
 

 

 

 

Transport in Nanoporous Materials Including MOFs:  

The Applicability of Fick’s Laws ** 

Tobias Titze, Alexander Lauerer, Lars Heinke, Christian Chmelik, Nils E. R. Zimmermann, Frerich J. 

Keil, Douglas M. Ruthven, and Jörg Kärger* 

 

Abstract: Diffusion in nanoporous host-guest systems is often 

considered to be too complicated to comply with such “simple” 

relations as Fick’s first and second laws of diffusion. However, we 

show here that the microscopic techniques of diffusion measurement, 

notably the pulsed field gradient (PFG) technique of NMR and micro-

imaging by interference microscopy (IFM) and IR microscopy (IRM), 

provide direct experimental evidence of the applicability of Fick’s laws 

to such systems. This remains true in many situations, even when the 

detailed mechanism is complex. The limitations of the diffusion model 

are also discussed with reference to the extensive literature of this 

subject. 

Thermal energy gives rise to permanent irregular molecular 

motion. In systems of non-homogeneously distributed molecules, 

this irregular movement results in fluxes that are correlated with 

the gradients in molecular concentration by Fick’s 1st law: 

𝑗 = −𝐷
𝜕𝑐

𝜕𝑥
  (1) 

Combined with the law of matter conservation, the “continuity 

relation” 𝜕𝑐 𝜕𝑡⁄ = −𝜕𝑗 𝜕𝑥⁄ , Eq. (1) yields Fick’s 2nd law: 

𝜕𝑐

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷

𝜕𝑐

𝜕𝑥
)  (2) 

If the diffusivity D is independent of concentration, Eq. (2) 

simplifies to: 

𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2
 . (3) 

 

In particular the latter relation holds for the migration of labelled 

molecules within unlabeled surroundings under equilibrium 

conditions, commonly referred to as self-diffusion. This is the 

situation in PFG NMR diffusion studies.[1,2] 

Relations between physical quantities can only be meaningful 

if the quantities themselves are meaningfully defined. The fluxes 

and concentrations as the relevant quantities in Eqs. (1) – (3) 

must, therefore, be based on unit areas and unit volumes which 

are large enough so that the fluxes and concentrations become 

homogeneous functions of the location x. As a consequence unit 

volumes and areas must notably exceed the pore size (just as, in 

bulk fluids, they must exceed the size of the molecules). On the 

other hand, differential equations such as Eqs. (1) – (3) are only 

meaningful if unit volumes and areas are small relative to the size 

of the system under study. With pore diameters typically of 

nanometers and particle/crystal sizes of micrometers, both 

requirements are generally easily fulfilled. 

The concept formulated by the diffusion equations (1) – (3) 

has been applied to mass transfer in nanoporous materials, even 

from the earliest studies of adsorption and catalysis. Examples 

include Damköhler’s pioneering papers[3,4] and the classic 

textbooks by Satterfield and Sherwood[5] and Petersen.[6] The 

diffusivities were well defined in the context of Eqs. (1) – (3) but 

their accessibility by direct measurement was limited because, at 

that time, the guest concentrations and guest fluxes appearing in 

these equations were generally not amenable to direct 

observation. The diffusivities were therefore derived from 

observations of “macroscopic” phenomena controlled by diffusion. 

Examples include measurements of the rates of molecular uptake 

and release by beds or aggregates of nanoporous materials and 

heterogeneously catalyzed reactions. 

Theoretical models were developed to relate the measured 

diffusivities to more fundamental parameters such as the 

molecular density of the adsorbed phase, the pore diameter, the 

tortuosity of the pore network and the corresponding gas or liquid 

phase diffusivities. These approaches proved to be quite 

successful yielding, in many cases, good agreement with the 

macroscopic measurements, especially when the pores are large 

relative to the molecular diameter of the sorbate molecules.[7–9] 

This approach breaks down when the pore diameter is close 

to the molecular diameter (the configurational diffusion regime) 

since the diffusivity is then determined mainly by repulsive 

interactions with the pore wall. Although in this regime the 

diffusivities cannot be related directly to other transport properties 

they remain perfectly valid as fundamental parameters 

characterizing the migration rate.  

