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Abstract. We study the impact of spatial coarsening on the convergence of the Parareal algo-
rithm, both theoretically and numerically. For initial value problems with a normal system matrix,
we prove a lower bound for the Euclidean norm of the iteration matrix. When there is no physical
or numerical diffusion, an immediate consequence is that the norm of the iteration matrix cannot be
smaller than unoty as soon as the coarse problem has fewer degrees-of-freedom than the fine. This
prevents a theoretical guarantee for monotonic convergence, which is necessary to obtain meaningful
speedups. For diffusive problems, in the worst-case where the iteration error contracts only as fast
as the powers of the iteration matrix norm, making Parareal as accurate as the fine method will take
about as many iterations as there are processors, making meaningful speedup impossible. Numerical
examples with a non-normal system matrix show that for diffusive problems good speedup is possible,
but that for non-diffusive problems the negative impact of spatial coarsening on convergence is big.
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1. Introduction. To unlock the performance of future high-performance com-
puting systems with their rapidly increasing number of compute cores, parallelisable
numerical algorithms are needed. For the solution of time-dependent partial differ-
ential equations (PDEs), parallel-in-time methods are considered a promising way
to provide more concurrency [3]. The most widely studied algorithm of this type is
Parareal [24]. Other popular “parallel-across-the-steps” methods in the terminology
of Gear [14] are MGRIT [7] or PFASST [6]. Surveys of the field have been provided
by Gander [11] and Ong and Schroder [26].

These “parallel-across-the-steps” methods solve initial value problems in a way
that allows to compute the solution on multiple time steps in parallel. To achieve
this, they use a hierarchy of levels, similar to multi-grid methods, where the unavoid-
able serial dependency in time is shifted to the coarsest, computationally cheapest
level. While this still leaves a serial bottleneck, it frees up the computationally costly
computations on the fine levels for concurrency. Multiple studies have shown that
parallel-in-time integration in combination with spatial parallelism can provide more
speedup than parallelising in space alone [7, 25, 31].

The key to good performance in these methods is to build a computationally
cheap coarse level to minimise the serial bottleneck without compromising rapid con-
vergence. When solving PDEs, an attractive option is to coarsen the resolution of the
spatial discretisation: in three dimensions, coarsening spatial resolution by half will
reduce cost by a factor of 23 = 8 in contrast to coarsening in time which will only
deliver a factor of two. For Parareal, this strategy seems to have first been studied by
Fischer et al. [8]. They use a finite element based discretisation of the Navier-Stokes
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equations and find that Parareal can converge reasonably fast if l2-projection is used
to transfer between coarse and fine mesh. Simple interpolation is found to cause sta-
bility issues. Later, a short numerical investigation of spatial coarsening for Parareal
showed that interpolation for simple problems can work but that performance de-
pends on spatial resolution and the used interpolation order [27]. Some theory for
Parareal with spatial coarsening for the linear advection equation in one dimension
with an upwind discretisation is developed by Gander [10]. A detailed analysis of
convergence bounds for both Parareal and MGRIT is provided by Southworth [30].
While their approach allows to consider spatial coarsening, its effect is not analysed
in detail. Howse at al. present a heuristic adaptive strategy for spatial coarsening
in MGRIT and demonstrate in numerical examples that their approach can resolve
shock formation in Burgers’ equation [22]. An investigation into the impact of spatial
coarsening on MGRIT performance is in progress but has not yet been published [29].

Besides these papers, there seems to have been little systematic analysis of what
the impact of spatial coarsening on convergence of Parareal is. There is a number of
papers that analyse Parareal based on Dahlquist’s test equation or variants thereof [12,
13, 28, 2]. While the test equation can produce reliable results for general linear value
problems by means of diagonalisation, spatial coarsening means that dimensions of
the the coarse and fine level problems are different and it is unclear how to apply the
approach in this case.

This paper will investigate the impact of spatial coarsening on the convergence of
Parareal both theoretically via the norm of the error propagation and by numerical
experiments. For linear initial value problems with a normal system matrix, we prove
a lower bound for the error propagation matrix l2-norm when coarsening is used. The
bound is independent of the specifics of the coarse propagator and only depends on
the fine propagator, the number of degrees-of-freedom on the coarse mesh and the
eigenvalues of the system matrix. We discuss implications of this results and show
numerical examples that illustrate the impact of spatial coarsening on Parareal conver-
gence for problems with both normal and non-normal system matrices. Although the
norm of the iteration matrix provides only an upper bound for convergence, showing
that is is smaller than unity would give a theoretical guarantee for monotonic conver-
gence. This would rule out the error growth often observed in particular for hyperbolic
problems [12], which makes obtaining speedup nearly impossible. Our result suggests
that in particular for non-diffusive problems, finding such a bound will be very chal-
lenging when any form of spatial coarsening is used and that other theoretical tools
may be needed.

