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Abstract

The airn of this work is to darify the validity of ship wave ray theories at and near the ship's surface. As
previous numerical investigations have led to ambiguities due to a breakdown of the ray analysis near the
bow and stern stagnation points, we shall take care far the surface tension effect in order to milden such
deficiencies; then the wave length never surpasses a positive minimum length which is attained at the
boundary of a finite waveless zone around a stagnation point. It is found, however, that the ray equations
degenerate at these boundaries, and that rays can be traced into the far field only if their starting point
is selected outside a finite belt surrounding the waveless zone.

For a dass of bi-circular prismatic struts of infinite downward extent, we investigated two alternative
formulations of the free surface condition and their implications for the ray geometry. For low speeds we
found in both cases an increase of the Kelvin wave cusp angle due to capillarity. We extended the ray
tracing to capillary waves ahead of a blunt bow.

Introduction

The wave field at a point far away from a ship in stationary motion is well represented through Kelvin's
pattern, found in a wedge-shaped region, with only a finite number of wave components, given through
wave length, wave front angle and complex amplitude. The first two are constant along straight lines
(characteristics) through a hypothetical origin, conceived as the locus of a point disturbance.- Observa-
tions suggest that under local modifications such a wave model may be adequate even near a ship; Ursell
[1] hence generalised this approach for waves due to a point disturbance in a slightly non-uniform fiow.
Prom a set of physical assumptions, he replaced the intensity and direction of the uniform fiow by the
local components to obtain an analoguous spatially varying "dispersion relation" between wave angle
and wave number; from a partial differential equation he obtained "rays" along the resultant of the local
fiow with a group velocity vector. To simplify the problem, Ursell considered only rays passing through
the disturbance, though he admitted that his assumptions are questionable 1 there. Inui and Kajitani [2]
used this approach for waves near a ship's bow, with the " double body fiow " as the basic non-uniform
fiow.

Keller [3] derived Ursell's results from a more formal approach, tacitly assuming pertinence and uniform
validity of his ray theory up to the ship 's water line; he even conduded for certain ships that rays must
originate from the double body fiow stagnation points only. Yim[4] evaluated this approach numerically,
but due to zero wave length at these points he had to start ray tracing using values at some distance.
For certain rays carrying trans verse waves he observed that they re-entered the hull; to avoid this, he
introduced some mechanism of refiection.

Brandsma [5] investigated a dass of bi-circular forms with varying entrance angle. Even with "back-
shooting" from downstream, he found that no rays associated with transverse waves (as referred to the
basic fiow) emanating from the bow stagnation point can be found; (this is not necessarily in confiict
with the calculations of Yim).

In the sequel, we shall demonstrate analytically that the rate of change of the wave front angle along
a ray (and hence of the ray tangent via the dispersion relation) tends to infinity as the inverse distance
from the stagnation point, unless the ray is starting tangentially to the water line. Thus at most one
single ray can originate there, with the wave front normal pararallel to that ray. This explains part of

Brandsma's dilemma, and one may question the validity of Keller's ray theory near the stagnation points.

Through our present investigation we want to darify whether the inclusion of surface tension effects
can improve the situation at least to the point that ray theory can give some qualitative information
about the wave pattern geometry in accord with experimental observations for not so slender ships. We
selected the dass of bi-circular struts and thus have even the case of a blunt bow included.

lOtherwise rays could be extended to the domain far ahead through backward tracing, at least in case
of a submerged disturbance.
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The underlying analysis was presented by Eggers [6], where two alternative appoaches were considered:
(A)' based on the conventional surface condition (A) of slow ship theory, supplemented for surface tension
following Maruo[7] and (A+)' based on a modified free surface condition, derived by Eggers[8j2 from
certain invariance requirements for wave resistance, again supplemented for capillarity effects.

In both cases we obtain zones around the stagnation points where no steady waves can exist; at their
boundaries, only waves of minimum wave speed, with wave front orthogonal to the double body flow,
can occur. If we start rays from these boundaries rather than from the stagnation points, we apparently
have a well defined initial value problem, even far blunt bow forms.-

ln our computational investigations, we could confirm Maruo's experimental finding that capillarity
effects can be significant even if the model speed exceeds the minimum wave speed considerably.

However, we found ourselves confronted with some instability phenomenon. Due to the strong rate of
change of the wave angle along the ray near its origin, the wave length re-approached its minimum value
after a short time and the analysis broke down. To find rays which can be continued into the far field,
we had to select the starting point outside some "belt of short-livity" surrounding the waveless zone.

Derivation Of Dispersion Relation And Ray Equations From Free
Surface Conditions.

