continuous. Moreover, its continuous extension to the
whole of L2,ν(R; H), denoted by Mν , satisfies supν�ν0

‖Mν‖ < ∞.
The set of all evolutionary mappings is defined as

Sev(H, ν0) :=
⎧
⎨
⎩M : Sc(R; H) →

⋂
ν�ν0

L2,ν(R; H) ; M evolutionary at ν0

⎫
⎬
⎭ .

We have seen that material law operators are evolutionary (see Theorem 5.3.6
and the concluding lines of the proof). In the non-autonomous version of Picard’s
theorem (Theorem 6.2.1), evolutionary mappings will replace the notion of material
law operators. Hence, we allow for an explicit time-dependence in the coefficients.

Recall from Lemma 4.2.5(a), that Mν is causal and independent of ν in the sense
of Lemma 4.2.5(c).

The non-autonomous version of Picard’s theorem now reads as follows.

Theorem 16.3.1 Let μ ∈ R, M,M′,N ∈ Sev(H,μ), ReMν � 0 for all ν � μ

andA : dom(A) ⊆ H → H be closed and densely defined. Assume that there exists
c > 0 such that the following conditions are satifsfied:

(a) Mμ∂t,μ ⊆ ∂t,μMμ − (M′)μ
,

(b) for all ν � μ and φ ∈ dom(∂t,ν) we have

Re
〈
φ,

(
∂t,νMν + N ν

)
φ
〉
L2,ν(R;H)

� c 〈φ, φ〉L2,ν (R;H) ,

(c) for all x ∈ dom(A) and y ∈ dom(A∗) we have

Re 〈x,Ax〉H � 0 and Re
〈
y,A∗y

〉
H

� 0.

Then for all ν � max{μ, 0}, ν �= 0, the operator

∂t,νMν + N ν + A : H 1
ν (R; H) ∩ L2,ν

(
R; dom(A)

) ⊆ L2,ν(R; H) → L2,ν(R; H)
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is closable and its closure is continuously invertible. Moreover, with Sν ∈
L(L2,ν(R; H)) being the inverse of this closure, ‖Sν‖L(L2,ν(R;H)) � 1/c, Sν is
eventually independent of ν and Sν is causal.

Remark 16.3.2

(a) It is a consequence of Theorem 16.3.1 that the mapping

S : Sc(R; H) →
⋂
ν�μ

L2,ν(R; H)

f �→ (
∂t,μMμ + Nμ + A

)−1
f

is evolutionary.
(b) It will follow from the techniques used in the proof of Theorem 16.3.1, that a

similar results holds without the assumption of evolutionarity for the operator
coefficients. We refer to the formulation in Exercise 16.5 and ask the reader to
provide a proof for this.

The proof of the non-autonomous version of Picard’s theorem requires some
preparations. Being still a linear theory, the well-posedness result is—similar to the
autonomous version of Picard’s theorem—based on Proposition 6.3.1. Furthermore,
we need some results on the interaction of the time derivative and the non-
autonomous coefficients. Thus, for the next lemma, we introduce the commutator

[A,B] := AB − BA

for two linear operators A and B on its natural domain

dom(AB) ∩ dom(BA).

Lemma 16.3.3 Let ν ∈ R, M,M′,N ∈ Sev(H, ν). For ε > 0 small enough,
denote Sε := (1 + ε∂t,ν)

−1.

(a) If Mν∂t,ν ⊆ ∂t,νMν − (M′)ν , then for all ε > 0 we have

[∂t,νMν, Sε] = ε∂t,νSε(M′)νSε ∈ L(L2,ν(R; H)).

In this case, we also have that [∂t,νMν, Sε] → 0 in the strong operator
topology of L(L2,ν(R; H)).

