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ABSTRACT

We discuss how dynamic light stopping and pulse time reversal can be implemented in dispersive waveguides via indirect photonic transitions
induced by moving refractive index fronts. The previous concepts of light stopping/time reversal either require complex local variation of the
device’s refractive index or rely on the strict phase matching condition, which imposes limitations on the amount of manipulated information.
Until now, only single pulses or continuous waves were manipulated experimentally. Our scheme is not limited by a strict phase matching
condition and does not require local index variations, thus it can manipulate broadband signals in a single step process. Here, we present
several numerically integrated results for pulse time reversal and stopping/storage via indirect front-induced transitions. The presented results
are experimentally feasible using existing photonic waveguide technologies.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0007986

I. INTRODUCTION

Dynamic control of optical pulse propagation in dispersive
waveguides has potential applications in many fields, such as signal
processing,’ optical,‘ and quantum communications.” For instance,
the time reversal of light pulses,” ° which means that the time order
of the incident light is reversed, can be used to send information
back, compensating the additional phase distortions in the trans-
mission system. Several experimental studies on the time reversal of
light have been based on nonlinear processes, such as three-wave or
four-wave mixing systems.”" However, the ability to reverse pulses
with a broadband spectrum is limited due to the phase-mismatching
problem. These approaches require exact group velocity and/or
phase velocity matching of pump, signal, and idler waves. On the
other hand, dynamic schemes, where refractive index changes dur-
ing the signal propagation, can provide a time reversal of light
with wide-bandwidth operation.” '’ Time reversal schemes were
proposed based on the adiabatic’ * and non-adiabatic’ reversal of
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the mode group velocity or on Bloch oscillations in a dynamically
chirped coupled resonator waveguide.” We should mention that
none of these schemes have been realized experimentally in the opti-
cal regime so far. Recently, Konoike et al. demonstrated experimen-
tally a dynamic time reversal of light oscillation inside a system of
three coupled cavities.'" Such a system can be considered as a build-
ing block for a coupled cavity waveguide. However, switching of the
packet of information in such a waveguide would require thermal
tuning of each of the cavities and fast dynamic switching of each
second cavity in the waveguide, which is difficult to realize.

A similar topic is the dynamic light stopping, where the slope
of the dispersion relation is not reversed but flattened.'””"” Stopping
offers new possibilities in enhanced light-matter interactions and
all-optical processing, such as optical buffering.'”'" Light storage
and release by direct transition, when light experiences frequency
change only, in photonic waveguides has been theoretically pro-
posed by Yanik et al.'>'® In this case, the dispersion relation is
modified to have a zero slope in a switched state and the signal
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bandwidth ideally collapses to a single frequency. To release the sig-
nal, the system should be switched back to the original dispersion
relation. However, such a strong modification of the dispersion rela-
tion, similar to time reversal, requires fast and strong local refractive
index changes'*"” that are difficult to achieve.'* Thus, several studies
experimentally demonstrated similar operation by controlling the Q
factor in a single cavity or two coupled cavities.”” " However, the
limitation of the dynamic storage in the cavity is the amount of
stored information. Namely, a single pulse can be stored but not a
sequence of pulses.

On the other hand, light manipulation in waveguides by a
moving refractive index front has caught the attention in recent
years.” ** In this case, the ratio of the signal frequency change Aw
and wavenumber change Af induced by the interaction with the
moving front is equal to the group velocity of the front, i.e., Aw/AS
=y Therefore, the angle of this kind of indirect transition within the
dispersion diagram is defined by the front velocity v;.” " In contrast
to direct transitions in which the signal frequency changes while its
wavenumber stays the same, indirect transitions create an additional
method for frequency and wavenumber control via the choice of
the transition angle. Therefore, there is no need to strongly mod-
ify or flatten the dispersion relation to reverse or stop the light. By
an indirect transition, the initial state can be projected to the part
of the dispersion relation with the required slope. In this regard,
the front-induced time-reversal and pulse stopping schemes provide
a single platform that can implement both frequency conversion
and time reversal/pulse stopping of arbitrary envelopes at the same
time, which will be useful for major applications in the future optical
communication systems.