For simplicity, we shall restrict ourselves to a 2-D flow around prismatic struts of infinite vertical extension.
Let us consider a velocity potential of the form U<pr+ Ucp, where U stands for the far field uniform flow
in the +x direction, U<Prrepresents the "double body flow" (unbounded in the upward z-direction) and
Ucp is the lowest order wavy potential. With u ~ U<pra:, v ~ U<Pry , with (r ~ (U2 - u2 - v2)/2g and
Dr(x,y) ~ (u(r)a: + (v(r)y, cp for z = 0 has to satisfy

(1)

(see Eggers [10]); for indusion of surface tension, a term KCPzzzhas to be added on the l.h.s. (see Maruo
[7]).

Seeking for wave-type solutions, we concentrate on the homogenous part of above d.e.; we further
disregard the (amplitude modulating)3 terms with CPa:and CPy.Hence we consider the "modified approach"
(A+)'

(2)

The neglect of ger cpzz (the second term of a formally divergent Taylor expansion) leads to the approach
(A)' investigated by Maruo, which was developed from the "conventional" approach (A) underlying the
ray analyses of Keller, Yim and Brandsma. Let us now consider u and v as slowly-varying (i.e.locally

constant) quantities and let us disregard effects of phase and of amplitude, as they are of no concern for
investigations on ray geometry. A potential of the form

<I>cx e(kz-iS)
with S = S(x,y) (3)

represents a wave with wave number vector

(4)

if k1 and k2 are also slowly varying. Here B is the angle of k against the x-direction. Let us define the
speed ratio q and the flow angle ß through u ~ Uq cos ß and v ~ Uq sin ß. Then., ~ B - ß is the angle
of k against the flow direction. In accord with Brandsma and Yim, we have selected the orientation of k
such that cos., is non-negative i.e. k is opposite to the propagation of a wave stationary to the ship.-

2Quite recently,this approach has been justified under new arguments by van Gemert[9].
3See Longuet-Higgins and Stewart [11], and [8].
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=Eu ~- ~ v

flow tangent ~ u .'

k = \1S

Fig.1 Sketch for ft.ow angle ß and wave angles Band I (both shown with negative values,
typical for the starboard side of the bow).

Inserting (3) into (2) we obtain

k2 c2
=== (ku cos B + kv sin B)2 = gk + ger k2 + K.k3 (5)

where c === Uq cos I stands for the component of the basic flow parallel to k, thus a wave must propagate
opposite to k with the local phase velocity c in order to be stationary in a system moving against the flow.

Note that in general c thus defined will not equal Ucos B, the phase velocity of this wave in an inertial
system where the ship is advancing stationary with speed U.- Equation (5) leads to the "dispersion
relation"4

(6)

relating the loeal phase velocity with the wavelength for I given. It may equivalently be expressed as

(7)

Noting that kl = ~ ,k2 = ~, we may consider this as a partial d.e. for the function S(x,y) for
which "characteristic stripes" (i.e. characteristic curves in the {x, y, kl, k2 }-space) can be found from the
equations

dx _ BF. dy _ BF. dk1 _
-F'

dk2 _
-F

dT -
Bkl' dT - Bk2' dT

- "', dT - Y

which define a curve parameter T. Under multiple use of above relations, considering that

(8)

(9)

B(ck) _ . B(ck) _ .
Bkl - cg cos B , ~ - cg sm B (10)

(where cg === d(kc) / dk is in accord with the concept of group velocity related to Uq cos I as phase velo city ),
we find

(11)

We obtain

BF kc B kc
-=2. .-
Bkl ukl + vk2 Bk1 uk1 + vk2
2 B 2

ck
.

Bkl
(kc-ukl)=

kc
(u-cg cos B)

4Note that the term ger appears only under (A+)', not under (A)'; it may remind us of c = ygTifor
waves on shallow water of depth h.

dx

dT

(12)
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In a sirnilar way
dy

= 2-(v _ c sin8)
dT kc 9 (13)

Prom (6) we find
ö(kc)

= ~~g(r
öx 2c öx

(14)

and thus

_dk1
= -2

kc a kc

dT uk1 + vk2 öx uk1 + vk2
Ö 2 ö k

-2
öx

(kc - uk1 - vk2) = -
kc

.
öx

(--;;g(r - uk1 - vk2)

~ ((uux+vvx)/2+c(ux cos8+vx sin8))
c

~ ((uuy +vvy )/2 + c(uy cos 8+ vy sin 8))
c

(15)

(16)

(17)

Then we find the rate of change of the wave angle 8 from

kc2 d k2
- - arctan -

2 dT k1

2 d~ d~ 2 .-(k1- - k2-) = -c (F cos8- Fxsm8)/2
2k dT dT

y

((g(r)y cos 8 - (g(r)x sin 8)/2 + CUxsin 28 - cVx cos 28 (18)

where we have used Ux = -vY' Uy = Vx for our 2-D basic flow. In a sirnilar way we obtain5

