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Abstract

The field of autonomous systems control is young, but operational experience is
rapidly growing, making research on collaborative systems of great importance.
Improving aerial robots in particular could be key in facing future environmental
challenges or disaster situations by, for example, enabling information sharing
and coordinated action by a groups of agents.

In this work, two main problems are addressed: the cooperative source seek-
ing problem and the cooperative level curve tracking problem by a group of
agents under undirected constrained communications. In the first case, agents
should move towards a scalar field’s source such as the highest temperature spot
of a large scale fire or the highest concentration point of an oil spill. Agents
ought to locate a quantifiable signal source anywhere in a scalar field, relying
only on information gathered locally by each one of them, and having therefore
to effectively cooperate. For this purpose, distributed control algorithms are pro-
posed, enabling agents to drive towards an unknown scalar field’s source. In the
second case, when a source becomes inaccessible or approaching it results highly
dangerous, a level curve tracking approach is proposed. Level curve tracking
enables agents to move along a curve, alongside which concentration values stay
constant. This procedure allows agents to still obtain the needed information.
To solve the cooperative level curve tracking problem, distributed algorithms
steering a group of agents along a desired scalar field’s level curve are proposed.

The control algorithms presented are based on both a formation-control com-
ponent (keeping agents in a desired geometric driving pattern) and a trajectory
control component (steering agents in the source’s direction or along the de-
sired level curve). This control architecture takes into account that communica-
tions between agents are limited, that there are diverse agent dynamics and that
each agent has to cooperatively compute a gradient in order to obtain direction.
Agents are assumed to only have access to other agents’ relative position informa-
tion and to scalar field’s concentration values at their own locations. Firstly, sim-
ple agent dynamics are considered and distributed navigation controllers for both
single and double integrator models are designed. Secondly, complex dynamics
are analysed extending the presented approach to general linear time-invariant
(LTI) models and non-holonomic systems. Stability conditions are provided for
single and double integrators, as well as LTI systems. The applied method is
verified using formation flight simulation. Finally, non- holonomic systems are
considered and a simple distributed controller avoiding obstacles or collisions
between agents and steering agents towards the scalar field’s maximum value is
presented.
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Nomenclature

Abbreviations

AAVs Autonomous Aerial Vehicles

AUVs Autonomous Underwater Vehicles

LTI Linear Time-Invariant

MAS Multi-Agent Systems

MIMO Multiple Inputs Multiple Outputs

UAVs Unmanned Air Vehicles

UUVs Unmanned Underwater Vehicles

Symbols
¯̂g(t) Average of the estimated gradient

Ā Normalized adjacency matrix

L̄ Normalized Laplacian matrix

āij =
1

‖Ni‖ Normalized elements of matrix Ā
ēg Average of the estimated gradient error vector

ēp Average of the position error vector

β Tuning parameter

1 = [1 1 1 ... 1]T Vector of ones

δ Disagreement vector

∆ =diag(A · 1) Degree matrix

∆ii = di =
∑

j aij Degree of agent i

v̇ Linear acceleration vector

v̇i = r̈i Linear acceleration of agent i

v
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η(t) = x(t)− 1r(t) Error vector

γ, α Tuning parameters

ĝi Estimated gradient

r̂(t) Average of the positions

v̂ Average of the velocity

λ1 First eigenvalue of matrix L
λ2 Second eigenvalue of matrix L
λi(A) ith eigenvalue of matrix A

λmax(A) Maximum eigenvalue of matrix A

λmin(A) Minimum eigenvalue of matrix A

‖Ni‖ cardinality of the set of neighbours Ni

R Set of real numbers

R
p Set of real numbers in dimension p

R
N×N Set of real N ×N matrix

R
N Set of real matrix with dimension N

A Adjacency matrix

E Set of edges

G Graph

L Laplacian matrix

M Projection matrix

Ni Set of neighbours of agent i

V Set of nodes

µ Bound of the estimated gradient

µ Bound of the estimated gradient

∇ψ(ri) True gradient at position ri

∇2ψ(ri) Hessian matrix at position ri

ν Bounded rate

ω Angular velocity vector

ωi Angular velocity of agent i

ωci Bandwidth

⊗ Kronecker product

φi Orientation of agent i respects to rx

φdi = Atan2 (Eyi, Exi) Desired orientation angle for agent i
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ψ(r) Smooth scalar function

ψ(ri) Scalar function value at position ri

ψ(rs) = Lψ Maximum value of the scalar function

‖·‖ Euclidian norm for vectors

Σ = diag(Σ1, . . . ,ΣN) Covariance matrix of n(t)

θ Tuning parameter

A ≻ 0 Positive definite matrix

A � 0 Positive semidefinite matrix

A, B, C, D State, input, output, feed-through matrices

A−1 Inverse of matrix A

AT Transpose of matrix A

aij Elements of matrix A
da Distance function

ep Position error vector

e∇i Estimated gradient error

eφi = φi − φdi Orientation error of agent i

eφ Orientation error vector

I Identity matrix

i Index of agents, i = 1, . . . , N

j Index for the neighbours of agent i

K Control matrix

ka, ko Tuning parameters

kT , kF Scalar tuning parameters

la Maximum distance between agents in the formation

LH Bound of the Hessian matrix

N Number of agents

n(t) Zero-mean Gaussian noise vector

ni(t) Zero-mean Gaussian noise

p State’s dimension

r Position vector

r∗ Position of the equilibrium point

rF Desired formation vector

ri = [rxi ryi rzi]
T Position of agent i
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rs = [rxs rys rzs]
T Position of the maximum value

rxi x-position of agent i

ryi y-position of agent i

rzi z-position of agent i

S Detection region’s radius

s Avoidance region’s radius

u Control law vector

ui Control law for agent i

v Linear velocity vector

vi = ṙi Linear velocity of agent i

xi State vector of agent i
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Chapter 1

Introduction

1.1 Multi-Agent Systems

Today, advances in exploration and rescue technologies become more relevant
than ever before. Besides being a very important field of research, automatic
control of robots, unmanned vehicles, and any kind of autonomous self-operating
devices is a substantial issue for improving exploration and survival technologies.
Equipped with sensors, automated agents can be used to operate in hazardous
environments with little resources available. Localizing and monitoring disas-
ter zones such as fire spots, chemical spill belts, etc., searching for survivors, or
conducting environmental studies are examples of future missions. Agents capa-
ble of autonomous operation and prepared for information measurement and/or
intervention should be able to completely replace humans in environments too
dangerous or precarious. This kind of agents are still being developed and en-
hanced. Agents’ size is becoming highly adaptable nowadays, even to a very
small scale. These agents can be provided with wireless communications and
the fastest processors. Costs of such devices are steadily decreasing and their
integrated equipment is more sophisticated than ever.

For the purposes of this work, an agent is a dynamic system, capable of au-
tonomous action in its environment, which can be directed towards attaining
certain goals. It is equipped with sensors, processing units and actuators. Au-
tonomous means that it is able to operate without human intervention. Further-
more, each agent is able to fulfill different kinds of functions: sensing, processing,
communicating and executing.

A group of such agents can perform tasks more efficiently than a single
agent and accomplish missions not executable by a single one. Individual agents
have restricted capabilities such as temporal or spatial separation, fuel and time
constraints, and additionally, limited sensor range and accuracy. Furthermore,
due to restricted communication bandwidth, communication latency and limited
computation and memory, their manoeuvres are more costly and less effective
compared to them of collective agents.

1



2 1. Introduction

Agents operating in groups are structured as systems of agents. A multi-agent
system (MAS) is a system of autonomous agents interacting with each other and
their environment in order to perform a common task; it can be modelled by
differential equations. To achieve a common objective, agents need to gather
and exchange information through information flow channels. However, sensors
can collect huge amounts of data turning the information flow into a challenge
for processing units in the individual system. Initial approaches solved this
problem by means of a central entity in the group responsible for processing all
the gathered information and steering the whole system.

Centralized control means that there is one processor steering all agents from
a central point. It requires high computational power and its implementation is
expensive due to computational costs and an eventual communication overhead.
As a result, system’s performance decays due to communication delays. With
the development of more complex systems including a larger number of agents
communication costs turned too high; agents required considerable power to
operate, and energy efficiency decreased. Furthermore, system’s reliability was
not guaranteed due to the single point of failure problem. A failure in the central
entity could cause the whole system to collapse, or in the best case, data would be
lost. A central processing unit is highly vulnerable to internal failure or external
attacks. In this case the complete network would become inoperative.

This risk can be avoided with an alternative approach: information can be
processed inside each agent creating communication networks with a more evenly
distributed flow and computation of information. Such networks will be called
distributed networks for the purposes of this work. Distributed control means
that each agent senses independently, gathers information from its neighbours,
processes all available local information, and is then able to compute all this data
in order to coordinate its movements with other agents and follow the group.
Although each agent has only topical access to communications, limited compu-
tational resources and restricted sensing capabilities, all together the capacity of
the system improves significantly being not only an addition of the individual
agent’s processing force but a multiplication of its functions.

In order to develop challenging applications as distributed dynamical sys-
tems, science and engineering have put their attention on biological systems,
aiming to gain understanding of collective behaviour in animal groups. A fish
school, a flock of birds, a swarm of bees are all examples providing inspiration
to engineers. Animals in groups have developed cooperative strategies that al-
low them to function as high performance networked dynamical systems. They
employ distributed feedback strategies with astounding success despite their sen-
sing, information processing and execution limitations. As a group, they have to
constantly adapt their behaviour to uncertain and changing environments.

Biological systems are models of cooperative behaviour aiming to perform
tasks in a coordinated fashion. Coordination involves teamwork; agents collabo-
rate to acquire, fuse and share information, in order to overcome environmental
constraints and achieve a global team goal. The ability of animals to communi-
cate and coordinate their motion with neighbours leads to complex self-organized
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collective behaviour. A group of ants doing collaborative work is able to locate
food sources, transport them to feed the colony and defend its territory with
astounding efficiency. A single ant is neither capable of remembering the precise
location of a food source, nor of carrying huge amounts of food (Okubo, 1986).

In an effort to develop distributed mobile agent systems resembling their natu-
ral counterparts, engineers have been experimenting with mobile sensor networks
trying, for example, to implement flocking applications. The goal has been to
create self-organized networks capable of coordinated group behaviour (Olfati-
Saber, 2006). For this purpose, heuristic rules were introduced by (Reynolds,
1987) in order to explain any form of collective behaviour of a large number of
individuals with a common goal. These rules are known as cohesion, separation,
and alignment. Cohesion means the attempt to stay close to the neighbours,
separation means avoiding collisions with neighbours, and alignment means the
attempt to match velocity with neighbour agents.

These principles have been used to design and implement first prototypes of
autonomous multi-agent systems such as ground vehicles, unmanned air vehicles
(UAVs), unmanned underwater vehicles (UUVs), robot mobile systems, or sensor
networks (Fax and Murray, 2004; Oh and Ahn, 2010; Olfati-Saber et al., 2007;
Olfati-Saber and Murray, 2004; Ren et al., 2007) to name just a few.

Such cooperative networks of agents act as “an intelligent array of sensors”
(Ogren et al., 2004). In some sense they can operate better than its natural
models because of an improved capacity for rapidly adapting to the environment
(e.g. regulating inter vehicle spacing more efficiently than fish, which need addi-
tional space for mating behaviour). Sensors can be set up to improve performance
and optimize detection and value measurement. Such a system offers many ad-
vantages and overcomes the dangers of individual agent failure or changes in the
number of agents.

Cooperative systems can be characterized as a number of interconnected
decision-making components with limited processing capabilities, locally sensing
information, and limited communication range, which seek and achieve a collec-
tive objective (Shamma, 2008). The main features of cooperative systems are:
distributed information flow, restriction in information exchange between agents
keeping this exchange in a local range, and complexity of the resulting control
dynamics. Distribution of information means that every agent needs to share
information with its neighbour agents in order to coordinate with the group and
agree on a common goal. The information exchange is local due to limitations in
the communication bandwidth and the sensor range. Complex dynamics refer to
a large number of interacting dynamic agents and the difficulties of dealing with
analysis and synthesis of controllers, each one with partial and/or overlapping
information. Thus, the main challenge of cooperative systems is to achieve desir-
able collective behaviour. In the following chapters this collective behaviour will
be called consensus. For the purpose of achieving consensus, distributed control
algorithms for individual agents must be designed, algorithms capable of dealing
with limited information exchange and dynamic interaction topology.



4 1. Introduction

(a) Oil spill 1 (b) Fukushima’s environment radiation
levels after nuclear disaster 2

(c) Toxic cloud

Figure 1.1: Scalar fields

In this work, two important issues in the field of cooperative control of multi-
agent systems are considered: the cooperative source seeking problem and the
cooperative level curve tracking problem. The problem of source seeking is to
locate a quantifiable signal source somewhere in a scalar field using several and
effectively cooperating agents. A scalar field represents the changing strength
of a spatially distributed signal (scalar signal) and each point in a given area is
associated with a local measurement of this signal. For example, oil spilled in
the sea generates a scalar field of oil concentration values (Fig. 1.1a). Similarly,
radiation levels after nuclear disaster like in Fukushima (Fig. 1.1b), or a toxic

1Picture taken from FeedNetBack project
2Picture taken from seaandskyjp.wordpress.com
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substance cloud moving in space are phenomena that can be represented as scalar
fields (Fig. 1.1c). When a scalar field represents temperature values distributed
over an area, the source is the point of maximum heat and the signal is given by
the actual temperature measurement in each point of this area.

The scalar field’s source can be fixed or it can be moving in space, e.g.,
when the toxic substance is moving by the effect of wind. A scalar field can be
expanding or contracting, for example, when oil spill is spreading by the effect
of water streams. Furthermore, a scalar field can have either a symmetric or an
irregular pattern, without affecting our approach. For our purposes, the signal
strength is assumed to decay as the sensor moves away from the source’s position.
Finally, the source’s position is equal to the maximum value in a scalar field’s
distribution.

The problem of level curve tracking arises in the cases when the source is
inaccessible or approaching it is highly dangerous or unreasonable. Level curve
tracking enables agents to keep moving in a constant concentration value or range
near to the source, allowing them to obtain the information needed. Any scalar
field can be also represented by a contour of level curves as shown in Fig. 1.2.
The level curve can vary in space and time depending on if the scalar field is
moving, expanding or contracting.

To solve the cooperative source seeking problem, distributed algorithms to
drive a group of agents towards the unknown moving scalar field’s source or un-
known fixed scalar field’s source are proposed in this work. Agents have access to
the signal’s position and value at its own location, only. The distributed control
algorithms here presented are based on both formation control and trajectory
control. The formation controller part maintains the agents in a desired geome-
tric formation and the trajectory controller part drives the agents to the scalar
field’s source. Based on a distributed gradient estimation in each agent, the
direction to be followed by the agents is calculated. The so estimated gradient
can also be used to track the direction followed by rapid and maximum changes
in the measured values, e.g., if the scalar field represents spatially distributed
air temperature, the gradient can reveal the direction in which temperature is
increasing most rapidly.

To solve the cooperative level curve tracking problem same assumptions as in
the source seeking problem are made. A distributed algorithm to steer a group
of agents, at constant velocity, tracking a desired level curve of the scalar field is
proposed. Information of agents’ relative positions and scalar field’s concentra-
tion values is used in the algorithm. In the proposed methods, information of an
estimated Hessian matrix is not required.

1.2 Current State of Research

The source seeking problem has already been addressed in the field of automated
control. In the last decade, several source seeking algorithms have been developed
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Figure 1.2: Contour of the scalar field

to guide one or more mobile agents towards the signal source. There are different
approaches to deal with the source seeking problem in literature. They can be
classified depending on the number of agents considered: approaches for only
one agent or approaches for formations of multiple agents.

Firstly, in the case of source seeking concepts for only one agent, some re-
searchers have focused on developing exploration missions in which measurements
are done while the agent changes its position in a regular sequence over time
(Azuma et al., 2012; Cochran and Krstic, 2009; Cochran et al., 2009; Liu and
Krstic, 2010; Matveev et al., 2011; Mayhew et al., 2008; Stankovic and an M. Sti-
panovic, 2010; Zhang et al., 2007). Further, for an isolated non-holonomic agent,
an angular velocity controller has been proposed in order to locate the maximum
of the scalar field (Cochran and Krstic, 2009). In (Zhang et al., 2007) a periodic
forward-backward movement of the unicycle is employed and the forward velo-
city is tunable to move the agent towards the source. An extension of (Cochran
and Krstic, 2009) to 3-D source seeking is proposed in (Cochran et al., 2009).
In (Matveev et al., 2011), a sliding mode navigation strategy has been proposed
to drive an agent to the maximum of the scalar field. A stochastic source seek-
ing approach for a nonholonomic mobile agent is presented in (Azuma et al.,
2012). The main drawback of these approaches is that the agent must travel
long distances to compute the gradient, sometimes using special manoeuvres
such as sinusoidal inputs. In (Fabbiano et al., 2014) the problem of one agent
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with multiple sensors localizing the source of a diffusion process is considered.
The solution is based on gradient computation and higher-order derivatives such
as the Hessian matrix from Poisson integrals.

Secondly, in the case of multiple agents, a number of algorithms to improve
mission performance have been developed (Biyik and Arcak, 2007; Brinon-Arranz
et al., 2011; Cortes, 2005; Ghods and Krstic, 2010; Li and Guo, 2012; Moore and
Canudas-de Wit, 2010; Ogren et al., 2004; Zhang and Leonard, 2010). Most of
them depend on all-to-all communication between agents and on the formation’s
center of mass in order to estimate a unified gradient and design a convergence-
achieving control law. In (Ogren et al., 2004) the source seeking problem is
solved by means of decoupling the control strategy into formation maintenance
and leader following. In this case, the coordination framework uses virtual bodies
and artificial potentials. The measured field’s gradient is approximated at the
virtual body’s position using centralized computation. A cooperative Kalman
filter to estimate the gradient at the center of the formation is designed in (Zhang
and Leonard, 2010). In (Biyik and Arcak, 2007), a gradient climbing method
for an agents’ formation to be steered towards the maximum of the scalar field
is addressed. Here a leader is required and the gradient is estimated by the
leader. The work presented in (Brinon-Arranz et al., 2011) solves the source
seeking problem for a group of agents through distributing them uniformly in
a fixed circular formation. To be able to estimate the gradient in the center of
mass, agents rotate around this center, which is assumed as fixed and known
to all agents. In (Fabbiano et al., 2014) a distributed source localization with
no position information is presented. The authors suppose that the network’s
communications are described by a time-invariant ring-topology and the gradient
is estimated based on a distributed implementation of Poisson integral formula.
In (Li and Guo, 2012; Li et al., 2014) a control law combining both all-to-all and
limited communications is presented. This algorithm is too complex and requires
the center of mass’s information.

In (Zhu et al., 2013), cooperation of multiple UAVs is carried out by adopting
a leader-follower formation strategy. Scalar field’s gradient is estimated at the
leader UAVs location based on the measurements of all UAVs. In (Zhu et al.,
2014), an extension of (Zhu et al., 2013) to locate an unknown moving scalar
field using a leader-follower formation strategy is presented.

Formation control has been studied by (Borrelli and Keviczky, 2008; Fax and
Murray, 2004; Massioni and Verhaegen, 2009; Popov and Werner, 2009), among
many others. In (Fax and Murray, 2004), the control problem of an N identical
agents’ formation under unknown but fixed topologies is considered. Robust
stability condition for the formation is derived, being equivalent to the same
condition on a single agent. Using the framework presented in (Fax and Murray,
2004), a distributed Linear Quadratic Regulator (LQR) design for a formation
is considered in (Borrelli and Keviczky, 2008). A feedback strategy based on a
decomposition method and linear matrix inequalities is proposed in (Massioni
and Verhaegen, 2009). In (Popov and Werner, 2009), using the framework of
(Fax and Murray, 2004) and employing graph theory results, authors convert
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the formation stability problem into a robust control problem for a single agent.
This way, performance requirements’ management turns easier, and stability for
fixed and varying topologies with communication delays is guaranteed. This
result is applied in (Pilz et al., 2009).

Furthermore, (Ahmadi et al., 2015; Mendez et al., 2015; Mendez and Werner,
2014), have considered the topic of formation control for non-holonomic agents.
In (Mendez and Werner, 2014), non-holonomic agents are represented as linear
parameter-varying (LPV) models. A leader-follower configuration is analysed al-
lowing the group of agents to track the leader’s path, maintain the formation and
follow a reference trajectory. In (Mendez et al., 2015), a distributed controller
for a group of agents with non-holonomic dynamics using a directed switching
communication topology and local information is considered. The controller’s
design is developed within the framework of linear parameter varying and linear
fractional transformation (LPV-LFT) control. In (Ahmadi et al., 2015), a dis-
tributed controller for non-holonomic agents maintaining the desired formation
and avoiding collisions between agents and obstacles is considered. In the last
study only local information and undirected communication topology are used.

The problem of level curve tracking has been addressed by (Ogren et al.,
2004; Zhang et al., 2007; Zhang and Leonard, 2010). These solutions exhibit
several weaknesses such as the network requiring special shapes to estimate the
gradient and the Hessian matrix of the formation’s center of mass. They also
assume that all agents know the center of mass’ information. In (Williams and
Sukhatme, 2012), a probabilistic method for spatial process mapping by a dis-
tributed muti-agent system is considered. They introduce a coordinated level
curve tracking algorithm for adaptive sampling. Potential functions to avoid col-
lision between agents are included. The drawback of such an approximation is
that both the Hessian matrix and the gradient at the formation’s center of mass
must be estimated to be able to apply their control law.

1.3 Communication Graphs

Agents can share information with their surrounding peers through commu-
nication channels or by sensing. The information exchange inside a network
is represented by a communication topology. Graphs are natural abstractions
that provide an appropriate representation of how information is shared between
agents in a network. The network’s topology can be fixed (time-invariant) or
switching (time-varying). The graph-based abstraction contains descriptions of
the network’s topology in terms of objects referred to as nodes and edges. The
following section summarizes the graph theory concepts (Mesbahi and Egerstedt,
2010) which will be used in the following sections.

In the following, ‖ · ‖ denotes the Euclidian norm for vectors and the induced
2-norm for matrices. The superscript T means the transpose for real matrices
and R

p denotes the p-dimensional Euclidian case. For any symmetric square ma-
trix, A ∈ R

m×m is the set of m×m real matrices. The minimum and maximum
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eigenvalues of a symmetric matrix A are denoted by λmin(A) and λmax(A) re-
spectively. A ≻ 0 denotes a positive definite matrix and A � 0 denotes a positive
semidefinite matrix. The matrix A−1 denotes the inverse of a square matrix A.

Let G = (V, E) be an undirected graph that models the interaction among
agents where V = {1, ..., N} is the set of nodes and E ⊆ V × V is the set of edges.
Each node represents an agent and each edge corresponds to an information
exchange channel. An edge (i, j) ∈ E indicates that the agent i and j exchange
information.