In this paper, we present several numerically simulated results
for pulse time reversal and light stopping/storage via indirect front
induced transitions (FITs) and compare the obtained results to the-
oretical predictions. We also discuss how to realize these effects in
real systems.

Il. METHOD

The temporal evolution of a signal envelope function A(t, z) in
a dispersive waveguide with an index front described by the disper-
sion relation shift in space and time Awp(¢, z) can be modeled with
the slowly varying envelope (SVE) approximation with the carrier
angular frequency wp and carrier wavenumber By as follows:”’

OA(t,2") A N iwn O"A
ot = (Vf_vgo)%*—’;l HEazm

Here, vgo is the group velocity at o, w, = 0"w/OB" are the disper-
sion coefficients associated with the Taylor series expansion of the
dispersion function w(f) and z’ = z — vst. In the considered mov-
ing frame (t, z'), the front does not move and thus, represents a
stationary perturbation, where the frequency of the signal A(%, z')
is not changed upon interaction. Thus, the interaction with the front
can be well understood in this corrected frame as a signal propagat-
ing in the waveguide with a dispersion relation () = w(B) — vy
(B — Po) incident on an adiabatic perturbation that shifts the
dispersion relation by Awp(z").

To simulate signal propagation close to the band edge, we solve
Eq. (1) by the split-step Fourier method,"” where the additional

+idwp(Z)A. (1)
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phase due to dispersion is calculated in the Fourier space and due
to the perturbation in the real space. After the interaction with the
front we like to convert the obtained spatial profile into the tem-
poral profile to discuss the time sequence.” In order to calculate
the temporal profile of the signal at any position 2z, we Fourier
transform the spatial profile of the signal A(ty, z) at any time to
into the spatial frequency domain A.(ty, 3). Using the dispersion

relation w(f), we calculate the frequency spectral power |Bt(w, zo)|2

= ‘At(to,[S(a)))|2/vg(w) at z = zy, where vy is the signal group veloc-
ity. The complex spatial frequency amplitudes, known at time to, are
multiplied with an additional phase shift e'(“**#©2) in order to get
the correct phase of the temporal frequency amplitudes at position
2o. Finally, we inverse Fourier transform the frequency components
to obtain the temporal envelope of the signal pulse B(t, zo) at position
Z0.

For the propagating index front, we neglect the action of the
signal on this front. In addition, we make an assumption that the
front propagates with a constant velocity vy and does not change
during the propagation. This idealized representation is chosen to
simplify the system and to highlight the front interactions without
additional effects. To obtain such a situation, the pump should be
positioned in the straight section of the dispersion curve or fulfill a
soliton condition.”’ There are two other alternative descriptions of
the nonlinear periodical waveguides. One includes the consideration
of nonlinear coupled equations for forward and backward propagat-
ing plane waves without dispersion,”’ "’ while the other models the
propagation in the periodic media by nonlinear Bloch modes.** We
use the second description that requires only one equation with the
inclusion of the dispersion. Similar results can also be obtained with
the finite-difference time-domain (FDTD) method.">"®

Here, we consider an example for light at 1.55 ym in a waveg-
uide with a hyperbolic dispersion relation w(f) = wpsg + Awpsg

. \/1 + [(ﬁ - ﬁpgg)z/AﬁIZ,BG], emulating an upper branch of a dis-
persion relation with a photonic bandgap (PBG), employing a PBG
half opening of Awppe = 2.5 THz and a PBG center frequency of
wppc = 197.5 THz [cf. Fig. 1(a)]. ABpc = AwppG/vgoo is the param-
eter that is chosen in such a way that away from the band edge, the
dispersion relation converges to a straight line with a group veloc-
ity of vgoo = ¢/2. Here, fBppc is the center wavenumber of the PBG,
and c is the velocity of light in vacuum. The band diagram shift
induced by the front is described by the function Awp(t) = Awpmax/2
-[1 + tanh(1/Ats(t — z/v5))], where At; = 1 ps is the temporal front
width and Awpmax = 1 THz is the maximum vertical band diagram
shift in frequency, cf. dashed black curve in Fig. 1(a).

