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ABSTRACT

Motivated by recent experimental investigations of the mechanical behavior of nanoporous metal we
explore an efficient and robust method for generating 3D representative volume elements (RVEs) with
strikingly similar behavior. Our approach adopts Cahn's method of generating a Gaussian random field by
taking a superposition of standing sinusoidal waves of fixed wavelength but random in direction and
phase. In its theory part, our study describes closed-form expressions for how the solid volume fraction
affects the binarization level, mean structure size, specific surface area, averages of mean and Gaussian
curvature, and the scaled topological genus. Based on numerical studies we report on criteria for
achieving representative realizations of the structure by proper choice of the number of waves and
element size. We also show that periodic structures are readily created. We analyze the mechanical
properties considering linear and infinitesimal elasticity and evaluate the residual anisotropy (which can
be made small) and the effective values of the Young's modulus and Poisson's ratio. The numerical results
are in excellent agreement with experimental findings for the variation of stiffness with solid fraction of
nanoporous gold made by dealloying. We propose scaling relations that achieve naturally a perfect
agreement with the numerical and experimental data. The scaling relation for the stiffness accounts for a
percolation-to-cluster transition in the random field microstructure at a finite solid fraction. We propose
that this transition is the origin of the previously reported anomalous compliance of nanoporous gold.
© 2018 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

be generated by a convenient and fast numerical algorithm and we
explore their geometric and mechanical properties.

Stochastic bicontinuous microstructures, in which two contig-
uous phases interpenetrate, are characteristic for many materials
formed by decomposition of a homogeneous parent phase. Exam-
ples are spinodally decomposed metal alloys [1,2], polymer blends
[3,4] or microemulsions [5], foams that can be polymeric, metallic
or food [6] and network solids such as nanoporous metals made by
dealloying solid solutions [7,8]. The properties of such micro-
structures depend on geometric or topological characteristics
including the specific surface area, the tortuosity of transport paths
through one or both of the phases, the characteristic structure size,
and measures for connectivity, such as e.g. genus per unit volume.
Here, we describe how spinodal-like stochastic microstructures can

* Corresponding author.
E-mail address: soyarslan@uni-wuppertal.de (C. Soyarslan).

https://doi.org/10.1016/j.actamat.2018.01.005

Our study is motivated by recent research in the field of nano-
porous metals made by dealloying. A substantial body of experi-
ments explores specifically the mechanical behavior of nanoporous
gold made in this way [9—18]. Nanoporous materials made by
dealloying can be understood as networks of nanoscale struts or
“ligaments”, typically with solid volume fractions between 0.25 and
0.50 [7—9]. While their microstructure is stochastic, their me-
chanical behavior is typically discussed with reference to the
Gibson-Ashby scaling relations [6] which have been supported - on
the modeling side - by periodic structures. However, the mechan-
ical properties of dealloying-made nanoporous solids are not well
described by the Gibson-Ashby scaling relations, and specifically
their Young's modulus can be more than an order of magnitude less
than predicted [14,19]. While surface excess elasticity has been
ruled out as an explanation [20,21], nonlinear elastic behavior of
the bulk may contribute [22]. Yet, the decisive issue appears to be
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network connectivity [13,14,23,24], which may systematically vary
with ligament size and solid fraction.

Cahn [1] showed that the composition field in the early stages of
spinodal decomposition could be approximated by the super-
position of waves with random direction but same wavelength. In
one of the first computer simulations of microstructure evolution in
materials science, Cahn showed that binarizing this composition
field indeed yielded the bicontinuous microstructure of spinodally
decomposed mixtures [1]. In the present work, we explore a
modern numerical implementation of Cahn's algorithm, which
efficiently generates 3D stochastic bicontinuous microstructures.
We present closed-form expressions for specific surface area and
scaled connectivity as a function of the wavelength and solid
fraction. Using finite element simulations, we document the elastic
behavior and the requirements on the size of the volume element
(VE)! for achieving representative behavior. The numerical part of
our study specifically focuses on the comparison to nanoporous
gold, from which the experimental validation of our model
emerges. We point out that a percolation-to-cluster transition at
finite density can be related to the anomalously low stiffness of
experimental nanoporous gold. We bring to the reader's attention
an alternative scaling law, suggested by Roberts and Garboczi [25],
which accounts for the transition and remains accurate over a wide
range of solid volume fraction. Since many numerical simulation
approaches use periodic boundary conditions, we show how vol-
ume elements with translational periodicity can be generated. We
also provide a comparison between the results for aperiodic and
periodic microstructures considering the predicted effective elastic
properties and demonstrate that they are in very good agreement.