C2 dk1 dk2

2k
(k1

dT + k2 dT
)

((g(r )x cos8 + (g(r)y sin8) /2 - CUxcos 28 - cVx sin 28

Prom equs.(12) and (13) we can easily confirm the general result

(19)

(ß ) . dy v - cg sin 8tan + a = - =
dx u - cg cos 8

(with a defined as the ray angle against the double body flow) which contains the choice of approach
only through the explicit expression for cg. We may thus recall Ursell's observation that the ray direction

is along the resultant of the basic flow and the "group velocity" taken along the wave normal vector -k,
and that this does not require asymptotic analysis (see discussion tO[8])6

(20)

Uq

k _

Fig.2 Ray direction as resultant of basic flow and cg along direction of -k
(with angle a against flow direction).

5The terms with g(r (missing under approach (A)') reflect the statement of Longuet-Higgins and

Stewart [11] that short waves superposed a long wave shorten when climbing, increasing their length
again when descending.

6For later use, we have introduced in an "action transport velocity" Cat along the tangent to the ray

direction.-
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Restrictiüns Für The Wave Parameters.

Prom the dispersion relation (5) we have

(21)

A minimum of c is found at k = ViTK- giving

(22)

where Cm == {/4K.g is the minimum velocity of capillary-gravity waves and p == Cm / U is a dimensionless
parameter of surface tension. We introduce a dimensionless wave length A ..:... g/(kU2); then (5) is
equivalent to

(23)

In a plane of the variables q2 and A , for p constant, (22) represents a family of hyperbolas between the
asymptotes A = 0 and A = ~ ==(1 + 2 cos2,)q2 - 1/2.

lower limit for q2

to admit waves

under

-.J
I

2.0 q

~)'
0.5

q2 = p:

1/3 (1 + 2p2)/3

Fig.3 Domain D of admitted wave constellations in the plane of squared speed ratio q2

and wave-length ratio A for p2 = 1/3 corresponding to the case of U = 0.23/p ~ 0.50 m/s.
( The boundary to the right is given through physicallimits of q2 .)

We are interested in the branch with A > 0; (otherwise, we would have an increase of the wave flow
downwards, see(3)). Solving for A, we obtain

A=
(1+2cos2,)q2-1.1::!:Sq

2 2

Sq == )1- (2p2/(2cos2, + 1)q2 -1))2 (25)

Sq is real only for q2 2 (1 + 2p2)/(2cos2, + 1) 2 (1 + 2p2)/3; this implies that in the zones around
the stagnation points where q2 ~ (1 + 2p2)/3 no steady waves can exist. The upper sign of the root
corresponds to gravity dominated waves (A = Ag); the capillarity dominated waves (A = Ac, lower sign)
are better described by7

(24)

p4 2 2
A= -' .

4 (1+2cos2,)q2-1 l=FSQ

7The relevant analysis has been established and profoundly discussed by Crapper [13] for the non-

modified approach (A)'

(26)
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For any
"

confluence of the two roots occurs for A = p /2 corresponding to the minimum of c found

earlier (21). For the range (1 + 2p2)/3 S q2 S 1 + 2p2 the angle, is restricted through

1

(
1 + 2p2

)his 2 arccos
q2 - 2 (27)

(under approach (A)', 1,Is arccosp, independent from q2). Beyond this range, for q2 > 1 + 2p2, the

minimum of Ag is no longer p2/2 but the value corresponding to, = ~. Then we have

q2-11+V'1-(2p2/(q2-1))2 q2 1
A >-. ::::;---g- 2 2 2 2

(28)

If we accept the argument that stationary waves cannot propagate into areas where cg / C is negative,

the domain of admitted A values is further restricted (see( 11)) through

2ccg 2
3p4

-=A+1-q +->0U2 4A -
(29)

For gravity waves with q2 > 1 + V3p2 this implies

(30)

One may observe that this limitation is automatically met if 1,Is 7r/4 with dA/dq2 ~ 1/2 + cos2, ~ 1
then (see Fig.3).- One may note that for any , we find from (22), (25) and (5)

(31)

All the above restrictions can be visualized through a display of the dependence between the wave
front angle, and the ray direction angle 0: with p and q held constant. Prom a geometrical interpretation
of (19), invoking the sine theorem of elementary trigonometry (see Fig2.), we find

SIll0: _ _ sin(, - 0:)
cg - Uq

SIll,
(32)-

and hence
SIll, sin2,

(33)tan 0: =
cos, - Uq/ cg 1 + cos 2, - 2c/ cg

Setting p = q = 0, we have cg / C = 1/2 in accord with Kelvin's results; we find that 10:1 will increase
with 1,1 up to some maximum O:k= arctan (1/vB) and then fall off to zero with , = 7r/2.- We may
observe that for non-zero p, unless q2 ~ 1, 0: approaches zero only together with

"
as cos, will remain

positive. Thus an outgoing ray (0: > 0) can turn inward again only if the wave front normal changes
from inward (, < 0) to outward at the "caustic" (in the terminology of Yim [17]) under a maximum of
the wave length due to , = o.