Let Ni = {j ∈ V : aij 6= 0} denote the set of neighbours of node i. The
adjacency matrix A = [aij ] ∈ R

N×N of a graph G(V, E) with N nodes specifies
the interconnection topology of the network. Here aij = 1 if (i, j) ∈ E , else
aij = 0. Note that here A is symmetric.

The Laplacian matrix L of the graph G is defined as L = ∆ − A, where
∆ =diag(A · 1) is a diagonal matrix with the agents’ degrees on its diagonal,
i.e., ∆ii = di =

∑

j aij . Here 1 = [1 1 1 ... 1]T ∈ R
N denotes the vector of ones

which is an eigenvector of L corresponding to λ1 = 0, i.e., L·1 = 0. A projection
matrix is defined as M = I − 1

N
11T ∈ R

N×N and M satisfies M1 = 0.

For an undirected graph, λ2 is the algebraic connectivity, which is positive
(λ2 > 0) if and only if the undirected graph is connected. The second smallest
eigenvalue λ2 of L determines the algorithm’s speed of convergence. |Ni| indicates
the cardinality of the set of neighbours Ni and ⊗ denotes the Kronecker product.
I denotes the identity matrix of appropriate dimension.

Here the normalized adjacency matrix used by (Fax and Murray, 2004) and
(Popov and Werner, 2012) is used, where āij =

1
|Ni| if (i, j) ∈ E , else āij = 0. The

normalized Laplacian matrix L̄ of the graph G is defined as L̄ = I − Ā.

The covariance matrix of the noise signal n(t) is assumed to be diagonal
Σ = diag(Σ1, . . . ,ΣN), i.e., ni(t) and nj(t) are uncorrelated.

1.4 Multi-Agent Dynamics

Different models have been used to represent multi-agent system dynamics. In
this thesis only continuous-time models will be treated. Multi agent systems
consist of N dynamic agents, labelled as i = 1, . . . , N , interconnected via relative
information exchange links.

In the next sections, the agent dynamics used in this thesis will be described.
For simple agent dynamics, single and double integrators are used. For more
complex linear dynamics, a Linear Time-Invariant (LTI) model is used; this
representation also includes single and double integrator agent dynamics. For
nonlinear dynamics, the simplest non-holonomic agent dynamics are used.
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1.4.1 Single Integrator Models

The single integrator is a particular case of a kinematic linear model that will be
used and discussed in Chapter 4. The dynamics of each agent i can be represented
by

ṙi(t) = ui(t), (1.1)

where the position state of agent i is denoted by ri(t) ∈ R
p, p is the state’s

dimension and the control input of the system is denoted by ui(t) ∈ R
p.

A consensus protocol is proposed in (Olfati-Saber and Murray, 2004; Ren and
Atkins, 2007) as

ui(t) = −
∑

j∈Ni

aij (ri(t)− rj(t)) , (1.2)

where aij denotes the adjacency matrix A’s elements of the information exchange
topology and Ni denotes agent i’s set of neighbours.

1.4.2 Double Integrator Models

Several vehicle dynamics can be represented by double integrator models which
can be controlled using acceleration as an input. These models will be discussed
in Chapters 4 and 7. For each agent i, the dynamics are defined as

ṙi(t) = vi(t),

v̇i(t) = ui(t), (1.3)

where vi(t) is the velocity state. When agents are modelled by single integrator
dynamics, these agents achieve agreement with regard to their position signals.
When agents have to reach agreement regarding both their position and their
velocity signals, a double integrator model representation is more suitable.

For some purposes such as formation stabilization applications, it might be
desirable that v → 0 when t→ ∞. A second order-consensus protocol (Ren and
Atkins, 2007) is given by

ui(t) = −
∑

j∈Ni

aij [(ri(t)− rj(t)) + γ(vi(t)− vj(t))]− αvi(t), (1.4)

where α > 0, γ > 0. Using this protocol agents achieve consensus on their
relative position at zero velocity. When α = 0, agents achieve consensus, but
their velocity is not zero, v 6= 0. Note that consensus protocols 1.2 and 1.4
are distributed, meaning that each agent needs only information from its local
neighbours.
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1.4.3 Linear Time-Invariant Models

Some agent dynamics can be represented using a more general form such as
a continuous linear time-invariant (LTI) system. LTI systems include single
integrator, double integrator and higher-order integrator dynamics as special
cases. Several types of electromechanical systems like robots, mobile agents or
mechatronic systems can be modelled as LTI systems. A general Linear Time-
Invariant model for each agent i can be represented as

ẋi(t) = Axi(t) +Bui(t),

ri(t) = Cxi(t) +Dui(t), (1.5)

where xi ∈ R
n denotes the state vector, ri ∈ R

q denotes the output vector,
ui ∈ R

p denotes the control vector, A ∈ R
n×n denotes the state matrix, B ∈ R

n×p

denotes the input matrix, C ∈ R
q×n denotes the output matrix and D ∈ R

q×p

denotes the feed-through matrix, for each agent i.

A consensus algorithm is given by

ui(t) = −K
∑

j∈Ni

aij (ri(t)− rj(t)) , (1.6)

where K is a control matrix.

1.4.4 Unicycle Kinematic Models

Many types of mobile agents like Autonomous Underwater vehicles (AUVs) or
Unmanned Aerial Vehicles (UAVs) can be represented using a kinematic model
equivalent to a unicycle. These models cover, in a realistic way, the nonlinear
dynamics of the simplest non-holonomic constraints, i.e., the agent wheels roll
without slipping. These models’ constraints reduce the instantaneous movements
that one agent can perform. The unicycle dynamics of each agent i in the group
is given by





ṙxi(t)
ṙyi(t)

φ̇i(t)



 =





cos(φi) 0
sin(φi) 0

0 1





[
vi(t)
ωi(t)

]

, (1.7)

where rxi and ryi are the Cartesian coordinates, φi ∈ [0, 2π) the orientation of
the agent with respect to the rx axis, vi is the linear velocity input, and ωi is the
angular velocity input.

1.5 Problem Description and Approach

As initially explained, the problem of cooperative source seeking and level curve
tracking by a formation of N mobile agents under undirected constrained com-
munication is addressed in this thesis. It is assumed that agents are equipped
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with position and signal strength measurement sensors. Task of all agents is to
find equilibrium around the scalar field’s source or to move along a defined level
curve inside the scalar field. Agents exchange information with neighbouring
agents through a communication network. For every agent, and based on rela-
tive output information between each agent and its neighbours, an unweighted
gradient, a weighted gradient and a gradient direction are estimated.

1.5.1 Assumptions about Formation and Estimated Gra-

dient

Let ē∇ be an average vector of the estimated gradient’s error, e0 be a bounded
value of the estimated gradient’s error and eφi be the orientation error. In order
to estimate the gradient in each agent, assumptions 1 and 2 have been made:

Assumption 1. Graph G is undirected and connected. It is assumed that the
formation satisfies |Ni| ≥ p, N ≥ p+ 1 and the agent i and their neighbours are
not collinear, i.e., each agent has at least p neighbours and the minimum number
of agents in the space is p + 1.

Assumption 2. The scalar field has an isolated global maximum. The estimated
gradient is bounded by ‖ĝi(ri)‖ ≤ µ, i.e., the estimated gradient will not be infinite
for any time t. The average of the estimated gradient’s error is bounded by
‖ē∇‖ ≤ e0.

Assumptions 1 and 2 are discussed in Chapter 2.

In order to solve the source seeking problem and level curve tracking problem
for agents modelled as LTI systems, assumption 3 has been made:

Assumption 3. It is assumed that the state matrix Ap of each agent is marginally
stable.

In order to solve the source seeking problem for non-holonomic agents, as-
sumption 4 has been made:

Assumption 4. Agents’ trajectory is smooth and satisfies

eφ1 = eφ2 = · · · = eφN 6= π

2
.

1.5.2 Assumptions about a Scalar Field Scenario

Consider a scenario that can be modelled as a scalar field such as concentration
levels of radiation, temperature, pressure or a toxic substance. Let p be the
dimension of the space in which the agents move (p = 1, 2, or 3); let r ∈ R

p

be the position of a single agent in the dimension p; let ψ(r) : Rp → R be an
unknown smooth scalar function that is twice continuously differentiable and has
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a maximum ψ(rs) = Lψ at rs = [rxs rys rzs]
T , with ∇ψ(rs) = 0. Also consider

that the Hessian ∇2ψ(ri) is bounded by ‖∇2ψ(ri)‖ ≤ LH . In this thesis following
assumptions have been made:

• The scalar field’s shape is not known by the agents.

• Agents have access only to the values of the field at its own location.

• The scalar field’s source is fixed in space. When level curve tracking is ana-
lysed, for simulation purposes, the scalar field is assumed to be expanding
or contracting as a function of time.

• Communication constraints such as packet loss and time delays are not
considered.

1.5.3 Problem Statement

Consider multi-agent systems consisting of N agents moving in the space Rp with
a communication graph G. The following two problems are considered in this
thesis:

• Source seeking problem: For a given N agents formation with undi-
rected communication topology, find a distributed control law ui(t) that
allows the formation’s center to reach equilibrium in the neighbourhood of
the scalar field’s maximum.

This first problem will be addressed in Chapters 4, 5 and 6.

• Level curve tracking problem: For a given N agents formation with
undirected communication topology, find a distributed control law ui(t)
that allows the formation to move along a given level curve inside an un-
known scalar field.

This second problem will be addressed in Chapter 7.

A scalar field is a model characterizing the spatial distribution of a scalar
magnitude (i.e. concentration measurements) that allows analysis of the spatial
presence of this given magnitude by associating a value with each point in space.
Such a scalar field can contain several maxima and minima, spread through
a given area. For this study, a scalar field containing only one maximum is
assumed.

The signal based on which measurements are conducted and computed for
each point in space can be impaired by noise or by varying concentration va-
lues. In this work both pure signals and signals affected by noise are considered.
Signals affected by noise are given specific attention in Chapter 3.

Depending on the real environmental conditions to which this model should be
applied, there will be situations when the scalar field’s source is stable (e.g. lava
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emission due to volcanic eruption) and other situations, when the scalar field’s
source will be moving at constant or variable speed (e.g. fire), or expanding
or contracting (e.g. oil spill). Taking this circumstance in account, at the end
of this work, in the comments to simulation results, some conclusions will be
presented about a possible extension of these results to the case of a scalar field’s
source moving at constant velocity.

In order to address the two problems mentioned above, three challenges were
considered. The first challenge is to develop cooperative schemes to estimate a
gradient in each agent using only its relative position values and the strength
signal values of the neighbours. This problem will be addressed in Chapter 2.

The second challenge is to develop a cooperative consensus filter to estimate
the gradient direction in each agent when signals are corrupted by noise. This
problem will be addressed in Chapter 3. This Chapter applies only for cases when
signals are contaminated by noise. When gathering pure signals is possible, such
a filter is not necessary.

The third challenge is to develop cooperative distributed controllers which are
able to stabilize both agents individually and the whole formation in space, and
additionally, steer agents either to an equilibrium in the immediate neighbour-
hood of the scalar field’s source or allow them to navigate along a desired level
curve. In order to solve the source seeking problem, cooperative distributed con-
trollers for single and double integrator models, LTI systems and non-holonomic
systems are developed. This problem will be addressed in Chapters 4, 5 and
6. In order to solve the level curve tracking problem, cooperative distributed
controllers for double integrator models and LTI systems are developed. This
problem will be addressed in Chapter 7.

When simple agent dynamics are considered, distributed navigation con-
trollers for both single and double integrator models are designed and agents
are programmed for computing a distributed gradient estimation individually
and locally. In the case of complex dynamics, our approach is extended to gen-
eral linear time-invariant (LTI) models and non-holonomic systems. Stability
conditions are provided and the presented method is verified using formation
flight simulation for quad-rotor helicopters. Performance requirements are incor-
porated into our design using mixed-sensitivity loop shaping. The H∞ synthesis
technique is used to design the controller. It will be demonstrated that the pre-
sented distributed controllers enable agents to converge towards the scalar field’s
source while their formation is maintained. In the case of non-holonomic sys-
tems, a simple distributed controller to avoid obstacles and collisions between
agents and to steer agents towards the maximum of the scalar field is presented.

1.5.4 Control Architecture

As part of the solution strategy, a cooperative control architecture as shown in
Fig. 1.3 is proposed. Distributed controllers composed of two parts are proposed:
a formation control law and a trajectory control law. The formation control com-
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ponent aims is to keep agents in a desired geometric formation and the trajectory
control component aims is to steer the formation towards the source or track a
desired level curve. In this diagram the control input vector is represented by
u = [u1, . . . , uN ]

T where N indicates the number of agents, the agents’ position
vector is represented by r = [r1, . . . , rN ]

T with r1 = [r1x, r1y, r1z]
T , the concen-

tration measurement is represented by ψ(r) = [ψ1(r1), . . . , ψN(rN )]
T , and the

estimated gradient is represented by ĝ(ψ, r) = [ĝ1, . . . , ĝN ]
T . This control archi-

tecture takes into account that there is limited communication between agents,
that there are different agent dynamics and that cooperative estimation of the
gradient direction takes place in each agent.

u

r

r ψ(r)

ĝ(ψ, r)

Formation Control

and

Trajectory Control

Agents’

Formation

Concentration
Measurement

Gradient
Estimation

Communication

Network

Figure 1.3: Architecture of the control strategy

1.6 Simulation Framework

The approach proposed in this work is illustrated using simulation studies. In
this simulations N = 7 mobile agents are considered. The group of agents is
ordered in a geometric formation and its communications are described by a
communication graph G as shown by Fig. 1.4. The communication topology is
undirected and chosen to be an hexagon. Each corner of the hexagon represents
an agent and each edge represents a communication channel between agents.

1

2

3

4 5

6

7

Figure 1.4: Geometric formation and communication topology of agents
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A scalar field is defined as

ψ(r) = A0e
−((r−rs)TH1(r−rs)) + A0e

−((r−rs)TH2(r−rs)), (1.8)

where A0 = 3, H1 =

[
1

2σ2x1
0

0 1
2σ2y1

]

, H2 =

[
1

2σ2x2
0

0 1
2σ2y2

]

, σx1 = 30, σy1 = 75,

σx2 = 80 and σy2 = 25.

The maximum is located at rs = [40 80]T .

1.7 Contributions of this Work

In order to solve the problems mentioned above, either localizing the source or
tracking a level curve, three important steps are made: firstly, three schemes to
estimate the gradient direction in each agent are proposed. Secondly, a modified
consensus filter under limited communication conditions is proposed. Thirdly,
cooperative source seeking algorithms for single and double integrators, linear
time-varying (LTI) systems and non-holonomic systems are proposed. In the
case of cooperative level curve tracking, algorithms for double integrators and
LTI systems are presented.

1. Distributed gradient estimation: Three simple distributed schemes
to estimate the gradient direction in each agent using only neighbours’
relative signal strength values and relative positions are proposed. The
schemes are: unweighted, weighted and average gradient. Both unweighted
and weighted gradient are estimated using least squares estimation. The
average gradient is estimated using an average of the slopes between agent
i and its neighbours j.

2. Modified consensus filter: If the position and concentration values
are corrupted by noise, a modified consensus filter to estimate the gra-
dient based on (Olfati-Saber and Shamma, 2005) is proposed (Rosero and
Werner, 2014c). It is very useful under limited communication conditions.
This proposed filter algorithm significantly improves the accuracy of time-
varying signal tracking and attenuates high frequency noise. This new
solution allows to define the desired bandwidth of the distributed consen-
sus filter by tuning a control parameter. With this information, estimating
the gradient direction becomes feasible.

3. Distributed source seeking algorithms: To solve the source seeking
problem using multi-agent systems, a cooperative distributed source seek-
ing algorithm for each one of the following agent models is proposed: single
and double integrator (Rosero and Werner, 2014a), linear time-invariant
dynamics (Rosero and Werner, 2014b) and non-holonomic systems. Con-
vergence analysis is shown. The algorithms are designed under a fixed
undirected communication topology. Position and concentration values of
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neighbours are needed by each agent. In our approach, it is neither ne-
cessary to know the center of mass’ position and the estimated gradient
at this position, nor to keep the agents rotating in a circular formation,
nor to have a leader in the formation, nor to have all-to-all communication
between agents. These differences provide additional advantages over one-
agent schemes. Applying the presented approach, agents use energy more
efficiently, they can cover larger spatial areas, and this solution is suitable
for a larger number of agents and for any type of formation.

4. Distributed level curve tracking algorithms: To solve the level curve
tracking problem and based on distributed source seeking algorithms, a
cooperative distributed level curve tracking algorithm for double integrator
models and linear time-invariant dynamics is proposed. The algorithms are
designed under a fixed undirected communication topology.

1.8 Structure of this Thesis

The thesis is organized as follows.

In Chapter 2 three methods to estimate the gradient in each agent in a
cooperative way are derived. The methods are called unweighted, weighted and
directional gradient. These methods are used later to design a distributed control
law to move the agents towards the source of the scalar field or to move a group
of agents along a level curve.

In Chapter 3 a modified consensus filter for signals corrupted by noise is
presented. This filter is useful to reject noise at higher frequencies and track
the time-varying signals. Based on this consensus filter and the methods to
estimate the gradient in each agent presented in Chapter 2, two distributed
gradient estimation schemes with position signals and signal strength corrupted
by noise are provided.

In Chapter 4 two simple distributed control laws for single and double inte-
grator agents to solve the source seeking problem are proposed. These control
laws are based on both a formation controller and a trajectory controller. Stabi-
lity analysis is provided to show that the agents move towards the source of the
scalar field. Simulation results for both control laws support the effectiveness of
our approach.

Chapter 5 extends the results of single and double integrator models, given in
Chapter 4, to linear time invariant systems. The distributed control law for LTI
systems solves the source seeking problem and allows us to include performance
in the formation controller design process, too.

In Chapter 6 a simple distributed controller for non-holonomic systems (uni-
cycle model) in order to solve the source seeking problem is proposed. The
control law includes both collision avoidance between agents and between agents
and obstacles.



18 1. Introduction

In Chapter 7 the level curve tracking problem is solved for double- integrator
and linear time-invariant systems. The proposed distributed control laws do
not require the Hessian matrix estimation. Furthermore, the control laws are
applied to an unknown fixed scalar field source and an unknown moving scalar
field’s source, as well as to an unknown moving scalar field’s source inside an
expanding or contracting scalar field.

In Conclusions and Outlook the results presented in this thesis and future
directions of research are summarized.



Chapter 2

Distributed Gradient Estimation

Distributed gradient estimation is a central issue to be considered on the way
to solve the scalar field’s source or level curve tracking problem. As mentioned
in the last chapter, both relative position and concentration signals are needed,
and the gradient estimation takes place using neighbours’ information only. This
chapter presents three simple distributed schemes to estimate the gradient of the
scalar field for each mobile agent in a network. The unweighted and weighted
gradient estimation schemes are based on least-squares methods while the direc-
tional gradient estimation scheme is based on an average of the slopes between
neighbouring agents. A group of N spatially distributed agents inside an un-
known scalar field is considered. Each agent is equipped with both position and
signal strength sensors. Each sensor measures unknown signals, computes its
local gradient estimate and sends the information to its neighbours. Using the
available information, each agent then follows the computed gradient. Conse-
quently, the estimated gradient is then used to develop a cooperative control law
which moves a group of agents in an autonomous manner towards the source of
the scalar field or steers the agents to track a level curve.

2.1 Introduction

A direction based on gradient estimation is required for designing a cooperative
controller that moves all agents towards the source of a scalar field. In (Li and
Guo, 2012; Ogren et al., 2004; Zhang and Leonard, 2010) the gradient in the
formation’s center of mass is estimated using information of all agents. The
authors assume that the center of mass is known to all agents. In (Brinon-
Arranz et al., 2011) the gradient in the formation’s center of mass is estimated
using information of all network agents and agents rotate around this center. It
is also assumed that the center of mass is known to all agents.

All these previous approaches compute the gradient in the geometric forma-
tion’s center of mass and they require all-to-all communication between agents.
Furthermore, all agents must know the center of mass’ position. Thanks to
collaborative field sensing and data exchange, the gradient estimation can be
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computed more efficiently. Since agents are equipped with sensors that are able
to measure position and signal intensity inside the local field, it is possible for
each agent to estimate the gradient direction taking advantage of the undirected
communication scheme of the network.

In this chapter, a way to estimate the gradient at each agent’s position using
relative information is addressed. An arbitrary but pre-specified formation of
N identical mobile agents under undirected constrained communication is used.
Each agent estimates the gradient based on its own and neighbours’ data. The
estimated gradient will be later used to design distributed controllers moving the
formation towards the source of the scalar field.

This chapter is organized as follows. Section 2.2 provides three methods for
gradient approximation based on least squares and directional derivative. Section
2.3 provides simulation results. Finally, concluding remarks are made in Section
2.4.

i

ri

ψ(ri)

Figure 2.1: Mobile agents into a scalar field

2.2 Distributed Gradient Estimation

Consider a number of N mobile agents, spatially distributed, with communica-
tion graph G (Fig. 2.1). Each agent i measures the signal strength ψ(ri) at its
position ri where i = 1, 2, ..., N . Since ψ(ri) is twice continuously differentiable,
it can be approximated by a Taylor series. The value at ri is given by

ψ(ri) =ψ(rj) + (ri − rj)
T∇ψ(ri) +

1

2
(ri − rj)

T∇2ψ(ri)(ri − rj) +H.O.T., (2.1)

where i denotes the reference agent’s index, j denotes a neighbour agent sending
information to agent i, ∇ψ(ri) ∈ R

p×1 is the true gradient, ∇2ψ(ri) ∈ R
p×p

denotes the Hessian matrix and H.O.T. the higher order terms.
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2.2.1 Unweighted Gradient

For each agent i, it is possible to compute the slope between agent i and their
neighbours Ni. Neglecting high order terms, Equation (2.1) can be combined
into






ψ(ri)− ψ(r1)
...