2. Methods of 3D generation of nanoporous metal
microstructures

The 3D geometry of the microstructure of nanoporous gold has
been characterized in experiment by tomographic reconstruction.
Approaches were based on transmission electron microscopy
[26—29], X-ray nanotomography [30—32], focused-ion-beam (FIB)
sectioning [23,24,33,34] and atom-probe tomography [35]. These
approaches reveal a random network of ligaments which are
interconnected in nodes. The surface is found dominated by convex
and saddle-shaped patches [33], so that the average of the mean
curvature is positive [26,33]. The connectivity density is less than in
regular geometric networks such as the gyroid structure [23], and it
varies little when the mean structure size is varied by annealing-
induced coarsening [24,33]. Experimental 3D microstructures
have been used as the basis for numerical simulation of the me-
chanical response of nanoporous gold [23,24,32]. Studies working
with large volume elements, as better representatives for macro-
scopic material response, find strength and stiffness in qualitative
agreement with experimental mechanical tests [23,24].

While experimental reconstructions are distinguished by their
realistic geometry, they are also restricted to specific realizations
within the family of possible structures with the same stochastic
building principles. Furthermore, systematic experiments
exploring variations of the microstructure of nanoporous gold with
solid fraction remain yet to be reported. Numerical simulation ap-
proaches, and specifically atomistic approaches such as molecular
dynamics, also often require models that are compatible with 3D
translational periodicity. In each instance, the available experi-
mental database for 3D structures is not yet sufficient for

1 A volume element does not have to be adequate in size to cover sufficient
microstructural features and, thus, encapsulate the effective properties, as an RVE
does.

comprehensive numerical studies. This highlights the need for the
computational generation of model structures.

Computational generation methods often use deterministic
periodic unit cell-based idealizations. This may involve heuristic
constructions or constructions of (analytical) level surfaces, e.g.,
triply periodic minimal surface-based unit cells. The Kelvin model
[36] consisting of a regular packing of tetra(kai)decahedra, its var-
iations by Waire and Phelan [37] and the model of Gibson and
Ashby [6,38] are among the most widely used idealized unit cells
for nanoporous metals. Agglomeration of the mass in junctions is
considered making use of modified rectangular unit cells in
Refs. [39,40]. Periodic diamond cubic unit cells were recently used
for modeling nanoporous gold samples [21].

Constructions of triply periodic bicontinuous cubic micro-
domain morphologies, which are generated by making use of triply
periodic continuous minimal surfaces [41,42], constitute another
attractive direction. These level surfaces and the developed mi-
crostructures have the symmetries of a crystallographic group such
as cubic, tetragonal, rhombohedral, and orthorhombic symmetries.
Their smooth surfaces allow incorporation of theories accounting
for surface curvature effects more realistically. For the use of triply
periodic minimal surface based microstructures in modeling of
nanoporous gold samples, see e.g. Refs. [23,43,44]. Gyroids as
approximants to nanoporous metal foams were investgated in
Ref. [45]. Moreover, microstructures made up of single and double
gyroids were used in computation of the specific surface area of
nanoporous materials in Ref. [46].

Although periodic unit cell idealizations prove efficient and
simple, they fall short in reflecting certain key morphological, to-
pological and mechanical characteristics of nanoporous metals. On
the morphological part, the 3D reconstructions emphasize a
random, as opposed to periodic, structure. So far, no evidence of
anisotropy in the mechanical response has been reported for
nanoporous gold and the reconstructions appear isotropic. On the
contrary, the structures generated by making use of the afore-
mentioned heuristic constructions or constructions of (analytical)
level surfaces show cubic anisotropy with high polarity in terms of
their directional dependence of Young's modulus.

It is possible to bridge this gap by considering stochastic disor-
der in cell structures, see, e.g., [47—49]. Voronoi or Laguerre tes-
sellations constitute a more systematic method in forming
stochastic cells [50—53]. A specific step in this direction was the
introduction of disorder in the diamond-based network structure
of Ref. [21], which indeed provided qualitatively improved agree-
ment with experiments.

Computational generation of stochastic bicontinuous geome-
tries of nanoporous metals are often created at considerable
computational expense. With attention to modeling dealloying-
made metal network structures, several studies have used the
simulation of spinodal decomposition via phase-field [54—56] or
kinetic lattice Monte Carlo approaches [19,57]. These approaches
achieve a striking similarity to the experimental reconstructions of
dealloying-made metal network structures.