(b) We have that [N , Sε] → 0 as ε → 0 in the strong operator topology of
L(L2,ν(R; H)).
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Proof

(a) Let ε > 0 and φ ∈ dom(∂t,ν). Then

[∂t,νMν, Sε]φ = ∂t,ν(MνSε − SεMν)φ

= ∂t,νSε((1 + ε∂t,ν)Mν − Mν(1 + ε∂t,ν))Sεφ

= ε∂t,νSε(M′)νSεφ,

which shows the first equality. Since Sε → 1 as ε → 0 in the strong operator
topology and ε∂t,νSε = (1−Sε) → 0 as ε → 0 in the strong operator topology,
we infer the convergence statement in (a).

(b) This statement follows from Sε → 1 in the strong operator topology. �
Lemma 16.3.4 Let μ ∈ R, M,M′,N ∈ Sev(H,μ) and A : dom(A) ⊆ H → H

be closed and densely defined. Assume Mμ∂t,μ ⊆ ∂t,μMμ − (M′)μ
. Then for all

ν � μ

(∂t,νMν + N ν + A)∗ = (∂t,νMν + N ν)∗ + A∗ = (Mν)∗∂∗
t,ν + (N ν)∗ + A∗.

Proof Let ν � μ. It is not difficult to see that Mμ∂t,μ ⊆ ∂t,μMμ − (M′)μ implies
Mν∂t,ν ⊆ ∂t,νMν − (M′)ν , see Exercise 16.2.

Let g ∈ dom
(
(∂t,νMν + N ν + A)∗

)
. For ε > 0 small enough, we define Sε :=

(1 + ε∂t,ν)
−1 as well as gε := S∗

ε g. For u ∈ dom(∂t,νMν + N ν + A) we compute

〈
(∂t,νMν + N ν + A)u, gε

〉

= 〈
Sε(∂t,νMν + N ν + A)u, g

〉

= 〈
(∂t,νMν + N ν + A)Sεu, g

〉 − 〈[∂t,νMν, Sε]u + [N ν, Sε]u, g
〉
.

(16.2)

We read off that gε ∈ dom
(
(∂t,νMν + N ν + A)∗

)
and

(∂t,νMν + N ν + A)∗gε

= S∗
ε (∂t,νMν + N ν + A)∗g − [∂t,νMν, Sε]∗g − [N ν, Sε]∗g.

By Lemma 9.3.3, we infer that gε → g weakly as ε → 0. Similarly, we obtain

S∗
ε (∂t,νMν −N ν +A)∗g+[∂t,νMν, Sε]∗g−[N ν, Sε]∗g → (∂t,νMν +N ν +A)∗g

weakly as ε → 0. Next, we show that gε ∈ dom(A) for all ε > 0. For this, we
realise that gε ∈ dom(∂∗

t,ν) = dom(∂t,ν) and, thus, revisiting (16.2), we infer

〈Au, gε〉 = − 〈
(∂t,νMν + N ν)u, gε

〉 + 〈
(∂t,νMν + N ν + A)Sεu, g

〉

− 〈[∂t,νMν, Sε]u, g
〉 − 〈[N ν, Sε]u, g

〉
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= − 〈
u, ((Mν)∗∂∗

t,ν + (N ν)∗)gε

〉 + 〈
u, S∗

ε (∂t,νMν + N ν + A)∗g
〉

− 〈
u, [∂t,νMν, Sε]∗g + [N ν, Sε]∗g

〉
.

Since H 1
ν (R; H) ∩ L2,ν

(
R; dom(A)

)
is dense in L2,ν

(
R; dom(A)

)
, we read off

that gε ∈ dom(A∗). Thus, since gε ∈ dom(∂∗
t,ν) anyway, we obtain by the first

statements in Theorem 2.3.2 and Theorem 2.3.4 that

(∂t,νMν + N ν + A)∗gε = (Mν)∗∂∗
t,νgε + (N ν)∗gε + A∗gε,

which together with the above convergence result shows the assertion. �
Lemma 16.3.5 Let μ, ν ∈ R, μ � ν. Let Sν ∈ L(L2,ν(R; H)) as well as Sμ ∈
L(L2,μ(R; H)) be causal and D ⊆ L2,ν(R; H)∩L2,μ(R; H) dense in L2,μ(R; H)

such that Sν = Sμ on D. Then Sν = Sμ on L2,ν(R; H) ∩ L2,μ(R; H).