In order to have 0: positive, we now consider the range of negative ,. If we exclude here those parts
of curves where 0: turns negative due to cg sO (only for q2 > 1 under (A+)'), we may observe that 0: as
an odd function will in general have opposite sign to ,.

Let us refer to the range for which 10:1 is increasing from zero with h I as to that of transverse waves

and define the maximum value attained for 0: in this range as the modified Kelvin angle O:k. Then we
find that for q2 S 1 + 2p2 each curve for gravity dominated waves turns under horizontal tangent ( with

0: = 7r /2 + ,) into one for capillarity dominated waves, so that after tan 0: changed sign due to increase
of cg / C > 1 for such waves, , falls off to zero again with the ray finally normal to the wave crest again,
but opposite now to the flow direction.- For lower values of q2, the maximum of 0: coincides with the
transition to capillary waves, where the wave length attains it minimum. Here O:kcan only be considered
as a safe upper bound for the ray direction.
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Note that our formulations and considerations throughout this paper are refered to the domain around
the starboard side of the bow, where 0 is positive, hence j negative in general. To deal with the other
ship side, statements remain valid if ß and e, j and 0 are counted clockwise against the x-axis and flow
direction there.

The ratio cg / C and hence 101 increases with decreasing speed U (i.e. increasing p) and with decreasing

distance from the stagnation point (i.e. decreasing q) for j held constant. This implies an increase of
the modified Kelvin angle (which is measured against the flow direction!) especiaily near the bow, in
particular under approach (A +)'! This is weil in accord with the experimental observations of Miyata[14]
with wedge- shaped models with U = 0.5m/s, (p ~ 0.462) and U = 1m/s, (p ~ 0.231) .

Under the approach (A)', we can find from (11) the deviation of C/ cg from 1/2 depends on the ratio

p* of Cm to c( = Uq cos j ),i.e. to the local phase velocity. With g(r disregarded, we find from (11)

C/Cg= 1/2(1 + 2K-k/c2) = 1/2(1 + p*/(1 + SQ))

with SQ ==vr=P*.

Away from the bow, where q2 ~ 1, thus (r ~ 0, there is little difference between (A+)' and (A)'. But
again we observe an increase of Oiewith decreasing U (i.e. with increasing influence of capiilarity) in accord
with Miyata's experiments with a rudder model (see Inui [15]) for the speeds U = 1.15m/ s, 1.72m/ sand
U = 2.3m/ s corresponding to p = 0.3, 0.14 and 0.1. We should acknowledge here that such widening of
the Kelvin angle has already been predicted by Lord Kelvin in a footnote [16]

..In the case of even the highest speed attained by a duckling, this angle is perhaps perceptibly
greater than 19028' because of the dynamic effect of capillary surface tension on water...

see letter to Wm. Froude, reprinted in "Nature" 1871.

In the domain where q2 > 1 aside of the ship, a reduction of Oie is predicted under (A+)' including a
termination of rays with short gravity waves with cg approaching negative values. We may mention that
for a vertical circular cylinder, q2 increases up to 4.0, whereas for conventional forms q2 will not exceed
1.2.-

It is only for not too smail q and for not too large p that 0 is reaily stationary for 0 = Oie and thus
marks a transition from transverse to divergent waves, so that with do/ dj = 0 we may expect a wave
cusp effect. If we search for the most forward point along the water line of a ship where stationarity
occurs (i.e. immediately near the stagnation point for pointed bows) and trace a curve from there with
dy/dx = tan(ß + Oie); this should define some outer boundary to the gravity wave pattern which coincides
with Kelvin's cusp line in the far field. Such a line may be related to a shock front observed by Miyata
(see discussion to Eggers [8]).
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90° A 90° D

I

q2 = 0.5 (near bow)
I

-1 -1

I I

(1- 90° 180°
(1'- 90°

900
B 900

I

q2 = 1.0 (Jar field)
I

-1 -1

1 capillnry waveJ I

(1- 90° 180° (1- 180°

900
'"

900C F

'"
'"

'" q2
= 4. IU = 2.31mjJ

I
-1 '" -1

'"
1gravity waves

'"
capillary' waves

'"

~(1-
90° 180° (1- 90° 180°

900

-1

I

Fig.4Wave front angle I versus ray angle D:

A q2 = 0.5, U = 0.5,1.5, 2.5m/ s (near bow)

B q2 = 1.0, U = 0.5,1.5,2, 5m/ s These curves hold as wen for approach(A)'
C q2 = 4.,U = 0.5,1.5,2.5m/s (aside ofblunt body).
For this extreme value, the range of I for gravity rays is strongly restricted,

if cg / C > 0 is assumed. The infiuence of capillarity is not felt here.