A computationally more efficient method of modeling phase-
separation dynamics, i.e., the phase-ordering dynamics of ther-
modynamically unstable phases, is the use of cell dynamical sys-
tems [58—60], e.g., coupled maps and cellular automata.

Making use of leveled Gaussian random fields, in which the
interfaces between cells are defined by level cuts of random fields
[61], in computational generation of stochastic bicontinuous ge-
ometries constitutes an even more efficient approach. Leveled-
wave models for random morphologies, which were initially pro-
posed for bicontinuous material morphologies formed due to
phase-separation [1], have found attention in various applications
[25,62—64].
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ML

Fig. 1. The homogenized macrocontinuum is denoted by MB, and a typical point
MxeMpB encapsulates a microstructure B of volume V. The associated length scales are
denoted by ML and “L for the macroscopic structural scale and the characteristic size of
a microstructural feature (e.g. ligament diameter), respectively. They satisfy the con-
dition ML>> RVEL > #I where RVEL represents the size of the representative volume,
reflecting the mesoscale.

3. Gaussian random fields and microstructure generation

We start by introducing the notion of a continuum with
microstructure and computational micro-to-macro transition
[65,66] as sketched in Fig. 1.” Let MBc R3 denote the homogenized
macrocontinuum. A typical point MxeMp has a representative
volume YV R3 that consists of two phases: the solid bulk phase, i.e.
the metallic microstructure, and the pore phase, with their corre-
sponding volumes denoted by Bc R? and PR3, respectively. We
then have V = B+ P, and the interface of the microstructure is
denoted by 95.

3.1. A specific random field

The microstructure considered here derives from the random
field which is generated by superimposing standing sinusoidal
waves of fixed wavelength and amplitude but random direction
and phase [1]:

N
£ = [2 3 cos(a x + ) (1)
i=1

Here, x is the position vector, N represents the number of waves
considered in the truncated series, and q; and ¢; denote wave di-
rection and wave phase of the ith wave, respectively. In our anal-
ysis, we fix the wave number to a constant value q; = |q;| = qo, with
uniformly distributed wave directions over the solid angle 47 and
wave phases uniformly distributed in the interval O to 2. Under
these conditions f(x) is a Gaussian random field with (f) =0, (f2) =
1, and a two-point correlation function given as

Colr) = (f(x1)f () = S0T) @)

qor

where brackets denote ensemble averages over realizations, and
r = |¥; — X,| (see Supplementary Material for the derivation de-
tails). If N is sufficiently large, the value of the random function f(x)
at a given position x follows a Gaussian distribution with
P(f) = e/*/2/\2m and the mean wave direction v = 13N ;m; ap-
proaches zero as a consequence of the central limit theorem. Then, f
is an isotropic function, see Supplementary Material.

Given the random function (1), the different phases of the sys-
tem are defined via a level cut &:

2 Unless the microstructures show weak geometric disorder and/or weak
mismatch in properties, the weak statement RVEL> *L is replaced by the stronger
[67] one RVEL>> ~[,

xeB if f(x)<§,
xcoB if f(x) = ¢, (3)
xeP iff(x)>¢.

In this study, we create numerical realizations of the random
field microstructure on regular 3D voxel lattices by summing up N
waves (typically N = 10000) with randomly oriented q; and
random phases ¢;. We explore the variation of properties as the
structure was repeatedly created with different initial settings of
the random number generator; the individual structures in such
studies are referred to as “realizations”. Examples of microstruc-
tures for different values of ¢ and for volume element size of 12
wavelengths are shown in Fig. 2.

3.2. Generating periodic structures

The microstructures generated using Eq. (1) along with Eq. (3)
are generally not periodic. Periodicity can be accomplished by
selecting a finite number of waves which have integer wave
number in all directions and constant modulus. Our starting point
is the field given by Eq. (1). We take e, e,, e3 unit vectors of an
orthonormal basis in real space and let all q; be of the form

a=""(h.kD ()

where the Miller indices h, k, [ are integers and a is a constant. Then,
f(x) = f(x + mae, + nae, + oaesz) if m,n,o are arbitrary integers.
This implies that f has translational periodicity with lattice vectors
of magnitude a. Furthermore, if all ¢; in Eq. (1) are identical, then fis
also invariant with respect to exchange of the axis and so f has the
symmetry of a cubic lattice with lattice parameter a.