ψ(ri)− ψ(r|Ni|)






︸ ︷︷ ︸

bi

=






(ri − r1)
T

...
(ri − r|Ni|)

T






︸ ︷︷ ︸

Ri

∇ψ(ri), (2.2)

where bi ∈ R
|Ni|×1 is a column vector of the scalar field’s relative signal strength

ψ(r), Ri ∈ R
|Ni|×p is a matrix whose coefficients depend on the relative posi-

tion of the formation’s geometric shape in the space R
p. The problem can be

solved minimizing ‖Riĝi − bi‖2, then the local gradient ĝi in each agent i can be
estimated as

ĝi =
(
RTi Ri

)−1
RTi bi,

=

(
∑

j∈Ni

aij(ri − rj)(ri − rj)
T

)−1(
∑

j∈Ni

aij(ri − rj)(ψ(ri)− ψ(rj))

)

, (2.3)

where the distributed estimated gradient is ĝi = f(ri, rj , ψi, ψj , ∀ j ∈ Ni) ∈ R
p×1

and it is assumed that the inverse of RTi Ri exists. This means the matrix Ri must
be full column rank (rank(Ri)= p). The rank (Ri) = p if and only if agent i and
their neighbours Ni are non-collinear, i.e., they do not collapse in a plane (p = 3),
in a line (p = 2) or in a point (p = 1). Since Ri ∈ R|Ni|×p, this requires that
|Ni| ≥ p. Note that the minimum number of agents to compute the gradient is
Nmin = p+ 1. Fig. 2.2 shows the distributed estimated gradient for each mobile
agent into a scalar field.

ri

ψ(ri)

ĝi

Figure 2.2: Distributed estimated gradient for each mobile agent
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Note that the unweighted gradient computation can be arranged as

ĝi =

(
∑

j∈Ni

(ri − rj)(ri − rj)
T

)−1(
∑

j∈Ni

(ri − rj)(ψ(ri)− ψ(rj))

)

,

ĝi =

(
∑

j∈Ni

zijz
T
ij

)−1(
∑

j∈Ni

zijψij

)

,

where zij = ri − rj , ψij = ψ(ri)− ψ(rj),

RTi Ri =
∑

j∈Ni

(ri−rj)(ru−rj)T =
∑

j∈Ni

[
(rxi − rxj)

2 (rxi − rxj)(ryi − ryj)
(rxi − rxj)(ryi − ryj) (ryi − ryj)

2

]

,

RTi bi =
∑

j∈Ni

(ri − rj)(ψ(ri)− ψ(rj)) =
∑

j∈Ni

[
(rxi − rxj) (ψ(ri)− ψ(rj))
(ryi − ryj) (ψ(ri)− ψ(rj))

]

,

for all i ∈ V. Let us consider the properties of RTi Ri. R
T
i Ri is symmetric and the

first leading principal minor of RTi Ri is nonnegative

∑

j∈Ni

(rxi − rxj)
2 ≥ 0,

for all i ∈ V. The equality holds if and only if agent i and all its neighbours are
in the same rx coordinate. Moreover, the second leading principal minor of RTi Ri
is nonnegative by the Cauchy-Schwarz inequality

∑

j∈Ni

(rxi − rxj)
2
∑

j∈Ni

(ryi − ryj)
2 −

(
∑

j∈Ni

(rxi − rxj)(ryi − ryj)

)2

≥ 0,

for all i ∈ V. The equality holds if and only if the coordinates of the agents
are linearly dependent (agents are collinear). For this reason, to compute the
gradient ĝi at the location of agent i, it is necessary to guarantee that both
agent i and the neighbours j ∈ Ni are not collinear in the space R

p. With
this requirement fulfilled, all leading principal minors of RTi Ri are positives. It
follows that RTi Ri is also positive definite. Furthermore, the matrix (RTi Ri)

−1 is
also positive definite by the positive definiteness of RTi Ri.

Neglecting the higher order terms, the estimation error e∇i for each agent i
can be computed as

e∇i =(RTi Ri)
−1RTi edi, (2.4)

where

edi =






1
2
(ri − r1)

T∇2ψ(ri)(ri − r1)
...

1
2
(ri − r|Ni|)

T∇2ψ(ri)(ri − r|Ni|)




 ,



2.2. Distributed Gradient Estimation 23

with edi ∈ R
|Ni|×1. Defining the maximum distance between agents in the forma-

tion as la = maxj∈Ni
‖ri−rj‖ and considering that the Hessian∇2ψ(ri) is bounded

by ‖∇2ψ(ri)‖ ≤ LH , then
1
2
(ri−rj)T∇2ψ(ri)(ri−rj) ≤ 1

2
LHi‖ri−rj‖2 ≤ 1

2
LHil

2
a.

Thus, for each agent i, the error edi is bounded by ‖edi‖ ≤ 1
2
LHil

2
a

√

|Ni|, and the
estimation error by

‖e∇i‖ ≤‖(RTi Ri)−1RTi ‖‖edi‖,

≤1

2
LHil

2
a

√

|Ni|‖(RTi Ri)−1RTi ‖ = e0i. (2.5)

Note that the estimated error depends on the square of the distance between
agents. To make the lower order terms in the Taylor expansion dominate, the
distances between agents ‖ri − rj‖ must be sufficiently small.

2.2.2 Weighted Gradient

If Equation (2.1) is normalized by the relative distance’s norm between the agent
i an their neighbours j and wji =

1
‖rj−ri‖ , then the slope in the direction between

agents i and j is found. For each agent i, and using a first order approximation,
it is possible to write

Wi






ψ(ri)− ψ(r1)
...

ψ(ri)− ψ(r|Ni|)






︸ ︷︷ ︸

bi

=Wi






(ri − r1)
T

...
(ri − r|Ni|)

T






︸ ︷︷ ︸

Ri

∇ψ(ri), (2.6)

where bi ∈ R
|Ni|×1 is a column vector of the relative signal strength of the scalar

field ψ(r), Ri ∈ R
|Ni|×p is a matrix whose coefficients depend on the relative

position of the formation’s geometric shape in the space Rp andWi = diag{wij} ∈
R

|Ni|×|Ni| is a diagonal matrix containing the weights of all neighbouring agents
|Ni| that are sending information to agent i. Then, for each agent i, it is possible
to write

Wibi = WiRi∇ψ(ri).

Using least-squares, the estimate can be computed by

ĝi =
(
RTi W

2
iRi
)−1

RTi W
2
i bi, (2.7)

where the distributed estimated gradient ĝi = f(ri, rj , ψi, ψj, ∀ j ∈ Ni) ∈ R
p×1

and provided that the inverse of RTi Ri exists. This means the matrix Ri must be
full column rank (rank(Ri)= p).

Neglecting the higher order terms, the estimation error for each agent i can
be computed as

e∇i = (RTi W
2
iRi)

−1RTi edi, (2.8)
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where edi ∈ R
|Ni|×1 and

edi = Wi






1
2
(ri − r1)

T∇2ψ(ri)(ri − r1)
...

1
2
(ri − r|Ni|)

T∇2ψ(ri)(ri − r|Ni|)




 .

Defining the maximum distance between two agents in the formation as
la = maxj∈Ni

‖ri − rj‖ and considering that the Hessian ∇2ψ(ri) is bounded by
‖∇2ψ(ri)‖ ≤ LH , then

1
2
wji(ri− rj)

T∇2ψ(ri)(ri− rj) ≤ 1
2
LHi‖ri− rj‖ ≤ 1

2
LHila.

Thus, for each agent i, the error edi is bounded by ‖edi‖ ≤ 1
2
LHila

√

|Ni| and the
estimation error by

‖e∇i‖ ≤‖(RTi W2
iRi)

−1RTi ‖‖edi‖,

≤1

2
LHila

√

|Ni|‖(RTi W2
iRi)

−1RTi ‖ = e0i. (2.9)

Note that edi only depends on the distance between agents. In this case, when the
Taylor approximation is normalized by the relative distance between agents, the
estimated gradient’s accuracy is improved in relation to the unweighted gradient
approach proposed in (Rosero and Werner, 2014a).

As mentioned in Section 1.5, following assumptions have been made:

Assumption 1. Graph G is undirected and connected. It is assumed that
the formation satisfies |Ni| ≥ p, N ≥ p+ 1 and the agent i and their neighbours
are not collinear, i.e., each agent has at least p neighbours and the minimum
number of agents in the space is p+ 1.

Assumption 2. The scalar field has an isolated global maximum. The
estimated gradient is bounded by ‖ĝi(ri)‖ ≤ µ, i.e., the estimated gradient will
not be infinite for any time t. The average of the estimated gradient’s error is
bounded by ‖ē∇‖ ≤ e0.

2.2.3 Average Gradient

If Equation (2.1) is normalized by the relative distance between agents and mul-
tiplied by the unit direction vector between agent i and its neighbours j, the
gradient can be computed as an average of the slopes in the direction of the
normalized vector as

ĝi =
1

|Ni|
∑

j∈Ni

ψ(ri)− ψ(rj)

‖ri − rj‖2
(ri − rj) . (2.10)

This approximation is useful when some agents inside the communication
topology do not entirely satisfy the condition |Ni| ≥ p. At the other hand, the
same approximation is not optimal based on least squares estimator.
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Figure 2.3: ĝy1-component’s estimated gradient of agent 1 with rs = [rx0 ry0]
T =

[60 60]T

2.3 Simulation Results

This section shows simulation results for the estimated gradient method previ-

ously computed. The scalar field is defined as ψ(r) = Ae
−(

(rx−rx0)
2

2σ2
x

+
(ry−ry0)

2

2σ2
y

)
, the

source is centred at the maximum value rs = [rx0 ry0]
T = [60 60]T , with A = 10

and σx = σy = 20. Note that level curves are circular. A formation of N = 7
agents with undirected communication topology and a geometric formation are
both considered, as illustrated in Fig. 1.4.

Figs. 2.3 and 2.4 present a comparison between the true gradient and the 3
proposed estimated gradient methods (unweighted, weighted and average esti-
mated gradient) for agent 1 only. Agents travel across the scalar field with a fixed
geometric shape and at constant velocity. The results reveal that the unweighted
and weighted gradient approximations result in very similar values to the true
gradient while the average gradient approximation’s error is larger. When the
distance between agents increases, the estimated gradient error increases, too.
Furthermore, this effect can be observed in Equations (2.8) and (2.9).
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Figure 2.4: ĝx1 − ĝy1 components’ estimated gradient of agent 1

2.4 Conclusions

In this chapter, three methods to estimate gradient in a cooperative way (estima-
tion takes place in each agent separately) have been presented. The unweighted
and weighted gradient are computed by using least squares estimator while the
average gradient is computed using only the average of the slopes between neigh-
bour agents. These methods require gathering relative position and relative sig-
nal strength information from each agent’s local neighbours only. The gradient
estimated this way is defined by a vector with a magnitude and a direction. The
magnitude is the value of the rate of change measured in the direction of the
highest rate of change inside the scalar field.

The average gradient and the unweighted gradient methods are useful be-
cause they are easy to implement. Nevertheless, the average gradient method is
less precise than the others because it is not computed taking the least squares
estimator into account. The estimation error of the weighted gradient is smaller
than the estimation error of the unweighted gradient and the estimation error of
the average gradient, because the weighted gradient method uses the distance be-
tween agent i and its neighbours as the weighting factor. However, the weighted
gradient method requires more processing capability than the unweighted and
the average gradient methods.



Chapter 3

Modified Distributed Consensus

Filter for Sensor Networks

This chapter considers distributed consensus filters for sensor networks. In such
networks each group of sensors measures the same signal, in this case a signal
corrupted by noise. An algorithm which significantly improves the accuracy of
time-varying signal tracking and attenuates high frequency noise is proposed.
It is a modification of an existing algorithm (Olfati-Saber and Shamma, 2005).
This new algorithm allows us to define the desired bandwidth of the distributed
consensus filter by tuning a control parameter. The consensus filter solves data
fusion problems in a distributed way, programming each sensor to use informa-
tion only from its local neighbours to perform filtering in a fixed communication
topology. The filtering is performed in each node of the sensor network. Conver-
gence analysis is provided. Simulation results illustrate the performance of the
proposed filter.

3.1 Introduction

Sensor networks have a growing range of applications in fields requiring collabora-
tive information processing. Examples are measurement of physical parameters,
monitoring environmental conditions, sensor management, etc. A sensor net-
work consists of a number of sensor nodes that are spatially distributed. Each
sensor receives an input and estimates the average of inputs to all the sensors
in the network. It then communicates this estimation to its neighbours. Since
each sensor estimates the average of inputs, this is called an average consensus
problem.

Average consensus estimation for sensor networks has been discussed in (Bai
et al., 2010; Brinon-Arranz et al., 2011; Freeman et al., 2006; Li and Guo, 2013;
Olfati-Saber and Shamma, 2005; Spanos et al., 2005; Xiao et al., 2007, 2005). In
(Xiao et al., 2005), a static average consensus protocol is applied and each node
computes a locally weighted least-squares estimate in order to reach convergence
for the overall network. In (Xiao et al., 2007), a distributed average computation

27
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of time-varying signals is studied for inputs affected by zero-mean noise. In
(Olfati-Saber and Shamma, 2005) and (Spanos et al., 2005), a dynamic consensus
filter for distributed low-pass sensor fusion is proposed. It tracks the input’s
average of all sensors in a network. It is assumed that each sensor measures the
same signal corrupted by noise.

In the case that inputs were not equal for each sensor, a proportional-integral
(PI) consensus filter is proposed in (Freeman et al., 2006), (Bai et al., 2010) and
(Li and Guo, 2013). This filter let the inputs accurately converge when they
are time-invariant. In (Bai et al., 2010), the authors design a generalized PI
consensus filter to track the average of ideal time-varying inputs by exploiting
the internal model principle.

In (Li and Guo, 2013) authors modify the PI consensus filter proposed in
(Freeman et al., 2006) and remove the requirement of bi-directional exchange of
neighboring gains. They also extend the results to balanced directed graphs with
switching topologies via hybrid filter in order to compensate the effect introduced
by switching.

An application of the algorithm based on (Olfati-Saber and Shamma, 2005)
is presented in (Brinon-Arranz et al., 2011). The authors estimate the gradient
direction of signal propagation using a fixed circular sensor formation. A gain
is introduced to modify the eigenvalues of the Laplacian matrix, and authors
consider that the input is a different vector for each sensor.

In this chapter a modification of the algorithm in (Olfati-Saber and Shamma,
2005) is proposed, which significantly improves the accuracy of time-varying
signal tracking. By defining the sensor network’s bandwidth it attenuates high
frequency noise. A tuning parameter which increases the convergence speed and
reduces the convergence region is included. This result will be used to estimate
the gradient in a distributed way in Sections 3.4 and 3.5 when the concentration
and position signals are corrupted by noise at high frequency (unweighted and
weighted gradient estimation).

This chapter is organized as follows: Section 3.2 provides the main results on
design and convergence analysis of the proposed distributed consensus filter. In
Section 3.3 detailed simulation results are presented. In Sections 3.4 and 3.5, the
unweighted and weighted distributed gradient estimation with noise is presented.
Finally, concluding remarks follow in Section 3.6.

3.2 Consensus Filter

Consider a sensor network of size N , spatially distributed with undirected com-
munication graph G. Assume that each sensor measures a signal r(t) ∈ R

p

corrupted by noise ni(t) ∈ R
p. The sensing model is given by

ui(t) = r(t) + ni(t), i ∈ V, (3.1)
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where ni(t) is a zero-mean Gaussian noise. Define the vectors
u(t) = [uT1 (t), . . . , u

T
N(t)], r(t) = [rT1 (t), . . . , r

T
N(t)]

T and n(t) = [nT1 (t), . . . , n
T
N(t)]

T ,
then the sensing model for the whole network is

u(t) = 1r(t) + n(t). (3.2)

The covariance matrix of n(t) is assumed to be diagonal Σ = diag(Σ1, . . . ,ΣN),
i.e., ni(t) and nj(t) are uncorrelated. A distributed consensus algorithm proposed
in (Olfati-Saber and Shamma, 2005) is given by

ẋi(t) =−
∑

j∈Ni

aij(ui(t)− uj(t))−
∑

j∈Ni

aij(xi(t)− xj(t))

+ (1 + di)(ui(t)− xi(t)), (3.3)

where xi(t) ∈ R
p is the estimation of the target r, obtained in sensor node i

by taking a linear combination of neighbouring estimates and measurements. In
order to rebuild the signal r, the following modified algorithm is proposed

ẋi(t) =β
∑

j∈Ni

aij(ui(t)− uj(t))− β
∑

j∈Ni

aij(xi(t)− xj(t))

+ β(1 + di)(ui(t)− xi(t)), (3.4)

where β > 0 is a tuning parameter. The difference between the consensus algo-
rithm proposed by (Olfati-Saber and Shamma, 2005) and our approach is that
a tuning parameter β and change of sign of the term

∑

j∈Ni
aij(ui(t) − uj(t))

is added. The resulting Equation (3.4) allows significant improvements in the
consensus filter, as shown below.

In vector notation, and using the definition of the Laplacian graph, Equation
(3.4) can be rewritten as

ẋ = −β(IN +∆+ L)(x− u) = −βA(x− u), (3.5)

where A = IN +∆+L is a symmetric positive definite matrix (A ≻ 0). Applying
the Gersgorin theorem to matrix A, it is shown that 1 + dmin ≤ λmin(A) ≤
λmax(A) ≤ 1 + 3dmax. Each state of a node i is initialized with xi(0) = xi0.

3.2.1 Filter Analysis

To show the effect of parameter β on performance and stability of the algorithm,
the proposed consensus filter is analysed as follows. Let U ∈ R

N×N be a unitary
matrix such that U−1(∆ + L)U = Λ = diag(λ1, . . . , λN), where 0 < λ1, . . . , λN .
Let x = (U⊗Ip)x̃, where x̃ = [x̃T1 , . . . , x̃

T
N ]

T . Further, rewrite the input signals as
1r = (U ⊗ Ip)(1r̃), and n = (U ⊗ Ip)ñ, where ñ = [ñT1 , . . . , ñ

T
N ]

T , then Equation
(3.5) can be rewritten as

˙̃x = −β((IN + Λ)⊗ Ip)x̃+ β((IN + Λ)⊗ Ip)(1r̃ + ñ). (3.6)
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Note that the weight factor β is the same for all directions of the state. Therefore,
for each sensor i, it is possible to write

˙̃xi = −β(1 + λi)⊗ Ip)x̃i + β(1 + λi)⊗ Ip)(r̃ + ñi).

The transfer function of the consensus filter for each sensor i is given by

x̃i(s) = [s+ β(1 + λi)⊗ Ip]
−1

β [(1 + λi)⊗ Ip] (r̃(s) + ñi(s)).

If p = 1, the above equation can be written as

x̃i(s) =
β(1 + λi)

s+ β(1 + λi)
(r̃(s) + ñi(s)). (3.7)

The pole of the transfer function is strictly negative and thus the filter is stable.
Furthermore, the transfer function in (3.7) is strictly proper, it means it is a low-
pass filter. When β is increased and β > 1, the poles move to the left and the
speed of the sensor network becomes faster. If β is reduced such that 0 < β < 1,
the poles move towards the imaginary axis and the speed of the sensor network
becomes slower. Note that β does not modify the static gain of the transfer
function (t → ∞, s → 0). This static gain is always equal to 1 for all the
eigenvalues resulting in improved tracking accuracy.

 

 

Rosero-Werner β = 2.5

Rosero-Werner β = 1.4

Olfati-Shamma

S
in
gu

la
r
va
lu
es

(d
B
)

Frequency (rad/s)

Singular values

10−1 100 101 102 103
−30

−25

−20

−15

−10

−5

0

5

10

Figure 3.1: Singular value plots of the consensus filter

Since tracking and noise rejection are conflicting design objectives, it is ne-
cessary to define the frequency range. Therefore β is selected ensuring that the
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target will be tracked and noise will be rejected. The algorithm suppresses the
effect of noise at high frequency. If the bandwidth is defined as ωci = β(1 + λi),
it is possible to write for each eigenvalue β(1 + λ1) ≤ ωci ≤ β(1 + λN ) = ωcmax.
Tuning the parameter β, it is possible to design the sensor network’s bandwidth
in order to attenuate the high frequency noise as β = ωcmax

1+λN
. If ω ≪ ωcmax, then

∣
∣
∣
x̃i(s)
ũi(s)

∣
∣
∣ = 1. If ω ≫ ωcmax, then

∣
∣
∣
x̃i(s)
ũi(s)

∣
∣
∣ = ωcmax

ω
.

Fig. 3.1 shows a comparison of singular values of the system (3.5) between
our approach (with β = 1.4 and β = 2.5) and the approach given by (Olfati-
Saber and Shamma, 2005), with the communication topology given by Fig. 1.4.
Fig. 3.1 shows that the proposed approach has a gain 1 at low-frequency for all
singular values. Tuning β (with β ≥ 1), it is possible to track the targets faster.
The tracking is slower if 0 < β < 1. In both cases the filter rejects the high
frequency noise.

3.2.2 Convergence Analysis

To analyse the convergence of the consensus filter algorithm the following theo-
rem is proposed.

Theorem 1. Let r(t) be a signal with an uniformly bounded rate ‖ṙ(t)‖ ≤ ν.
Then x∗(t) = r(t)1 is a globally asymptotically ǫ-stable equilibrium of the con-
sensus filter dynamics given by (3.3) with input u(t) = r(t)1 and

ǫ =
ν
√
N (1 + dmax)

βλ2min(A)

√

λmax(A)

λmin(A)
. (3.8)

Proof. The equilibrium is defined at x(t) = 1r(t). Define the error vector η(t) =
x(t)− 1r(t), then, the dynamics of the error can be written as

η̇ = −βAη − 1ṙ. (3.9)

Now define the Lyapunov function V (η) = 1
2
ηTAη for the dynamic errors in (3.9).

Then the derivative of V (η) along the trajectories of the system is given by

V̇ (η) = −βηTATAη − ṙT1TAη. (3.10)

The derivative of the Lyapunov function is bounded by

V̇ (η) ≤ −βλ2min(A)‖η‖2 + ‖ṙT‖‖1TAη‖. (3.11)

Let ‖ṙ(t)‖ ≤ ν, then

V̇ (η) ≤ −βλ2min(A)‖η‖2 + ν
√
N (1 + dmax) ‖η‖, (3.12)

where ‖1TAη‖ ≤
√
N(1 + dmax‖η‖) and 1 + dmin ≤ λmax(A) ≤ λmax(A) ≤

1 + 3dmax. Completing the square, it is possible to obtain

V̇ (η) ≤ −βλ2min(A)
(

‖η‖ − ν
√
N (1 + dmax)

2βλ2min(A)

)2

+

(

ν
√
N (1 + dmax)

)2

4βλ2min(A)
. (3.13)
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Following the reasoning of proposition 2 in (Olfati-Saber and Shamma, 2005),
let Bρ be a closed ball centred at η = 0 wit radius

ρ ≤ ν
√
N (1 + dmax)

βλ2min(A)
, (3.14)

and let Ωc = {η : V (η) ≤ c} be a level-set of the Lyapunov function V (η) with
c = 1

2
λmax(A)ρ

2. Then, Bρ is contained in Ωc because

‖η‖ ≤ ρ⇒ V (η) =
1

2
ηTAη ≤ 1

2
ηTλmax(A)ρ

2 = c,

and thus η ∈ Ωc. As a result, any solution of (3.9) starting in R
p \ Ωc satisfies

V̇ (η) < 0. Thus, it enters Ωc in some finite time and remains in Ωc thereafter
(i.e. Ωc is an invariant level-set). This guarantees global asymptotic ǫ-stability
of η = 0 with radius ǫ = ρλmax(A)/λmin(A). To show this, note that

1

2
λmin(A)‖η‖2 ≤ V (η) ≤ 1

2
λmax(A)ρ

2. (3.15)

Thus, the solutions enter the region

‖η‖ ≤ ρ

√

λmax(A)

λmin(A)
, (3.16)

which implies the radius of ǫ- stability is

ǫ = ρ
λmax(A)

λmin(A)
=
ν
√
N (1 + dmax)

βλ2min(A)

√

λmax(A)

λmin(A)
. (3.17)

Of course, ǫ-stability of η = 0 implies ǫ-tracking of r(t) by every node of the
network (i.e., ǫ-consensus is asymptotically reached).