It is only relatively recently, with the development of 

microscopic techniques for diffusion measurement, that it has 

become possible to investigate directly by experiment whether or 

not mass transfer in a given nanoporous host-guest system 

follows the laws of ordinary diffusion as given by Eqs. (1) – (3). 

These techniques, notably the pulsed field gradient (PFG) 
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technique of NMR and micro-imaging by interference microscopy 

and IR microscopy, cover diffusion paths from hundreds of 

nanometers to hundreds of micrometers as required for diffusion 

measurement in nanoporous materials.[10] In contrast to the 

single-molecule techniques[11] they collect, by their very nature, 

information about ensembles of molecules (from typically 1010 up 

to even much larger numbers). Recording data for many 

molecules is a prerequisite for meaningful application of 

Eqs. (1) – (3). 

To rationalize the evidence that PFG NMR is able to provide 

in favor of the Fick’s laws, we recall that the primary quantity 

accessible by PFG NMR, namely the attenuation of the NMR 

signal as a function of the intensity of the applied field gradient 

pulses, is the Fourier transform of the (mean) propagator. The 

propagator is defined as the probability distribution 𝑐∗(𝑥, 𝑡) of an 

ensemble of labelled molecules (within an unlabeled, 

homogeneously distributed molecular entity) at time t, when at 

time t = 0 all these molecules have been positioned at x = 0. For 

a system following Eq. (3), 𝑐∗(𝑥, 𝑡) is given by the Gaussian 

𝑐∗(𝑥, 𝑡) =
1

√4𝜋𝐷𝑡
exp (−

𝑥2

4𝐷𝑡
) . (4) 

It follows that, if the PFG NMR data reveal a propagator of this 

form, the diffusion process must be Fickian (i.e in accordance with 

Eqs.1 – 3). 

Examples for which exactly this behavior has been observed 

include purely microporous and mesoporous zeolites[12], activated 

carbon[13], nanoporous glass[14] and ordered mesoporous silica of 

type SBA-15.[15] The validity of the Fickian model and the physical 

meaning of the diffusivity appearing in Eq. (3) do not depend on 

the detailed mechanism of molecular movement. Exploration of 

the individual steps and the mechanisms that contribute to the 

diffusion process, in continuation of the work of Damköhler and 

his successors[4–9,16], remains a challenging task of current 

research.[17,18–22] 

Under non-equilibrium conditions (i.e. during uptake and 

release) concentrations vary with time and space. The recent 

advent of microimaging[23,24,25] has made it possible to record the 

evolution of such profiles with unprecedented accuracy. Figure 1a 

shows the concentration profiles of cyclohexane, determined in 

this way during uptake by a porous glass. The host material was 

recently applied for an in-situ study of the hydrogenation of 

benzene to cyclohexane, where one may also find a detailed 

description of the material.[26] To reproduce the profiles by a 

solution of the diffusion equation with the appropriate initial and 

boundary conditions one must allow for the possibility that the 

diffusivity may be concentration dependent (in contrast to the 

situation in self- or tracer diffusion measurements by PFG NMR). 

The analysis must therefore be based on Eq. (2) rather than 

Eq. (3). The results of this analysis (see Ref.27 for details) are 

shown in Figure 1a by the full lines. The concentration 

dependence of the diffusivity used for this fit is shown in Figure 

1b. The dramatic decrease in diffusivity at concentrations 

approaching zero suggests the existence of a small number of 

strong adsorption sites, while a distinct increase in the diffusivities 

at intermediate concentrations is quite common for diffusion in 

nanoporous materials under non-equilibrium conditions (i.e. for 

transport or Fickian diffusivities). It is caused by the 

“thermodynamic factor” 𝑑ln𝑐(𝑝) 𝑑ln𝑝⁄  which gives rise to a driving 

force for diffusive fluxes under non-equilibrium conditions (≈

1 (1 − 𝜃)⁄  for Langmuir-type isotherms) acting in addition to mere 

thermal motion.[2,25,28] Self-consistency of the results in terms of 

Fick’s 2nd law is revealed by the Boltzmann-Matano plot[29] shown 

in Figure 1c. In such diagrams, all concentration profiles are 

plotted together as functions of 𝑥 √𝑡⁄ . If transport resistances at 

the crystal surface are negligible, the profiles collapse onto a 

single trend line, as seen in Figure 1c. 