The above considerations imply that “spinodal” structures with
translational periodicity or even cubic symmetry may be con-
structed by restricting the sum in Eq. (1) to a set of q; with a given,
constant value H = v/h2 + k2 + 2, so that |q| = qo = 27H/a is a
constant. The function fthen forms a periodic repetition of identical
cubic unit cells with edge length a.

Real spinodal structures emerge by the growth of a continuum
with initial fluctuations including random orientation of their wave
vectors [1]. It is then expected that unit cells containing many
waves are more representative of real structures than those that
contain few waves, which in turn suggests the use of values of H
that maximize the number of individual vectors (h, k,I). In diffrac-
tion theory, this corresponds to Bragg reflections with high multi-
plicity. For instance, H = v/160 (which implies M=10.3 elements
per edge length, see Section 4.2 below) is only compatible with
(12 4 0)-type vectors, which only gives 12 independent directions.
By contrast, the marginally larger H = v/161 is compatible with
(124 1)-, (11 6 2)-, (10 6 5)- and (9 8 4)-type vectors and, thus, 96
independent directions. Similarly, H = v/146 is compatible with
(0511)-, (1112)-, (189)-, (3411)-, and (47 9)-type vectors,
leading also to 96 independent directions.

Fig. 3 illustrates the wave vector directions for H = /146, along
with binarized structures created from these waves in Eq. (1). The
structure in Fig. 3 (c) is based on setting ¢;=0 and exhibits full cubic
symmetry. It is striking that ring-like features near the center of
each face have no equivalent in experimental stochastic structures.
This problem is solved by using random phase shifts ¢; in Eq. (1),
see Fig. 3(b). The resulting structure compares well to experimental
microstructures such as those of dealloying-made nanoporous
gold. The structure now lacks the rotation- and mirror symmetry of
a cubic lattice, but it retains the full translational periodicity and is
suited for periodic boundary conditions.
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Fig. 2. Examples of microstructures generated with the level cut method for solid volume fractions of (a) 0.10, (b) 0.20, (c) 0.30, (d) 0.40, and (e) 0.50. As seen, the structure in (a) is
formed of highly disjoint regions as its volume fraction is below the solid percolation threshold of ¢} =0.159. Since the approach is symmetric, a structure with 0.90 volume fraction
involves many disconnected and isolated voids. Volume size of 12 wavelengths and N = 10000 waves were used for these generations.

Fig. 3. Examples of binarized structures obtained from periodic fields with H =
Vh2 + k2 + 12 = /146. (a) Location of the 2 x 96 wave vectors (black dots) on a sphere
in reciprocal space. Black lines refer to (100) directions. Note the poles with threefold,
fourfold, and twofold symmetry along the (111), (100), and (110)-type directions. (b)
and (c) show a periodic microstructure without and with cubic symmetry, respectively.
These structures were generated via Eq. (1) with the wave vectors q shown in part (a)
and have solid fraction ¢ = 0.4. (d) Directional dependence of the effective Young's
modulus of the structure shown in part (c). Note cubic symmetry; anisotropy index is
AU =0.02. The structure without cubic symmetry, as given in (b), appears realistic if
compared to experimental microstructures such as that of dealloying-made nano-
porous gold.

4. Morphological characterization

In this section, we present explicit analytical results that char-
acterize the morphological and topological properties of the sto-
chastic aperiodic microstructures generated with Eq. (1) in the limit
of a large number N of waves.

4.1. Solid volume fraction

For porous materials, the volume fraction of phases constitutes
one of the most important morphological descriptors. Using |V| =
|B] + |P|, with |{ e }| denoting the volume contained in { e }, the
volume fractions, ¢z and ¢p, of the solid and pores, respectively, are
defined as

and ¢p = ik (5)

with ¢z + ¢p = 1. Given the Gaussian properties of the random
function (1) the volume fraction ¢z of the microstructure defined
by Eq. (3) is given by

b = % {1 + erf(\%)} , (6)

where erf(x) denotes the error function. Inverting the equation
above, we can have any desired volume fraction by setting the level
cut £ to

E(pg) = V2erf ! (2¢5 - 1), (7)

where erf~!(x) denotes the inverse error function. Fig. 2 shows
microstructures with solid volume fractions from 0.10 to 0.50,
where we can see how the microstructure with 0.10 solid volume
fraction is formed of many disjoint regions. This is consistent with
the percolation threshold ¢§=0,159 (see below). This level of
disjointness does not allow the structure to withstand applied
loads.