A. Pulse time reversal

As discussed before, the angle of the indirect transition induced
by the moving index front is defined by the velocity of the front.
Figure 1(a) shows a schematic representation of different free car-
rier front-induced indirect transitions in a highly dispersive system
with a hyperbolic dispersion as an example. The hyperbolic disper-
sion is a good approximation for the dispersion of a weak Bragg
grating in an otherwise dispersionless waveguide.”” In addition, this
kind of dispersion relation appears in periodic structures, such as
photonic crystal waveguides,” photonic crystal fibers,”” fiber Bragg
gratings,””" and silicon and silicon nitride Bragg gratings.”"”* In
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FIG. 1. (a) Schematic representation of different indirect transitions in a highly dispersive dispersion relation by changing the front velocity only. The solid curve represents
the dispersion bands of an original (unperturbed) mode, while the dashed curves indicate the switched (perturbed) state. Red and blue circles indicate the initial and final
states of the signal wave, respectively. Transitions 1 and 3: transmission through co/counter-propagating front (inter-band transitions) without/with time reversal, respectively.
Transitions 2 and 4: reflection from a co/counter-propagating front (intra-band transitions) with/without time reversal, respectively. The gray line represents the phase continuity
line with a slope equal to the group velocity of the front (we show only one line in Case 4 for clarity). P4 denotes the position of the pump/front on the band diagram
corresponding to transition 4. [(b)-(e)] Schematic representation of the interaction between the signal and the front at two different times in the case of time reversal
(corresponding to transitions 2 and 3) and no time reversal (corresponding to transitions 1 and 4). Red and blue arrows represent the propagation directions and group
velocities of the signal before and after the interaction, respectively, while the orange arrow is for the index front. t; and ; are initial and final times, respectively.

this schematic example, the solid curve represents the dispersion
band of an original (unperturbed) mode, while the dashed curve
indicates the switched (perturbed) state after the front. The red and
blue circles indicate the initial and final states of the signal wave,
respectively. Here, the initial group velocities of the front (indi-
cated by the slope of the orange arrow) and of the signal are co-
directed for transitions 1 and 2, while they are counter-directed in
transitions 3 and 4. The front group velocity can be tuned with
respect to the signal by tuning the pump frequency on the dis-
persion relation, and thus the corresponding group velocity. The
orange circle represents the position of the pump/index front on
the dispersion relation corresponding to transition 4, and the gray
line represents the corresponding phase continuity line with a slope
equal to the group velocity of the index front (we show only one
pump position and one line corresponding to transition 4 for clar-
ity). In particular, we can position the pump on the other branch
of the hyperbolic dispersion curve close to PBG to avoid the fre-
quency overlap with the signal. Transitions 1 and 3 correspond to
interband transitions, where final states are those of the perturbed
waveguide and, thus, the signal transmits through the front,”"”'
while transitions 2 and 4 are mtraband transitions with reflection
from the front in the forward”””***"’ and backward directions,"’
correspondingly.

As we mentioned before, time reversal means that the time
order of an incident signal pulse is reversed, i.e., the leading edge
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becomes the trailing edge and vice versa, after transition. To obtain
that, the spatial sequential order of the signal pulse or its group

velocity should be reversed but not both. That is the main con-

dition apart from the profiles of the photonic band and refractive
index front. Ideally, the time inversion should reproduce the enve-
lope function A(t, z;) at some other location z; and time ¢; after the
transition with negative time A(f; - t, z7). In this work, we demon-
strate the time reversal by changing the sequence of pulses in time.
There is also a slight distortion and compression of signals that we
discuss separately. With that the transitions 2 and 3 lead to time
reversal and transitions 1 and 4 do not. Transition 3 is a transmission
configuration, where the final state of the signal pulse after interac-
tion with the front is behind the front with the same spatial order
but with the opposite group velocity to its initial state; thus, the
time reversal is observed. Alternatively, forward reflection from a
co-propagating front (transition 2) can also be used for signal rever-
sion as in the optical analog of event horizons.””>”" In this case,
the reflected signal does not change its propagation direction but its
trailing edge interacts with the front first and becomes the leading
edge after reflection, thus reversing the spatial order. Figures 1(b)-
I(e) schematically demonstrate the interaction between the signal
and the front at two different times in the case of time reversal
(corresponding to transitions 2 and 3) and no time reversal (corre-
sponding to transitions 1 and 4). Red and blue arrows represent the
propagation directions and the corresponding group velocities of the