Remark 1. Using the consensus algorithm (3.3) proposed by (Olfati-Saber and
Shamma, 2005), the radius of ǫ̃-stability is given by

ǫ̃ = βǫ. (3.18)

3.2.3 Convergence Analysis for Regular Networks

If a regular network G of degree d̄ is considered, where dmax = dmin = d̄ = δNγ ,
IN +∆ = (d̄+ 1)IN and λmax = λmin(A) = 1 + d̄, the expression for ǫ simplifies
to

ǫ =
ν
√
N(1 + d̄)

β(1 + d̄)2
=

ν
√
N

β(1 + δNγ)
, (3.19)

while the authors in (Olfati-Saber and Shamma, 2005) obtained

ǫ̃ = βǫ. (3.20)

Note that if β is increased (β > 1), the radius of ǫ is smaller.

The advantages of the algorithm here presented over the algorithm presented
in (Olfati-Saber and Shamma, 2005) are:
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• Its gain for all the eigenvalues is 1, resulting in improved tracking accuracy.

• Tuning of the parameter β improves the convergence speed and the con-
vergence region.

• β = ωcmax

1+λN
is introduced as a suitable choice for designing the sensor net-

work’s bandwidth.
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Figure 3.2: Fused sensor data for sensor measurements ra(t) + ni(t)

3.3 Simulation Results

Simulation results for sensor networks with N = 7 in a dimension p = 1 are
presented. The communication topology of the graph is shown in Fig. 1.4. The
results are tested via sinusoidal target tracking, using the following test signals
as

ra(t) = 5 + sin(t) + sin(2t+ 3) + sin(5t+ 4),

rb(t) = 5 + sin(2t),

rc(t) = 5 + sin(5t).

The covariance matrix is taken as Σ = diag(0.5 0.29 0.15 0.3 0.45 0.4 0.6) for
each sensor, with initial conditions x(0) = [0 2 4 6 8 10 12]T .
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Figure 3.3: Fused sensor data error for sensor measurements ra(t) + ni(t)

Figs. 3.2, 3.4 and 3.6 show sensor fusion using a low-pass consensus filter
based on the approach presented by (Olfati-Saber and Shamma, 2005) and our
approach with β = 1.4 and β = 2.5. Figs. 3.3, 3.5, and 3.7 show the error
between the reference signals and the estimated signals for each sensor. For
β ≥ 1 the performance of our approach is better than the approach presented
by (Olfati-Saber and Shamma, 2005), and the convergence speed is faster with
a smaller error. This result is supported by equation (3.17). Figs. 3.3 and 3.5
show that for signals with frequency lower than the maximum bandwidth of the
network and β ≥ 1 the signal tracking error of our approach is smaller than the
tracking error in the approach presented by (Olfati-Saber and Shamma, 2005).
If β ≫ 1, the signal tracking error is smaller and the effect of noise appears.

Figs. 3.6 and 3.7 show the comparison between the approach presented by
(Olfati-Saber and Shamma, 2005) and our approach with β = 1.4 and β = 2.5
for a target signal with frequency 5 rad/s. The maximum bandwidth for the
approach based on (Olfati-Saber and Shamma, 2005) is 3.6 rad/s while for our
approach the maximum bandwidth is 13.3 rad/s for β = 1.4 and 24 rad/s for
β = 2.5, respectively. The tracking signal error of our approach is smaller than
the tracking error of the approach presented by (Olfati-Saber and Shamma, 2005)
because the network’s bandwidth is increased by increasing the parameter β.

All in all, the proposed consensus algorithm has a better performance than
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Figure 3.4: Fused sensor data for sensor measurements rb(t) + ni(t)

the algorithm proposed by (Olfati-Saber and Shamma, 2005). As shown, the
network’s bandwidth has been modified tuning the parameter β. For β ≥ 1 the
convergence velocity increases and the signal tracking error and the convergence
region are reduced. Note that for β ≫ 1 the signal tracks the real signal and the
noise. For this reason, it is necessary to find a trade-off between noise rejection at
high frequency and algorithm’s performance. The consensus algorithm is clearly
capable of target tracking within the network’s bandwidth.

3.4 Unweighted Distributed Gradient Estima-

tion with Noise

Assume that each agent measures both concentration signal ψi(ri(t)) ∈ R and
position signal ri(t) ∈ R

p corrupted by noise nψi(t) ∈ R or nri(t) ∈ R
p. The

sensing models are given by

uψi(t) = ψi(t) + nψi(t),

uri(t) = ri(t) + nri(t), (3.21)

where nψi ∈ R and nri ∈ R
p are zero-mean Gaussian noise, and the pairs nri(t)

- nrj(t) and nψi(t) - nψj(t) are uncorrelated. In order to estimate the signals, a
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Figure 3.5: Fused sensor data error for sensor measurements rb(t) + ni(t)

distributed consensus algorithm is proposed as

ϕ̇i(t) =βϕ
∑

j∈Ni

aij (uψi − uψj)− βϕ
∑

j∈Ni

aij(ϕi − ϕj)

+ βϕ(1 + di) (uψi − ϕi) , (3.22)

where ϕi ∈ R is the target’s estimation ψi and βϕ is a tuning parameter. To
estimate the position signal, the following algorithm is proposed

ν̇i(t) =βν
∑

j∈Ni

aij (uri − urj)− βν
∑

j∈Ni

aij(νi − νj)

+ βν(1 + di) (uri − νi) , (3.23)

where νi ∈ R
p is the estimation of the target ri and βν is a tuning parameter.

Each state of sensor i is initialized with ϕi(0) = ϕi0 and νi(0) = νi0. The stability
analysis of these algorithms is introduced in (Rosero and Werner, 2014c). Using
the outputs of consensus filter, it is possible to compute the slope between agent
i and their neighbours Ni as






ϕ(νi)− ϕ(ν1)
...

ϕ(νi)− ϕ(ν|Ni|)






︸ ︷︷ ︸

bi

=






(νi − ν1)
T

...
(νi − ν|Ni|)

T






︸ ︷︷ ︸

Ri

∇ϕ(νi), (3.24)
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Figure 3.6: Fused sensor data for sensor measurements rc(t) + ni(t)

where bi ∈ R
|Ni|×1, Ri ∈ R

|Ni|×p and ∇ϕ(νi) ∈ R
p×1. The problem can be solved

using least-squares as

ĝei =
(
RTi Ri

)−1
RTi bi. (3.25)

3.5 Weighted Distributed Gradient Estimation

with Noise

Using both sensing models (Equation 3.21) and the consensus filters for concen-
tration and position signals (Equations 3.22 and 3.23) it is possible to write

Wi






ϕ(νi)− ϕ(ν1)
...

ϕ(νi)− ϕ(ν|Ni|)






︸ ︷︷ ︸

bi

=Wi






(νi − ν1)
T

...
(νi − ν|Ni|)

T






︸ ︷︷ ︸

Ri

∇ϕ(νi), (3.26)

where bi ∈ R
|Ni|×1, Ri ∈ R

|Ni|×p, ∇ϕ(νi) ∈ R
p×1 and Wi = diag{wij} ∈ R

|Ni|×|Ni|.
Using least-squares estimator, the problem can be solved as

ĝei =
(
RTi W

2
iRi
)−1

RTi W
2
i bi. (3.27)
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Figure 3.7: Fused sensor data error for sensor measurements rc(t) + ni(t)

Equations (3.25) and (3.27) can be used to reject noise at higher frequency
when concentration and position signals are corrupted by noise.

3.6 Conclusions

In this chapter a distributed consensus filter for sensor networks with time-
varying signal tracking has been presented. The filter is designed to run locally on
each sensor. It requires information only from agent’s local neighbours. Analysis
shows that the proposed algorithm is stable and exhibits a better performance
than the algorithm proposed by (Olfati-Saber and Shamma, 2005). Simulations
confirm the effectiveness of the proposed consensus algorithm.



Chapter 4

Cooperative Source Seeking with

Single and Double Integrator

Agents

In this chapter the problem of cooperative source seeking by a formation of
single and double integrator mobile agents is considered. As mentioned above,
each agent is equipped with position and field sensors. Agents are part of a
network and exchange information with neighbouring agents through a com-
munication network. Distributed navigation controllers for single and double
integrator agents are presented. When the field measurements are corrupted by
noise, distributed consensus filters are used in order to reject the noise at high
frequencies. Stability conditions are presented. Numerical simulations illustrate
the effectiveness of the proposed control law.

4.1 Introduction

Here the source seeking problem as defined in Chapter 1 will be addressed using
two simple distributed navigation strategies for single and double integrator mo-
dels.

The simplest mathematical representation of agents are single and double
integrator models. A single integrator model is also called a kinematic agent
model because it ignores the lower-level agent dynamics of individual agents;
they achieve consensus using only relative position information.

Double integrator models are extended single integrator models that use an
additional state to represent the velocity. Double integrator dynamics represent
the dynamics of a point mass without friction under the effect of a time-varying
force input. Double integrator modelling is required to show how agents reach
an agreement not only in their positions but also in their velocities. The double
integrator models allow the design of a control law based on acceleration as input
and therefore, both position and velocity achieve agreement.

39
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Aim of this Chapter is to demonstrate that, using the presented controllers,
agents are able to converge towards the scalar field’s source while maintaining
the formation.

The chapter is structured as follows. In Sections 4.2 and 4.3, control laws and
stability analysis for single and double integrator models are presented. Simula-
tion results illustrate the proposed approach in Section 4.4. Finally, concluding
remarks and a reference to the second part of this work are made in Section 4.5.

4.2 Single Integrator Agents

In order to simplify the notation, in the following sections only the case p = 1 will
be considered. The analysis can be extended to a higher dimension p rewriting
the equations in terms of Kronecker product.

Agents modelled by single integrator dynamics are described by

ṙi(t) = ui(t), (4.1)

where i = 1, ..., N , ri(t) ∈ R
p is the position vector and ui(t) ∈ R

p its control
input. The following distributed control law is considered

ui(t) =kF
∑

j∈Ni

aij [(rF i(t)− rFj(t))− (ri(t)− rj(t))] + kT ĝi(ri(t)), (4.2)

where

ĝi(ri) =

(
∑

j∈Ni

aij(ri − rj)(ri − rj)
T

)−1(
∑

j∈Ni

aij(ri − rj)(ψ(ri)− ψ(rj))

)

is the distributed estimated gradient computed in each agent i in Chapter 2.
kT > 0 and kF > 0 are scalar tuning parameters, uT i(t) = kT ĝi(ri) denotes
the control input used to track the direction of the gradient for agent i, ĝi de-
notes the estimated gradient computed by Equations (2.3) and (3.25), uF i(t) =
kF
∑

j∈Ni
[rF i(t)− rFj(t))− (ri(t)− rj(t)] denotes the formation control input

for agent i and rF i denotes a reference signal for agent i.

Let r(t) = [rT1 (t), . . . , r
T
N(t)]

T , rF (t) = [rTF1(t), . . . , r
T
FN(t)]

T ,
ĝ(t) = [ĝT1 (t), . . . , ĝ

T
N(t)]

T , and use the definition of the Laplacian L, then it is
possible to write

ṙ = kFL(rF − r) + kT ĝ(r). (4.3)

Note that if ĝ(r) = 0 and kF = 1, Equation (4.3) is reduced to the well known
results about consensus for agents’ formation presented by (Mesbahi and Egerst-
edt, 2010; Olfati-Saber and Murray, 2004). Consensus is reached asymptotically
with a rate of convergence λ2(G), if and only if the graph G is connected.

Let r̄(t) = 1
N

∑

i∈V ri(t) =
1
N
1T r(t) be the average of the position states, and

¯̂g(r(t)) = 1
N

∑

i∈V ĝi(r(t)) =
1
N
1T ĝ(r(t)) be the average of the estimated gradient.
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Since 1TL = 0T , the time derivative of the position states’ average r̄(t) is given
by

˙̄r(t) =
1

N
1T ṙ(t) =

kT
N

1T ĝ = kT ¯̂g, (4.4)

with initial average r̄0 = r̄(0) = 1
N
1T r(0) and ¯̂g0 = ¯̂g(r(0)) = 1

N
1T ĝ(r(0)).

Therefore it holds that r̄(t) = r̄(0) + kT
∫ t

0
¯̂g(τ, r(τ))dτ for all t ≥ 0. Note that

the agents move inside a scalar field with the varying velocity kT ¯̂g in the gradient
direction. If the estimated gradient ĝi for each agent i is normalized as ĝNi = ĝi

‖ĝi‖ ,
the agents’ velocity will be constant and defined by the parameter kT .

The equilibrium point of Equation (4.3) is given by

kFLr∗ = kFLrF + kT ĝ(r
∗), (4.5)

where r∗ = [r∗T1 , . . . , r∗TN ]T . The position’s average of the equilibrium points are
given by

˙̄r(t) = 0 = ¯̂g(r∗). (4.6)

Note that Equation (2.3) can be rewritten as ĝi =
(
rTp L̄irp

)−1 (
rTp L̄iψ

)
, where

rp = [rp1, . . . , rpN ]
T , ψ = [ψ1, . . . , ψN ]

T , rpi = [rxi ryi]
T and L̄i is the Laplacian

matrix for the tree generated by agent i only with neighbours Ni. L̄i has only
one zero eigenvalue, the same eigenvalue of L. In equilibrium, the average of
Equation (4.5) can be written as

N∑

i=1

ĝ∗i =
N∑

i=1

(
r∗Tp L̄ir∗p

)−1 (
r∗Tp L̄iψ∗) = 0. (4.7)

When the gradient’s average is zero, agents are in an equilibrium point, i.e.,
˙̄r(t) = ¯̂g = 0, and they do not move anymore.

For single integrator agents the following lemma is used.

Lemma 1. ((Seyboth et al., 2011)). Suppose L is the Laplacian of an undirected
connected graph G. Then, ∀ t ≥ 0 and v ∈ R

N with 1T v = 0, it is valid that
‖eLtv‖ ≤ e−λ2t‖v‖.

In order to discuss the convergence, the state r(t) can be decomposed as

r(t) =
1

N
11T r(0) + δ(t),

where 1 is a vector of ones and δ is referred to as disagreement vector. By
definition, the disagreement vector has zero average, i.e., 1T δ(t) ≡ 0 (Olfati-
Saber and Murray, 2004).
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In order to solve the source seeking problem for single integrator agents,
theorem 2 is presented. This theorem recalls assumptions 1 and 2 which have
been presented in Chapter 1.

Theorem 2. Consider the multi-agent system (4.1) with control law (4.2). Sup-
pose that assumptions 1 and 2 are fulfilled. Then, for all ri(0) ∈ R

p and t ≥ 0,
agents locate the unknown source’s position rs of the scalar field ψ(r) and the
disagreement vector δ of the closed-loop system converges to a ball centred at the
origin with radius

ǫ =
2kT

√
Nµ

kFλ2
, (4.8)

with the distance between the formation’s center of mass and the source of the
scalar field

‖r̄∗ − rs‖ ≤ 2

LH

(

e0 + LH
h

2

)

. (4.9)

Proof. Considering the position error ep(t) = r(t)− r∗ and using Equation (4.5),
the dynamic error can be written as

ėp(t) = −kFLep + kT eg, (4.10)

where the gradient error is given by

eg = ĝ(r)− ĝ(r∗). (4.11)

The state ep(t) can be decomposed according to

δ(t) = ep(t)− 1ēp(t), (4.12)

where δ(t) is the disagreement vector of the multi-agent system and
ēp = 1

N
1T ep(t) = r̄(t) − r̄∗. By definition the disagreement vector has zero

average, i.e., 1T δ(t) ≡ 0, following the notation of (Olfati-Saber and Murray,
2004). Since the reference of the formation is fixed, the disagreement dynamics
are given by

δ̇(t) = ėp(t)− 1 ˙̄ep(t),

= −kFLδ + kTMeg, (4.13)

where M = IN − 1
N
11T , initial conditions δ(0) = ep(0) − 1ēp(0) and ṙF = 0.

Therefore, the solution is given by

δ(t) =e−kFLtδ(0) +

∫ t

0

e−kFL(t−τ)kTMegdτ,

where eg is a function of δ and the disagreement vector is bounded by

‖δ(t)‖ ≤‖e−kFLtδ(0)‖+
∫ t

0

‖e−kFL(t−τ)kTMeg‖dτ.
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Since Mĝ has zero average, Lemma 1 can be applied. This yields

‖δ(t)‖ ≤e−kFλ2t‖δ(0)‖+ kT‖M‖
∫ t

0

e−kF λ2(t−τ)‖eg‖dτ,

where λ2 = λ(G) and ‖M‖ = 1. Since ‖ĝi‖ ≤ µ, we have ‖ĝ‖ ≤
√
Nµ and

‖eg‖ ≤ ‖ĝ(ep + r∗)− ĝ(r∗)‖ ≤ 2
√
Nµ; and it follows that

‖δ(t)‖ ≤2kT
√
Nµ

kFλ2
+

(

‖δ(0)‖ − 2kT
√
Nµ

kFλ2

)

e−kF λ2t. (4.14)

This estimate shows that the zero-input response of the disagreement vector
decays to zero exponentially fast, while the zero-state response is bounded for
every bounded input.

The derivative of the position error’s average is given by

˙̄ep = ˙̄r(t)− ˙̄r∗ = kT ēg(ep), (4.15)

where ēg =
1
N
1T (ĝ(ep + r∗)− ĝ(r∗)), ēg satisfies ēg(0) = 0, and ēTp ēg(ep) < 0 for

all ep 6= 0. Then the equilibrium point r∗ is stable because the agents starting
on either side of the source will have to move towards the scalar field’s source
due to the sign of the derivative ˙̄ep. In order to arrive at the same conclusion,
consider the system ˙̄ep = −f(ep), where f(ep) = kT ēg(ep) and satisfies f(0) = 0
and ēTp (ep)f(ep) > 0 for all ep 6= 0. Consider the Lyapunov function candidate

V =
∫ ēp
0
fT (z)dz, V is continuously differentiable, V (0) = 0, and V > 0 for all

ep 6= 0. Then V̇ = −fT (ep)f(ep) = −kT ēTg (ep)ēg(ep) < 0. Therefore, it can be
concluded that the equilibrium is stable.

At this point, it is necessary to compute the distance between the scalar
field’s source and the formation’s center of mass. Fig. 4.1 presents some ideas
about a possible equilibrium point for agents near to the scalar field’s source
rs, the formation’s center of mass r̄∗, and the position r∗av when the estimated
gradient’s average is zero, ¯̂g(r∗av) = 0. When ¯̂g(r∗av) = 0, agents stop and maintain
the formation.

To find the position error between the scalar field’s source and the formation’s
center of mass ‖r̄∗ − rs‖ the Taylor expansion is used. It is assumed that m ≤
‖∇2‖ψ(x) ≤ LH near to the source. The Taylor expansion of ψ(r) at r̄∗ yields

ψ(r) = ψ(r̄∗) +∇ψ(r̄∗)T (r − r̄∗) +
1

2
(r − r̄∗)T∇2ψ(s1)(r − r̄∗), (4.16)

for some s1 on the line segment between r̄ and r. For the equilibrium of the
formation’s center of mass r = rs, this equation yields

ψ(r∗) = ψ(r̄∗) +∇ψ(r̄∗)T (r∗ − r̄∗) +
1

2
(r∗ − r̄∗)T∇2ψ(x1)(r

∗ − r̄∗). (4.17)
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Figure 4.1: Agents in equilibrium

The upper bound on the Hessian ‖∇2ψ(x)‖ ≤ LH , implies

ψ(rs) ≥ ψ(r̄∗) +∇ψ(r̄∗)T (rs − r̄∗) +
1

2
LH‖rs − r̄∗‖2, (4.18)

and

ψ(rs) ≥ ψ(r̄∗)− ‖∇ψ(r̄∗)‖‖rs − r̄∗‖+ 1

2
LH‖rs − r̄∗‖2. (4.19)

Since ψ(rs) ≥ ψ(r̄∗), it holds that

−‖∇ψ(r̄∗)‖‖rs − r̄∗‖+ 1

2
LH‖rs − r̄∗‖2 ≤ 0, (4.20)

then

‖rs − r̄∗‖ ≤ 2

LH
‖∇ψ(r̄∗)‖. (4.21)

A second order approximation of the gradient evaluated at the formation’s
center of mass ∇ψ(r̄∗) can be written as

∇ψ(r̄∗) = ∇ψ(r∗av) +∇2ψ(s1)(r̄
∗ − r∗av), (4.22)

= ¯̂g(r∗av)− ē∇(r
∗
av) +∇2ψ(s1)(r̄

∗ − r∗av),

where ∇ψ(r∗av) = ∇̄ψ(r∗av) = ¯̂g(r∗av)− ē∇(r∗av) and ¯̂g(r∗av) = 0. Taking the norm,
it is possible to write

‖∇ψ(r̄∗)‖ ≤ e0 + LH
h

2
, (4.23)
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since the estimated error is bounded by ‖ē∇‖ ≤ e0, ‖∇2ψ(s1)‖ ≤ LH and ‖r̄∗ −
r∗av‖ ≤ h

2
. Then the distance between the scalar field’s source and the formation’s

center of mass is bounded by

‖rs − r̄∗‖ ≤ 2

LH

(

e0 + LH
h

2

)

. (4.24)

Note that e0 depends on the square of the maximum distance between agents
and the bound of Hessian matrix. In order to reduce the estimated error, the
distance between agents must be sufficiently small.

Remark 2. If the estimated gradient is normalized, ĝN(t) =
[
ĝT1 (t)

‖ĝ1(t)‖ , . . . ,
ĝT
N
(t)

‖ĝN (t)‖

]T

,

then ‖ ĝi
‖ĝi‖‖ = 1, µ = 1 and ‖ĝN‖ =

√
N . Thus, the convergence region is given

by

‖δ(t)‖ ≤2kT
√
N

kFλ2
, (4.25)

and the agents’ average velocity is given by ‖ ˙̄r(t)‖ ≤ kT .

Remark 3. Note that the previous result is given for rs 6= r̄∗ 6= rav. If r
∗
av = r̄∗,

then h = maxj∈Ni
‖r̄∗ − r∗av‖ = 0, and ‖∇ψ(r̄∗)‖ ≤ e0. Consequently, error is

bounded by

‖rs − r̄∗‖ ≤ 2

LH
e0. (4.26)

If r∗av = r̄∗ = rs, then h = maxj∈Ni
‖r̄∗ − r∗av‖ = 0, ∇ψ(r̄∗) = 0, and then

‖rs − r̄∗‖ = 0, i.e., the formation’s center of mass is exactly at the scalar field’s
source and the distance between this source and the formation’s center of mass
is zero.