4.2. Characteristic structure size and mean ligament diameter

Each of the components cos(qg; - x) that make up the random field
f(x) in Eq. (1) has the identical wavelength A = 27/qq, which could
be used as a first guess at a characteristic structure size. However,
we note that a view that accounts more specifically for the prop-
erties of the random field f(x) inspects the autocorrelation func-
tion, Eq. (2). The first maximum of that equation is at ggr=1.23 x
2, which measures a characteristic distance, L, between regions of
maximum f. In the binarized structures, we can interpret L to
represent the characteristic structure size as measured by the mean
distance between local centers of the solid or the pore space. We,
thus, have
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L= az—ﬂ, (8)
do

with a=1.23. Experiments with dealloying-made nanoporous
structures often report a characteristic size L representing a mean
diameter of the solid struts or ligaments that can be perceived in
medium density binarized structures such as those of Fig. 2. For
structures with equal volume fraction of the two phases, symmetry
suggests that L = L/2.

For periodic microstructures, in view of Eq. (8), we can take the
characteristic structure size as L=1.23 x 2w/qo = 1.23a/H. This
means there are M = a/L=H/1.23 microstructural elements per
edge length of the unit cell, and the unit cell volume a® contains
about 0.54H> microstructural elements.

We note that another important quantity that can be used to
characterize the properties of the two-phase system is the auto-
correlation function, I'; (), of the solid phase. I';(r) is defined as

[ (r) = (Z(%1)Z(x2)), (9)

where Z(x) is the indicator function for the solid phase which is
defined via the random function as

(1, ifxeB,
Z(x)f{()? otherwise.

Furthermore, r = |¥; — X;|. The form of the autocorrelation function
I’y (r) reflects certain features of the microstructure, e.g. short range
order and spatial correlation [61]. Fig. 4(a) shows plots of the
numerically computed® normalized auto-correlation function
59" (r) .= [Ta(r) — ¢3]/ (o5 — ¢%] for volume fractions from 0.20 to
0.50. As we can see, all plots exhibit oscillations of identical peri-
odicity for small r, hence signaling a short range order and spatial
correlation in the medium generated. As expected, the mean dis-
tance between successive peaks of I'}°"™(r)is approximately A =
27/qg, which is the same for C,(r), given by Eq. (2).

(10)

4.3. Surface area-to-volume ratio

The ratio of surface area to total (solid plus pores) volume is

_ 1oB]

S:= ,
VI

(11)

where |08| denotes the total area associated with 9. By considering
the behavior of the two-point correlation function, C,(r), near r =
0, and making use of results from the scattering theory, we find an
explicit formula for the surface-to-volume ratio as (see
Supplementary Material for details)

2qo 2 /2
S=—-e"/"°. 12
™3 (12)
The ratio of surface area to solid volume is then
1 2490 ,2/)2
Sp=——~-€"°1/%. 13
5 o5 ™/3 (13)

The dimensions of both Sp and S are [S] = [Sp] = [1/L]. Thus,
multiplication with the characteristic size L supplies non-
dimensionalization and provides quantities devoid of volume and
length scale differences. Fig. 4(b) shows the plots of Sz(¢g) and
S(¢p) as given by the above relations, where we can see, as

3 Details of the computations can be found in the Supplementary Material.

lim T'>(r) = ¢ — ¢ =050 4
T
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Fig. 4. (a) Numerically generated normalized auto-correlation function I'5*™(r) : =
[Ty (r) - ¢§]/[¢B - q%]. 2D binary sections of 15 3D random generations are used for
each volume fraction. Plots show significant oscillations which is a sign of regularity in
the microstructure. The mean distance in successive peaks of both of the functions is
approximately A1 = 2m/qq. (b) Scaled specific surface areas, S per total volume and Sg
per solid volume, versus solid phase fraction plots. Continuous lines are analytical
predictions given by Egs. (12) and (13), filled symbols correspond to numerical results
for specific surface areas from the relation lim,_odI'(r)/dr=-1/4S (see
Supplementary Material) where data is presented as mean value p (dots) and standard
deviation ¢ (error bars) from analysis of 15 random realizations.

expected, that Sz decreases monotonically, and S is symmetric
with respect to ¢z = 0.50 with a maximum at this point. The
discrete points in Fig. 4(b) correspond to the numerical values
computed from the auto-correlation function I',(r) of the gener-
ated microstructures (see the inset of Fig. 4(a) and the
Supplementary Material for details on how I';(r) is related to S),
observing an excellent agreement with the analytical predictions.