 

Figure 1. (a) Transient concentration profiles during molecular uptake of 

cyclohexane by nanoporous glass induced by a pressure step from 0 to 

0.1 mbar as recorded by IRM (open circles) at 298 K. The full lines correspond 

to their prediction by the respective solutions of Fick’s 2nd law (Eq. (2)) with the 

respective initial and boundary conditions and with the concentration 

dependency of the diffusivity as given in (b). Compatibility with Fick’s diffusion 

laws is also documented by the Boltzmann-Matano-plot in (c) where intraparticle 

concentrations are shown to be a unique function of 𝑥 √𝑡⁄ . 

Mass transfer in nanoporous materials cannot always be 

assumed to follow the “simple” laws of ordinary diffusion. 

Deviations from Fickian behavior are to be expected if, during the 

observation time, there is no fast exchange between states of 

different mobility. Such behavior may be encountered in 

hierarchical pore systems with limited exchange between the 

micro- and meso-/macro-pores.[30] A similar situation may arise in 

heterogeneous adsorbents with a wide range of site energies. The 

behavior of such systems may often be represented by the 

diffusion-immobilization (diffusion-reaction) model. The general 

features of this model were discussed in some detail many years 

ago in Crank’s classic book.[31] A wide range of different patterns 

of behavior is predicted depending on the ratio of the diffusional 

a)

b) c)



 

 

 

 

time constant for the mobile phase (𝐷/𝑅2) and the rate constant 

for immobilization (or adsorption). In the limiting case of rapid 

equilibration the behavior follows the Fickian model with a 

diffusivity given by 𝐷/(1 + 𝐾)  where D is the diffusivity of the 

mobile phase and K is the adsorption equilibrium constant. 

A model of this type was used by Sherry to account for the 

kinetics of isotopic ion exchange in zeolite X.[32] A more recent 

example is provided by the data of Grzybowski and co-

workers[33,34] for the uptake of pyronin B in MOF-5. Although not 

originally analyzed in this way the transient concentration profiles 

from that study are accurately represented by the Fickian diffusion 

model with a constant diffusivity, as shown in Figure 2. This 

implies rapid equilibration with linear equilibrium between the 

mobile and adsorbed molecules. Details are given in the 

Supplementary Information. This result is in agreement with 

numerous, experimental and computational, studies of the 

adsorption of guest molecules in MOF-type host systems[18–

22,24,25,35] where mass transfer has been observed to follow the 

normal diffusion model. However, the diffusion-immobilization 

model implies that simple Fickian behavior will be observed only 

if the immobilization reaction is much faster than the diffusion of 

the mobile molecules. When the rates of diffusion and 

immobilization are comparable deviations from Fickian behavior 

are to be expected. The diffusion-immobilization model therefore 

provides a possible explanation of the non-Fickian behavior 

observed in a number of studies – for example Ref.36. 

 

Figure 2. Concentration profiles of pyronin B (PB) upon uptake by nanoporous 

crystals of type MOF-5, recorded by confocal laser scanning microscopy 

(experimental data of Fig. 3d of Ref.34) and analytical approaches to these data 

given in Ref.34 (thin smooth curves) resulting with the “reaction-diffusion” 

equation in Ref.34 and by solution of Fick’s laws (thick black curves). 

Fick’s 1st and 2nd laws have been shown to provide us with 

excellent tools for the quantitative study of diffusional mass 

transfer in nanoporous materials. Today, experimental techniques 

are powerful enough to allow compatibility checks in numerous 

cases. Both the experimental evidence and molecular modelling 

verify that, despite its intrinsic complexity, mass transfer in 

nanoporous materials can often be described almost exactly by 

the Fickian diffusion laws. The relevant rate parameter which, by 

its use in the Fick equations, fits precisely the formal definition of 

a “diffusivity” should obviously be called a diffusivity! 