D U = 0,46 (only sligthly larger than minimum wave speed Cm=0.23m/cs)

for q2
= 0.7,1.0,1.7,4.0

E U = 1.15m/ s for q2
= 0.4,0.6,0.8,1.,2.,3.,4.

F U = 2.3m/s for q2
= 0.4,0.7,1.,4.

G Approach(A)' for U = 2.5m/ sand q2
= 0.048,0.052,0.06,0.10,0.30,1.

(The relevant curve parameter here is Uq/cm)
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J

Fig.5. Wave pattern of a rudder model of length 0.3 m with speed U = 0.65, 0.5" and 0.34 m/s.
(By courtesy of Pro(i T. Inui from [15]).
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The Situation of Ray Tracing Near A Corner And The Short Life Of
Rays N ear The Waveless Zone.

Let us again consider 2-D potential flow as the basic flow, so that complex analysis can be used.
We introduce

Z == x + iy = r . eiS V ==u - iv = Uq 0e-iß ,

K
.

k
.
k k -iB

= 1-Z2= oe

(34)

(35)

(36)

Then P stands for some gradient of the double body flow pressure.8 The ray equations (12) and (13)
may be written as

dZ*
= 2-(V _ cg

K) = 2cat 0 e-i(a+ß) (37)
dr kc k kc

With ds as differential of the arclength along the ray, this implies that dr / ds = 1/ IdZ / drl= kc/2cat,
so that we can write (17) and (18) as

~ dK
= (~dk _ idB ) . dr

= _ eiB
.

dV (0
V* + eiB )K ds k dr dr ds Cat dZ 2c

(38)

Here 0 means 1 for (A +) and (A +)' , it means 0 for (A) and (A)' 0- The flow in the vicinity of astagnation
point due to a corner is basically the flow near a corner between infinite planes as decribed by Milne-
Thomson [12], we have

V::::: Q 0 e(i7rßo/(7r-ßo). Zßo/(7r-ßo)

where Q is areal constant; this means that the range

(39)

for the polar angle 8 is mapped on the range

ßo 2 ß(8) = ßo(7f' - 8)/(7f' - ßo) 2 0

for the flow angle. In the special case of a bi-circular strut of opening angle 2ßo and length L, under
parallel flow of strength U, we have

Q = U~ 0 L(7r-ßo)/ßo
7f' - ßo

(40)

so that q = q(r) = 7f'/(7f' - ßo)'
(r/L)(ßo/(7r-ßo) and hence

dV_ ßo V
dZ-7f'-ßo Z

P = - ßo
0 ~V . V*

7f'- ßo Z

Then the rate of change of B, ß, and k along the ray is found from

(41)

(42)

~ dK
= _ eiB

. ~ . V (0
V*

+ eiB )K ds Cat 7f' - ßo Z 2c
(43)

8Thlin [17] considered a quantity related to IP I as a disturbance parameter and came to the vexing
conclusion that ray theory does not apply for bow entrance angles ßo ~ 7f' /3 as otherwise P is not
bounded. On the other hand, Maruo [7] disclaimed the validity of ray theory for ßo 2 7f' /3 due to
divergence of an integral representing the phase.
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Observing (34) and (5), separating real and imaginary part in (43), we find

d8 1 C ßo ( sin (8- 6). )- = - - - . - 0 + sm (y+ 8- 6)
ds r Cat 7r- ßo 2 cos ,

(44)

dß
= -Im

dv ~ dZ
= -ImA ~ . ei(a+ß)= _~ . ~ . sin (a + ß - 8)

ds dZ V ds 7r- ßo Z r 7r- ßo
(45)

and thus
d, _ d(8 - ß)
ds - ds

1 ßo
- r 7r-ßo ( C ( sin(, + ß - 8). ))sin(a + ß - 8) - - 0 + sm(2, + ß - 8)

Cat 2cos,
(46)

In the viciniy of a stagnation point, for rays emanating from there, we have 8 = a+ ß, hence dß/ ds = 0,
thus da/ds = l/r . ßO/(7r - ßo) . 2sin(2, - a) . da/d, with 0 = 0 under (A). For da/d, non zero, this
can tend to a finite limit without invalidation of (33) only if, = a = o. Hence, unless showing infinite
curvature, all rays must emanate tangentially to the hull from the stagnation point, with wave front
normal in ray direction. The finite limit should dependend on 8 i.e. on the direction of approach,
with zero curvature if approached tangentially to the hull.- This explains the numerical difficulties as
experienced by Brandsma.