2. Parareal with spatial coarsening for linear problems. Consider a linear
initial value problem

(2.1) ∂ty(t) = Ay(t), y(0) = b, t ∈ [0, T ],

with A ∈ Cn×n, b ∈ Cn. We will typically think of (2.1) as arising from the semi-
discretisation of a partial differential equation, but this need not be the case. We
decompose the time interval [0, T ] into P so-called time-slices so that

(2.2) [0, T ] = [0, t1] ∪ [t2, t3] ∪ . . . [tP−1, tP ]

with tP = T . Let Fδt and G∆t be one-step numerical timestepping methods. Parareal
computes an approximate solution to (2.1) via the iteration

(2.3) yk+1
j+1 = G∆t(y

k+1
j ) + Fδt(ykj )− G(ykj )
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for j = 0, . . . , P − 1. As the iteration converges, it will reproduce the solution

(2.4) yj+1 = Fδt(yj)

provided by running Fδt in the typical step-by-step fashion.
Note that since the values ykj are known from the previous iteration, the compu-

tation of Fδt(ykj ) in (2.3) can be parallelised across P processing units. By contrast,

G∆t(y
k+1
j ) must be computed serially step-by-step. Therefore, Fδt should be accurate

but can be computationally expensive and is thus called the fine propagator. By con-
trast, since G∆t runs serially, it must be computationally cheap but can be inaccurate
and is thus called the coarse propagator.

Spatial coarsening. An effective way to reduce computational cost of the coarse
method is to use a coarser spatial discretisation. In that case, a differential equation

(2.5) ∂tỹ(t) = Ãỹ(t)

with Ã ∈ Cm×m, ỹ(t) ∈ Cm and m < n is solved numerically on the coarse level.
A restriction operator R ∈ Cm×n transfers the solution from the fine to the coarse
level and an interpolation operator I ∈ Cn×m from the coarse to the fine [8]. One
application of the coarse method in Parareal then becomes

(2.6) G∆t = IG̃∆t(Ry)

where G̃∆t is the coarse method applied to (2.5).

2.1. Parareal for linear problems as a stationary iteration. For the linear
problem (2.1) and one-step methods as propagators we can write

(2.7) Fδt(y) = Rf (δtA)Nf y =: Fy

and

(2.8) G∆t(y) = IRg(∆tÃ)NgRy =: IG̃Ry =: Gy,

where Rf (z) and Rg(z) are the stability functions, and Nf , Ng are the number of time
steps per time slice for fine and coarse propagator, respectively. That is, the action
of both propagators can be expressed as multiplication with matrices F ∈ Cn×n and
G ∈ Cn×n. In this case, it is straightforward to interpret Parareal as a stationary
fixed point iteration [1]. Application of the fine propagator directly via (2.4) can be
written as1

(2.9) Mfyf :=


1
−F 1

. . .
. . .

−F 1



y0

y1

...
yP

 =


b
0
...
0


where 1, in a slight abuse of notation, denotes the n×n identity matrix. The Parareal
iteration (2.3) reads

(2.10) yk+1
j+1 = Gyk+1

j + Fykj −Gykj

1We use bold face to indicate quantities that have been aggregated over all time slices. For
example, ykj denotes the approximation at the beginning of time slice j in iteration k whereas

yk =
(
yk0 , . . . , y

k
P

)
is a vector containing the approximations from all time slices in iteration k.
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for j = 0, . . . , P − 1 with yk0 = 0 and can be written

(2.11) Mgy
k+1 = (Mg −Mf ) yk + b

with Mg defined analogously to Mf in (2.9) and

(2.12) b =


b
0
...
0

 .

Let yf be the serial fine solution of (2.9). Then, the iteration error ek := yf − yk is
given by

(2.13) ek = Eek−1 = Eke0

with E = M−1
g (Mg −Mf ).

Lemma 2.1. The error propagation matrix is given by

(2.14) E =


0
B0 0
B1 B0 0

. . .
. . .

. . .

BP−1 . . . B1 B0 0


with

(2.15) Bk = Gk (F −G) .

Proof. First, it is easy to confirm that

(2.16) M−1
g =


1
G 1
G2 G 1
...

. . .
. . .

GP−1 . . . G2 G 1

 .

Then, some matrix algebra shows that

(2.17) E =


1
G 1
G2 G 1
...

. . .
. . .

GP−1 . . . G2 G 1




0

F −G 0
F −G 0

. . .
. . .

F −G 0


has the form shown above.

2.2. Increment and error. Since the error requires knowledge of the fine solu-
tion which is normally not available, a commonly used approach is to monitor converge
of Parareal via the difference between two iterates

(2.18) ∆k
j := yk+1

j − ykj
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for j = 1, . . . , P . Although the connection between defect and iteration error shown
below is straightforward, it does not appear to have been documented in the literature
so far and the issue of how good a predictor the defect is for the error seems to not
have been considered at all.

Lemma 2.2. For the Parareal iteration (2.3) applied to a linear problem (2.1)
where both propagators are one-step methods, the increment between two iterations

(2.19) ∆k = yk+1 − yk.

is given by

(2.20) ∆k = ek+1 − ek = Ek (E− 1) e0.

Proof. Using (2.13) we have

(2.21) ∆k = yk+1 − yf + yf − yk = ek+1 − ek = Ek (E− 1) e0.