Keywords: diffusion • Fick’s laws • nanoporous materials • 

zeolites • MOFs 
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Solution of Fick’s 2nd law fitted to the experimental concentration data 

reported by Han et al.[1] 

 

The evolution of concentration 𝑐(𝑥, 𝑦, 𝑧, 𝑡) upon molecular uptake or release within in a cuboid of 

extension 2𝑙𝑖 in direction i with 𝑖 = 𝑥, 𝑦, 𝑧 is given by the relation:  

 

𝑐(𝑡) − 𝑐0

𝑐∞ − 𝑐0
= 1 − 8𝐿𝑥𝐿𝑦𝐿𝑧 

∙ ∑ ∑ ∑

cos
𝛽𝑛𝑥
𝑙𝑥

cos
𝛽𝑚𝑦

𝑙𝑦
cos

𝛽𝑘𝑧
𝑙𝑧

exp (−𝐷𝑡 (
𝛽𝑛

2

𝑙𝑥
2 +

𝛽𝑚
2

𝑙𝑦
2 +

𝛽𝑘
2

𝑙𝑧
2 ))

(𝛽𝑛
2 + 𝐿𝑥

2 + 𝐿𝑥)(𝛽𝑚
2 + 𝐿𝑦

2 + 𝐿𝑦)(𝛽𝑘
2 + 𝐿𝑧

2 + 𝐿𝑧) cos 𝛽𝑛 cos 𝛽𝑚 cos 𝛽𝑘

∞

𝑘=1

∞

𝑚=1

∞

𝑛=1

  , 

(S1) 

 

with  𝐿𝑖 = 𝑙𝑖𝛼 𝐷⁄   and 𝛽𝑗 denoting the positive roots of  𝛽𝑗 tan 𝛽𝑗 = 𝐿𝑖. Both the diffusivity D and the 

surface permeability α are, in this relation, assumed to be independent of concentration, with 

diffusion considered to be isotropic. Eq. (S1) results as the general solution 𝐹(𝑥, 𝑦, 𝑧, 𝑡) which, under 

such conditions, is known to be simply the product of the orthogonal solutions 𝐹𝑥(𝑥, 𝑡), 𝐹𝑦(𝑦, 𝑡) and 

𝐹𝑧(𝑧, 𝑡):[2,3] 

 

𝐹(𝑥, 𝑦, 𝑧, 𝑡) = 𝐹𝑥(𝑥, 𝑡) ∙ 𝐹𝑦(𝑦, 𝑡) ∙ 𝐹𝑧(𝑧, 𝑡) (S2) 

 

From textbooks (see p. 45 in[2] or p. 152 in[4]), the individual, orthogonal solutions (uptake by parallel-

sided slab) are known to be: 

 

𝐹𝑥(𝑥, 𝑡) = 𝑐(𝑥, 𝑡) = 1 − ∑
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The easiest way of getting, via Eq. (S2), from Eq. (S3) to Eq. (S1) is by considering the evolution of 

concentrations during molecular release rather than during uptake, making use of the identities 

𝑐release(𝑥, 𝑡) ≡ 1 − 𝑐(𝑥, 𝑡)   and  𝑐release(𝑥, 𝑦, 𝑧, 𝑡) ≡ 1 − 𝑐(𝑥, 𝑦, 𝑧, 𝑡).  

The plots (thick black lines) shown in Fig. 2 result as the best fits of Eq. (S1) to the experimental data 

of Ref.[1] with 𝑦 = 𝑧 = 0 (center of crystal) and the x coordinate directed along the profiles shown in 

Figs. 3d of Ref.[1] and in Fig. 2 in the main text of the present communication, respectively. With 

crystal extensions of 𝐿𝑥 = 𝐿𝑦 =  565 µm and 𝐿𝑧 = 250 µm, the best fit between Eq. (S1) and the 

experimental data was attained with  𝐷 = 1.02 ∙ 10−12 m2s−1  and negligible surface resistances 

(i.e. 𝐿𝑖 = 𝑙𝑖𝛼 𝐷⁄ ≫ 1). The resulting curves are shown in Fig. 2. 
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