Remark 4. Note that since ‖ĝi‖ ≤ µ, the convergence region is conservative.

4.3 Double Integrator Agents

Agents modelled by double integrator dynamics are described by

ṙi(t) = vi(t),

v̇i(t) = ui(t), (4.27)

where i = 1, ..., N , ri(t) ∈ R
p is the position vector, vi ∈ R

p is the velocity vector,
and ui(t) ∈ R

p is the control input. Again, agents are controlled in a distributed
fashion, i.e., ui(t) depends only on information from its neighbours j ∈ Ni.

The following distributed control law is considered

ui(t) =kF
∑

j∈Ni

aij [(rF i(t)− rFj(t))− (ri(t)− rj(t))− θ(vi(t)− vj(t))]

+ kT (ĝi(ri(t))− γvi(t)) , (4.28)
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where

ĝi(ri) =

(
∑

j∈Ni

aij(ri − rj)(ri − rj)
T

)−1(
∑

j∈Ni

aij(ri − rj)(ψ(ri)− ψ(rj))

)

is the distributed estimated gradient computed in each agent i in Chapter 2,
kF > 0, kT > 0, γ > 0 and θ > 0 are scalar control parameters in the formation,
uT i(t) = kT (ĝi(t)− γvi(t)) denotes the control input tracking the gradient for
agent i, uF i(t) = kF

∑

j∈Ni
aij[(rF i(t)− rFj(t))− (ri(t)− rj(t))− θ(vi(t)− vj(t))]

denotes the formation control input for agent i, rF i(t) denotes a formation’s
desired reference signal for agent i, and ĝi(t) is the estimated gradient for agent
i computed by Equations (2.3) and (3.25).

Let r(t) = [rT1 (t), . . . , r
T
N(t)]

T , rF (t) = [rTF1(t), . . . , r
T
FN(t)]

T ,

v(t) = [vT1 (t), . . . , v
T
N(t)]

T , and ĝ(t) =
[
ĝT1 (t), . . . , ĝ

T
N(t)

]T
, then the closed-loop

dynamics can be written as
[
ṙ
v̇

]

= Σ

[
r
v

]

+

[
0 0

kFL kT IN

] [
rF
ĝ(r)

]

, (4.29)

where

Σ =

[
0 IN

−kFL −kF θL − kTγIN

]

.

Note that if ĝ(r) = 0, kT = 1 and kF = 1, Equation (4.29) is reduced to a
well known result on agents’ formation presented by (Ren and Atkins, 2007).

Let r̄(t) = 1
N

∑

i∈V ri(t) = 1
N
1T r(t) be the average of the position states,

v̄(t) = 1
N

∑

i∈V vi(t) = 1
N
1Tv(t) be the average of the velocity states, and

¯̂g(r(t)) = 1
N

∑

i∈V ĝi(r(t)) = 1
N
1T ĝ(r(t)) be the average of the estimated gra-

dient. Since 1TL = 0T , the time derivative of both the position states average r̄
and the velocity states average v̄ is given by

˙̄r(t) = v̄(t),

˙̄v(t) = −kTγv̄(t) + kT ¯̂g(r), (4.30)

with initial average r̄0 = r̄(0) = 1
N
1T r(0), v̄0 = v̄(0) = 1

N
1Tv(0) = 0 and

¯̂g0 = ¯̂g(r(0)) = 1
N
1T ĝ(r(0)). Note that agents move with varying velocity into

the scalar field following the gradient direction. If the estimated gradient ĝi for
each agent i is normalized as ĝNi = ĝi

‖ĝi‖ , agents’ velocity will be constant.

Let σ be the eingenvalues of matrix Σ. With the purpose of analysing the
consensus of Equation (4.29), first the Equation det (σI2N − Σ) = 0 has to be
solved to find the eigenvalues of Σ. It holds that

det (σI2N − Σ) = det
(
σ2IN + (kTγIN + kF θL)σ + kFL

)
.

Then, the eigenvalues of Σ are given by

σi1, i2 =
−(kTγ − kFθλi)±

√

(kTγ − kFθλi)2 + 4kFλi
2

,
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where i = 1, . . . , N , σi1 and σi2 are the eigenvalues of Σ that are associated with
eigenvalue λi of the Laplacian matrix L.

Since λ1 = 0, two eigenvalues σ11 = 0 and σ12 = −kTγ are obtained. Then,
Σ has one zero eigenvalue because L has one zero eigenvalue, and all the other
eigenvalues have negative real parts. Note that Σ can be written in Jordan
canonical form as

Σ =PJP−1,

=
[
w1, . . . ,w2N

]
[

0 01×(2N−1)

0(2N−1)×1 J ′

]






vT1
...

vT2N




 ,

where J ′ is the Jordan upper diagonal block matrix corresponding to 2N − 1
non-zero eigenvalues and wi, vi ∈ R

2Nfor i = 1, . . . , 2N . wi and vi can be chosen
to be the right and left generalized eigenvectors of Σ, respectively corresponding
to the eigenvalue zero. It is well-known that an undirected graph is connected if
and only if the second smallest eigenvalue is larger than zero. Since Σ has only
one zero eigenvalue, L has a simple zero eigenvalue. It implies that there exists a
non-negative vector p such that pTL = 0 and pT1 = 1. Without loss of generality,
w1 = [1T 0T ]T is chosen as the right eigenvector and v1 = [pT 1

kT γ
pT ]T is chosen

as the left eigenvector corresponding to the eigenvalue zero, where vT1 w1 = 1 and
p = 1

N
1. Since all other eigenvalues of Σ have negative real parts, it follows that

lim
t→∞

eΣt = lim
t→∞

PeJtP−1,

=
1

N

[
w1v

T
1 0N×N

0N×N 0N×N

]

.

Given any initial positions and velocities r(0) = r0 and v(0) = v0 respectively,
rF = 0 and ĝ = 0, it follows that

lim
t→∞

[
r(t)
v(t)

]

=
1

N

[
11T 1

kT γ
11T

0 0

] [
r(0)
v(0)

]

,

then limt→∞ r(t) = 1
N
11T r(0)+ 1

kT γN
11Tv(0) and limt→∞ v(t) = 0. It is straight-

forward to see that consensus is achieved if and only if the graph is connected,
kF > 0, kT > 0, γ > 0, θ > max2≤i≤N

kT γ

kF λi
and the graph is connected. Similar

results are obtained applying a procedure based on (Ren and Atkins, 2007; Zhu,
2011). Thus, matrix Σ has exactly one zero eigenvalue and only one independent
eigenvector corresponding to the zero eigenvalue.

To order the eigenvalues of matrix Σ, let κ1 = σ11, κ2 = σ12, κ3 = σ21, and so
forth. In consequence the eigenvalues of Σ can be organised as −κ2N (Σ) ≤ · · · ≤
−κ2(Σ) < κ1(Σ) = 0. Then for all t ≥ 0 and all vectors v ∈ R

2N with wT1 v = 0
and vT1 v = 0, it holds that

‖eΣtv‖ ≤ e−κ2tcd‖v‖, (4.31)
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where cd = ‖P−1‖‖P‖.
The equilibrium point of Equation (4.29) is given by

v∗ =0

kFLr∗ =kFLrF + kT ĝ(r
∗), (4.32)

where r∗ = [r∗T1 , . . . , r∗TN ]T . The position’s and velocity’s average of the equili-
brium points are given by

˙̄r(t) = v̄(t) = ˙̄v(t) = 0 = ¯̂g. (4.33)

In equilibrium, the average of Equation (4.32) is defined as

N∑

i=1

ĝ∗i = 0 =
N∑

i=1

(
r∗Tp L̄ir∗p

)−1 (
r∗Tp L̄iψ∗) . (4.34)

When the average of the gradient is zero, agents are in an equilibrium point, i.e.,
¯̂g = 0 and they do not move anymore.

In order to solve the source seeking problem for double integrator agents,
theorem 3 is presented. This theorem recalls assumptions 1 and 2 which have
been presented in Chapter 1.

Theorem 3. Consider the multi-agent system (4.27) with control law (4.28).
Suppose that assumptions 1 and 2 are fulfilled. Then, for all ri(0) ∈ R

p and
t ≥ 0, agents locate the unknown source’s position rs of the scalar field ψ(r) and
the disagreement vector δ of the closed-loop system converges to a ball centred at
the origin with radius

ǫ =
2cdkT

√
Nµ

κ2
, (4.35)

with a distance between the formation’s center of mass and the scalar field’s
source

‖rs − r̄∗‖ ≤ 2

LH

(

e0 + LH
h

2

)

. (4.36)

Proof. Consider the position error ep(t) = r(t) − r∗ and velocity error ev(t) =
v(t)− v∗. Using Equation (4.32), the error is governed by

[
ėp
ėv

]

= Σ

[
ep
ev

]

+ kT

[
0
eg

]

, (4.37)

where eg = ĝ(r)− ĝ(r∗). Define the average of the position error states ēp(t) =
1
N

∑

i∈V epi(t) =
1
N
1T ep(t) = r̄ − r̄∗, and the average of the velocity error states

ēv(t) = 1
N

∑

i∈V evi(t) = 1
N
1T ev(t) = v̄ − ˙̄r∗. Then, the state vector can be

decomposed according to

ep(t) = 1ēp(t) + δp(t),

ev(t) = 1ēv(t) + δv(t), (4.38)
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such that the disagreement vectors δp(t) and δv(t) have zero average, i.e., 1
T δp(t) ≡

1T δv(t) ≡ 0. Derivation of Equation (4.38) with respect to time t and considering
that v(0) = 0, yields

[
δ̇p
δ̇v

]

=Σ

[
δp
δv

]

+ kT

[
0
M

]

eg, (4.39)

where M = IN − 1
N
11T . With δ(t) = [δp(t)

T δv(t)
T ]T and Ψ =

[
0
M

]

, the

disagreement dynamics are given by

δ̇(t) = Σδ(t) + Ψeg (4.40)

and the solution is given by

δ(t) = eΣtδ(0) + kT

∫ t

0

eΣ(t−τ)Ψegdτ.

Then the disagreement vector is bounded by

‖δ(t)‖ ≤ ‖eΣtδ(0)‖+ kT

∫ t

0

‖eΣ(t−τ)Ψeg‖dτ.

Applying Equation (4.31) and using κ2 = κ2(Σ), this yields

‖δ(t)‖ ≤ 2cdkT
√
Nµ

κ2
+

(

cd‖δ(0)‖ −
2cdkT

√
Nµ

κ2

)

e−κ2t, (4.41)

because ‖Ψ‖ = ‖M‖ = 1, ‖ĝi‖ ≤ µ and ‖ĝ‖ ≤
√
Nµ. This estimate shows that

the zero-input response decays to zero exponentially fast while the zero-state
response is bounded for every bounded input.

Since 1TL = 0T , the time derivative of ēp and ēv are given by

˙̄ep(t) = ēv(t),

˙̄ev(t) = −kTγēv(t) + kT ēg(ep), (4.42)

with initial average ēp(0) = 1
N
1T ep(0) = ēp0, ēv(0) = 1

N
1T ev(0) = ēv0, ēg =

1
N
1T (ĝ(ep + r∗)− ĝ(r∗)), ēg satisfies ēg(0) = 0 and eTp ēg(ep) < 0 for all ep 6= 0.

If the graph is an undirected graph and consensus is achieved, the state of
every agent will converge to the consensus dynamics’ solution of the Equation
(4.42). Then the equilibrium point r∗ is asymptotically stable because the agents
starting on either side of the source will have to move toward the source of the
scalar field due to the sign of ēg. To arrive to the same conclusion, consider
the system ˙̄ep(t) = ēv(t), ˙̄ev(t) = −kTγēv(t) − f(ep), where f(ep) = −kT ēg(ep)
and satisfies f(0) = 0; ēTp (ep)f(ep) > 0 for all ep 6= 0. Consider the Lyapunov

function candidate V = 1
2
ēTv ēv +

∫ ēp
0
fT (z)dz, V is continuously differentiable,

V (0) = 0, and V > 0 for all ep 6= 0 and ev 6= 0. Then V̇ = −kTγēTv ēv ≤ 0. It can
be concluded that the equilibrium point is stable.
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Applying the Lasalle’s principle, it is inferred that the equilibrium point is also
stable because ēv = 0 ⇒ ēp = 0 ⇒ ˙̄ev = 0 = −f(0) = 0. Note that the feedback
gains kT and γ determine the consensus dynamics. kF and θ determine both
whether the consensus is achieved and they also determine consensus velocity.

The distance between the scalar field’s source and the formation’s center of
mass is bounded by

‖rs − r̄∗‖ ≤ 2

LH

(

e0 + LH
h

2

)

. (4.43)

This result is obtained applying a similar analysis as done for demonstrating
Theorem 2.

Remark 5. If the estimated gradient is normalized, ĝN(t) =
[
ĝT1 (t)

‖ĝ1(t)‖ , . . . ,
ĝTN (t)

‖ĝN (t)‖

]T

,

‖ ĝi
‖ĝi‖‖ = 1 and µ = 1, then ‖ĝN‖ =

√
N . Thus, the convergence region is given

by ‖δ(t)‖ ≤ 2cdkT
√
N

κ2
and the agents travel at constant velocity.

4.4 Simulation Results

In order to demonstrate convergence of the proposed source seeking algorithms,
mobile agents (N = 7) with the formation and communication graph G (Fig.
1.4) are considered. The communication topology is undirected and connected.
The scalar field is defined as

ψ(r) = A0e
−((r−rs)TH1(r−rs)) + A0e

−((r−rs)TH2(r−rs)),

where A0 = 3, H1 =

[
1

2σ2x1
0

0 1
2σ2y1

]

, H2 =

[
1

2σ2x2
0

0 1
2σ2y2

]

, σx1 = 30, σy1 = 75,

σx2 = 80 and σy2 = 25. Their maximum is located at rs = [40 80]T .

xF i yF i
Agent 1 0 0
Agent 2 -3 6
Agent 3 -6 0
Agent 4 -3 -6
Agent 5 3 -6
Agent 6 6 0
Agent 7 3 6

Table 4.1: Desired formation for cooperative source seeking with single and dou-
ble integrator agents
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x0i y0i
Agent 1 0 0
Agent 2 0 1
Agent 3 1 1
Agent 4 1 0
Agent 5 2 0
Agent 6 2 1
Agent 7 3 0

Table 4.2: Initial positions for cooperative source seeking with single and double
integrator agents
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Figure 4.2: Formation with double integrator agents

The desired formation rF i = [xF i yF i]
T is defined as shown in Table 4.1, and

the initial positions r0i = [x0i y0i]
T are set as shown in Table 4.2.

To estimate the gradient, Equation (3.25) is implemented with signals cor-
rupted by noise. Their initial values are ϕ(0) = ν(0) = 0. The tuning parameters
are set to βϕ = 1 and βν = 1.2. For ri and ψi, the noise covariance matrix is set to
diag(0.23 0.24 0.21 0.22 0.23 0.24 0.25) and diag(0.23 0.26 0.24 0.26 0.28 0.29 0.3),
respectively.
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Figure 4.3: Formation’s x-positions for double integrator agents

Simulation results for double integrator models are presented. The source
seeking algorithm (4.28) from Theorem 2 is implemented. The distributed con-
troller’s tuning parameters are set to kF = 10, θ = 5, γ = 1.5, and kT = 2.
The second eigenvalue λ2 of L is 1.382 and the convergence radius is defined as
ǫ = 5.743.

Fig. 4.2 shows the transient response of the formation. Thanks to the dis-
tributed control law (4.28), agents maintain the formation and locate the scalar
field’s maximum at rs = [40 80]T .

Fig. 4.3 shows each agent’s x-position. Agents start from its initial positions,
and after the transient, they achieve the desired formation maintaining a relative
distance between them. Note that when agents achieve the scalar field’s source,
they stay at their final positions.

Fig. 4.4 shows the agents’ velocity in y direction ṙyi, and the magnitude of
the velocity ‖ṙi‖ of the formation. Note that the colors of the lines correspond
to agents as explained in Fig. 4.3. The velocity ṙyi converges to a common value
and the magnitude of the agents’ velocity converges to a constant velocity due to
the normalization of the estimated gradient. The velocity is determined by the
parameters kT and γ. When agents reach the maximum, the velocity of all of
them goes to zero. Note that the agents’ velocity oscillates around its equilibrium
points when the signal measurements are corrupted by noise. The proposed
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algorithm is able to drive the formation to the scalar field’s source. Agents
travel at constant velocity and locate the maximum value while the formation is
maintained.

‖ṙ
i‖

t [s]

ṙ y
i
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Figure 4.4: Formation’s ṙyi- and ‖ṙi‖-velocity for double integrator agents

Similar results have been obtained for single integrator agents. The source
seeking algorithm (4.2) presented in Theorem 1 has been implemented. The
distributed controller’s tuning parameters for single integrator agent’s formation
are set to kF = 10, θ = 5, γ = 1.5, and kT = 2. The second eigenvalue λ2 of L is
1.382.

Fig. 4.5 shows the formation’s transient response. Due to the distributed
control law (4.2), agents maintain the desired formation and locate the scalar
field’s maximum at rs = [40 80]T . Fig. 4.6 shows each agent’s x-positions.
Agents start from its initial positions, and after the transient, they achieve the
wanted formation maintaining a relative distance between them. Note that when
agents achieve the scalar field’s source, they maintain their final positions.
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Figure 4.5: Formation with agents modelled as single integrators

Fig. 4.7 shows agents’ velocity in y direction ṙyi, and the magnitude of the
formation’s velocity ‖ṙi‖. Note that the colors of the lines are explained in
Fig. 4.6. Velocity ṙyi converges to a common value and the magnitude of the
agents’ velocity converges to a constant velocity due to the estimated gradient’s
normalization. Agents’ velocity is determined by parameter kT . When agents
reach the maximum, their velocity becomes zero. Note that agents’ velocity os-
cillates around their equilibrium points when signal measurements are corrupted
by noise.

The proposed distributed algorithms for single and double integrator agents
are able to drive the formation to the scalar field’s source. Agents travel at cons-
tant velocity and locate the maximum value while the formation is maintained.
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Figure 4.6: x-positions of the formation for agents modelled as single integrator
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Figure 4.7: Formation’s ṙyi- and ‖ṙi‖-velocity for single integrator agents
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4.5 Conclusions

In this chapter, cooperative multi-agent controllers for single and double inte-
grator agents have been presented. They enable the agents’ formation to locate
the unknown source of the scalar field under constrained communications. A
distributed navigation strategy based on both a trajectory and a formation con-
troller has been successfully implemented as shown by the simulation results.
Theoretical analysis demonstrates that agents are able to converge towards the
source of the scalar field while the formation is maintained. The results here pre-
sented are applicable to any agents’ formation independently of the formation’s
size.



Chapter 5

Cooperative Source Seeking with

LTI Agent Models

In many real life applications agents possess higher order dynamics than single
and double integrator dynamics. The former can be often represented by Linear
Time-Invariant (LTI) models. LTI systems are described by sets of linear, ordi-
nary differential equations that have constant coefficients. In this chapter, the
focus will be shifted to modelling a dynamic agent’s behaviour as a system with
multiple inputs and multiple outputs (MIMO) using the state space representa-
tion, i.e., LTI systems with coupled first-order linear differential equations with
constant coefficients.

After having considered the cooperative source seeking problem for simple
dynamics (single and double integrator agents), the method developed in this
work is extended in this chapter to general LTI systems. Stability conditions are
provided and the proposed approach is illustrated with formation flight simula-
tion for quad-rotor helicopters.

5.1 Introduction

To guarantee that agents modelled as LTI systems localize the source of the
scalar field and the formation’s stability is maintained, more advanced controllers
are required than the controllers presented in the previous chapters. For this
purpose, a distributed dynamic controller using only the position outputs and
the estimated gradient is designed. In the design process, it is also possible to
include performance requirements.

A simple distributed control strategy was considered in Chapter 4, which was
composed by formation control and trajectory control. The dynamic controller
presented in this chapter has the same structure, but some additional conside-
rations about formation control will be presented.

In this chapter the problem of locating an unknown scalar field’s maximum
using a formation of N identical LTI agents under undirected constrained com-

57
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munication is studied. For every agent, based on relative information from its
neighbour agents, a gradient is estimated. (see Chapter 2). A distributed dy-
namic output feedback protocol based on both a gradient estimation algorithm
and a formation controller is proposed. The formation control component’s goal
is to keep agents in a desired geometric formation, while the trajectory control
component’s goal is to steer the formation towards the source. Performance re-
quirements are incorporated to our design using mixed-sensitivity loop shaping.
The mixed-sensitivity synthesis technique is used to design the controller. It will
be demonstrated that the presented distributed controllers enable agents to con-
verge towards the scalar field’s source while the formation is maintained. When
position and concentration measurements are corrupted by noise, distributed
consensus filters can be used in order to estimate the gradient direction.

The contribution of this chapter is a distributed dynamic output feedback
controller for LTI systems. Stability conditions are provided. In our approach
it is neither necessary to know the formation’s center of mass and its estimated
gradient nor to keep the agents rotating in a circular formation.

In Sections 5.2 and 5.3, control law and stability analysis for LTI models are
presented, respectively. Section 5.4 provides formation flight simulation results
for quad-rotor helicopters. Finally, concluding remarks are made in Section 5.5.

5.2 LTI Models

Consider a group of N identical agents with linear time-varying dynamics des-
cribed by

ẋi(t) = Apxi(t) +Buui(t) +Bww̄i(t),

zi(t) = Czxi(t) +Dzuui +Dzww̄i(t),

ri(t) = Cyxi(t) +Dyww̄i(t), (5.1)

where xi ∈ R
n is the state of agent i, ui ∈ R

m1 is the control input, w̄i ∈ R
m2

is the external disturbance and noise, ri ∈ R
p is the measured position output,

and zi ∈ R
q is the controlled output of agent i. It is assumed that (Ap, Bu)

is stabilizable, (Ap, Cy) is detectable, and without loss of generality, Bu is full
column rank.