This implies that if ‖E‖ < 1 the defect and error contract at the same rate since

(2.22)
∥∥∆k

∥∥ ≤ C ‖E‖k
and

(2.23)
∥∥ek∥∥ ≤ C̃ ‖E‖k

for some constants C, C̃. However, it also means that if the error for some time slice
does not change in an iteration, the corresponding defect will be zero. This raises the
possibility that there might be scenarios where checking the defect for convergence
will give a “false positive” result where the defect is small and the iteration stops
although the error is actually large. Investigating this is left for future work.

2.3. Norm of ek versus norm of Ek versus ‖E‖k2. From (2.13), we can bound
the Parareal error as

(2.24)
∥∥ek∥∥

2
=
∥∥Eke0

∥∥
2
≤
∥∥Ek

∥∥
2

∥∥e0
∥∥

2
≤ ‖E‖k2

∥∥e0
∥∥

2
.

Remember that E is nil-potent. Therefore, its spectral radius is zero and the error
always goes to zero asymptotically. However, for Parareal to provide speedup, we
need the error to contract fast and in particular we want it to decrease monotonically.

This can be guaranteed theoretically if ‖E‖2 < 1. However, even if ‖E‖2 > 1, it is
possible for the norm of Ek to decrease monotonically, also leading to error contraction
although whether this happens or not will depend on the specific setup. Interestingly,
the results below show that depending on the initial value, we can also have scenarios
where

∥∥Ek
∥∥

2
grows but

∥∥ek∥∥
2

decays.

2.4. Numerical and physical diffusion. We assume that no eigenvalue of A
in (2.1) has positive real part, otherwise the problem is not well-posed. If the initial
value problem (2.1) is advanced in time exactly, we get

(2.25) y(tj+1) = exp(Aδt)y(tj).

Eigenvalues with negative real part give rise to exponentially decaying solutions. If
this is a property of the problem like in the heat equation, we call this effect physical
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Fig. 1. Eigenvalues of A for a first order upwind (left) or second order centered (right) finite
difference discretisation of the linear advection equation.

diffusion. If the original problem is non-diffusive and the negative real parts come
from the employed spatial discretisation, we refer to this as spatial numerical diffusion.
Here, diffusion is purely an artifact of the numerics and will vanish as the spatial
resolution is refined. An example would be an upwind finite difference discretisation
of the linear advection equation ut+ux = 0 with periodic boundary conditions [4, Eq.
(3.35)], see Figure 1 (left). The PDE is non-diffusive but the eigenvalues of A have
negative real-part. Consequently, the eigenvalues of exp(Aδt) lie inside the unit circle,
which will result in amplitudes going to zero as t→∞. By contrast, the non-diffusive
centered finite difference approximation [4, (Eq. (3.28)] means that all eigenvalues of
A lie on the imaginary axis and thus the eigenvalues of exp(Aδt) are on the unit circle
so that amplitudes are preserved, see Figure 1 (right).

Numerical diffusion can also be introduced by the time stepping scheme. The
fully discrete solution does not evolve according to (2.25) but

(2.26) yj+1 = R(Aδt)yj ,

where R is the stability function of the used one-step method and yj ≈ y(tj) is
the resulting numerical approximation. Even when there is no physical or spatial
numerical diffusion and all eigenvalues of A have real part equal to zero, R(Aδt)
might have eigenvalues with negative real part. In that case, the numerical solution
will also decay exponentially as t→ 0. We call this temporal numerical diffusion and
it will vanish in the limit δt→ 0. Trefethen discusses these effects in more detail [32].

3. Lower bound for the Parareal iteration matrix norm. The main theo-
retical result of this paper is the following theorem. Its implications are discussed in
Subsection 3.1 and the proof is given in Subsection 3.2.

Theorem 3.1. Consider a linear initial value problem (2.1) with a normal matrix
A with eigenvalues λ1, . . . , λn ordered by decreasing absolute value, that is |λ1| ≥
|λ2| ≥ . . . |λn|. Let Fδt and G∆t be one-step methods with rational stability functions
Rf (z) and Rg(z) and let the fine method be stable, so that |Rf (λjδt)| ≤ 1 for j =
1, . . . , n. Assume that the coarse propagator G∆t is solving a coarsened linear initial
value problem (2.5) with dimension m < n and that interpolation and restriction
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operators I ∈ Cn×m and R ∈ Cm×n are used. Then, the l2-norm of Parareal’s error
propagation matrix is bounded from below by

(3.1) ‖E‖2 ≥

√√√√ n∑
j=m+1

|Rf (λjδt)Nf |2 ≥
∣∣Rf (λm+1δt)

Nf
∣∣ .

Remark 3.2. The bound in Theorem 3.1 is independent of the choice of coarse
method, coarse time step or interpolation or restriction operator, that is, independent
of Rg, ∆t, I and R.

Remark 3.3. Standard finite difference discretisation on equidistant meshes with
periodic boundary conditions, for example, give rise to a matrix A that is circu-
lant and thus normal. Furthermore, symmetric/Hermitian and skew-symmetric/skew-
Hermitian matrices are normal. For a comprehensive characterisation of normal ma-
trices see e.g. the book by Horn and Johnson [21, Sec. 2.5] and the paper by Grone
et al. [17].