Proof Let f ∈ L2,ν(R; H)∩L2,μ(R; H). By density of D, we may find a sequence
(fn)n in D such that fn → f in L2,μ(R; H). Let a ∈ R. Then 1(−∞,a]fn →
1(−∞,a]f in L2,ν(R; H) ∩ L2,μ(R; H). Since both Sμ and Sν are causal, we infer
for n ∈ N that

1(−∞,a]Sμ1(−∞,a]fn = 1(−∞,a]Sμfn = 1(−∞,a]Sνfn = 1(−∞,a]Sν1(−∞,a]fn.

Letting n → ∞, we deduce that both the left-hand side as well as the right-hand
side converge in L2,loc(R; H). Consequently, we infer, using causality again that

1(−∞,a]Sμf = 1(−∞,a]Sμ1(−∞,a]f = 1(−∞,a]Sν1(−∞,a]f = 1(−∞,a]Sνf.

This equality holds for all a ∈ R, thus Sμf = Sνf and the assertion follows. �
The following lemma is proved in the (easy) Exercise 16.7.

Lemma 16.3.6 Let H0, H1 be Hilbert spaces. Let B : dom(B) ⊆ H0 → H1 be
closed and densely defined. Let V be a Hilbert space such that V ↪→ dom(B)

continuously and densely. If D ⊆ V is a dense subspace, then D is a core for B.

Proof of Theorem 16.3.1 Define B̃ := ∂t,νMν + N ν + A with dom(B̃) =
H 1

ν (R; H) ∩ L2,ν

(
R; dom(A)

)
. By the last equality in Lemma 16.3.4, we have

dom(B̃∗) ⊇ H 1
ν (R; H) ∩ L2,ν

(
R; dom(A∗)

)
. Hence, B̃∗ is densely defined and,

therefore, by Lemma 2.2.7, B̃ is closable. Next, we want to apply Proposition 6.3.1

to B := B̃. For this, we let φ ∈ dom(B̃) and compute

Re 〈φ,Bφ〉 = Re
〈
φ, (∂t,νMν + N ν + A)φ

〉

� c 〈φ, φ〉 + Re 〈φ,Aφ〉 � c 〈φ, φ〉 .
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Since dom(B̃) is a core for B, we deduce

Re 〈φ,Bφ〉 � c 〈φ, φ〉 (φ ∈ dom(B)).

Using Lemma 16.3.4, we obtain D := dom
( (

∂t,νMν + N ν
)∗ )∩L2,ν

(
R; dom(A∗)

)
is a core for B∗. Using Theorem 16.2.1, we estimate for all ψ ∈ D that

Re
〈
ψ,B∗ψ

〉 = Re
〈
ψ,

(
∂t,νMν + N ν

)∗
ψ + A∗ψ

〉
� c 〈ψ,ψ〉 .

Hence,

Re
〈
ψ,B∗ψ

〉
� c 〈ψ,ψ〉 (ψ ∈ dom(B∗)).

Thus, Proposition 6.3.1 applies and we deduce that 0 ∈ ρ(B) and
∥∥B−1

∥∥ � 1/c.
Next, since (∂t,νMν + N ν)−1 is causal by Theorem 16.2.1, using Proposi-

tion 16.2.3 for φ ∈ H 1
ν (R; H) ∩ L2,ν

(
R; dom(A)

) = dom(B̃) we obtain for a ∈ R

that

Re
〈
1(−∞,a]φ, Bφ

〉 = Re
〈
1(−∞,a]φ, (∂t,νMν + N ν + A)φ

〉

= Re
〈
1(−∞,a]φ, (∂t,νMν + N ν)φ

〉
φ + Re

〈
1(−∞,a]φ,1(−∞,a]Aφ

〉

� c
〈
1(−∞,a]φ, φ

〉 + Re
〈
1(−∞,a]φ, A1(−∞,a]φ

〉
� c

〈
1(−∞,a]φ, φ

〉
.