Based on the neighbours’ relative output measurements between agents, a
distributed dynamic output feedback control for agent i is considered as

v̇i(t) =AKvi(t) +BK(eF i(t) + eT i(t)),

ui(t) =CKvi(t) +DK(eF i(t) + eT i(t)), (5.2)

where

eF i(t) =
1

|Ni|
∑

j∈Ni

aij [(rF i(t)− rFj(t))− (ri(t)− rj(t))] ,

eT i(t) =vT i(t) = kT ĝi(ri(t)), (5.3)
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where

ĝi(ri) =

(
∑

j∈Ni

aij(ri − rj)(ri − rj)
T

)−1(
∑

j∈Ni

aij(ri − rj)(ψ(ri)− ψ(rj))

)

,

is the distributed estimated gradient computed in each agent i in Chapter 2,
and vi(t) ∈ R

mK is the state of the dynamic output feedback controller. If
mK = 0 Equation (5.2) is reduced to a static output feedback law. Let x =
[xT1 , . . . , x

T
N ]

T , v = [vT1 , . . . , v
T
N ]

T , w̄ = [w̄T1 , . . . , w̄
T
N ]

T , rF = [rTF1, . . . , x
T
FN ]

T , vT =
[vTT1, . . . , v

T
TN ]

T , and z = [zT1 , . . . , z
T
N ]

T . Substituting the controller (5.2) into the
system (5.1), the closed-loop network dynamics can be written as

[
ẋ
v̇

]

=

[
IN ⊗ Ap −L⊗ BuDKCy IN ⊗BuCK

−L⊗ BKCy IN ⊗AK

] [
x
v

]

+

[
L ⊗ BuDK IN ⊗ BuDK IN ⊗ Bw − L⊗ BuDKDyw

L ⊗ BK IN ⊗ BK −L⊗ BKDyw

]




rF
vT
w̄



 ,

z =
[
IN ⊗ Cz − L⊗DzwDKCy IN ⊗DzwCK

]
[
x
v

]

+
[
L ⊗DzwDK IN ⊗DK IN ⊗Dzw − L⊗DzwDKDyw

]





rF
vT
w̄



 ,

r =
[
IN ⊗ Cy 0

]
[
x
v

]

+
[
0 0 IN ⊗Dyw

]





rF
vT
w̄



 , (5.4)

where w(t) = [rTF vTT w̄T ]T and ⊗ denotes the Kronecker product.

5.2.1 Controller Synthesis

A closed-loop representation of our approach is shown in Fig. 5.1. Each agent is
assumed to be locally stabilized. Based on the approach presented in (Pilz et al.,
2009) and (Popov and Werner, 2009), local controllers are proposed. First, con-
trollers to stabilize the formation are designed, then the formation’s convergence
to the scalar field’s source is verified.

To design a local controller KL, it is assumed that the system’s sensors are
capable of measuring all states. A full state feedback LQR controller is chosen
as ζi = KLxi+ui, where KL is designed to stabilize the dynamics of each agent i
and ui is the control law. The latter steers the agent’s position in the formation
and tracks the gradient direction. The new dynamics with a local controller is
given by

ẋi(t) = (Ap +BuKL)xi(t) +Buui(t) +Bww̄i(t),

ẋi(t) = Axi(t) +Buui(t) +Bww̄i(t),

zi(t) = Czxi(t) +Dzuui +Dzww̄i(t),

ri(t) = Cyxi(t) +Dyww̄i(t), (5.5)
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Figure 5.1: Closed-loop representation of a formation

where A = Ap + BuKL and the matrix is Hurwitz. The formation controller
KFT is designed based on Theorems 3 and 4 of (Pilz et al., 2009). Performance
requirements are incorporated into our design by means of mixed-sensitivity loop
shaping. H∞ synthesis technique is used to design the controller. A generalized
plant construction with sensitivity WS(s) and control sensitivity WK(s) is built.
These theorems reduce the formation stability problem to an H∞ design pro-
blem for a single agent with uncertainty. They also guarantee stability for any
formation if the controller KFT satisfies the design requirements.

As mentioned in Section 1.5, the following assumption has been made.

Assumption 3. It is assumed that the state matrix Ap of each agent is
marginally stable.

5.2.2 H∞ Performance Analysis

Let 0 = λ1 < λ2 ≤, . . . ,≤ λN be the eigenvalues of the Laplacian matrix L. Since
L is symmetric, there exists a orthogonal matrix U ∈ R

N×N such that U−1LU =
Λ = diag[λ1, . . . , λN ]. Let x = (U ⊗ In)x̃, v = (U ⊗ ImK)ṽ, z = (U ⊗ Iq)z̃,
w̄ = (U ⊗ Im2) ˜̄w, vT = (U ⊗ Ip)ṽT , rF = (U ⊗ Ip)r̃F . Then, Equation (5.4) can
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be rewritten as

[
˙̃x
˙̃v

]

=

[
IN ⊗ Ap − Λ⊗ BuDKCy IN ⊗BuCK

−Λ⊗ BKCy IN ⊗AK

] [
x̃
ṽ

]

+

[
Λ⊗ BuDK IN ⊗ BuDK IN ⊗ Bw − Λ⊗ BuDKDyw

Λ⊗ BK IN ⊗ BK −Λ⊗ BKDyw

]




r̃F
ṽT
˜̄w



 ,

z̃ =
[
IN ⊗ Cz − Λ⊗DzwDKCy IN ⊗DzwCK

]
[
x̃
ṽ

]

+
[
Λ⊗DzwDK IN ⊗DK IN ⊗Dzw − Λ⊗DzwDKDyw

]





r̃F
ṽT
˜̄w



 ,

r̃ =
[
IN ⊗ Cy 0

]
[
x̃
ṽ

]

+
[
0 0 IN ⊗Dyw

]





r̃F
ṽT
˜̄w



 . (5.6)

Note that Equation (5.6) is composed of N individual systems as

[
˙̃x
˙̃v

]

=

[
Ap − λiBuDKCy BuCK

−λiBKCy AK

] [
x̃
ṽ

]

+

[
λiBuDK BuDK Bw − λiBuDKDyw

λiBK BK −λiBKDyw

]




r̃F
ṽT
˜̄w



 ,

z̃ =
[
Cz − λiDzwDKCy DzwCK

]
[
x̃
ṽ

]

+
[
λiDzwDK DK Dzw − λiDzwDKDyw

]





r̃F
ṽT
˜̄w



 ,

r̃ =
[
Cy 0

]
[
x̃
ṽ

]

+
[
0 0 Dyw

]





r̃F
ṽT
˜̄w



 , (5.7)

∀ i = 1, . . . , N . For λ1 = 0, the state matrix of the system (5.4) is unstable if
the given matrix Ap is unstable.

Denote the transfer function matrices of systems (5.4) and (5.6) by Tw̃z̃ and
Tw̃iz̃i, respectively. Then it follows Tw̃z̃ = diag(Tw̃1z̃1, Tw̃2z̃2 , . . . , Tw̃N z̃N ),=
(U−1 ⊗ Im2)Tw̃z̃(U ⊗ Im1). Thus, the relationships between the H∞ norm of Twz,
Tw̃z̃ and Tw̃iz̃i is ‖Twz‖∞ = ‖Tw̃z̃‖∞ = maxi=1,2,...,N‖Tw̃iz̃i‖∞. The previous equa-
tions convert the distributed H∞ control problem of the multi-agent network
into a H∞ control problem of a single agent. These transformations are based on
the works of (Eichler and Werner, 2013; Li et al., 2011; Massioni and Verhaegen,
2009).
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5.3 Stability Analysis

In this section, agents’ convergence inside a scalar field will be analysed. For this
purpose, Theorem 4 is presented. It is based on assumptions 1, 2 and 3, which
were presented in Chapter 1. Let

B̃ =

[
0 BuDK

0 BK

]

and G̃ =

[
−BuDK 0
BK 0

]

.

Theorem 4. Consider the multi-agent system (5.1) with control law (5.2). Sup-
pose that assumptions 1, 2 and 3 are fulfilled. Then, for all ri(0) ∈ R

p and t ≥ 0
agents locate the unknown source’s position rs of the scalar field ψ(r) and the
closed-loop system converges to an equilibrium point centred ball with radius

ǫ ≤
2kT

√
NµcÂ‖Cy‖

(

‖B̃‖+ ‖L‖‖G̃‖
)

λÂ
, (5.8)

with the distance between the formation’s center of mass and the scalar field’s
source

‖r̄∗ − rs‖ ≤ 2

LH

(

e0 + LH
h

2

)

. (5.9)

Proof. Consider the closed-loop system of (5.4), with w̄ = 0, as

[
ẋ
v̇

]

=

[
IN ⊗A−L⊗ BuDKCy IN ⊗BuCK

−L⊗ BKCy IN ⊗AK

] [
x
v

]

+

[
L ⊗BuDK IN ⊗ BuDK

L ⊗BK IN ⊗ BK

] [
rF

kT ĝ(r)

]

,

r =
[
IN ⊗ Cy 0

]
[
x
v

]

. (5.10)

Let ζ = [xT vT ]T and ξ = [rTF kT ĝ(r)
T ]T . Equation (5.10) can be written as

ζ̇ =Âζ + B̂ξ,

r =Ĉζ, (5.11)

where Â = IN⊗Ã+L⊗ F̃ and this term is Hurwitz matrix, B̂ = IN⊗B̃+L⊗G̃,
Ĉ = IN ⊗ C̃, with

Ã =

[
A BuCK
0 AK

]

, F̃ =

[
−BuDKCy 0

BK 0

]

,

B̃ =

[
0 BuDK

0 BK

]

, G̃ =

[
−BuDK 0
BK 0

]

,

C̃ =
[
Cy 0

]
.
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The equilibrium point is given by

ζ∗ =Â−1B̂ξ∗,

r∗ =Ĉζ∗. (5.12)

Let the state error be eζ = ζ − ζ∗ and the position error er = r − r∗. The
dynamic state error can be written as

ėζ = ζ̇ = Âeζ + B̂(ξ − ξ∗), (5.13)

where

ξ − ξ∗ =

[
0

kT (ĝ(r)− ĝ(r∗))

]

=

[
0

kT (ĝ(er + r∗)− ĝ(r∗))

]

.

The solution is given by

eζ = eÂteζ(0) +

∫ t

0

eÂ(t−τ)B̂(ξ − ξ∗)dτ, (5.14)

and the position error can be written as

er = Ĉeζ ,= ĈeÂteζ(0) + Ĉ

∫ t

0

eÂ(t−τ)B̂(ξ − ξ∗)dτ. (5.15)

The solution is bounded by

‖er‖ ≤cÂ‖Ĉ‖‖eζ(0)‖e−λÂt + 2kT
√
NµcÂ‖Ĉ‖‖B̂‖

∫ t

0

e−λÂ(t−τ)dτ, (5.16)

since ‖eÂt‖ ≤ cÂe
−λ

Â
t, ‖ξ − ξ∗‖ ≤ 2kT

√
Nµ. It follows

‖er‖ ≤
2kT

√
NµcÂ‖Cy‖

(

‖B̃‖+ ‖L‖‖G̃‖
)

λÂ
+

cÂ‖Cy‖



‖eζ(0)‖ −
2kT

√
Nµ

(

‖B̃‖+ ‖L‖‖G̃‖
)

λÂ



 e−λÂt, (5.17)

since ‖Ĉ‖ ≤ ‖Cy‖, ‖B̂‖ ≤ ‖B̃‖+ ‖L‖‖G̃‖.
The distance between the scalar field’s source and the formation’s center of

mass is bounded by

‖rs − r̄∗‖ ≤ 2

LH

(

e0 + LH
h

2

)

. (5.18)

This result is obtained with a similar analysis done by the proof of Theorem
1.

Remark 6. If the estimated gradient is normalized, ĝN(t) =
[
ĝT1 (t)

‖ĝ1(t)‖ , . . . ,
ĝTN (t)

‖ĝN (t)‖

]T

,

then ‖ ĝi
‖ĝi‖‖ = 1, µ = 1 and ‖ĝN‖ =

√
N . Thus, the convergence region is defined

by ‖er‖ ≤ 2kT
√
Nc

Â
‖Cy‖(‖B̃‖+‖L‖‖G̃‖)

λ
Â

, and the agents travel at constant velocity.
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5.4 Simulation Results

Simulation results showing convergence of the proposed source seeking algorithm
for LTI models are presented in this section. The scalar field is given by

ψ(r) = A0e
−((r−rs)TH1(r−rs)) + A0e

−((r−rs)TH2(r−rs)),

where A0 = 3, H1 =

[
1

2σ2x1
0

0 1
2σ2y1

]

, H2 =

[
1

2σ2x2
0

0 1
2σ2y2

]

, σx1 = 30, σy1 = 75,

σx2 = 80, σy2 = 25, and the maximum is located at rs = [40 80]T .

A formation network of N = 7 identical mobile agents under an undirected
and connected communication topology G is considered, as shown in Fig. 1.4.
Each agent is an underactuated and unstable multi-input multi-output 12th order
dynamic model as proposed in (Lara et al., 2006) and (Pilz et al., 2009), with 4
inputs and 3 position outputs. The linearised model of a quad-rotor helicopter
is described in Appendix A.

The desired formation rF i = [xF i yF i zF i]
T is defined as shown in Table 5.1,

and the initial positions r0i = [x0i y0i z0i]
T are set as shown in Table 5.2.

xF i yF i zF i
Agent 1 0 0 0
Agent 2 -3 6 0
Agent 3 -6 0 0
Agent 4 -3 -6 0
Agent 5 3 -6 0
Agent 6 6 0 0
Agent 7 3 6 0

Table 5.1: Desired formation for cooperative source seeking with LTI agent mo-
dels

x0i y0i z0i
Agent 1 0 0 0
Agent 2 0 1 0
Agent 3 1 1 0
Agent 4 1 0 0
Agent 5 2 0 0
Agent 6 2 1 0
Agent 7 3 0 0

Table 5.2: Initial positions for cooperative source seeking with LTI agent models

To estimate a gradient in each agent, equation (3.27) is implemented when
the signal measurements are corrupted by zero-mean Gaussian noise. The noise
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covariance matrix is set to diag(0.21 0.22 0.23 0.24 0.25 0.26 0.27) and
diag(0.26 0.27 0.26 0.27 0.26 0.26 0.27) for ri and ψi, respectively. Their initial
conditions are ϕ(0) = ν(0) = 0. The consensus filters’ tuning parameters are set
to βϕ = 1.2 and βν = 1.

A full state feedback LQR controller is chosen in order to stabilize a single
agent. The weighting matrices are

R = diag(100, 0.1, 25, 25) and

Q = diag(0.04, 1, 0.04, 1, 0.5, 20, 0.25, 1, 103, 50, 103, 50).

In order to keep the agents in a desired geometric formation and to steer
the formation towards the maximum, the source seeking algorithm (5.2) is im-
plemented. The sensitivity and control sensitivity weighting filters are Ws =

I3 ⊗
(

1
s+0.0001

)
and WK = I4 ⊗

(

50 s+103

s+106

)

. A H∞ synthesis technique is used to

design the controller; the designed H∞ controller is of 19th order. The achieved
H∞ norm is 0.992 < 1.
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Figure 5.2: Formation’s rx-positions for quad-rotor helicopters

Fig. 5.2 shows each agent’s x-position. Agents start from its initial positions,
and after the transient, they achieve the desired formation maintaining a relative
distance between them. Note that when agents achieve the scalar field’s source,
they maintain their final positions.
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Figure 5.4: Formation’s response for quad-rotor helicopters
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Fig. 5.3 shows the x-component of the normalized weighted estimated gradi-
ent ĝexi

‖ĝexi‖ for each agent. Since concentration and position signals are corrupted
by noise, a distributed consensus filter designed in Chapter 3 is used. This con-
sensus filter rejects noise at higher frequencies. Fig. 5.4 shows that the agents
locate the maximum of the scalar field, rs = [40 80]T , while they maintain the
desired formation.

The formation’s ṙyi- and ‖ṙi‖-velocities for quad-rotor helicopters are shown
in Fig. 5.5. Note that the color of the lines describe agents as explained in Figs.
5.2, 5.3 and 5.4. The agents’ velocity in ṙyi converges to common values and
these values turn zero when the formation reaches the maximum. The magni-
tude of the agents’ velocity ‖ṙi‖ converges to a constant velocity determined by
parameter kT = 0.5, due to the normalization of the estimated gradient. Note
that the agents’ velocities oscillate around their equilibrium values when signal
measurements are corrupted by noise.

The proposed algorithm is able to drive the formation to the scalar field’s
source at constant velocity. When agents reach the maximum, the velocity of all
agents goes to zero.
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Figure 5.5: Formation’s ṙyi- and ‖ṙi‖-velocity for quad-rotor helicopters
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5.5 Conclusions

In this chapter a cooperative multi-agent source seeking algorithm for LTI mo-
dels has been presented. Agents are aimed to locate an unknown scalar field’s
source under fixed constrained communication topologies. A distributed con-
troller based on both gradient estimation and a formation controller is proposed.
Theoretical analysis proves that the proposed algorithms enable agents to con-
verge towards the scalar field’s source while the formation is maintained. Here
the results presented in Chapters 2 and 3 are also used to deal with the gradient
estimation by noise corrupted signals.



Chapter 6

Cooperative Source Seeking and

Collision Avoidance with

Non-Holonomic Multi-Agent

Systems

This chapter presents a distributed control strategy for steering a swarm with
non-holonomic agent dynamics towards a scalar field’s source. A simple dis-
tributed control strategy is proposed, that preserves the desired formation while
locating the scalar field’s source and avoiding collision between agents and obstacles.
Applying this strategy, agents exchange local information according to an undi-
rected communication topology.

Stability analysis of the overall closed-loop system is provided. The suggested
control strategy enables an agents’ network to maintain a desired formation and
find a scalar field’s source. Results are illustrated by simulation studies on a
constant scalar field.

6.1 Introduction

Many mechanical systems, like robots, can not be modelled as LTI systems.
These kind of systems have fewer controllable degrees of freedom than total de-
grees of freedom. They are called non-holonomic. In our context, a ground
vehicle that moves in two dimensional space has three degrees of freedom (rx
position, ry position and the orientation φ), but at any position, the vehicle can
be only moved by a forward motion and a steering angle. The vehicle moves
(non-slipping) only in the direction of φ. Considering these kind of systems in
this work brings a more realistic approach to some situations of the scenarios con-
sidered, when agents have this kind of restrictions, i.e. they have non-holonomic
constraints.

As previously discussed in this work, hazardous environments and disaster

69
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scenarios can often be depicted as scalar fields, which are functions of space. In
the literature, different approaches to explore distributed scalar fields have been
investigated, such as climbing gradients (Biyik and Arcak, 2007; Ogren et al.,
2004), extremum-seeking (Matveev et al., 2011; Zhang et al., 2007), monitoring
environmental areas (Zhang and Leonard, 2010), to name a few.

The problem of cooperative source seeking inside a scalar field using non-
holonomic agents has been recently addressed. Source seeking algorithms have
been presented to steer an agent or a group of agents towards the maximum
of a scalar field, or at least, to a point as near as possible to this source. In
(Brinon-Arranz et al., 2011), a control strategy for a group of agents uniformly
distributed in a circular formation is proposed. This approach requires all-to-all
communication and knowledge about the center of mass for all agents. In (Li
and Guo, 2012; Li et al., 2014) a controller that combines all-to-all and limited
communications is presented. These algorithms are complex and require the
center of mass’ information to estimate the gradient. Distributed controllers for
single and double integrator agent models, as well as for linear time invariant
agent models, are proposed in (Rosero and Werner, 2014a,b).

In this chapter, a distributed controller that is implemented locally on each
agent is designed. Each controller is composed of a formation part, trajectory
part and avoidance part. The formation controller part uses only relative position
information to maintain a desired formation in space. The trajectory controller
part uses the relative position and relative field signals to estimate the gradient
and to drive the group of agents towards the source of the scalar field. The
avoidance controller part uses locally defined potential functions based on obsta-
cle’s position information, as well as other mobile agents’ position information,
in order to detect the presence of any object within a given range and therefore,
avoid crashing. The analysis of avoidance controller part was made on (Ahmadi
et al., 2015).

The contribution of this chapter is a distributed control law that combines for-
mation control, avoidance function and an estimated gradient for non-holonomic
systems. Aim of this control law is to steer agents towards the maximum of a
scalar field under limited communications and to avoid collisions between agents
and obstacles.

Chapter 6 is organized as follows. The distributed control law for a group of
non-holonomic systems is presented in Section 6.2. In Section 6.3 the avoidance
function used in the distributed control law is explained. In Section 6.4, stabi-
lity analysis is presented for the whole closed-loop system. Section 6.5 presents
simulation results. Finally, concluding remarks are made in Section 6.6.
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6.2 Distributed Control Law

The dynamics of an individual agent are assumed to be given by the well-known
kinematic model of the non-holonomic unicycle





ṙxi(t)
ṙyi(t)

φ̇i(t)



 =





cos(φi) 0
sin(φi) 0

0 1





[
vi(t)
ωi(t)

]

, (6.1)

where i = 1, . . . , N , rxi and ryi are the Cartesian coordinates, φi ∈ [0, 2π) the
agent’s orientation with respect to the x axis, vi is the linear velocity input and
ωi is the angular velocity input. The vector ri = [rxi ryi]

T represents the position
of agent i.

In this section a distributed controller for a group of N non-holonomic mobile
agents is introduced. This controller allows agents to locate the source and track
the estimated gradient direction without colliding with static objects or other
mobile agents. Let Va be the avoidance function between agents and Vo be
the avoidance function between agents and obstacles. The following distributed
control law is proposed

vi = cos(eφi)Di,

ωi = −kφeφi + φ̇di, (6.2)

with

eφi = φi − φdi,

φdi = Atan2 (Eyi, Exi) ,

Di =
√

E2
xi + E2

yi,

Ei = [Exi Eyi]
T = kF ei + kT ĝi + ka

∂Vai
∂ri

+ ko
∂Voi
∂ri

,

ei = [exi eyi]
T =

∑

j∈Ni

aij [(rF i − rFj)− (ri − rj)] ,

ĝi(ri) = [ĝxi ĝyi]
T ,

=

(
∑

j∈Ni

aij(ri − rj)(ri − rj)
T

)−1(
∑

j∈Ni

aij(ri − rj)(ψ(ri)− ψ(rj))

)

,

where kF , kT , kφ, ka are tuning parameters, kF > 0 affects the formation error
ei, kT > 0 affects the estimated gradient direction ĝi, kφ > 0 affects the orien-
tation error eφi, ka > 0 affects the changes of the avoidance function between
agents ∂Vai

∂ri
, ko > 0 affects the changes of the avoidance function for obstacles

∂Voi
∂ri

, rF i denotes the reference of agent i, eφi is the orientation error, and φdi
defines a desired direction of motion that depends on the formation error ei.
The estimated gradient is computed by Equation (2.3) which depends on the
relative concentration values ψ(ri)− ψ(rj) and distance ri − rj between agents.
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Based on this approach, progress in formation control of non-holonomic agents
with collision avoidance between agents and obstacles has been made by us in a
shared project with Siavash Ahmadi on (Ahmadi et al., 2015). For this reason,
in this chapter the stability analysis for multi agents with collision avoidance is
not included.