4.4. Average curvatures and percolation-to-cluster transition

In differential geometry, the product of principal curvatures xq



C. Soyarslan et al. / Acta Materialia 149 (2018) 326—340 331

and «; yields the Gaussian curvature of a surface at a point as kg =
K1Kk2, whereas the mean curvature is defined as km = [k + k2]/2.
For the Gaussian random field of Eq. (1), the average Gaussian
curvature and the average mean curvature are [64]

<,<g>:%f2’[52—1] and <Km>:—§%ﬁ7 (14)

respectively, where we use the curvature definition of k; >0 and
k2 >0 for a solid (convex) ellipsoid. Table 1 shows tabulated values
of surface area-to-volume ratios, average Gaussian and average
mean curvature, rescaled with the characteristic structure size L
given by Eq. (8) as a function of the solid volume fraction. Fig. 5(a)
shows the variation of average scaled Gaussian and mean curva-
tures with the solid volume fraction, along with examples of
microstructures.

We observe that the Gaussian curvature crosses zero at two
critical points, namely ¢ = ¢=0.159 and ¢z = 1— ¢}, =0.841,
which correspond to the solid percolation threshold and pore
percolation threshold, respectively. Based on these values, we can
identify four distinct types of microstructure: (i) ¢z< qbg, the
microstructure is formed of disjoint solid phases (convex ellipsoids)
with local curvatures k7 >0 and k; >0 which gives km > 0 and kg > 0,
(ii) % <¢5<0.50, thin and long saddle-like ligament formations
with sharp positive local curvature (k7 >0) at their sections but
mild negative local curvature (k; <0) along their lengths dominate
with |k1]> |k, | resulting in km >0 and kg <0, (iii) 0.50 < g5 < 1 — ¢,
thick and short saddle-like ligament formations with mild positive
local curvature (x; >0) at their sections but sharp negative local
curvature (k; <0) along their lengths dominate with |k1|<|«k2]
resulting in km<0 and kg<0, (iv) ¢>1— ¢§, disjoint pores
(concave ellipsoids) characterize the microstructure with x; <0 and
k2 <0, and so km <0 and kg > 0.

We also note that only the 0.50 vol fraction case has zero average
mean curvature, which agrees well with the results reported in
Ref. [68]. At this point the average Gaussian curvature has a mini-
mum. The Gaussian curvature is symmetric with respect to ¢z =
0.50, whereas the mean curvature is instead showing a monotonic
decrease with increasing phase volume fraction. These trends are in
agreement with experimental studies presented in the literature.
Fujita et al. [27] measured near zero mean curvature for nano-
porous gold samples of ¢z =0.50. A positive average mean curva-
ture was reported by Rosner et al. [26] for nanoporous gold with a
lower metal volume fraction of ¢z =0.24.

4.5. Genus

The genus G of a surface describes its connectivity; it can be
understood as the number of continuous tunnels or loops in the
structure. For instance, a sphere, donut and pretzel have the genus
0, 1, and 2, respectively. By making use of the Gauss-Bonnet

Table 1

Dependence of surface area-to-(bulk) volume ratio, average Gaussian and average
mean curvature on porosity. For ¢z = 0.10, the condition (kg) >0 signals a domi-
nating amount of disjoint lumps of material.

(] 3 SxL Spx L (Kg) x i2 (km) x L
0.1 —1.2816 1.2496 12.4959 6.3945 3.5834
0.2 — 0.8416 1.9934 9.9670 — 2.9035 2.3533
0.3 — 0.5244 24757 8.2522 —7.2170 1.4663
0.4 —0.2533 2.7509 6.8771 —9.3156 0.7084
0.5 0 2.8406 5.6811 — 9.9545 0

0.6 0.2533 2.7509 4.5848 —9.3156 — 0.7084
0.7 0.5244 24757 3.5366 - 72170 — 1.4663
0.8 0.8416 1.9934 24917 —2.9035 —2.3533
0.9 1.2816 1.2496 1.3884 6.3945 — 3.5834
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Fig. 5. (a) Scaled average Gaussian and mean curvature plots. The solid green line
depicts the solid percolation threshold with ¢z = ¢Z=0.159 whereas the dashed
green line depicts the pore percolation threshold with ¢z = 1— ¢,"3 =0.841. (b) Scaled
genus per volume versus solid phase fraction plots. Continuous line corresponds to the
analytical expression (16), filled symbols are the numerical results for genus that are
obtained from Betti number computations (see Supplementary Material), unfilled
symbols correspond to experimental values from Refs. [23,24], which have been
adapted to the characteristic length scale used in this work (see Appendix A). Here,
data is presented as mean value u (dots) and standard deviation ¢ (error bars) from
experiments or current analysis of 15 random realizations. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

theorem and the known Gaussian curvature per unit volume, it is
possible to obtain the following expression for the genus per unit
volume, G, in our random field microstructures (see
Supplementary Material for details):