A ray can not coincide with a streamline (or with the waterline in particuar) if there is curva-
ture.-newline We would have to require a == 0, i.e., == 0 hence da/ ds i.e. d, / ds == 0; with Cat = C - cg

then, this implies

d,
= Im

dv
(
~_ 0/2 + 1

)
e2iß

ds dZ C C - cg
(47)

valid even away from stagnation points; however, as V = u - iv = Uqe-iß, this means that a change of
the flow occurs in flow direction only, thus a ray can coincide with a streamline only if the rate of change
of V is in the flow direction, i.e. that the streamline has no curvature!

For the rate of change of the wave number k we find

(48)

If the value of A along a ray should equal the critical value r? /2, this would correspond to the minimum
for gravity waves; hence k then must decrease along the ray. However, due to the rapid increase of I, I
near a stagnation point, the sum of eosine terms may change sign, so that k increases (in particular for

(A)' where the first eosine term is deleted) and A approaches p2/2 again. Here the ray must terminate,
as for A = p2/2, even off the waveless zone boundary, the partial derivatives of A both regarding q2 and
, vanish simultaneously in conflict with the ray equations, q2 can not be varied independent from T This
explains the previously mentioned occurence of short life rays. Hence the choice of initial points for rays
is moot, quite apart from the ambiguity of assigning initial values there for amplitude and phase.

Further Considerations About The Ray Approach

A "ray" in the sense of our analysis is defined as a characteristic to a partial differential equation
F(x, y, Sa:, Sy) = 0 for a function S(x, y), see(3). We know that for "hyperbolic" differential equations
such lines display the influence of initial conditions in the sense of some flux of action from cause to result;
and in certain cases we may even attribute some flux of energy to these lines. It is plausible to assurne
that such rays should emanate from a domain elose to the ship as the creator of the wave pattern. But
we should ascertain that the essential features of the complex 3-D flow near the ship, ineluding sensitive
variations, can really be modeled adequately through functions S( x, y) with slowly varying gradient and

associated complex amplitude functions A(x, y) - Note that until Yim's [18] re cent investigations, no
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effects of the Proude number on ray curvature could be modeled, and the variation of wave resistance
only resulted from interference effects in the far field computed through integration along the rays.

We should keep in mind that a single ray can neither be measured nor even detected by whatever
experimental set up, hence a validation of the ray approach by comparison of computational and exper-
imental data is hardly feasable.-

Our investigation showed that certain global characteristics of the wave pattern, such as the variation
of D.k, and hence of the tangential direction of the wave domain boundary (visible in the rich stock of
Miyata's experimental results) can be predicted even near the bow with approach (A + )'.

An evaluation of merits for the competitive approaches (A)' and (A +)' may be attempted. But
considering the fragile foundation of slow ship theory, it does not seem pertinent to discriminate between
a "correct" and a "less consistent" approach, although it is obvious that with indusion of surface tension
effects a dogmatic rule of "automatic order change through differentiation" - essential for (A)'- can not
be maintained.-

Actually, the omission of terms with g(r (and hence with 1 - q2) under(A)' has no fundamental

consequences for our analysis in general. Certainly, the extent of zones without steady waves ahead
of a blunt bow is considerably larger under (A+), well in accord with data from experiments with a
vertical circular cy linder, for which we have evaluated both approaches. However, the numerous recent
investigations on the flow ahead of a blunt bow (see the survey by Mori [19]) make dear that between the
bow and the stationary capillary wave zone we have to expect a finite domain with either a stationary
plateau, a turbulent free surface or instationary waves propagating forward (Osawa [20]), and the flow
visualisation experiments of Kayo et alii [21] displayasystem of instationary "necklace vorticies" in this
domain. And the decay of capillary waves through viscosity, as investigated by Messick and Wu [22]
should be taken account of.-

N umerical Calculations.

Our calculations have been performed both for approach (A+)' and approach (A)'. We considered the
dass of bi-circular cylinders which had already been investigated by Brandsma with conventional ray
theory. The analytical expression for the velocity potential W is given in complex notation [12] in terms
of bicircular coordinates ~ and TJ through

z == x + iy = L/2 . cot((/2)

W == 'P+ i'lj;= UL . i/ncot((/n)

(49)

(50)

with ( = ~ + iTJ,~ = 81 - 82, TJ= ln(T1/T2)' n = 2(71'~ßo),where ßo stands for half the entrance angle
and L for the length of the strut. The symbols Tl, 81, T2, 82 stand for polar coordinates regarding the
strut end points. For econornical reasons, we deduced explicit expressions in real mode for u,v and their
derivatives. We evaluated the ray equations by the Runge-Kutta method.