3.1. Implications of Theorem 3.1. The matrix E is nil-potent with EP = 0,
reflecting the well-known fact that Parareal always converges when the number of
iterations is equal to the number of time slices. Therefore, even if the norm of the error
matrix is large, Parareal will still converge for any initial guess. This is, however, not
enough to make it useful: since Mf has a lower diagonal block-structure, problem (2.9)
can easily be solved by forward substitution, which corresponds to running the fine
method in serial. Speedup from Parareal afterK iterations on P time slices/processors
is bounded by

(3.2) S(P ) ≤ min

{
P

K
,

Runtime of Fδt
Runtime of G∆t

}
.

Spatial coarsening can significantly reduce the computational cost of the coarse prop-
agator and thus improve the second bound. However, it increase the number of iter-
ations required for convergence and reduce the first bound. For Parareal to deliver
speedup, it needs to converge in a number of iterations that is much smaller than the
number of time slices or K � P . This can be guaranteed theoretically if

(3.3) ‖E‖ � 1

in a suitable norm, see also the discussion by Buvoli and Minion [2]. Therefore,
a result that proofs that ‖E‖ < 1 holds under certain conditions would be very
desirable. Theorem 3.1 shows that if spatial coarsening is used, such a guarantee will
be difficult to find for non-diffusive problems. Note, however, that ‖E‖ < 1 is only
a sufficient condition for the iteration to converge, not a necessary one [23, Corollary
1.2.1]. This means that we may see the iteration converge despite the norm being
larger than one. Our numerical examples in Section 4.1 show that actual convergence
is often monotonic, even when the norm of E is larger than one and would permit
non-monotonic convergence. However, we also see that convergence is typically very
slow in these cases and that the impact of spatial coarsening on convergence speed
can be substantial.

Remark 3.4. We can make Parareal converge arbitrarily fast by changing the
norm. Since the spectral radius of E is zero, for any ε > 0 there exists a norm on Cn
with

(3.4) ‖E‖ ≤ ε
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in the associated matrix norm [23, Theorem 1.3.1]. But having to cherry-pick the
norm and thus the way to measure errors only to make Parareal converge is hardly a
satisfactory solution.

Corollary 3.5. For a fine method of order p we have

(3.5) ‖E‖2 ≥ |exp(λm+1∆t)|+O(δtp+1)

as δt→ 0.

Proof. It holds that

(3.6) Rf (z) = exp(z) +O(|z|p+1) as |z| → 0

where p is its order of consistency [18, p. 42]. Therefore, with z = λm+1δt and
∆t = δtNf ,

‖E‖2 ≥ |Rf (λm+1δt)|Nf(3.7a)

=
∣∣exp(λm+1δt) +O(|λm+1δt|p+1)

∣∣Nf
(3.7b)

=
∣∣exp(λm+1δt)

Nf
∣∣+O(|λm+1|p+1δtp+1)(3.7c)

= |exp(λm+1∆t)|+O(δtp+1).(3.7d)

Remark 3.6. For problems without physical or spatial numerical diffusion, this
means that using spatial coarsening eliminates any chance for a theoretical guarantee
for good convergence: if all λn are purely imaginary, Corollary 3.5 implies

(3.8) ‖E‖2 = 1 +O(δtp+1)

as δt→ 0.

Remark 3.7. When there is physical or spatial numerical diffusion present, the
case is less clear. If Re(λm+1)∆t � 0, bound (3.1) allows ‖E‖2 � 1. However, with
A = UΣU∗, note that the exact solution of (2.1) is

(3.9) yexact = U exp(ΣT )U∗y0,

so that

‖yexact‖22 =

n∑
j=1

(
exp(λjT )y

(j)
0

)2

(3.10a)

=

m∑
j=1

(
exp(λjT )y

(j)
0

)2

+

n∑
j=m+1

(
exp(λjT )y

(j)
0

)2

.(3.10b)

Here, the terms in the second sum correspond to the modes that are not represented
on the coarse mesh. If the iteration error is

(3.11)
∥∥ek∥∥

2
≈ ‖E‖k2 ≈ exp(λm+1δt)

Nfk = |exp(λm+1∆tk)| ,

the terms in the second sum in (3.10b) are of the order or smaller than the iteration er-
ror. In that case, although the modes associated with λm+1, . . . , λn are represented on
the fine mesh, they may not actually contribute to the solution provided by Parareal.
This makes it critically important to carefully investigate whether (i) Parareal and
the fine serial propagator really deliver results of comparable accuracy and (ii) the
spatial resolution on the fine mesh is really needed - otherwise, reported speedups
might be largely meaningless [16]. This problem is illustrated for a toy example in
Subsection 3.5.
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3.2. Proof of Theorem 3.1.

