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Abstract

In this note we study a variant of the inverted Lanczos method which computes
eigenvalue approximates of a symmetric matrix A from the projection to a
Krylov space of A~'. The method turns out to be slightly faster than the
Lanczos method at least as long as reorthogonalization is not required. The
method is applied to the problem of determining the smallest eigenvalue of a
symmetric Toeplitz matrix. It is accelerated taking advantage of symmetry
properties of the corresponding eigenvector.
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1 Introduction

In this paper we consider the problem to determine the smallest eigenvalue (or the
lower part of the spectrum) of a symmetric and positive definite matrix A € R
by a variant of the Lanczos method.

It is well known that the accuracy of an approximation to an eigenvalue A obtained
by the Lanczos method is influenced mainly by the relative separation of A from the
other eigenvalues of A. The bigger the separation is the better is the approximation.
Therefore to compute the lower part of the spectrum it is often advantageous to
apply the Lanczos method to the inverse A~!, i.e. to determine the approximations
from the projection of the matrix eigenvalue problem A 'z = A~z to the Krylov
space Kp(A™ L u) := span {u, A tu, ..., A"F 1y} (cf. [2], [5], [9]).



Motivated by a paper of Melman [6] on bounds of the extreme eigenvalues of real
symmetric Toeplitz matrices and by the fact that these bounds can be interpreted
as the extreme eigenvalues of the projection of the eigenvalue problem to a Krylov
space of A~ (cf. [11]) we study in this paper a variant of the Lanczos method which
produces Ritz values of A from K(A™"', u). A similar combination was considered
by Paige, Parlett and van der Vorst [7] who introduced harmonic Ritz values as the
reciprocals of the Ritz values of A~! from AK,(A, u).

Our method can be executed in a similar way as the inverted Lanczos method.
An orthonormal basis qi,...,q of Ki(A™t u) with respect to the scalar product
(x,y)a := " Ay can be determined by a three term recurrence relation, and with
Q= (q1,...,q) € R™Y the projected eigenproblem Q" AQy = A\Q"Qy is tridiag-
onal.

Increasing the dimension k& of the Krylov space by 1 the cost of the new variant is
identical to that of the inverted Lanczos process. However, for £ = 1 the inverted
Lanczos methods needs one solution of a linear system which is not the case for the
modified method. Hence, the cost of the k-dimensional Lanczos method roughly
compares to that of its (k — 1)-dimensional variant. Since the approximate eigenval-

ues a%k) < aék) <...< J,Ek) are shown to satisfy aj(k) < pg-kfl) < 0](-(]“71) where pg-k)
denotes the approximation of the j-th eigenvalue from the k-dimensional inverted

Lanczos method one should prefer the modification given here.

The method suffers the same disadvantage as the Lanczos process, orthogonality
is lost in the course of the iteration, and (full or selected) reorthogonalization may
be necessary in order to maintain accuracy. Since the Gram-Schmidt process with
respect to the inner product (-,-)4 is more expensive than for the Euclidean scalar
product the advantage mentioned in the last paragraph disappears if reorthogo-
nalization is required. However, since the convergence to the extreme eigenvalues
appears first loss of orthogonality is not a problem if one is only interested in the
smallest eigenvalue of A.

The problem of finding the smallest eigenvalue and corresponding eigenvector of a
real symmetric and positive definite Toeplitz matrix is of considerable interest in sig-
nal processing (cf. [8]). Section 3 contains the comparison of the variant considered
here and the inverted Lanczos method for a large number of examples of this type.
Moreover we sketch a modification that takes advantage of symmetry properties of
the eigenvectors of symmetric Toeplitz matrices.

2 An inverted Lanczos method

Let A € R™™ be a symmetric and positive definite matrix, let v € IR®, u # 0, be
a given vector, and let

Kr(A™ u) == spanf{u, A tu, ..., A"y}



be the Krylov space corresponding to A~! and the initial vector .

We consider the projection of the eigenvalue problem
Ar =z (1)

to KCp(A™1, 1), i.e. if the columns of the matrix Q@ € IR™* form a basis of Ky (A1, u),
then we consider the eigenvalue problem

Q" AQy = AQ"Qy, y € R"\ {0}. (2)

This method has similar properties as the inverted Lanczos method. An orthonormal
basis of Kp(A ™1 u) with respect to the scalar product (z,y)4 := zT Ay can be
determined by a three term recurrence relation such that the projected eigenvalue
problem (2) is tridiagonal. To this end consider the following algorithm:

¢ = u/VulAu; a1 = |lqill3; g0 =0; Bo = 0;
for k =1,2, - until convergence do

Q1 = A tqp — gy — Br—1qk—1;