5,080801-3
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signal before and after the interaction, respectively, while the orange
arrow demonstrates the front velocity. In the case of transition 3,
after interaction with the front, the signal changes its propagation
direction while keeping its spatial order; thus, the leading edge of
the signal becomes the trailing edge and time reversal occurs. While
in the case of transition 4, although the signal changes its direction
after reflection from the counter-propagating front, no time reversal
happens, as the signal also changes its space order. It is worth men-
tioning that the pulse time reversal needs a precise control of the
front. The front velocity defines the transition direction, and it can
be precisely tuned by the frequency of the pump, and thus, choos-
ing its position and group velocity on the dispersion relation. The
final frequency distribution of the signal is independent of the front
shape, which is the case for all complete indirect transitions.”” On
the other hand, the penetration depth into the front is frequency
dependent; thus, a time delay between the frequency components
is accumulated leading to additional signal dispersion. Therefore,
sharper fronts are better to avoid large delay difference. Addition-
ally, in the case of interband transitions, the final dispersion curve
is defined by the strength of the front. Thus, for the intraband tran-
sition 2, the final dispersion is front strength independent, as the
converted signal stays on the original dispersion curve. Transition 3,
however, is strength dependent.

Simulation results corresponding to the scenarios 1-4 in
Fig. 1(a) are presented in Fig. 2. The temporal evolutions of a dou-
ble Gaussian signal pulse with a duration of 100 ps and a velocity of
¢/7 using Eq. (1) represented in the stationary frame are shown in
Figs. 2(a), 2(c), 2(e), and 2(g), respectively. The pseudo color indi-
cates the power of the signal pulse. The dashed orange line marks
the center of the index front. The corresponding temporal profiles of
the input (red curve) and the output (blue curve) of the signal pulses
are presented in Figs. 2(b), 2(d), 2(f), and 2(h), respectively. As we
can see, for transitions 1 and 4, there is no time reversal, while we
have time reversal for transitions 2 and 3. In the considered hyper-
bolic dispersion relation (see Sec. II), all group velocities of the index
front between ¢/2 and zero can be obtained by tuning the pump fre-
quency on the dispersion relation. The front velocity in the case of
transition 1 (c/1.3) is chosen for schematic presentation purposes
only and cannot be excited using the proposed dispersion relation.
The signal pulse after interaction with the front also experiences a
temporal and a spatial compression. The frequency width of the final
state of the signal pulse increases. This can be explained schemat-
ically by projecting the initial frequency width, via the phase con-
tinuity lines [gray line in Fig. 1(a)], on the perturbed/unperturbed
dispersion relation.”” From this geometrical consideration, the
temporal compression factor timpui/toupur can be derived as
[(1 = v /vg1)/(vs/vg2 — 1)], where vg1 and v,5 are the group velocities
of the signal before and after the interaction with the front. Provided
that the phase continuity line does not cut through the perturbed
dispersion function, the compression factor increases when the front
velocity approaches the slope of the dispersion relation away from
the band edge ¢/2, as then the frequency bandwidth of the converted
signal becomes maximal.”’ However, the pulse compression can be
avoided in the case of transition 3, if signal group velocities and front
velocity are correctly adjusted.

We can also see some distortion in the output pulse in Fig. 2(f)
due to the dispersion. First, all the signals propagate in the disper-
sive waveguide before and after the transition. Also, the penetration
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depth into the front is frequency dependent, and thus, additional
time delay difference is accumulated. Such dispersion can be com-
pensated by additional measures. Alternatively, a waveguide with
piecewise linear dispersion should be used and the fronts should be
sharp to avoid a large delay difference.

Our considerations of transmission through the front disregard
the partial reflections. The front is much longer than the wavelength
of the incident signal wave, and the non-adiabatic, Fresnel-like
reflection from the index front can be ignored. This is a typical situ-
ation for fronts excited by pump pulses. Furthermore, front-induced
adiabatic transmission or reflection leads in a lossless case to 100%
conversion efficiency. Losses diminish the efficiency as observed in
Ref. 38.