Proof. Because A is normal, it is unitarily diagonalisable [21, Theorem 2.5.3], so
that

(3.12) A = UΣU∗,

where U−1 = U∗ and Σ = diag(λ1, . . . , λn) is a diagonal matrix. Since we assume
stability of the fine method, all eigenvalues of A must be located away from the
singularities of Rf and thus [20, Theorem 6.2.9]

(3.13) Rf (Aδt) = Rf (UΣδtU∗) = URf (Σδt)U∗.

With this, the fine propagator becomes

(3.14) F = Rf (Aδt)Nf = (URf (Σδt)U∗)
Nf = URf (Σδt)NfU∗.

Therefore, F is also unitarily diagonalisable with eigenvalues

(3.15) µk = Rf (λkδt)
Nf .

Since B0 = F −G is a sub-matrix of E, it holds that

(3.16) ‖E‖2 ≥ ‖B0‖2 = ‖F −G‖2 .

Because G̃ ∈ Cm×m, we know that

(3.17) rank(G̃) ≤ m.

Since rank(AB) ≤ min {rank(A), rank(B)} holds for any matrices A, B, we have

(3.18) rank(G) = rank(IG̃R) ≤ m.

Therefore, G is a low-rank approximation of F and by Eckart-Young-Mirsky theorem

(3.19) ‖F −G‖2 ≥

√√√√ n∑
j=m+1

σ2
j ≥ σm+1

where σ1 ≥ . . . ≥ σn ≥ 0 are the singular values of F [5, 21]. Because F is unitarily
diagonalisable it must also be normal [21, Theorem 2.5.3]. Therefore, its singular
values are the absolute values of its eigenvalues [20, p. 157] so that

(3.20) ‖E‖2 ≥ ‖F −G‖2 ≥

√√√√ n∑
j=m+1

σ2
j =

√√√√ n∑
j=m+1

|Rf (λjδt)Nf |2

and in particular

(3.21) ‖E‖2 ≥ ‖F −G‖2 ≥ σm+1 = |µm+1| =
∣∣Rf (λm+1δt)

Nf
∣∣ .

Remark 3.8. There is the more general lower bound [20, Eq. (3.5.32)]

(3.22) ‖F −G‖2 ≥ max
i=1,...,n

|σi(F )− σi(G)|

for the low rank approximation. Since G has rank m, we have σm+1(G) = . . . =
σn(G) = 0. Therefore,

(3.23) ‖F −G‖2 ≥ max
i=1,...,m

∣∣Rf (λiδt)
Nf −Rg(λi∆t)Nc

∣∣ ,
This might give a sharper lower bound but the other bound has the advantage of
depending only on m.
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3.3. Using the infinity norm instead. Error bounds for low-rank approxima-
tions in the infinite norm seem to be scarce [15]. For this reason, a best-case bound for
‖E‖∞ might be much harder to obtain. Our numerical examples in Section 4.1, how-
ever, show that convergence in the Euclidean and Infinity norm are not significantly
different.

3.4. Systems with non-normal matrix. The proof of Theorem 3.1 relies
heavily on the assumption that the matrix A in (2.1) is normal. We will show numer-
ical examples with non-normal matrices in Section 4.1 where convergence is inhibited
by spatial coarsening in a similar way as the theorem shows for normal matrices.
However, there are some specific setups where Parareal can converge for hyperbolic
PDEs even with spatial coarsening. Using techniques other than the iteration matrix
norm, Gander [10] shows that when applying Parareal to

ut + aux = f in(3.24)

u(x, 0) = u0(x) in(3.25)

u(0, t) = g(t) t ∈ (0, T )(3.26)

using an upwind discretisation, it converges linearly even when spatial coarsening is
used. This case is not covered by our theorem since the finite difference matrix for
non-periodic boundary conditions

(3.27) A =
1

∆x


1
−1 1

. . .
. . .

−1 1


has a highly non-normal structure.

3.5. Demonstration for a toy problem. Consider the linear advection-diff-
usion equation

(3.28) ut + ux = νuxx

with initial value

(3.29) u0(x) = exp(ix) + ε exp(iLx)

for some L � 1, a diffusivity parameter ν ≥ 0 and x ∈ [0, 2π]. We use a spectral
ansatz

(3.30) u(x, t) =

n∑
l=0

u(l)(t) exp(ilx)

in space, which, for this setup, is exact and leads to the semi-discrete initial value
problem

(3.31)

(
u(1)(t)
u(L)(t)

)
t

=

(
−i− ν 0

0 −iL− νL2

)
︸ ︷︷ ︸

=A

(
u(1)(t)
u(L)(t)

)
=

(
λ1 0
0 λ2

)
︸ ︷︷ ︸

=Σ

(
u(1)(t)
u(L)(t)

)

with initial value y0 = (1, ε)T. As coarse initial value problem we consider

(3.32) u(1)(t)′ = −(i+ ν)︸ ︷︷ ︸
Ã

u1(t).
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with

(3.33) R =
(
1 0

)
, and I =

(
1
0

)
.

The fine propagator matrix is

(3.34) F = exp(Aδt)Nf =

(
Rf (λ1δt)

Nf 0
0 Rf (λ2δt)

Nf

)
.