1 q3 2] ,-82/2
Gy=-— 0|1 _¢e% /2. 15
" 12m2 \/§[ } (15)
The above relation depends on the characteristic length scale of
the microstructure through gg. To study a non-dimensional quan-
tity we rescale the genus per volume with the characteristic
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structure size L, see Eq. (8), to obtain the scaled genus per volume:

-3 2mal 21 .—£2/2
gv_nyL_3\/§[1—E]e /2. (16)

Fig. 5(b) shows the prediction of Eq. (16) for the scaled genus
versus solid fraction. Similarly to the average curvatures analysis
from the previous section, Eqs. (15) and (16) also predict a topo-
logical transition at a finite phase fraction. The genus vanishes at
|¢] = 1, which according to Eq. (6), corresponds to ¢z = ¢g:0.159
for ¢ = — 1. For phase fractions ¢z > ¢k, the structure may be un-
derstood as a percolating and multiply interconnected network. At
lesser ¢2, connectivity is lost and the structure becomes an array of
isolated clusters with genus zero. The phase fraction ¢} thus marks
the percolation-to-cluster transition, below which Eq. (16) is no
longer applicable. On the other hand, at ¢z=0.841, which corre-
sponds to ¢ = 1, there is the topological transition above which the
structure contains isolated voids.

To compute the genus numerically we use the fact that the
genus is related to the second Betti number as G = By/2. By
numerically computing the second Betti number per unit volume,
By, we obtain the genus density as G, = By ,/2. Fig. 5(b) illustrates
the excellent agreement between the analytical and numerical
results.

Experimental findings on the topological properties of nano-
porous gold are, in contrast to the mechanical properties, rather
limited. Results of an experimental quantitative study based on 3D-
focused ion beam tomography applied to as-dealloyed and
isothermally annealed nanoporous gold samples [24] and those of
[69] from 3D-focused ion beam tomography applied to two nano-
porous gold samples using the improved-wedge are depicted in
Fig. 5(b) considering the reported error margins.* As seen in the
plot, the scaled genus density reported in Ref. [24] is in a very good
agreement with our prediction being about =0.91 of it. With less
agreement, the results of [69] correspond to 0.45 — 0.71 of our
predictions.

5. Elastomechanical characterization

5.1. Homogenization and effective mechanical property
determination

Let u: B x R, —R> denote the displacement field at x5 at
time teR.. The microscopic strain tensor ¢ is defined as e :=
sym(Vu). In absence of dynamic effects and body forces, micro-
equilibrium state requires div e = 0 in B where ¢ is the micro-
scopic Cauchy stress tensor. Considering linear and infinitesimal
elasticity, we introduce the constitutive relation at the micro-
structure ¢ = C: ¢ in B where C is the elastic constitutive tensor.
For elastic isotropy at microscale, we have C = 3K [vo! 4 24 [dev
where 1V =1/31® 1,19 = | — ¥ with | = 1/2[181+1®1].
Here, K and p are the bulk and the shear moduli, respectively. u is
the second-order identity tensor.

Analogous to the microscale, we assume that the effective
elasticity tensor C* at macroscale relates the macroscopic stress
tensor Mg to macroscopic strain tensor Me at Mx linearly viz. Mg =
c*Mg  inMpB with Mg = 1/|V|[zedV for the porous microstruc-
ture.” Definition of the components of C* requires six independent
loading cases wunder periodic boundary conditions, see

4 For the details of how these reported results are converted to our scaling
convention, the reader is referred to Appendix A.

> Due to the porous structure Me=1/|V| [zedV. Thus, macroscopic strains are
computed through control nodes of the volume element.

Supplementary Material.

5.2. Quantification of the degree of anisotropy and aggregate
properties

In its limiting behavior for a large number N of waves and a large
volume, the Gaussian random field of our analysis is isotropic, and
for the current particular case this property implies elastic isot-
ropy.® Thus, an assessment whether numerical realizations are
representative can be based on their degree of mechanical anisot-
ropy. An interpretation of the elasticity constants is in terms of
Young's modulus E, i.e., the sensitivity of stress increment to strain
increment along the loading direction under uniaxial state of stress.
Assuming loading along the unit direction m the corresponding
effective Young's modulus E} is computed as

1
* _
Em = mem]: S* : [ mem| (17

where S* = [C*]’l is the compliance tensor.” By plotting EX for all
m one can develop an understanding regarding the directional
dependence of elasticity.