6.3 Avoidance Function

In order to understand how the avoidance function works, consider only one
mobile agent and one obstacle as shown in Fig. (6.1) (Mastellone et al., 2008).
The coordinates of the object to be avoided are defined as (xa, ya) and a distance
function da =

√

(rx − xa)2 + (ry − ya)2. The avoidance function is defined as

Vo =

(

min

{

0,
d2a − S2

da − s2

})2

, (6.3)

where s > 0 is the avoidance region’s radius and S > 0 is the detection region’s
radius, with S > s as represented in Fig. (6.1).

Va

s

s

S

S

(xa ya)

Figure 6.1: Avoidance and detection region around an agent

Taking the partial derivatives of Va with respect to rx and ry coordinates, it

is possible to write ∂Vo
∂rx

=







0 if da ≥ S,

4 (S2−s2)(d2a−S2)
(d2a−s2)3 (rx − xa) if S > da > s,

0 if da < s,
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and

∂Vo
∂ry

=







0 if da ≥ S,

4 (S2−s2)(d2a−S2)
(d2a−s2)3 (ry − ya) if S > da > s,

0 if da < s.

Now consider a scenario in which a group of agents moves in the direction
given by the computed gradient while avoiding collision with each other in a
cooperative way. The obstacle avoidance problem using the avoidance function
is based on the results presented by (Mastellone et al., 2008). The avoidance
function between agents is defined as

Vai =
N−1∑

j=1,j 6=i
Vaij ,

where

Vaij =

(

min

{

0,
d2aij − S2

d2aij − s2

})2

and

daij =
√

(rxi − rxj)2 + (ryi − ryj)2, j 6= i, j = 1, . . . , N − 1.

Each agent i might potentially collide with the remaining N − 1 agents,
therefore for each agent i, N − 1 avoidance functions Vaij are defined for j =
1, . . . , N − 1. The avoidance function Voi is defined in the same way as Vai in
order to avoid collision between agents.

As mentioned in Section 1.5, the following assumption has been made.

Assumption 4. Agents’ trajectory is smooth and satisfies

eφ1 = eφ2 = · · · = eφN 6= π

2
.

Assumption 4 is the only restrictive condition. All agents turn around in
their places if the condition is not satisfied.

6.4 Stability Analysis

In order to analyse the stability of the multi agent system without the collision
avoidance functions, consider ka = ko = 0. Taking Equations 6.1 and 6.2 into
account, the closed loop system dynamics are given by

ṙi(t) =R(eφi)

(

kF
∑

j∈Ni

aij [(rF i − rFj)− (ri − rj)] + kT ĝi

)

,

φ̇i(t) =− kφeφi + φ̇di, (6.4)



74
6. Cooperative Source Seeking and Collision Avoidance with Non-Holonomic

Multi-Agent Systems

where

R(eφi) =

[
cos2(eφi) − cos(eφi) sin(eφi)

cos(eφi) sin(eφi) cos2(eφi)

]

.

Taking ṙi = 0 and φ̇i = φ̇di = 0, and considering eφi 6= π
2
, then R(eφi) 6= 0 for

all eφi 6= π
2
. Equation (6.4) possesses an equilibrium point given by

kF
∑

j∈Ni

aij
[
(rF i − rFj)− (r∗i − r∗j )

]
+ kT ĝ

∗
i =0,

φ∗
i =φ

∗
di, (6.5)

or in vector form

kF L̂(rF − r∗) + kT ĝ
∗ =0,

φ∗ =φ∗
d, (6.6)

where L̂ = L ⊗ I2. Note that the formation’s equilibrium point is similar to the
equilibrium point of the group of agents modelled as single integrators.

In order to analyse the stability, define the position error as

epi =ri − r∗i , (6.7)

then the dynamic errors can be written as

ėpi =R(eφi)

(

−kF
∑

j∈Ni

aij(epi − epj) + kT (ĝi − ĝ∗i )

)

. (6.8)

Deriving the orientation error epi and taking into account Equation (6.4), the
orientation error’s dynamics is given by

ėφi =− kφeφi, (6.9)

then the rotation matrix R(eφi) = I2 when t → ∞ and this dynamic is stable if
kφ > 0. Therefore Equations (6.8) and (6.9) can be written as

[
ėp
ėφ

]

= −
[

kF R̂eφL̂ 0
0 kφI

] [
ep
eφ

]

+ kT R̂eφ

[
eg
0

]

, (6.10)

where ep ∈ R
2N , eg ∈ R

2N , eφ ∈ R
N , R̂eφ ∈ R

2Nx2N

with R̂eφ = diag(R(eφ1), . . . , (R(eφN )), L̂ = L ⊗ I2, ep = [eTp1, . . . , e
T
pN ], eg =

[eTg1, . . . , e
T
gN ] and egi = ĝi − ĝ∗i . The orientation error eφ converges to zero since

kφ > 0. The parameter kφ defines the orientation error’s transient speed, this
means, if kφ ≫ 0, agents achieve the desired angles rapidly. As well as eφ goes

to zero, the matrix R̂eφ goes to I, since R̂eφ depends on eφ. Then, agents achieve
the equilibrium points around the scalar field’s source.
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Note that so far, it has been shown that a formation of nonholonomic agents
reach the scalar field’s source without the effect of collision avoidance between
agents and collision avoidance between agents and obstacles. However, imple-
mented simulations based on the distributed control law proposed in Equation
(6.2) show that a formation of nonholonomic agents can avoid collision between
agents, can evade collision between agents and obstacles and can maintain the
desired formation, while they are seeking the scalar field’s source. Some progress
in formation control of non-holonomic agents with only collision avoidance has
been made in (Ahmadi et al., 2015).

6.5 Results

In this section, simulation results illustrating convergence of the proposed algo-
rithm are provided. Following simulations are displayed:

• Formation control only.

• Formation control and collision avoidance between agents.

• Formation control, source seeking and collision avoidance between agents.

• Formation control, source seeking and collision avoidance between agents
and obstacles.

The scalar field is defined as

ψ(r) = A0

(

e−(rTH1r) + e−(rTH2r)
)

,

where A0 = 0.5, H1 =

[
1

2σ2x1
0

0 1
2σ2y1

]

, H2 =

[
1

2σ2x2
0

0 1
2σ2y2

]

, σx1 = 30, σy1 = 75,

σx2 = 80 and σy2 = 25.

The scalar field’s source is located at rs = [70 70]T . Scalar field’s contour is
shown in Fig. 1.2. A formation of 7 agents with the undirected communication
topology shown in Fig. 1.4 is considered.

The desired formation rF i = [xF i yF i zF i]
T is defined as shown in the table

5.1, and the initial positions q0i = [x0i y0i φ0i]
T are set as shown in Table 6.1,

respectively.

Simulation results are presented ahead.

1. Formation control only.

Fig. 6.2 shows the agents’ trajectories described by control law (6.2). In
this case, only the control law’s formation control part has been applied.
Agents start from their initial positions and with their initial orientations
as shown in table 6.1. Tuning parameters are chosen as kF = 1, kφ = 0.2
and kT = ka = ko = 0. As shown in Fig. 6.2, all agents reach the desired
formation defined in Fig. 1.4.
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x0i y0i φ0i

Agent 1 1 -4 0
Agent 2 13 9 0
Agent 3 5 15 90
Agent 4 -15 1 0
Agent 5 -3 4 90
Agent 6 7 2 30
Agent 7 7 2 30

Table 6.1: Initial positions and initial orientations for non-holonomic multi-agent
systems

2. Formation control and collision avoidance between agents.

Fig. 6.3 shows agents’ trajectories as described by control law (6.2). Fur-
thermore, only the control law’s formation control part and collision avoi-
dance function are applied. Agents start from different initial positions and
with different initial orientations. Tuning parameters are chosen as kF = 1,
kφ = 0.2, ka = 1 and kT = ko = 0. Note that all agents reach the desired
formation defined in Fig. 1.4. and agents avoid entering in the detection
region of other agents. Each agent considers neighbour agents as obstacles
and all agents try to maintain the formation all the time.

3. Formation control, source seeking and collision avoidance be-

tween agents.

Fig. 6.4 shows the agents’ trajectories mentioned above. Three parts of
the control law are applied here: formation control part, collision avoidance
function and estimated gradient. Agents start moving ahead from different
initial positions and different initial orientations. The tuning parameters
are chosen as kF = 1, kφ = 0.2, ka = 1, kT = 1 and ko = 0. Note that
the group of agents move in the gradient direction while agents reach the
desired formation and avoid entering in the detection region of other agents.
After some time, agents locate the scalar field’s source and maintain their
positions.
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Figure 6.2: Formation control
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Figure 6.4: Formation control, collision avoidance between agents and tracking
of the gradient direction
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Figure 6.3: Formation control and collision avoidance between agents

4. Formation control, collision avoidance between agents and obstacles

and source seeking.

Fig. 6.5 shows the same agents’ trajectories depicted above. All con-
trol law’s components are applied: formation control, collision avoidance
function between agents, collison avoidance function between agents and
obstacles, and gradient estimation. Agents start from different initial posi-
tions and have different initial orientations. Tuning parameters are chosen
as kF = 1, kφ = 0.2, ka = 1, kT = 1 and ko = 1. As can be seen, the group
of agents move in the gradient direction while agents reach the desired
formation and avoid entering other agents’ detection range. If agents find
obstacles, they avoid them and move in the estimated gradient’s direction.
After some time they locate the source of the scalar field and maintain
their positions.
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Figure 6.5: Formation control, collision avoidance between agents and obstacles,
and source seeking

6.6 Conclusions

In this chapter, both the source seeking problem and collision avoidance problem
for non-holonomic systems have been successfully solved by a simple distributed
controller. This controller is composed of three parts: the formation control part
maintains the group of agents in a desired formation, the trajectory control part
provides agents the direction in which agents’ networks shall move to locate the
scalar field’s source, and an avoidance function allows agents to evade collisions
between agents and obstacles. A stability analysis has been provided to study
overall network’s stability.





Chapter 7

Cooperative Level Curve

Tracking

In this chapter, two distributed controllers enabling multi-agent systems to move
in a defined formation, along a defined level curve, into a a scalar field are
proposed. Here, agents are modelled as double integrators and LTI systems. As
in previous Chapters, agents exchange information with neighbours using only
a constrained communication topology. This control strategy maintains agents
in a desired formation and steers the whole group towards an aimed level curve.
Convergence of the presented control laws is proved. Results are supported by
simulations for double integrator models and quad-rotor helicopter formations.
These results confirm that the presented control laws can be successfully applied.

7.1 Introduction

Information collected via level curve tracking inside any substance’s concentra-
tion field allows the synthesis of temperature maps, pressure maps, altitude maps,
salinity charts or concentration charts of toxic substances. These are few exam-
ples of how improving this technology will contribute to the study of environ-
mental scenarios in the future.

The problem of spatial mapping and level curve tracking has been addressed
by (Ogren et al., 2004; Williams and Sukhatme, 2012; Zhang et al., 2007; Zhang
and Leonard, 2010). However, these approaches require the group of agents
to maintain special formation shapes, as well as to gather information about
estimated gradient, estimated Hessian matrix and position of the formation’s
center of mass.

In this chapter, based on the cooperative source seeking strategy for single,
double integrator models and LTI systems presented in Chapters 4 and 5, the
problem of tracking a level curve inside an unknown scalar field is addressed
using an N identical agents formation, whereas agents operate under undirected
constrained communication. To solve the level curve tracking problem as

81
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defined in Chapter 1, new distributed control laws will be presented. If signals
are corrupted by noise, distributed consensus filters are used, as explained in
Chapter 3. Note that for implementing the solution here presented, in contrast
to previously cited authors, it is not necessary to know or estimate gradient and
Hessian matrix at the center of mass. Taking the present approach the center of
mass’ position needs not to be known.

This chapter is organized as follows. In Section 7.2, problem statement and
definition of level curves are introduced. In Sections 7.3 and 7.4, distributed con-
trol laws and stability analysis for double integrator models and LTI systems are
presented. Simulation results illustrate the feasibility of the proposed approach
in Section 7.5. Finally, Section 7.6 presents conclusions to this chapter.

7.2 Background and Problem Statement

7.2.1 Level Curves

A level curve is a two dimensional (p = 2) curve that builds a path within the
domain of a function. Along this path the function values remain constant.
For example, if the function represents temperature on a plate’s surface, then
temperature values are constant along the level curve. Level curves and contour
plots are one way of visualizing functions of two variables.

Consider a scenario which can be described by a scalar field such as an area
with changing concentration levels of radiation, temperature, pressure or a toxic
substance. Consider a differentiable scalar field ψ = ψ(r), described by a map-
ping ψ : R2 → R, where r = [rx ry]

T ∈ R
2 define agents’ position in space. The

following definition has been made.

Let c be a constant. A level curve of a function ψ(rx, ry) is a curve in the
rxry-plane such that, for all points (rx, ry) on the curve, ψ(rx, ry) = c. Then,
the level curves of ψ(r) are the horizontal traces of the graph of ψ in the plane
z = c, projected onto the rxry-plane. A graph depicting this level curves is called
a contour plot.

7.2.2 Problem Statement

The level curve tracking problem is defined as follows: For a given N agents
formation with undirected communication topology, find a distributed control
law ui(t) that allows the formation to move along a given level curve inside an
unknown scalar field.

In the next sections, control laws for double integrator agents and quadcopter
helicopter agents are presented.
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7.3 Cooperative Level Curve Tracking for Dou-

ble Integrator Agents

The dynamics of each agent i in a network modelled as double integrator are
described by

ṙi(t) = vi(t),

v̇i(t) = ui(t), (7.1)

where i = 1, ..., N , ri(t) ∈ R
p is the position vector, vi ∈ R

p is the velocity vector,
and ui(t) ∈ R

p is the acceleration’s control input. To solve the level curve tracking
problem, a distributed control law consisting of two parts is presented: the two
parts are, first, a formation control law uF i and second, a trajectory control law
uT i as

ui(t) =uF i(t) + uT i(t),

uF i(t) =kF
∑

j∈Ni

aij [(rF i(t)− rFj(t))− (ri(t)− rj(t))− θ(vi(t)− vj(t))],

uT i(t) =kψ(ψref − ψi(ri(t)))
ĝi(ri(t))

‖ĝi(ri(t))‖
+ kT

(

T
ĝi(ri(t))

‖ĝi(ri(t))‖
− γ

kT
vi(t)

)

, (7.2)

where

ĝi(ri) =

(
∑

j∈Ni

aij(ri − rj)(ri − rj)
T

)−1(
∑

j∈Ni

aij(ri − rj)(ψ(ri)− ψ(rj))

)

is the distributed estimated gradient computed in each agent i in Chapter 2,
uF i(t) keeps agents in their desired relative positions, uT i(t) drives the whole
group of agents to a desired level curve of the scalar field, rF i(t) denotes a for-
mation’s desired reference signal for agent i and kψ > 0, kF > 0, kT > 0, γ > 0,
θ > 0 are scalar control parameters in the formation. Since level curve tracking
implies movement towards the orthogonal direction of the gradient, a rotation

matrix T is chosen for counterclockwise rotation as T =

[
0 −1
1 0

]

, or clockwise

rotation −T in the case of R2. The term T ĝi(ri(t))
‖ĝi(ri(t))‖ drives agents in orthogo-

nal direction of the gradient at constant velocity. The term kψ(ψref − ψi(t))
ĝi

‖ĝi‖
moves agents in the gradient direction, when there is an error between current
and desired level curve. The error ψref−ψi(t) depends on the difference between
current and desired level curve. For this reason, when agents are far from a de-
sired level curve the gain of this term is large and cause fast movements; while,
if agents are close to a desired level curve the gain will be smaller or zero. This
term multiplied by the estimated gradient moves agents in the gradient direction,
reducing the error between current and desired level curve.

Let r(t) = [rT1 (t), . . . , r
T
N(t)]

T , rF (t) = [rTF1(t), . . . , r
T
FN(t)]

T ,

v(t) = [vT1 (t), . . . , v
T
N (t)]

T , and ĝ(t) =
[
ĝT1
‖ĝ1‖ , . . . ,

ĝTN
‖ĝN‖

]T

; the closed-loop dynamics
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can be written as
[
ṙ
v̇

]

= Σ

[
r
v

]

+

[
0 0

kFL IN

] [
rF(

kψP (ψ) + kT T̄
)
ĝ

]

, (7.3)

where

Σ =

[
0 IN

−kFL −kFθL − γIN

]

,

and P (ψ) = diag [ψref − ψ1, . . . , ψref − ψN ] = P (ψ)⊗ Ip, T̄ = diag [T, . . . , T ] =
IN ⊗ T .

Let r̄(t) = 1
N

∑

i∈V ri(t) = 1
N
1T r(t) be the average of the position states,

v̄(t) = 1
N

∑

i∈V vi(t) = 1
N
1Tv(t) be the average of the velocity states, and

¯̂g(r(t)) = 1
N

∑

i∈V ĝi(r(t)) = 1
N
1T ĝ(r(t)) be the average of the estimated gra-

dient, f̄ = 1
N
1TP (ψ)ĝ and h̄ = 1

N
1T T̄ ĝ. Since 1TL = 0T , the time derivative of

both the position states average r̄ and the velocity states average v̄ is given by

˙̄r(t) = v̄(t),

˙̄v(t) = −γv̄(t) + kψf̄ + kT h̄, (7.4)

with initial average r̄(0) = 1
N
1T r(0) = r̄0, v̄(0) = 1

N
1Tv(0) = v̄0 = 0 and

¯̂g(r(0)) = 1
N
1T ĝ(r(0)) = ¯̂g0. Again, note that the agents’ formation moves in

the orthogonal direction of the gradient according to the term kT h̄, and the
agents’ formation moves in the gradient direction according to the term kψf̄ ,
to eliminate the error between the current and desired level curve. Note that
the terms kT h̄ and kψf̄ depend on the estimated gradient and these two terms
generate a perpendicular vector.

Again, the proposed distributed controller has two parts: formation controller
and tracking controller. The formation controller maintains agents in a desired
relative position and the tracking controller steers agents in the perpendicular
direction of the gradient in order to move the agent along a desired level curve
inside an unknown scalar field.

To find the equilibrium points set the Equation (7.3) as

ṙ∗ =v∗,

0 =kFL(rF − r∗)− (kFθL+ αI)v∗ + kψf
∗ + kTh

∗, (7.5)

where r∗ = [r∗T1 , . . . , r∗TN ]T , v∗ = [v∗T1 , . . . , v∗TN ]T , f ∗ = P (ψ∗)ĝ(r∗) and h∗ =
T̄ ĝ(r∗). Note that since agents need to move along a defined level curve at
constant velocity, then the velocity is set to ṙ∗ = v∗. Then the equilibrium
points are given by

r∗ =

∫ t

0

v∗dτ,

v∗ = (kFθL+ γI)−1 (kFL(rF − r∗) + kψf
∗ + kTh

∗) . (7.6)
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In order to discuss convergence, the state r(t) can be decomposed as

r(t) =
1

N
11T r(0) + δ(t),

where 1 is a vector of ones and δ is referred to as disagreement vector. By
definition, the disagreement vector has zero average, i.e., 1T δ(t) ≡ 0 (Olfati-
Saber and Murray, 2004).

In order to solve the level curve tracking problem for double integrator agents,
the following theorem is presented.

Theorem 5. Consider the multi-agent system (7.1) with control law (7.2). Sup-
pose that assumptions 1 and 2 are fulfilled. Then, for all ri(0) ∈ R

2 and t ≥ 0,
agents track an unknown scalar field’s level curve ψ(r) and the disagreement
vector δ of the closed-loop system converges to a ball centred at the origin with
radius

ǫ =
2cd

√
N

κ2
(kT + akψ). (7.7)

Proof. Consider the position error ep(t) = r(t) − r∗ and velocity error ev(t) =
v(t)− v∗. The dynamic error can be computed as

[
ėp
ėv

]

= Σ

[
ep
ev

]

+

[
0

kψef + kT eh

]

, (7.8)

where ef = f−f ∗ = P (ψ)ĝ(ep+r
∗)−P (ψ∗)ĝ(r∗) and eh = h−h∗ = T̄ (ĝ(r)− ĝ(r∗)).

Define the average of position error states ēp(t) =
1
N

∑

i∈V epi(t) =
1
N
1T ep(t) =

r̄ − r̄∗, and the average of the velocity error states ēv(t) = 1
N

∑

i∈V evi(t) =
1
N
1T ev(t) = v̄ − ˙̄r∗. Then, the state vector can be decomposed according to

ep(t) = 1ēp(t) + δp(t),

ev(t) = 1ēv(t) + δv(t), (7.9)

such that the disagreement vectors δp(t) and δv(t) have zero average, i.e., 1
T δp(t) ≡

1T δv(t) ≡ 0. Derivation of Equation (7.9) with respect to time t and considering
that v(0) = 0, yields

[
δ̇p
δ̇v

]

=Σ

[
δp
δv

]

+

[
0 0

kψM kTM

] [
ef
eh

]

, (7.10)

where M = IN − 1
N
11T . With δ(t) = [δp(t)

T δv(t)
T ]T , eT = [eTf eTh ]

T , and

Ψ =

[
0 0

kψM kTM

]

. The disagreement dynamics are given by

δ̇(t) = Σδ(t) + ΨeT , (7.11)

and the solution is given by

δ(t) = eΣtδ(0) +

∫ t

0

eΣ(t−τ)ΨeTdτ.
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Then the disagreement vector is bounded by

‖δ(t)‖ ≤ ‖eΣtδ(0)‖+
∫ t

0

‖eΣ(t−τ)ΨeT‖dτ.

Applying Equation (4.31) and using κ2 = κ2(Σ) yields

‖δ(t)‖ ≤cde−κ2t‖δ(0)‖

+ 2cd
√
N(kT + akψ)

∫ t

0

e−κ2(t−τ)dτ,

because ‖ΨeT‖ ≤ kψ‖M‖‖ef‖ + kT‖M‖‖eh‖, ‖ef‖ ≤ ‖P (ψ)ĝ − P (ψ∗)ĝ∗‖ ≤
2a

√
N , ‖eh‖ ≤ ‖T̄ ĝ − T̄ ĝ∗‖ ≤ 2

√
N , ‖M‖ = 1, ‖T̄‖ = 1, ‖P (ψ)‖ = a, ‖g̃i‖ ≤ µ,

and ‖ĝ‖ ≤
√
N . Then ‖ΨeT‖ ≤ 2

√
N(kT + akψ). Finally

‖δ(t)‖ ≤2cd
√
N

κ2
(kT + akψ)

+

(

cd‖δ(0)‖ −
2cd

√
N

κ2
(kT + akψ)

)

e−κ2t. (7.12)

Since 1TL = 0T , the time derivative of ēp and ēv is given by

˙̄ep(t) = ēv(t),

˙̄ev(t) = −γēv(t) + kψēf (ep) + kT ēh(ep), (7.13)

with initial average ēp(0) = 1
N
1T ep(0) = ēp0, ēv(0) = 1

N
1T ev(0) = ēv0, ēf =

1
N
1T (P (ψ)ĝ(ep + r∗)− P (ψ∗)ĝ(r∗)), ēf satisfies ēf(0) = 0, and ēTp ēf (ep) < 0

for all ep 6= 0; ēh = 1
N
1T
(
T̄ ĝ(ep + r∗)− T̄ ĝ(r∗)

)
, ēh satisfies ēh(0) = 0, and

ēTp ēh(ep) < 0 for all ep 6= 0.