B = \/ Qs 1Gk;

qk+1 = (jlc-l—l/ﬁk;

Qg1 = ||Qk+1||%§

Solve the eigenvalue problem

y = A tridiag(8;_1, &), i) j=1,...k+1¥;
end

For the sequence qi,qy, -+ it holds that ¢l Aq; = 1, and if {qi,...,q} is already
shown to be an orthonormal basis of Kj(A™!, u) with respect to (z,y)4 for some
ke {1,...,n— 1} then it follows from A~'q; € span{qi,...,q1} that

argi=qAA " g)=0fori=1,...,k—2 (3)

and

Gae1=0q AlGe + ar1qe 1+ Br 2@ 2) = G AGr = Be 1@ Aqk = Br1- (4)
Hence

1, . .
qlz—i—lqu = E(A gk — argy — ﬁk—1qk_1)Tqu =0forj=1,...,k—2,
T 1 7
quAqk,l = —(qk qk—1 — kal) =0
Br

and

1

- Ulacl o) = 0.

G Age =



Finally it follows from the definition of [
1

oA = E(Afl% — agqr — Bro1qr—1) T Agra
1 1 -
= — G Q1 = 505 Gri1 = L.
Br i

Thus, {qi,---,qk, qkr1} is an orthonormal basis of Ky, (A™", u). Moreover, (3), (4)
and the definition of «y imply that for this basis the projected eigenvalue problem
(2) reads

a; [
Bi ay P
Br—1

Br-1 oy

With Qk := (q1,...,q) € R™*) the modified Lanczos algorithm can be rewritten
as

AT'Qr = QT + Brqrsrer (6)

where e, € IR* denotes the unit vector containing a 1 in its last component and
zeros elsewhere. From (6) we obtain an error bound in a similar way as for the
Lanczos method.

Theorem 1 Let y € IR such that

y=0Ty, |lyll2=1.
Then there exists an eigenvalue \ of A such that

A—0
PO ) et (7

Proof: For z := @y it follows from (6)

_ _ 1 1
Az = A'Qry = Ty + Brgrriery = EQk?J + BrQrrrery = i + BrQr 161 Y-

Hence, |qe1]la =1 and |[2]% = 4" Qg AQry = [lyll3 = 1 yields
|A™"2 — g2lla

from which we obtain that there exists an eigenvalue A of A such that

1 1

IR EAREATR

i.e. the error bound (7). q.e.d.



Increasing the dimension k£ by 1 the cost is identical for both methods, the inverted
Lanczos method and its variant considered here: namely one has to solve 1 linear
system and to execute 5 level one operations. Notice however, that for £ = 1 the
inverted Lanczos methods needs the normalization of the initial vector with respect
to the Euclidean inner product and one solution of a linear system whereas in the
modified method one only has to normalize the initial vector with respect to (-, -) .
Hence, the cost of the k-dimensional inverted Lanczos method roughly compares to
that of the (k — 1)-dimensional modified version.

The following Theorem demonstrates that for j = 1,...,k the approximation pgk)

to the j-th eigenvalue \; of A from the inverted Lanczos method using Kp(A ™!, u)

is less accurate than the Ritz value a](-kH) from Kp 1 (A1 u).

To prove this comparison result we consider the projected eigenvalue problem (2)
corresponding to the basis

Q= (u, A u, ..., A7) (8)

of Kx(A™!, u). Then equation (2) reads

H-1  Ho ... Hk-2 Ho M1 -+ Hg—1
k Ho L N I 2 k
KRy | 0T T T e T T =
Hk—2 Hg—1 .. H2k—3 Hig—1 Mk . Hog—2
(9)
where '
pi=u" Ay, (10)

The inverted Lanczos method is the projection of the eigenvalue problem A 'z =
A~ !z onto the Krylovspace Ky(A™!, u), and using the basis in (8) it is equivalent to

Ho M1 --- Hi—1 M1 p2 .. Mg
k L R N 10 M2 M3 - MRt k
Kly=| " Coly=al T T Ty =y,
Mk-1 MKk ---  H2k—2 Me  Hk41 - H2k-1

(11)

These two representations are the basis of the following comparison theorem.

Theorem 2 Let pgk) < pgk) < ... < p,gk) denote the eigenvalue approrimations
obtained by the inverted Lanczos method using Ki(A™', u), and let Jgk) < Jék) <

o< U]Ek) denote the eigenvalue approzimations of the modified Lanczos method in
(9). Then for every k < n it holds that

ot < ) <o 1< <k (12)



Proof: For y := (yo,y1,..,yr—1)" € R" let

k—1
g = Z yjA*J*Iu.
j=0

Then it is easily seen that

YIRSy g A3y

R y) 1= =
i () yTM]E/I;)y gTA%g
and ®)
T T A2
y K’y g A%g
Ry (y) = ——f- =

My g Ay
and for ¢ := (0,90, y1,---,¥x_1)" it holds that

T
(k+1)~y 9 Ag
RM (y) - ng .