The inequality Re
〈
1(−∞,a]φ,Bφ

〉
� c

〈
1(−∞,a]φ, φ

〉
carries over to all φ ∈

dom(B) using that dom(B̃) is, by definition, a core for B. Again appealing to
Proposition 16.2.3 we obtain that B−1 is causal. Finally, in order to show that Sν

is eventually independent of ν, we want to apply Lemma 16.3.5. Since we have
shown that for all ν � η � μ, the operators Sν and Sη are continuous and causal, it
remains to construct a set U ⊆ L2,ν(R; H)∩L2,η(R; H) dense in L2,ν(R; H) such
that Sν = Sη on U . We put

U := (∂t,νMν + N ν + A)
[
C∞

c

(
R; dom(A)

)]
,

which is evidently a subset of L2,ν(R; H). Observe that C∞
c

(
R; dom(A)

) ⊆
L2,η(R; H) ∩ L2,ν(R; H). Moreover, Mν = Mη as well as N ν = N η on
L2,η(R; H)∩ L2,ν(R; H). Thus, both Mν and N ν leave L2,η(R; H)∩ L2,ν(R; H)

invariant, by Lemma 4.2.5. Hence, since A
[
C∞

c

(
R; dom(A)

)] ⊆ C∞
c (R; H), we

infer that U ⊆ L2,η(R; H) ∩ L2,ν(R; H).
Finally, by Lemma 9.4.1, C∞

c

(
R; dom(A)

)
is dense in L2,ν

(
R; dom(A)

) ∩
H 1

ν (R; H). We now apply Lemma 16.3.6 to C∞
c

(
R; dom(A)

) ⊆ V :=L2,ν

(R; dom(A)) ∩ H(R; H) and B to get that C∞
c

(
R; dom(A)

)
is a core for B. Since

B is surjective, this implies that U = B
[
C∞

c

(
R; dom(A)

)] ⊆ L2,ν(R; H) is dense
which yields the assertion. �
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16.4 Comments

Traditionally, non-autonomous equations have been dealt with—similar to the
autonomous case—by mimicking techniques and results from non-autonomous
ordinary differential equations. In consequence, the fundamental solution is the
central object of attention, which finds itself in the concept of so-called evolution
families (U(t, s))t�s or propagators, see e.g. [53, 112]. Similar to the autonomous
case, one is interested in the initial value problem

{
u′(t) + A(t)u(t) = 0, t > 0,

u(0) = u0,

for a given parameter dependent operator family (A(t))t of unbounded operators.
The solution is then given by u(t) = U(t, 0)u0. In applications, for instance to
parabolic equations, A(t) = − div a(t) grad.

One is then interested in whether (A(t))t gives rise to an evolution family. There,
the main issue is to understand the behaviour of the possibly different domains
of A(t) for any given t . Focussing on inhomogeneous problems rather than initial
value problems, we again are changing the perspective in the case of evolutionary
equations. The presented time-space perspective entirely dispenses with the possible
domain issues and requires only mild regularity conditions of the coefficients. In
particular, as it has been demonstrated for the heat equation in Sect. 16.1, we merely
require boundedness and measurability for a, whereas for Maxwell’s equations we
need Lipschitz continuity for the coefficients ε and μ.