We assume that the coarse and fine propagator are identical andNc = Nf and δt = ∆t,
except for the coarsened spatial resolution, so that

(3.35) G = IRf (λ1δt)
NfR =

(
Rf (λ1δt)

Nf 0
0 0

)
.

Then, the entries of the error propagation matrix are

(3.36) B0 = F −G =

(
0 0
0 Rf (λ2δt)

Nf

)
and

(3.37) Bk = Gk(F −G) =

(
Rf (λ1δt)

Nf 0
0 0

)(
0 0
0 Rf (λ2δt)

Nf

)
= 0.

If we consider a setup with P = 3 time slices, we have

(3.38) E =


0 0 0 0
B0 0 0 0
0 B0 0 0
0 0 B0 0

 .

The initial value is b = (1, ε, 0, 0, 0, 0, 0, 0). The fine solution is

(3.39) yf =


y0

Fy0

F 2y0

F 3y0


(note that M−1

f has the same form as M−1
g in the proof of Lemma 2.1). An initial

run of the coarse method produces

(3.40) y0 =


y0

Gy0

G2y0

G3y0


so that

(3.41) e0 =


0

(F −G)y0

(F 2 −G2)y0

(F 3 −G3)y0

 .
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From that, we get

(3.42) e1 = Ee0 =


0
0

B0(F −G)y0

B0(F 2 −G2)y0


and

(3.43) e2 =


0
0
0

B2
0(F −G)y0


Using that for P = 3 time slices we have 3∆t = T ,

(3.44) B2
0 (F −G) y0 = B3

0y0 =

(
0 0
0 Rf (λ2δt)

3Nf

)(
1
ε

)
Thus, after k = 2 iterations, the iteration error is

(3.45)
∥∥e2
∥∥

2
= ε

∣∣Rf (λ2δt)
3Nf
∣∣ .

If λ2 is imaginary and the discretisation non-diffusive,

(3.46)
∥∥e2
∥∥

2
= ε,

and the iteration error is the same size as the initial amplitude of the second mode.
If this iteration error is deemed acceptable, the second mode need not be considered
and the fine propagator over-resolved the problem. Otherwise, convergence will only
be achieved in the next iteration when k = P and Parareal will provide no speedup.

If λ2 has a negative real part, let ε = 1 for simplicity and consider that the
temporal discretisation error of the fine propagator is

(3.47)

(
Rf (λ1δt)

3Nf − exp(λ1δt)
3Nf

Rf (λ2δt)
3Nf − exp(λ2δt)

3Nf

)
=:

(
ε(1)

ε(L)

)
=: edisc.

Therefore, ∥∥e2
∥∥

2
=
∣∣Rf (λ2δt)

3Nf
∣∣ =

∣∣∣ε(1) + exp(λ2T )
∣∣∣

so that

(3.48)

∥∥e2
∥∥

2

‖edisc‖2
=

∣∣ε(1) + exp(λ2T )
∣∣√

(ε(1))2 + (ε(L))2
.

This ratio must be smaller than one for the iteration error to be smaller than the
discretisation error. For this, we need exp(λ2T ) ≤ ε(L), meaning that the amplitude
of the second mode at the end of the solution must be smaller than the corresponding
temporal discretisation error. Again, this is indicative of a setup where the second
mode is not meaningfully contributing to the numerical solution and the fine propa-
gator is merely over-resolving.
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Fig. 2. Norm of E depending on δt for a diffusive upwind (left) and non-diffusive centered
(right) finite difference discretisation of the linear advection equation. Coarse and fine propagator
are identical except for the number of finite difference points. Note that for m = 64, coarse and fine
propagator are identical and E is the zero matrix (black line).

4. Numerical Examples. Figure 2 shows ‖E‖2 for a diffusive upwind / implicit
Euler (left) and a non-diffusive centered / trapezoidal rule (right) finite difference
discretisation of the linear advection equation. We set T = 1, P = 10 and use implicit
Euler as both fine and coarse propagator. The fine propagator uses 64 finite difference
points and Nf = 1, 2, 4, 6, 8, 10, 20 steps per time slice. The coarse propagator uses
the same time step as the fine propagator, so that both are identical except for the
number of finite difference points, where the coarse propagator uses m = 32, 48, 63.
For m = 64, both are identical and E = 0, this case is shown as reference. Linear
interpolation is used to transfer between fine and coarse spatial mesh.

We can see that for the centered scheme with no diffusion, even removing a single
finite difference node on the coarse mesh already results in ‖E‖2 ≥ 1, in line with
Remark 3.6. For m = 48 and m = 32 we can clearly see how the norm increases as
δt gets smaller. When there is numerical diffusion from the upwind / implicit Euler
discretisation (right), ‖E‖2 can be smaller than one. However, note that is is only
the case when m = 63 nodes are used on the coarse mesh - even a relatively modest
coarsening from n = 64 on the fine to m = 48 on the coarse level already produces
‖E‖2 ≥ 1. When coarsening from n = 64 to m = 32, as would typically be done in
practice, the norm of E is much larger than one and we can see again clearly how the
norm increases as temporal resolution is refined.