The aforementioned boundary of the short-life zone was determined numerically, assuming q2 = const
there. It did not require much accuracy, we found that rays emanating outside such a border line were not
sensitive to the choice of their origin. We selected I = 0 as initial value, securing a maximum for the wave
length and its rate of increase, hence minimum prob ability that it may become stationary and decrease
again along the ray. Thus it is obviously adequate rather to operate with a continuous distribution of
disturbances than with a concentration in the stagnation points.

Due to indusion of surface tension, steady components of bow capillary waves could be investigated
as well. We traced rays with capillary waves from that part of the outer boundary of the short-life belt
where the basic flow is incoming, and rays with gravity waves from the part with outgoing flow; the two
domains have no comrnon boundary, save the point where the basic flow is tangent to the belt.-

For different speeds U and for different entrance angle ßo, rays for gravity- and for capillarity waves

are shown in the following figures .
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Ta show the difference between ours and the conventional ray theory and to test same part of our
program, forward (downstream) and backward- (upstream from the far-field)tracing on the conventional
ray theory were also performed. For the latter, considering the problems near the stagnation point, we
changed the far fild initial conditions from those obtained by forward tracing until we could reach a
pre-defined neighborhood of the stagnation point under obvious convergence of the wave front angle.

rn acord with Yim[4], we have attached to each ray in our diagrams values of Bi and BI, the initial and
the final asymptotic values of the wave front angle B, given in degrees rather than radians ). The short
segments on the rays show the local wave fronts.

The step width for the Runge-Kutta method was carefully chosen, comparing with results under half
this width.

Fig.6 Rays of gravity and rays of capillarity for a strut of entrance angle ßo
(A +)' upper half for U = O.57m/ S, lower half for U = 2.31m/ s.

450 under approach
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Fig.7 Rays of capillary waves for asiender strut (ßo = 22.5°) above for (A+)', beiow for (A)'. Upper
halves are for speed U = 0.62mj s(p = 0.37),Iowerhalves are for U = 0.92mjs(p = 0.25).
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Fig.8 Rays of gravity waves for asiender strut (ßo = 22.5°) above for (A+)', beiow for (A)'. Upper
halves are for speed U = 0.57m/s(p = 0.4), Iower halves are for U = 2.31m/s(p = 0.1).
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Fig.9 Rays üf capillary waves für a circular cylinder (ßo = 90°) abüve für (A+)', belüw für (A)/. Upper
halves are für speed U = 0.62mj s(p = 0.37), lüwer halves are for U = 0.92mj s(p = 0.25).

16



Fig.l0 Rays ofgravity waves for a circular cylinder (ßo = 90°) above for (A+)/, below for (A)I, Upper
halves are for speed U = 0.57m/s(p = 0.4), lower halves are for U = 2.31m/s(p = 0.1).
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Conclusions

In the course of an assessement of the ray approach with regard to representing essential features of the
wave pattern, we have incorporated capillarity effects in our analysis to overcome obvious shortcomings
near the bow stagnation point, where otherwise the rate of change of the wave angle would tend to infinity
for almost all ray directions with the inverse distance.

Our formulation (A+)' (see (2)) generalizes approach (A)', where certain terms related to the double-
body fiow pressure are disregarded. Although within our work we could neither provide a rational model
for ray generation nor even a justification far using the ray approach in the hull surface vicinity, the
following facts have been discovered or confirmed.

Our numerical investigations have displayed several global effects on the wave pattern geometry re-
sulting from the inclusion of capillartity to our analytical model; they gain practical relevance for small
speeds, say for U less than 2 m/s (if we consider a minimum capillary wave speed of 0.23 m/s.) :

(1) Both the far-field Kelvin angle and the "modified Kelvin angle" near the bow (i.e. the angle
between tangents to the wave region boundary and to the hull water line) are found to increase with
decreasing U.

(2) With increasing bow entrance angle, both the zones of no steady waves and the surrounding
short-life belt, from which no rays proceeding into the far field can be found, grow in size.

(3) The outward extent of this belt is decreasing with increasing U, i.e. the stronger the capillarity,

the larger the short life belt.