The first result on the well-posedness of non-autonomous evolutionary equations
has been found in [92]. In this source, the focus was on multiplication operators
as coefficients and Lipschitz continuity of the operator coefficients with respect to
time was assumed. The method of proof has been used to generalise this to the
commutator assumption presented here, see [137, 138]. Theorem 16.3.1 also has a
nonlinear analogue. This can be found in [122]. For an autonomous well-posedness
result for nonlinear evolutionary inclusions we also refer to Chap. 17.

Exercises

Exercise 16.1 Let V : R → R be Lipschitz continuous.

(a) Let φ ∈ C∞
c (R). Show that φV ∈ H 1

ν (R) with bounded derivative. Show
that there exists a bounded measurable function V ′ such that V (t) − V (0) =∫ t

0 V ′(τ )dτ .
(b) Let V be bounded. Show that V (m) is evolutionary at 0 and that

V (m)ν∂t,ν ⊆ ∂t,νV (m)ν − V ′(m)ν.
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(c) In the situation of (b), show that for φ ∈ dom(∂t,ν), we have

Re
〈
φ, ∂t,νV (m)φ

〉 = ν 〈φ, V (m)φ〉 + 1

2

〈
φ, V ′(m)φ

〉
.

Exercise 16.2 Let H be a Hilbert space, μ ∈ R. Let M,M′ ∈ Sev(H,μ). Assume
that

Mμ∂t,μ ⊆ ∂t,μMμ − (M′)μ.

Show that then for all ν � μ we have

Mν∂t,ν ⊆ ∂t,νMν − (M′)ν.

Exercise 16.3 Let H be a Hilbert space, ν, c > 0, M ∈ M(H, ν). Assume that

Re zM(z) � c.

Show that then

Re
〈
∂t,νM(∂t,ν)φ,1(−∞,a]φ

〉
� c

∥∥1(−∞,a]φ
∥∥2

for all φ ∈ dom(∂t,ν) and a ∈ R.

Exercise 16.4 In the situation of Theorem 16.2.1, show that 0 ∈ ρ(∂t,νM + N )

and
∥∥(∂t,νM + N )−1

∥∥ � 1/c.
Hint: Show Re

(
∂t,νM + N )∗ � c first.

Exercise 16.5 Prove the following ‘non-causal’ version of Theorem 16.3.1: Let H

a Hilbert space, ν ∈ R. Let M,M′,N ∈ L(L2,ν(R; H)) and A : dom(A) ⊆ H →
H be closed and densely defined. Assume that there exists c > 0 such that the
following conditions are satifsfied:

(a) M∂t,ν ⊆ ∂t,νM − M′,
(b) for all φ ∈ dom(∂t,ν) we have

Re
〈
φ,

(
∂t,νM + N )

φ
〉
L2,ν (R;H)

� c 〈φ, φ〉L2,ν (R;H) ,

(c) for all x ∈ dom(A) and y ∈ dom(A∗) we have

Re 〈x,Ax〉H � 0 and Re
〈
y,A∗y

〉
H

� 0.

Then

∂t,νM + N + A : H 1
ν (R; H) ∩ L2,ν

(
R; dom(A)

) ⊆ L2,ν(R; H) → L2,ν(R; H)
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is closable and its closure is continuously invertible. Denoting the respective inverse
by S, we have ‖S‖L(L2,ν(R;H)) � 1/c.

Exercise 16.6 Without using Theorem 16.3.1 or Exercise 16.5 show that if M ∈
M(H, ν) and N ∈ Sev(H, ν) satisfy

Re
〈
φ, (∂t,νM(∂t,ν) + N ν)φ

〉
� c 〈φ, φ〉 (φ ∈ dom(∂t,ν))

for some c > 0, then 0 ∈ ρ
(
∂t,νM(∂t,ν) + N ν + A

)
, for all skew-selfadjoint

A : dom(A) ⊆ H → H .
Hint: Compute the adjoint of ∂t,νM(∂t,ν)+N ν +A with the help of Theorem 6.2.1
and Theorem 2.3.2.

Exercise 16.7 Prove Lemma 16.3.6.
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