One of the advantages of front-induced time reversal is the
capability to reverse any input pulse shape as well as multiple pulses
(package of information) in only one step. Simulation results of time
reversal of pulse with 5 peaks is presented in Fig. 3.

B. Light stopping/storage and releasing

Light stopping and releasing can be also realized in waveguides
by inducing indirect photonic transitions to a point of zero group
velocity (Fig. 4, blue circle). This approach is experimentally more
feasible than the band tilting in a direct transition.'*'*'” Strong band
tilting requires local refractive index variations that are difficult to
realize.'" The mechanism of signal releasing is also important. In
the case of fronts, backward transition can be obtained by a front
with the same velocity but an opposite slope. Front-induced pulse
stopping can be achieved via interaction with either a free-carrier or
Kerr-induced index fronts. The advantage of the free-carrier front is
the possibility to keep the system in the switched state for a compar-
atively long time, which is defined by the free carrier life time in the
waveguide in the order of nanoseconds.'””’ In the case of the free-
carrier index front, the storage is possible via transmission through
either a counter- (cf. transition 1 in Fig. 4) or co-propagating (cf.
transition 3 in Fig. 4) index front, or via reflection from the leading
edge of a co-propagating front (cf. transition 2 in Fig. 4). How-
ever, the stored signal is attenuated by the free-carrier absorption.
In order to obtain a front of opposite sign, which corresponds to a
controlled depletion of free carriers, a reverse bias can be applied
in a PIN-junction-loaded waveguide.”* However, in this case, the
carrier decay becomes much faster and the rectangular pump pulse
is required to maintain free carrier concentrations for the required
storage time. A Kerr nonlinearity without significant two photon
absorption””° is more promising for storage. In the case of a Kerr-
induced front, a signal pulse can be stored/released via the reflection
from the trailing/leading edge of the pump pulse [Figs. 4(c) and
4(d)]. Storage can also be obtained by transmission either through
the trailing edge or through the leading edge of the Kerr-induced
front. Storage by transmission through the trailing edge Kerr front
is only possible for signal pulses that are initially temporally inside
the pump pulse. In this case, the signal stops after coming out of
the pump pulse through the trailing edge and can be released and
collected by the leading edge of the successive pulse. However, in
this configuration, the initial signal duration should be shorter than
the pump pulse. On the other hand, the stopping by the transmis-
sion through the leading edge of the pump pulse is not useful as the
stopped signal would right away encounter an opposite slope of the
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FIG. 4. Schematic representation of
different front-induced light stopping
schemes. (a) Pulse stopping can be
achieved via interaction with a free-
carrier-induced index front. Storage is
possible in this case via transmission
through either a counter- (transition 1)
or co-propagating (transition 3) index
front, or via reflection from the leading
edge of a co-propagating front (transi-
tion 2). The signal can be later released
by the front with an opposite slope.
The solid orange arrow in transition 1
denotes the stopping-related transition,
while the dashed orange arrow denotes
the releasing transition. P1 denotes the
position of the pump/front in the band
diagram corresponding to transition 1.
(b) Schematic representation of the sig-
nal stopping and releasing process in the
case of transition 1. t;, tn, and t; are ini-
tial, middle, and final times, respectively.
(c) Kerr-induced signal stopping and
releasing. The signal pulse is stored after
reflection from the trailing edge of the
Kerr-induced perturbation, and then can
be released via the reflection from the
leading edge of the second pulse. P1”
denotes the position of the pump/front in
the band diagram corresponding to tran-
sition 1”. This mechanism can be real-
ized, for example, inside a silicon-rich
nitride waveguides. These waveguides
have a high nonlinear parameter (550
W="/m);% therefore, a 100 W on-chip
pump peak power at 1.5 um wavelength
can lead to a sufficient Kerr modulation
(An ~ 0.01) that is required to induce
a band shift in the order of 1 THz. (d)
Representation of the Kerr-induced sig-
nal stopping and releasing (cf. transition
1).
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trailing edge, thus would be released. We have to mention that Kerr-
induced self-phase-modulation (SPM) causes a temporally varying
instantaneous frequency. In this way, an initial non-chirped pump
pulse acquires a frequency chirp. Still this frequency chirp does not
change the pulse envelope, thus, the front shape if the pump prop-
agates in the waveguide with negligible dispersion. Schematic rep-
resentations of signal storage and release by transmission through
a free-carrier (cf. transition 1 in Fig. 4) and reflection from Kerr (cf.
transition 1 in Fig. 4) fronts at different times are shown in Figs. 4(b)
and 4(d), respectively. In the case of reflection-induced storage from
the Kerr front [Fig. 4(d)], the faster signal pulse in its initial posi-
tion (red circle) does not see the leading edge of Pulse 1 but only
the trailing edge, as this interaction moves the signal in the new state
(stopped) along the solid orange arrow direction. Later, the stopped
signal (blue circle) is released by reflection in the forward direction
from the leading edge of Pulse 2 along the dashed arrow. In this case,
the signal is gone from the stopping position in the band diagram
before it sees the trailing edge of the front. To our knowledge, the
aforementioned storage mechanisms have not been realized so far.
It should be mentioned that depending on the initial bandwidth
of the signal, on the dispersion at the zero group velocity point, and
on the slope of the indirect transition, the final signal has some fre-
quency components at non-zero group velocities. Thus, with time,