From the Cauchy—Schwarz inequality we obtain

(9" Ag)* < g"g- g" A?g,

1.e.
R () < R (y),
and
(9" A%g)* = (AY?g) (A3 g) < g"Ag - g" A,
1.e.

Let W c IR¥ such that

o = min max R{Y(y) = max R{?(y).

J dimV=j yeV yeWw
Then inequality (14) implies

(k) (k) _ (k)
ry%%f} Ry (y) < Iy%%%( Ry (y) =05,

and therefore

pgk) = min max R%k)(y) S max R(Lk) (y) S U§ )

dimV=j yeV yeWw

Similarly, let Z C IR” such that

pg-k) =max R} ’(z)

(13)

(14)



and let
0

z

Z::{z::(

Then it follows from inequality (13)

> c 2z € Z} c RFL

(k+1) . (k+1) (k+1) / ~ k), N (k)
o = gmin max Ry (y) < max Ry (2) < max By S(z) = p
and this completes the proof. q.e.d.

Theorem 2 describes the behaviour of the ideal modified Lanczos method in exact
arithmetic without roundoff. In floating point arithmetic it behaves similarly as
the Lanczos method: roundoff destroys orthogonality properties upon which our
analysis depended so far, and (full or selected) reorthogonalization is necessary to
maintain its accuracy. Since the Gram—Schmidt process with respect to the scalar
product (-, -) 4 is more expensive than for the Euclidean inner product the advantage
of the modified method proved in Theorem 2 disappears. However, since the extreme
eigenvalues usually converge first we can waive reorthogonalization if we are only
looking for the smallest eigenvalue of A. According to Theorem 2 in this case the
modified version considered here should be faster than the inverted method.

3 Computing the minimum eigenvalue of a sym-
metric Toeplitz matrix

The problem of finding the smallest eigenvalue and corresponding eigenvector of a
real symmetric and positiv definite Toeplitz matrix 7T is of considerable interest in
signal processing (cf. Pisarenko [8]). In this section we compare the inverted Lanczos
method and its modification for this problem.

Assume for convenience that the diagonal of T € IR"™™ is normalized to 1, and that

the first row of T is given by (1,¢7), and denote the leading principal submatrix of
dimension n — 1 by S. The most costly step in the algorithms of Section 2 is the
solution of the linear system

Tv=w. (15)

(15) can be solved efficiently in one of the following two ways. Durbin’s algorithm
(cf. [4], p. 195) for the corresponding Yule-Walker system Sy = —t supplies a de-
composition LT LY = D where L is a lower triangular matrix and D is a diagonal
matrix. Hence, in every iteration step the solution of equation (15) requires 2n?
flops. This method for solving system (15) is called Levinson-Durbin algorithm.

For large dimensions n equation (15) can be solved using the Gohberg-Semencul
formula for the inverse 77" (cf. [3])

7= %Tt(GGT _ HHT), (16)
-y
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where

1 0 0 .0 0 0 0 0

(7 1 0 0 Y1 0 0 0

G := Y2 (71 1 O | andH:=| Yn-2 Yn1 O 0
Yn—1 Yn—2 Yn-3 --- 1 Y1 Y2 Yy ... 0

are Toeplitz matrices and y denotes the solution of the Yule-Walker system.

The advantages associated with equation (16) are at hand. Firstly, the representa-
tion of the inverse of T requires only n storage elements. Secondly, the matrices G,
GT, H and H" are Toeplitz matrices, and hence the solution T~'w can be calcu-
lated in only O(n logn) flops using the fast Fourier transform. Experiments show
that for n > 512 this approach is actually more efficient than the Levinson-Durbin
algorithm.

To test the improvement of the modified Lanczos iteration upon the inverted Lanczos
method we considered Toeplitz matrices

T =3 nThm, (17)

J=1

where & is chosen such that the diagonal of T' is normalized to 1, n; and 6; are
uniformly distributed random numbers in the interval [0,1] and T = (cos(0(i —
7)))ij=1,..n (cf. Cybenko and Van Loan [1]).