Figure 3 shows, for Nf = Ng = 10, both the norms of powers of the iteration
matrix(left) and the norm of the actual iteration error for an initial value

(4.1) u(x, 0) = exp

(
− (x− 1)2

0.252

)
on a domain [0, 2] (right). For the diffusive case (upper two figures), both norms con-
tract more or less in sync. While for m = 63 this is expected since ‖E‖2 < 1, for both
m = 48 and m = 32 the norm of E is larger than one. For the non-diffusive discreti-
sation (lower two figures), we see the expected non-mononotic behaviour suggested
by ‖E‖2 ≥ 1 except for m = 63. There, although

∥∥Ek
∥∥

2
fails to contract, we still

see a reasonably rapid decrease in the actual iteration error
∥∥ek∥∥. This is, however,
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Fig. 3. Norm of Ek (left) versus norm of the error ek (right) for a diffusive upwind / implicit
Euler discretisation (upper) and a non-diffusive centered / trapezoidal rule discretisation (lower).

The dashed lines show the slope predicted by ‖E‖k.

because of the rapid decay of the Gaussian initial values towards the boundaries of
the interval. If we use the initial value

(4.2) u(x, 0) = sin(πx) + sin(24πx)

instead, we get convergence shown in Figure 4 (left). Now, all three cases fail to
converge. This illustrates that the initial value is an important factor in determining
whether the poor convergence allowed by ‖E‖2 ≥ 1 is realised in a specific setup.

Finally, Figure 5 shows ‖E‖2 again for the heat equation discretised with cen-
tered finite difference and trapezoidal rule. As before, fine and coarse propagator
are identical except for the number of spatial points. For the two cases with reason-
able coarsening, the bound is around unity or larger, even though the lower bound
exp(λm+1∆) would allow for smaller values. Onlz for m = 63, that is when the coarse
mesh has only one degree-of-freedom less than the fine grid, does the norm become
small but even then only as ∆t→ 0.

Figure 6 shows the norm of Ek (left) and the norm of the iteration error (right)
for the heat equation with non-diffusive discretisation. The absolute l2 error against
the analytical solution of the PDE is about 6 × 10−5. Although convergence looks
reasonable at first glance, the iteration error drops below the discretisation error after
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Fig. 4. Norm of ek for the non-diffusive centered / trapezoidal rule discretisation for the linear
advection equation with initial value (4.2).
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Fig. 5. Norm of E depending on δt for a non-diffusive centered / trapezoidal rule finite differ-
ence discretisation of the diffusive heat equation – that is, there is only physical but no numerical
diffusion. Coarse and fine propagator are identical except for the number of finite difference points.
For m = 64, coarse and fine propagator are identical and E becomes the zero matrix (black line).

K = 9 iterations. Since there are only P = 10 parallel time slices, even in ideal
circumstances speedup will be limited to a disappointing maximum of 1.11. On a real
HPC system with inevitable overheads, it is very likely that Parareal will be slower
than the fine propagator run in serial. This is in line with the observations for the
toy example in Section 3.5, illustrating again that even seemingly good convergence
might not be enough to obtain meaningful speedup.

4.1. Numerical examples with non-normal system matrix. Here, we ex-
plore numerically the impact of spatial coarsening for cases where the matrix A is not
normal and Theorem 3.1 does not apply. While for diffusive problems convergence is
rapid enough to allow for speedup, for problems with no or weak diffusion, we again
find that the number of iterations required to reach the accuracy of the. fine method
allows only for very limited speedup.
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Fig. 6. Norm of Ek (left) and ek (right) for the heat equation with initial value (4.2) and a
non-diffusive centered finite difference / trapezoidal rule finite difference discretisation, meaning the
problem only has physical diffusion.

4.2. Linear advection equation. Consider the linear advection equation

(4.3) ut + ux = 0

with initial value

(4.4) u(x, 0) = sin(2πx)

for x ∈ [−2, 2], t ∈ [0, 1] and periodic boundary conditions. We use a Discontinuous
Galerkin method combined with a two-stage strong stability-preserving (SSP) Runge
Kutta method in an implementation by Vater et al. [34]. In contrast to the example
above, we do spatial coarsening by choosing a lower polynomial degree for the coarse
propagator while keeping the mesh the same. Except for the polynomial degrees
of pf = 3 on the fine and pg = 2 on the coarse level, fine and coarse propagator are
identical with a spatial resolution of 4/20 = 0.2 and a very small time step of 1/48000,
to make sure the discretisation error is actually controlled by the DG discretisation.
We divide the time interval into P = 40 time slices and set the stopping criterion for
Parareal to ||∆k||∞ < 10−6.

Figure 7 shows the norm of the iteration error (left) and the norm of the de-
fect (right). In line with Lemma 2.2, error and defect show very similar behaviour.
Both the increment ∆k and the iteration error ek show strong non-mononotic behav-
iour, increasing by two orders of magnitude before contracting. Parareal reaches the
discretisation error only after 21 iterations, so that theoretically possible speedup is
less than 1.4 on P = 30 processors. Taking fewer time slices eventually makes the
non-monotonic convergence disappear, but then Parareal converges only after K = P
many iterations, leaving no possibility for speedup. Note that the solution here is a
simple sine wave which the coarse propagator has no problem resolving correctly, so
this is not an issue of the coarse propagator missing important features of the solution.