Space [m]

Time [ns]
b ¢ a0

the stored signal disperses in forward and backward directions and
leaves the structure. Therefore, the limits of the storage time in this
case are defined by the curvature of the dispersion relation at the zero
group velocity. In any case, the maximal storage time is obtained if
the spatial pulse envelope of the stopped signal is close to the waveg-
uide length. In this case, minimal bandwidths of spatial frequencies
are excited.

In the case of a hyperbolic dispersion relation, if the wave num-
ber bandwidth A of the initial signal lies on the straight section of
the dispersion relation, the initial signal dispersion is negligible. In
addition, the signal dispersion during the interaction with the front
or during the writing time can be neglected if the storage time of the
signal is much larger than the propagation time of the front inside
the waveguide. Therefore, as soon as the signal is stored/written in
the waveguide, the only factors that determine the storage time are
the final wave number bandwidth AB" of the signal and the dis-
persion at the band edge, as we mentioned before. Interesting is
that keeping AB’ constant and by increasing the front velocity, and
therefore the slope of the phase continuity line, we can project the
final frequency bandwidth Aw’ from a very broad initial frequency
bandwidth Aw on the dispersion relation, provided that the phase
continuity line can reach the final state on the same band without
cutting into the shifted band. Thus, we can store input signals with

FIG. 5. Simulation of signal stopping
and releasing: (a) Temporal evolution of
the signal represented in the stationary
frame cf. transition 1/ in Fig. 4(c). The
velocity of the input signal is ¢/2.2, while
that of the index fronts is ¢/3.16. The
pseudo color indicates the intensity of
the electric field of the signal. The signal
is first stopped via the front with a nega-
tive slope (left dashed orange line), and
then is released by a second front with
a positive slope (right dashed orange
line). Zoom in views of signal reflec-
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tion from the negative/positive fronts are
presented in left/right panels. The cor-
responding input (red curve) and out-
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envelopes of the signal are shown in (b)
and (c), respectively.
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different temporal bandwidths into a stopped signal with the same
spatial width and spatial frequency, and thus, store it for the same
time inside the waveguide.