The above findings are in qualitative accord with some tendencies one may observe from experimental
visualizations of fiow and wave pattern as presented by Inui[15] (his Fig.2-2 is reproduced in our Fig.5),
ofMiyata[14], ofMaruo[7] and of Osawa[19] (see Fig.l1). It is true that we can not expect our analytical
model to cover all features of the complex phenomena observed, effects of viscosity and finite wave
elevation in particular, though the latter may be assumed to be less significant considering the low
speeds of the models. Thus it seems that in this regard ray theory displays a certain value for predicting
ship wave phenomena, although the re-entrance of rays or their refiection at the water line must be
considered an open problem, among others. In any case, the authors would like to emphasize the need
to take account of surface tension at low speeds, well in accord with Maruo[7]. We hope that our work
reported here can add some further weight on this aspect.-
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Fig.11. Bow waves in front of a circular cylinder (advancing to.the left)
with U= 0.6,0.7, and O.~jm/s.(From Osawa[20])
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Discussions at the Hiroshima Conference.

Prof. H.S.Choi, National University of Seoul, Korea:

First of all, I would like to congratulate the authors that the surface tension effect has been successfully
included in the ray theory to clarify the wave pattern aroaund the bow more clearly. It may be specially
useful for work with small models. It is in this case that the local phase velocity reaches the minimum
celerity of O.23mj s, and the capillary wave breaks. It implies that a new source of singularity has been
invited by your method. I would be happy if you cornment on it.

Prof. H.Kajitani, University of Tokyo, Japan:

1. I suppose that ray tracing is a kind oflow speed theory. I am not sure that a pretty high Fn applied
in Fig (5) is available or not.
2. Could you cornment on what difference can be observed on the traced characteristic lines between
with and without surface tension effects?
3. The wave length of capillary waves in front of a ship's bow changes with its distance. Have you
computed the capillary phase?

Prof.A.J.Hermans, Technical University of Delft, Netherlands:

I congratulate the authors with the interesting extension of my theory. I agree with them that in the
region of very short waves (near the stagnation points) surface tension is dominant and that its influence
on the ray problem is seen in the whole field. It makes the model for the ray problem more accurate than
the one described by Brandsma and myself.

It is a pity that the authors do not say any word on the influence of the wave exutation coefficients
and the corresponding wave amplitude. It is my philosophy that one must try to balance all compounds
of the building. To my oppinion, our approach has such a balance in our level. Do the authors expect
that our approach to the amplitude problem is applicable in their case? If so, do they expect that the
influence of surface tension is noticable there just so weIl?
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Reply to Discussions.

Reply to Prof. Kajitani:

Prof. Kajitani's worrying about applying the ray theory to high Fn is certainly natural. We use Fig.5
(from Inui and Miyaya) , where the highest Fn is 0.4, to show the qualitative conflrmation with the test
results,9 we do not think that ray theory (at present) can predict strong npn-linear effects. Keller [3J .
claimed that ray theory may be used up to Fn = 0.7; we are more conservative in this regard. As to the
differences with and without surface tension, they could be listed as follows:

In the conventional theory, without surface tension, (i) we have to deal with a point disturbance, i.e.
all waves start from the stagnation points, stationary waves exist even near these points and (ii) Rays
and wave patters are essentially independent from the ship's speed. In our present theory (including
surface tension) there is a region of disturbance such that rays can reach the far field only when starting
from outside this region. No stationary waves can exist inside this region.lO For(ii), in our approach
wave patterns depend on U, they change their tendencies with the change of the short-life belt, local and
far-field Kelvin angles come to eloser accord with experiments.
The capillary wave phase could be calculated, once reliable initial values were given.-

Reply to Prof. Choi:

Thank you for your congratulation and comment. If the length of a gravity wave decreases during
propagation, it may break before the local phase velocity reaches its minimum. In our method, we start
rays from the short life belt boundary. Then waves in general become langer, with l/k~: < 0, see eq.(48).
In case that c decreased and reapproached Cm, we stopped ray tracing and took the starting point more
outside. This does not imply the occurence of a new source singularity.

Reply to Prof. Hermans :

We are happy to acknowledge the fundamental work you refer to, which has inspired our analytical
proceedure. The purpose of this paper is to find out if, once surface tension is accounted for, the
ambiguity and difficulty of the conventional ray theory could be overcome. We appreciate all endeavours
up to now to develop ray theory and make it applicable, but obviously some improvement is still needed

for a elear concept of where a ray can and should originate (provided that ray theory is valid up to the
ship's surface); only then can we assign initial values to amplitude and phase and consider the exitation
problem.-

gIn Fig.5, the rudder being small, Fn=OA still means a slow speed in relation to the phase velocity Cm

in uniform flow
lOObserving carefully the region in front of a slowly advancing body with blunt bow, say a circular

cylinder as shown in Fig 11, one could in some speed range find instationary waves between the stationary
capillary ind the instable turbulent region elose to the bow. We deal with stationary waves only.
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