For each of the dimensions n = 32, 64, 128, 256, 512 and 1024 we considered 100
test examples. Table 1 contains the average number of flops and of linear systems
that had to be solved to determine an approximation to the smallest eigenvalue with
relative error less than 107%. Here we solved the linear systems using the Levinson-
Durbin algorithm. In parenthesis we added the average number of flops using the
Gohberg-Semencul formula. In either case we had to solve the Yule-Walker system
Sy = —t, and the solution of

o= (15 )(5)=(5)

is free. We therefore started the method with the unit vector containing a 1 in its
first component and zeros elsewhere.

A symmetric Toeplitz matrix T additionally is persymmetric, i.e. T = JTJ where
J denotes the flipmatrix containing ones in its secondary diagonal and zeros else-
where. Hence, it is easily seen that for a simple eigenvalue of T" and corresponding
eigenvector x it holds that z = Jx or x = —Jx. In the first case we call x a symmet-
ric eigenvector and A an even eigenvalue, in the latter case x is a skew-symmetric
eigenvector and the corresponding eigenvalue A is called odd.



Table 1. Average number of flops and linear systems

dim Lanczos method Modification
flops steps flops steps
32| 1.46E4 (6.13E4) | 5.59 | 1.38E4 (5.49F4) | 5.05
64 | 5.51E4 (2.66E5) | 6.00 | 5.11E4 (2.39E5) | 5.46
128 | 2.11E5 (6.04E5) | 6.11 | 1.95E5 (5.50E5) | 5.64
256 | 8.90E5 (1.49FE6) | 6.62 | 8.1TE5 (1.36F6) | 6.06
512 | 3.76E6 (3.70E6) | 7.08 | 3.51E6 (3.45E6) | 6.60
1024 | 1.56 E7 (9.26E6) | 7.38 | 1.46E7 (8.77E6) | 6.93

If the initial vector u of a Krylov space is symmetric and skew-symmetric, respec-
tively, obviously K (71, u) contains only symmetric and skew-symmetric elements,
too, and a projection method yields approximations only to even and odd eigenval-
ues, respectively. If the symmetry class of the principal eigenvector is known then
we will choose the initial vector u in the same class.

However, the symmetry class of the principal eigenvector is known in advance only
for a small class of symmetric Toeplitz matrices (cf. Trench [10]). In the general
case the inverted Lanczos method can be performed simultaneously for a symmetric
and a skew-symmetric initial vector such that in each step only one solution of a
linear system has to be determined (cf. [12]). Similarly for the modified method
considered here we can exploit symmetry of the eigenvectors.

We assume that the dimension n = 2m is even (the modifications for odd dimensions
are obvious). Let p,q; € IR™ be given. Then the following algorithm simultane-
ously produces orthonormal bases py, pa, ..., 0 of Ke(T %, p1) and Gy, Go, . . ., G of

Ke(T7,p1) where
~ h ~ q1
P = ( Ip, ) and ¢ = ( _Ja )

are symmetric and skew-symmetric initial vectors, respectively. For convenience we
assume that p; and ¢; are normalized such that pITp; = 1 and ¢I'T'¢, = 1.

a; = 2(|pl5; 11 = 2llaall3; o = 0; 70 = 05 pp = 0; go = 0;
for K = 1,2, ... until convergence do

pk+Qk ]
(P —ar) )’

)+Jv(m+ 1:n))/2;

<
||

v
( )
Pkl =D — Oékpk — Br—1Dk—1;
Qe+1 =G — VeQe — Ok—1Qk—1;



Table 2. Average number of flops and linear systems
Symmetry exploited

dim Lanczos method Modification
flops steps flops steps
32| 1.14E4 (4.42F4) | 4.23 | 1.04E4 (3.67E4) | 3.59
64 | 4.06E4 (1.82E5) | 4.35 | 3.81F4 (1.62E5) | 3.95
128 | 1.54E5 (4.17E5) | 4.42 | 1.38E5 (3.62E5) | 3.91
256 | 6.21E5 (1.01E6) | 4.60 | 5.68E5 (9.08E5) | 4.18
512 | 2.57TE6 (2.53E6) | 4.82 | 2.31E6 (2.28E6) | 4.33
1024 | 1.06E7 (6.65E6) | 5.04 | 9.69E6 (6.14E6) | 4.58

B = \/2DF 1Dk
Ok = \/ 241 1Gx;

Pri1 = Pry1/ Br;

Qkt1 = Qi+1/Ok;

a1 = 2|[peial]3;

Vi1 = 2| qrr1 I3

Solve the linear eigenvalue problems
y = Atridiag(B5_1, &, B)) j=1,. k+1V;
z = Atridiag(0,-1, Vj, 6;)j=1,...k+12;

end

For the same test problems as before the Table 2 contains the average number of
flops and of linear systems that had to be solved for the inverted Lanczos method
and its modification.
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