4.3. Advection diffusion equation. To study the effeect of physical diffusion,
consider the advection diffusion equation

(4.5) ut + ux −Duxx = 0
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Fig. 7. Norm of ek (left) and ∆k (right) for the linear advection equation with initial value

(4.4) solved with a two-stage SSP-RK / discontinuous Galerkin method. Coarse and fine propagator
are identical except for the polynomial degree of the ansatz spaces which is pF = 3 for the fine and
pG = 2 for the coarse method. The discretisation error is indicated by the horizontal line.

for a diffusion constant D ∈ R with initial value

(4.6) u(x, 0) =

8∑
k=1

1

k2
sin(kπx)

for x ∈ [−2, 2], t ∈ [0, 1] and periodic boundary conditions. We use the same numerical
method as for the linear advection equation, with polynomial degrees pf = 3 and
pg = 2 and spatial resolution of 0.2. However, we can use a much larger time step of
1/160 here while still having the spatial discretisation error dominate.

Figure 8 shows the iteration error ek for different values of the diffusion coefficient
D. For D = 0.01 and D = 0 (that is, linear advection equation but now with
initial value (4.6)), we see non-mononotic and slow convergence. In both cases, the
discretisation error is only reached after 24 iterations, limiting speedup to a maximum
of 1.25. For the more diffusive cases with D = 0.1 and D = 1, however, the picture
is very different, also compared to the diffusive problem with normal system matrix
studied above. Not only is Parareal convergence quick and monotonic, we also reach
the discretisation error in only K = 2 iterations, leaving room for significant speedup.

5. Conclusions. The paper studies convergence of the parallel-in-time Parareal
algorithm for linear initial value problems when spatial coarsening is used. First, the
matrix that governs error propagation in the iteration is derived and, assuming the
system matrix of the linear initial value problem is normal, a lower bound for the
l2-norm of the error matrix is derived. Implications of the bound are discussed. In
particular, we show how for problems without diffusion the norm of the error matrix
must be larger than one when even minimal spatial coarsening is used. While this does
not necessarily imply non-convergence in practice, it prevents a theoretical guaran-
tee for monotonic convergence. Furthermore, numerical examples demonstrates that
spatial coarsening has a substantial negative impact on convergence for non-diffusive
problems. For diffusive problems, the bound is more forgiving and can be smaller
than one even when spatial coarsening is used. However, we show in a theoretical
toy example and numerical examples that unless convergence is much better than the
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Fig. 8. Norm of ek for the linear advection-diffusion equation with initial value (4.6) depending
on strength of diffusion: D = 1 (upper left), D = 0.1 (upper right), D = 0.01 (lower left) and D = 0
(lower right). Again the coarse and fine propagator are identical except for the polynomial degree,
which is p = 3 for the fine and p = 2 for the coarse method. The number of time slices is P = 40.

norm suggests, reaching the discretisation error of the fine method can often take too
many iterations to achieve meaningful speedup.

There are two main conclusions that can be drawn. First, care must be taken
when reporting speedups for Parareal when spatial coarsening is used. The iteration
error can contract more or less at the same rate as the amplitude of the solution
due to diffusion (and not at all if there is no diffusion). This means that it is easy
to run into situations where reported speedups may be largely because of an unfair
comparison [16]. Either the truncated modes on the coarse grid do not contribute to
the accuracy of the numerical solution and could have been omitted on the fine mesh
as well or the Parareal iteration was stopped too early and the parallel solution is less
accurate than the fine reference. Second, the norm of the Parareal error propagation
matrix is not necessarily an accurate predictor of actual convergence behaviour, which
is a well documented issue for non-normal2 matrices [19]. For setups where the norm
is larger than one, Parareal still often converges even though convergence is mostly
poor. Despite these shortcomings, the norm of E has been used with some success
in the analysis of Parareal applied to variations of Dahlquist’s test equation [2, 28].

2Note that the error propagation matrix of Parareal is always non-normal, even when the system
matrix is.
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But the results in this paper suggest that this is unlikely a viable approach to pro-
duce a deeper understanding of Parareal in a genuine PDE context where in almost
all scenarios some form of spatial coarsening will be needed for good performance.
Pseudo-spectra, developed by Trefethen and co-workers [33], might be a useful al-
ternative. An investigation whether the pseudo-spectrum of E can provide better
predictions of Parareal convergence is work in progress. Finally, the derivation of the
lower bound strongly relies on the fact that the used interpolation and restriction are
linear operators. Machine learning techniques like super-resolution [9] could be used
to provide nonlinear transfer operators that might deliver better performance.

Acknowledgments. We want to thank Florian Bünger for his very helpful com-
ments on an early version of this manuscript, in particular pointing out the more
general result in the book by Horn and Johnson [20] that led to Remark 3.8. .
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