Figure 5 shows the simulation results of signal pulse stopping
and releasing via the reflection from co-propagating index fronts
with opposite slopes [cf. transition 1" in Fig. 4(c)]. Here, the ini-
tial signal pulse has a duration of 7, = 20 ps, a width of z; = 5 mm,
and a velocity of vs = ¢/2.2, while the front duration is 77 =1ps and
the front velocity is v; = ¢/3.16. The temporal evolution of the sig-
nal pulse spatial envelope in the stationary frame is represented in
Fig. 5(a). It is shown that in the stationary frame, the signal pulse is
recorded in space after reflection from the trailing edge of the slower
index front. As not all frequency components of the initial signal
are stopped due to the curvature of the dispersion relation around
zero group velocity, the stopped signal disperses over time. A sec-
ond front with an opposite slope then releases the stopped signal,
converting it back to the propagation mode. Figures 5(b) and 5(c)
show the spatial and temporal envelopes of the input (red curve)
and output (blue curve) signal pulses, respectively. We define here
the storage time as the time at which the full width at half maxi-
mum (FWHM) of the output spatial or temporal envelopes is dou-
bled compared to the input signal z;. The maximum storage time
that can be obtained inside a 1 cm waveguide is ~12 ns for the dis-
persion parameters under consideration. We have to mention that
the presented results are experimentally feasible using existing pho-
tonic waveguide technologies. For example, the band shift of 1 THz
used here in the simulation can be obtained experimentally in ultra-
silicon-rich nitride (SiyN3) waveguides that have a high nonlinear
parameter of 550 W™'/m.”” Assuming a 100 W on-chip pump peak
power at 1.5 ym wavelength, this leads to a refractive index modula-
tion in the waveguide of An ~ 0.01 and accordingly a maximal band
shift of Awpmax ~ 1 THz. In addition, waveguides made from III-V
semiconductors such as GaInP could be another candidate due to
their high nonlinear parameter (ranging from ~500 W™'/m to 2900
W™ !/m) and the absence of two photon absorption at 1.5 ym.””

Waveguide imperfections result in propagation loss a, due to
vertical scattering that scales with a; ~ 1/v,.”” However, in the case
of storage, we should consider the loss per time ay, i.e., o = o - Vg
~ 1/vg - v, which is group velocity independent. To make a lower
estimate of the loss, we can consider the standing wave as a coupled
state of forward and backward propagating waves.""** In a struc-
ture with disorder, these waves loose energy proportional to the time
spent in the structure, irrespective of the fact if they are coupled to
each other or not. A waveguide loss of ~1 dB/cm with ng = 3 cor-
responds to the propagation of 10 cm in 1 ns or a loss of 10 dB per
1 ns. If propagation losses are reduced below 0.1 dB/cm,”"** then
losses not bigger than 1 dB/ns should be expected.

I1l. CONCLUSIONS

We have shown a scheme for dynamic pulse time reversal and
stopping in optical waveguide systems via indirect FITs. We used
the linear Schrodinger equation, where the temporal evolution of
the pulse spatial profile is tracked to simulate these transitions. In
contrast to other schemes, pulse time reversal/stopping via FITs are
not limited by a strict phase matching condition, and thus, broad-
band signals can be time reversed/stopped even in non-parallel and

APL Photon. 5, 080801 (2020); doi: 10.1063/5.0007986
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curved dispersion bands. Furthermore, this scheme does not require
the complex local modulation of the refractive index and the simple
nonlinear switching pulse propagating through the waveguide can
induce the required transition of the signal. In addition, pulse time
reversal and stopping in a reflection mode need precise control of
the front velocity only, however, they are independent of the front
shape.

Two optical transitions are identified that lead to time rever-
sal. One of them corresponds to the transmission through the front
with a corresponding change in the group velocity sign. In this case,
the signal keeps its spatial sequence but reverses its propagation
direction. Another transition corresponds to signal forward reflec-
tion from a co-propagating front. In this case, the group velocity
sign is the same but the spatial sequence is reversed. Both transi-
tions can be realized experimentally. The optical analog of the event
horizon with the corresponding forward reflection from the front”’
also leads to such transitions. At the same time, the FIT produces the
time reversed signal that can be different in duration, compressed or
broadened, and can be slightly distorted by dispersion. Both effects
can be avoided by the adjustment of the dispersion relation.

Several possibilities are identified for light stopping by FIT with
free-carrier and Kerr-induced fronts. Advantageous is the signal
stopping by the reflection from the trailing edge of the pulse with
Kerr-nonlinearity and releasing by the second reflection from the
leading edge of the second pulse. Such a scheme allows light storage
in the unperturbed waveguide. We show that even in the periodi-
cal waveguide with strong dispersion close to the band edge storage
times in the order of 10 ns in 1 cm waveguide are feasible. In real
systems, the effects of the linear/scattering losses at the band edge
limits the storage time of the pulse.
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