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The finite cell method (FCM) is based on an immersed boundary concept with high-order finite elements. When solving
nonlinear problems using the FCM, it is often difficult to reach to the desired load step because of the large distortion of the
mesh, particularly when badly broken cells are existing in the mesh. To overcome this problem, a global remeshing strategy
is proposed to allow the nonlinear computation to proceed even for very large deformations where the distortion of the cells
becomes significant. The core concept is to perform a computation up to a specific deformation state where the distortion of
the cells becomes significant. Then, to continue the analysis, a new mesh is introduced. The performance of the proposed
method is illustrated using two numerical examples of hyperelasticity.
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1 A remeshing strategy for the finite cell method

Fig. 1: Configurations involved in one remeshing step.

The robustness of the FCM [1] for large deformation analysis can be
significantly improved by applying a global remeshing approach, as pro-
posed in [2]. The basic idea is to carry out the analysis using an initial
mesh up to a certain deformation state where the mesh gets largely dis-
torted. Afterwards, a new mesh is created that covers the deformed geom-
etry taking advantage of the fictitious domain approach where the mesh
generation is straightforward. Once the new mesh is created, a local ra-
dial basis function scheme is applied to interpolate the displacements and
the displacement gradients from the old to the new mesh [3]. Then, the
analysis is continued until a new mesh needs to be created. This process
is repeated multiple times until the final desired load step is reached.

1.1 kinematics

In this section, the kinematics involved in the remeshing approach are briefly explained. Starting from an initial configuration
Ω0, the body is deformed until an intermediate configuration Ωn is reached where a new mesh needs to be created. To this
end, the displacement gradient and the deformation gradient can be computed as follow

Hn =
∂dn

∂X
, Fn =

∂xn

∂X
= Hn + I. (1)

Here, dn denotes the displacements leading to configuration Ωn, while xn and X refer to the current and initial position of
the material points, respectively. Next, the configuration Ωn can be further deformed until it reaches the configuration Ωn+1,
as can be shown in Fig. 1. For Ωn, a new mesh can be created. In doing so, the total displacement gradient can be computed
by applying the chain rule

H =
∂d

∂X
=

∂(dn + d̃n+1)

∂X
=

∂dn

∂X
+

∂d̃n+1

∂xn

∂xn

∂X
= Hn + H̃n+1 (Hn + I) , (2)

where d̃n+1 becomes the primary unknown. The total deformation gradient is computed as F = F̃n+1 Fn. Here, the quantities
H̃n+1 and F̃n+1 can be computed based on the new mesh. However, the quantities Hn, Fn and dn of the old mesh need to
be interpolated since the new mesh does not carry any information about the old mesh.

1.2 Condition number

In order for the remeshing approach to perform well, the large condition number of the stiffness matrix caused by broken
cells needs to be reduced. This is done using two approaches. Firstly, an artificial soft material is introduced in the fictitious
domain by setting the indicator function to α = 10−5, see [2]. Secondly, a basis function removal scheme is applied to remove
high-order basis functions that have a small support in the physical domain [4].
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2 of 2 Section 4: Structural mechanics

Fig. 2: Plate with a cylindrical hole. (a) FCM model and mesh. (b) Energy-displacement curves. (c) von Mises stress.

Fig. 3: Single pore of a foam. (a) FCM model and mesh. (b) Energy-displacement curves. (c) von Mises stress.

2 Numerical examples

In this section, we investigate two numerical examples using a hyperelastic material model [2] to demonstrate the performance
of the presented method. In the first example, we consider a plate with a cylindrical hole. The geometry, mesh, and boundary
conditions are shown in Fig. 2 (a). The geometry is modeled using 3420 elements to generate a reference solution with ansatz
order of p = 3. In the FCM, 302 cells are used with ansatz order of p = 4. Next, we apply a number of load steps without
remeshing and only a displacement of 7 mm can be reached. However, applying one remeshing step we can reach the last
load step of 16 mm, as can be seen in Fig. 2 (b). Furthermore, a good agreement to the reference solution can be observed
after remeshing which indicates that the interpolation of the data is accurate enough. In the second example, we consider a
pore of a foam. The geometry, mesh and boundary conditions are shown in Fig. 3 (a). The geometry is discretized with 2721
cells using ansatz order of p = 2. The goal is to compress the foam and see how much it can be deformed. To this end, by
plotting the energy-displacement curves in Fig. 3 (b), one can see that without remeshing only a displacement of 1.5 mm can
be achieved, while utilizing the remeshing a deformation of 3.9 mm can be reached which is a factor of about 2.6 higher.

3 Conclusions
In this paper, we presented a remeshing approach for the FCM to improve its robustness for large deformation analysis. The
main concept is to create a new mesh whenever the old mesh gets largely distorted. Afterwards, an interpolation scheme is
applied based on a radial basis function to transfer the data between the old and the new mesh. By means of two numerical ex-
amples of hyperelasticity it is demonstrated that the proposed remeshing strategy helps to significantly improve the robustness
of the FCM for large deformation analysis.

Acknowledgements The authors gratefully acknowledge the support provided by the Deutsche Forschungsgemeinschaft in the Priority
Program 1748 under the Project DU 405/8-2. Open access funding enabled and organized by Projekt DEAL.

References
[1] A. Düster, J. Parvizian, Z. Yang, and E. Rank, Comput. Methods in Appl. Mech. Eng. 197, 3768–3782 (2008).
[2] W. Garhuom, S. Hubrich, L. Radtke, and A. Düster, Comput. Math. Appl. 80, 2379–2398 (2020).
[3] A. de Boer, A. H. van Zuijlen, H. Bijl, Lecture Notes in Electrical Engineering, 71 LNCSE, 143–178 (2010).
[4] D. Elfverson, M. G. Larson, K. Larsson, Adv. Model. Simul. Eng. Sci, 5, 2213–7467 (2018).

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com