Each agent’s state converges to the consensus dynamics’ solution of Equation
(7.13) if the graph is undirected and consensus is achieved. Then the equilibrium
is stable, because agents starting on any place of the scalar field move towards
the desired level curve at constant velocity.

To arrive at the same conclusion, consider the system

˙̄ep(t) =ēv(t),

˙̄ev(t) =− γēv(t)− sf(ep)− sh(ep),

where sf(ep) = −kψ ēf(ep) and satisfies sf(0) = 0; ēTp (ep)sf(ep) > 0 for all ep 6= 0.
sh(ep) = −kψ ēh(ep) and satisfies sh(0) = 0; ēTp (ep)sh(ep) > 0 for all ep 6= 0.

Consider the Lyapunov function candidate with line integrals as

V =
1

2
ēTv ēv +

∫ ēp

0

sTf (z)dz +

∫ ēp

0

sTh (z)dz, (7.14)

where V is continuously differentiable, V (0) = 0, and V > 0 for all ep 6= 0 and
ev 6= 0. Then

V̇ = −γēTv ēv ≤ 0. (7.15)

Applying the Lasalle’s principle, it is possible to conclude that the equilibrium
point is stable because ēv = 0 ⇒ ēp = 0 ⇒ ˙̄ev = 0 = −sf (0) = −sh(0) = 0.
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7.4 Cooperative Level Curve Tracking for LTI

Models

Consider a group of N identical agents with linear time-varying dynamics des-
cribed by

ẋi(t) = Apxi(t) +Buui(t) +Bww̄i(t),

zi(t) = Czxi(t) +Dzuui +Dzww̄i(t),

ri(t) = Cyxi(t) +Dyww̄i(t), (7.16)

where xi ∈ R
n is the state of agent i, ui ∈ R

m1 is the control input, w̄i ∈ R
m2

is the external disturbance and noise, ri ∈ R
p is the measured position output,

and zi ∈ R
q is the controlled output of agent i. It is assumed that (Ap, Bu)

is stabilizable, (Ap, Cy) is detectable, and without loss of generality, Bu is full
column rank.

Based on the neighbours’ relative output measurements between agents, a
distributed dynamic output feedback controller for agent i is considered as

v̇i(t) =AKvi(t) +BK(eF i(t) + eT i(t)),

ui(t) =CKvi(t) +DK(eF i(t) + eT i(t)),

eF i(t) =
1

|Ni|
∑

j∈Ni

aij [(rF i(t)− rFj(t))− (ri(t)− rj(t))] ,

eT i(t) =vT i(t) = kψ(ψref − ψi)
ĝi(ri(t))

‖ĝi(ri(t))‖
+ kTT

ĝi(ri(t))

‖ĝi(ri(t))‖
, (7.17)

where

ĝi(ri) =

(
∑

j∈Ni

aij(ri − rj)(ri − rj)
T

)−1(
∑

j∈Ni

aij(ri − rj)(ψ(ri)− ψ(rj))

)

is the distributed estimated gradient computed in each agent i in Chapter 2, and
vi(t) ∈ R

mK is the state of the dynamic output feedback controller.

Let x = [xT1 , . . . , x
T
N ]

T , v = [vT1 , . . . , v
T
N ]

T , w̄ = [w̄T1 , . . . , w̄
T
N ]

T ,

rF = [rTF1, . . . , x
T
FN ]

T , vT = [vTT1, . . . , v
T
TN ]

T , and z = [zT1 , . . . , z
T
N ]

T . Substitut-
ing the controller (7.17) into the system (7.16), the closed-loop network dynamics
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can be written as
[
ẋ
v̇

]

=

[
IN ⊗ Ap −L⊗ BuDKCy IN ⊗ BuCK

−L ⊗BKCy IN ⊗AK

] [
x
v

]

+

[
L ⊗ BuDK IN ⊗BuDK IN ⊗ Bw −L⊗ BuDKDyw

L ⊗ BK IN ⊗BK −L ⊗BKDyw

]




rF
vT
w̄



 ,

z =
[
IN ⊗ Cz − L⊗DzwDKCy IN ⊗DzwCK

]
[
x
v

]

+
[
L ⊗DzwDK IN ⊗DK IN ⊗Dzw − L⊗DzwDKDyw

]





rF
vT
w̄



 ,

r =
[
IN ⊗ Cy 0

]
[
x
v

]

+
[
0 0 IN ⊗Dyw

]





rF
vT
w̄



 ,

(7.18)

where vT (t) =
(
kψP (ψ) + kT T̄

)
ĝ, P (ψ) = diag [ψref − ψ1, . . . , ψref − ψN ] =

P (ψ)⊗ Ip and T̄ = diag [T, . . . , T ] = IN ⊗ T .

7.4.1 Controller Synthesis

The proposed distributed controller has two parts: formation controller and
tracking controller. The formation controller maintains agents in a desired rela-
tive position and the tracking controller steers agents in the gradient’s perpen-
dicular direction in order to track a level curve.

Based on the previous works, (Pilz et al., 2009) and (Popov and Werner,
2009) a robust control approach to formation control is implemented. First, a
local controller to stabilize a single quad-rotor helicopter is designed. Second, a
robust formation controller to maintain agents in a desired relative position is
designed.

To design a local controller KL, a full state feedback LQR controller is used
as ζi = KLxi+ui, where KL stabilizes local dynamics of each agent i and ui is the
control law for the formation and tracking part. ui steers agent’s position in the
formation and tracks the gradient direction. The new dynamics after applying a
local controller are given by

ẋi(t) = (Ap +BuKL)xi(t) +Buui(t) +Bww̄i(t),

ẋi(t) = Axi(t) +Buui(t) +Bww̄i(t),

zi(t) = Czxi(t) +Dzuui +Dzww̄i(t),

ri(t) = Cyxi(t) +Dyww̄i(t), (7.19)

where A = Ap + BuKL and the matrix is Hurwitz. The formation controller
KFT is designed based on Theorems 3 and 4 of (Pilz et al., 2009). Performance
requirements are incorporated into our design by means of mixed-sensitivity loop
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shaping. H∞ synthesis technique is used to design the controller. A generalized
plant construction with sensitivity WS(s) and control sensitivity WK(s) is shown
in Fig. 7.1, where wp = rF . These theorems reduce the formation stability
problem to an H∞ design problem for a single agent with uncertainty. They
also guarantee stability for any formation if controller KFT satisfies the design
requirements.

P
ui yi

KL

ξi

ζi

WS(s)

WK(s)

eFi

zSi

zKi

zδi

wPi

wδi

G(s)

Figure 7.1: Generalized plant

7.4.2 Stability Analysis

Convergence of agents inside a scalar field is analysed as follows.

Theorem 6. Consider the multi-agent system (7.16) with control law (7.17).
Suppose that the assumptions 1, 2 and 3 are fulfilled. Then, for all ri(0) ∈ R

2

and t ≥ 0, agents move along a given level curve of an unknown scalar field ψ(r)
and the closed-loop system converge to an equilibrium point (7.23) centred ball
with radius

ǫ ≤
2
√
NcÂ(kψa+ kT )‖Cy‖

(

‖B̃‖+ ‖L‖‖G̃‖
)

λÂ
. (7.20)

Proof. Consider the closed-loop system of (7.18), with w̄ = 0, as
[
ẋ
v̇

]

=

[
IN ⊗ A−L⊗ BuDKCy IN ⊗ BuCK

−L ⊗BKCy IN ⊗ AK

] [
x
v

]

+

[
L ⊗ BuDK IN ⊗ BuDK

L ⊗ BK IN ⊗ BK

] [
rF
vT

]

,

r =
[
IN ⊗ Cy 0

]
[
x
v

]

. (7.21)

Let ζ = [xT vT ]T and ξ = [rTF vTT ]
T . Equation (7.21) can be written as

ζ̇ =Âζ + B̂ξ,

r =Ĉζ, (7.22)
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where Â = IN⊗Ã+L⊗ F̃ and this term is Hurwitz matrix, B̂ = IN⊗B̃+L⊗G̃,
Ĉ = IN ⊗ C̃, and

Ã =

[
A BuCK
0 AK

]

, F̃ =

[
−BuDKCy 0

BK 0

]

,

B̃ =

[
0 BuDK

0 BK

]

, G̃ =

[
−BuDK 0
BK 0

]

,

C̃ =
[
Cy 0

]
.

The equilibrium point is given by

ζ∗ =Â−1B̂ξ∗,

r∗ =Ĉζ∗. (7.23)

Let the state error eζ = ζ−ζ∗ and the position error er = r−r∗. The dynamic
state error can be written as

ėζ = Âeζ + B̂(ξ − ξ∗), (7.24)

where

ξ − ξ∗ =

[
0

kψ (P (ψ)ĝ − P (ψ∗)ĝ∗) + kT T̄ (ĝ − ĝ∗)

]

,

ĝ = ĝ(er + r∗) and ĝ∗ = ĝ∗(r∗). The solution is given by

eζ = eÂteζ(0) +

∫ t

0

eÂ(t−τ)B̂(ξ − ξ∗)dτ, (7.25)

and the position error can be written as

er = Ĉeζ ,

= ĈeÂteζ(0) + Ĉ

∫ t

0

eÂ(t−τ)B̂(ξ − ξ∗)dτ. (7.26)

The solution is bounded by

‖er‖ ≤cÂ‖Ĉ‖‖eζ(0)‖e−λÂt+

2
√
Nµ(kψa+ kT )cÂ‖Ĉ‖‖B̂‖

∫ t

0

e−λÂ(t−τ)dτ, (7.27)

because ‖eÂt‖ ≤ cÂe
−λ

Â
t and ‖ξ − ξ∗‖ ≤ 2

√
N(kψa + kT ), since ‖P (ψ)‖ ≤ a,

‖T̄‖ = 1, ‖ĝ‖ ≤
√
N . It follows

‖er‖ ≤2
√
NcÂ(kψa + kT )‖Ĉ‖‖B̂‖

λÂ
+

cÂ‖Ĉ‖
(

‖eζ(0)‖ −
2
√
N(kψa + kT )‖B̂‖

λÂ

)

e−λÂt. (7.28)
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Finally

‖er‖ ≤
2
√
NcÂ(kψa+ kT )‖Cy‖

(

‖B̃‖+ ‖L‖‖G̃‖
)

λÂ
+ cÂ‖Cy‖ (‖eζ(0)‖) e−λÂt−

cÂ‖Cy‖




2
√
N(kψa + kT )

(

‖B̃‖+ ‖L‖‖G̃‖
)

λÂ



 e−λÂt, (7.29)

since ‖Ĉ‖ ≤ ‖Cy‖, ‖B̂‖ ≤ ‖B̃‖+ ‖L‖‖G̃‖.

7.5 Simulation Results

To evaluate the proposed level curve tracking algorithms, a formation of 7 mobile
agents with a communication graph G as shown in Fig. 1.4 is considered. The
communication topology is fixed and undirected. The scalar field is defined as

ψ(r) = A0e
−((r−rs)TH1(r−rs)) + A0e

−((r−rs)TH2(r−rs)),

where A0 = 3, H1 =

[
1

2σ2x1
0

0 1
2σ2y1

]

, H2 =

[
1

2σ2x2
0

0 1
2σ2y2

]

, σx1 = 30, σy1 = 75,

σx2 = 80 and σy2 = 25. Fig. 1.2 shows the level curve described by the previous
equations.

To estimate the gradient, Equation (2.3) should be implemented in absence
of noise; when signals are corrupted by noise Equation (3.25) should be im-
plemented. Initial conditions of the consensus filter are set as ξ(0) = ν(0) =
0. Tuning parameters are set to βξ = 1 and βν = 1.2. For ri and ψi, the
noise covariance matrix is set to diag(0.23 0.24 0.21 0.22 0.23 0.24 0.25) and
diag(0.23 0.26 0.24 0.26 0.28 0.29 0.3), respectively.

In this scenario, the goal is to move the agents’ formation along a desired
level curve maintaining a desired geometric agent formation. At the same time,
aim of the controller is to reject disturbance at high frequency noise.

7.5.1 Double Integrator Models

The desired formation rF i for double integrator models is defined as rF1 = [0 0]T ,
rF2 = [−3 6]T , rF3 = [−6 0]T , rF4 = [−3 − 6]T , rF5 = [3 − 6]T , rF6 = [6 0]T ,
and rF7 = [3 6]T . Their initial positions r0i are set to r01 = [0 0]T , r02 = [0 1]T ,
r03 = [1 1]T , r04 = [1 0]T , r05 = [2 0]T , r06 = [2 1]T , and r07 = [3 0]T with
respect to any position inside the scalar field. The distributed controller’s tuning
parameters are set to kF = 1, θ = 1 and γ = 1.5.

Fig. 7.2 shows agents’ velocity and the formation’s response when agents are
inside a scalar field. Due to the distributed level curve tracking controller (7.2),
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Figure 7.2: Level curve tracking using Equation (7.2)

agents start moving from their initial positions towards the desired level curve
ψref = 1 maintaining the desired formation. Note that agents’ velocity is higher
when agents are far from the desired level curve because error ψref −ψi is large.
When agents are close to the desired level curve, they move at a constant average
velocity defined by kT

γ
= 0.4 m/s. At time t = 600 s disturbance steps in agents

1, 3 and 4 have been included. The controller rejects such disturbance steps
and agents go back to the desired level curve and formation. When agents move
along a strong arc, inner agents move slower and outer agents move faster than
the average velocity of the formation. Their velocity converges to a common
value and agents converge to the desired relative positions.

To avoid higher velocities when agents are far from the desired level curve and
to drive agents at constant velocity to any place of the scalar field, two distributed
controllers can be used. When agents are far, the source seeking algorithm (4.28)
can be implemented to enable agents to track the gradient direction. When
agents are close to the desired level curve, the level curve tracking algorithm
(7.2) can be used to drive agents in a direction perpendicular to the gradient.
Fig. 7.3 illustrates the effect of combining these two controllers. When agents
start moving, the source seeking algorithm is used and agents travel at an average
velocity predefined as kT

γ
= 0.66 m/s. At time t = 150 s the level curve tracking

algorithm (7.2) is used and agents travel at an average velocity predefined as
kT
γ

= 0.5 m/s. Note that the whole formation is able to track different level
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Figure 7.3: Level curve tracking combining Equations (4.28) and (7.2)

curves. In this simulation the level curve reference is changing between ψref = 1
and ψref = 2.

7.5.2 Quad-rotor Helicopter

Simulation results for LTI models are presented in this section. Each agent
is an underactuated and unstable multi-input/multi-output (MIMO) 12th order
dynamic model as proposed in (Lara et al., 2006) and (Pilz et al., 2009), with 4
inputs and 3 position outputs (see the model of quad-rotor helicopter in Appendix
A). The desired formation rF i and the initial positions of quad-rotor helicopters
r0i are defined in the same way as for double integrator models with component
rzi = 0 for all agents.

To stabilize a single agent, a full state feedback LQR controller is chosen.
The weighting matrices are

R = diag(100, 0.1, 25, 25) and

Q = diag(0.04, 1, 0.04, 1, 0.5, 20, 0.25, 1, 103, 50, 103, 50).

To track the desired level curve and maintain agents in a desired relative
position, the level curve tracking algorithm (7.17) is implemented. The sensitivity
and control sensitivity weighting filters are Ws = I3 ⊗

(
1

s+0.0001

)
and WK =
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I4 ⊗
(

50 s+103

s+106

)

. The H∞ synthesis technique is used to design the controller.

The designed H∞ controller is of 19th order. The robust stability H∞ norm is
0.992 < 1.

In the case of a quad-rotor helicopter formation, simulation results are similar
to them obtained under a double integrator model scenario. This results apply
only when the scalar field’s source do not move, they apply only for constant
scalar fields. For this reason simulations are not repeated.

Now a simulation considering a scalar field’s source moving at slow cons-
tant velocity and a scalar field expanding and contracting at slow velocity are
considered.
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Figure 7.4: Level curve tracking for quad-rotor helicopters operating into a
moving scalar field using Equation 7.17

Implementing the approach here presented, agents travel at constant velocity
to any place into the scalar field. In real scenarios scalar fields may travel in
different directions and also expand or contract; for example under influence of
changing environmental conditions. If agents’ velocity is less than the scalar field
source’s velocity and/or extension-contraction velocity of the scalar field, agents
localize a desired level curve and move along this curve. Fig. 7.4 shows agents
tracking the desired level curve ψref = 1 at constant velocity while the scalar
field’s source is moving along the blue line (source). The source moves at velocity
ṙs = 0.2 m/s while agents move at ˙̄r = 0.5 m/s.
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7.6 Conclusions

In this chapter, the problem of cooperative level curve tracking has been dis-
cussed. Distributed controllers based on both an estimated gradient and a for-
mation controller for double integrator models and LTI systems have been pro-
posed. Agents are able to move along a desired level curve inside the scalar
field. Theoretical analysis demonstrates that the algorithms here proposed en-
able agents to converge to a discretionary level curve into the a scalar field while
geometric formation is preserved. When concentration and position signals are
corrupted by noise, distributed consensus filters are used to estimate the gradient
and agents are still able to move towards a desired level curve.





Conclusions and Outlook

In this thesis distributed algorithms to solve both the source seeking problem
and the level curve tracking problem for a group of N identical agents have
been presented. These algorithms enable agents to operate under an undirected
constrained communication topology. As a contribution to the field of cooper-
ative control, a combined distributed control strategy has been proposed: the
distributed algorithms are composed of two parts, a formation controller and a
trajectory controller. The distributed formation controller uses information of
relative positions and velocities and its goal is to maintain agents on their desired
relative positions. The distributed trajectory controller is based on a locally es-
timated gradient, which is computed for each agent in a distributed way, and
its goal is to steer the group of agents towards the scalar field’s source or to
move agents along the desired level curve. Calculation of this estimated gradi-
ent is based also on information of relative agent’s positions and information of
relative signal strength between agent i and their neighbours.

An important new feature of the proposed approach is the estimation of the
gradient in each agent, which opens the door for combining the best attributes
of formation controller and trajectory controller, therefore functioning in a dis-
tributed way and avoiding constraints of previous approaches. For the proposed
source seeking algorithms, it is neither necessary to know the formation’s center
of mass and its estimated gradient, nor to keep agents rotating in a circular for-
mation, nor to have a leader in the formation. Further, for the proposed level
curve tracking algorithms, it is neither necessary to estimate the Hessian matrix,
nor to know the formation’s center of mass. The solution is found using only an
estimated gradient in each one of the agents. The proposed approach is suitable
for a large number of agents and for any type of formation. Consequently, ap-
plying our approach agents can cover larger spatial areas and use energy more
efficiently.

A modified consensus filter operating under constrained communications has
been proposed; it is very useful when signals are corrupted by noise. This con-
sensus filter algorithm rejects high frequency noise and improves the accuracy of
time-varying signal tracking, too. Therefore, it significantly improves the gradi-
ent direction’s estimation.

In order to illustrate the proposed source seeking approach through conceiv-
able models of dynamic agents, distributed algorithms for linear and non-linear
dynamic agents have been proposed. In the linear case, simple distributed con-

97
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trollers for single and double integrator agents have been designed. To present
an improved network of heightened performance and to generalize the results
of single and double integrator agents to more complex dynamics, a distributed
dynamic controller for LTI systems has been proposed. In the nonlinear case, a
simple distributed control law for a group of non-holonomic agents has been de-
signed. An algorithm for collision avoidance between agents and with obstacles
has been included in the control law. The distributed source seeking algorithms
designed here are apt to locate and track the scalar field’s source even if the
source is moving at constant velocity. If the average velocity of the formation is
higher than the scalar field’s source velocity, then our approach allows the group
of agents to locate and follow the source or maximum of the scalar field.

To solve the level curve tracking problem, distributed controllers for double
integrator agents and LTI systems have been designed. As in the algorithms
previously presented, information of the estimated Hessian matrix is not required
here. In contrast to other approaches, our approach uses only the estimated
gradient computed in each agent and only relative information between agents.
The distributed level curve tracking controllers designed here enable agents to
successfully move along level curves of a scalar field independently of the state of
the scalar field. It can be fixed or can be moving at constant velocity, and at the
same time, the scalar field can be expanding and contracting at low velocities.

All mentioned algorithms are provided with stability analysis, showing that
the group of agents effectively move towards the scalar field’s source or move
along a desired level curve while agents maintain the desired formation. The
results obtained in the simulations additionally support the effectiveness of this
approach.

Future Directions

• In future applications, where keeping a fixed geometric formation poses
limits to the applications’ efficiency, swarm behaviour for agents can be
achieved using this distributed estimated gradient method in a new formu-
lation of the presented control law which changes the trajectory controller.
In this case agents could react with more flexibility like a fish school looking
for food.

• Natural environment signals are subject to many sorts of disturbances.
Therefore, the scalar field could corrupted by spatial noise, which would
generate multiple maxima within this field. In order to locate the real max-
imum, the formation controller should be modified, allowing the formation
to expand or shrink the sensing range until the real maximum or source is
located.

• In the course of a single mission many different tasks can arise or be indis-
pensable for a successful accomplishment. Examples of thinkable tasks are
tracking the gradient direction, taking pictures, changing formation’s shape
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or removing failing agents. In this situation, simple decision-making con-
trollers should be designed to allow optimal task switching. This scenario
would require or a renewed stability analysis.

• When there is limited or no position information available (environments
where Global Positioning Systems -GPS- does not work, for example in situ-
ations of vapour emitting sources such as explosive detection, searching for
illegal drugs, chemical leaking or hazardous chemical sensing), distributed
controllers must be redesigned allowing agents to find the source or move
along a level curve without position information.





Appendix A

Quad-rotor Helicopter Model

The linearised model of the quad-rotor helicopter, written as a state space model,
is given by

˙̺(t) =A̺(t) +Bu(t),

r(t) =C̺(t),

where

A =























0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −g 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 g 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0























,

B =







0 0 0 0 0 1
m

0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1







T

,

C =





1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0





T

,

with m = 0.64 kg as the total mass of the quad-rotor helicopter and g = 9.81
m/s as the gravitational constant.
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The state vector is defined as

̺(t) =
[
rx ṙx ry ṙy rz ṙz or ȯr op ȯp oyz ȯyz

]T
,

where rx and ry describe the position of the quad-rotor helicopter in the hori-
zontal plane, rz describe the vertical coordinate, or is the roll angle around the
rx-axis, op is the pitch angle around the ry-axis and oyz is the yaw angle around
the rz-axis.

The control inputs are defined as

u(t) =
[
u1 u2 u3 u4

]T
,

and the output vector is defined as

r(t) =
[
rx ry rz

]T
.
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