For the quantification of the extent of anisotropy in the material,
various measures exist, e.g., for cubic crystals, Zener [71] intro-
duced an anisotropy index. However this index is restricted to cubic
crystals and lacks universality [72]. Thus, we use the universal
anisotropy index [72], which overcomes these limitations:
au_Kv sy g0 (19)

Kr  pg

Here, K and u represent isotropicized single crystal elasticity
shear and bulk moduli which are obtained through assignment of
the single crystal orientation uniformly on a sphere of 3D distri-
butions. The subsequent ensemble averaging over the unit sphere®.
is denoted by ({ e })., so that the elastic constitutive tensor and the
compliance tensor are given as

C\a; _ <C*> _ 3KV[|V01 +2,uv[|dev,

s* S* 1 ﬂvol 1 Hdev (22)
R=( X*ﬂ +m )

where R and V stand for Reuss and Voigt estimates, respectively.
AY =0 for isotropic materials, as in the case of macroscopic

6 Statistical isotropy does not necessarily result in mechanical isotropy [61].
7 Poisson's ratio, where the direction of observation m, is perpendicular to the
loading direction m can be given as [70].

* _ [miemy]:S*: [mem
Ymm) = " imom]: S* : mem] (18)

8 Spherical averaging reads.

2t ™
{o} :4]—“/ /{o}(@,@)sin@d@dfb. (20)
0 0

Numerically, this can be realized considering M > 200 points as unit directors of a
Fibonacci tiling, with { e }; = { ¢ }(®;,®;) where i =1,2,3,...,M. Then

M
Cono=pp Dok 21)
i=1

As it is done in this study, for computation of elastic aggregate properties, one can
also make use of the invariance properties of the elastic constitutive tensor [73], see
Supplementary Material
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response of nanoporous gold, and Ay > 0 increases with increasing
level of anisotropy®

6. Results and discussion
6.1. On the topological properties

As pointed out in Ref. [23], microstructures that appear similar
to that of nanoporous gold can exhibit variations in apparent scaled
genus by one order of magnitude. The observation that the scaled
genus of our random field microstructure matches experimental
reconstructions of nanoporous gold to the factor two or better may
thus be considered as promising. It is also significant that the
experimental structures have lesser g, than our model. This is
consistent with the trend — pointed out by Mameka et al. in
Ref. [13] — for g, in spinodal-like structures such as nanoporous
gold to decrease during spontaneous coarsening. That trend implies
that the early-stage spinodal structure of Ref [1], which underlies
the present model, represents the maximum scaled genus for the
respective volume fraction. Lesser g, can be expected when spi-
nodal microstructures were prepared by Phase Field or Kinetic
Monte Carlo simulation, since those simulation approaches follow
the evolution of the microstructure into the later stages of spinodal
decomposition, where the phase separation is nearly complete.
That evolution may already involves coarsening and, hence,
reduction in g,.

According to Ref [13], lesser g, may specifically be expected in
experiments when samples were allowed to undergo spontaneous
coarsening during corrosion, during storage at room temperature,
or during deliberate annealing treatments. It is this reasoning that
prompts us to limit the comparison between experiment and the
connectivity or stiffness data of our model to experimental samples
that were in their as-prepared state. Coarsened samples are
excluded from the comparison because of their likely lesser scaled
genus.

6.2. Determination of the RVE size for mechanical properties

In the following, we present details on how to choose the model
parameters in order to generate representative microstructures. An
RVE is a volume of material whose effective behavior is represen-
tative of that of the material as a whole. Although for a homoge-
neous fictitious material the size of the RVE is irrelevant, in order to
satisfy statistical representativeness the RVE must contain a suffi-
ciently large volume for heterogeneous materials. This size should
be sufficiently large compared to the characteristic microstructural
length scales of the material, here the diameter and length of the
nanoporous ligaments, and still be sufficiently small compared to
the characteristic length of a macroscopic sample [74]. In order to
determine an appropriate RVE size, we conducted a set of

9 The origin of the index then stems from the contraction

CF S = (c*) sy KV shv
C¥ = SE =(C*), = (S*), Kk+5uR' (23)
which is six if the crystal is locally isotropic [72].

10 For a fixed wave number, the microstructures are not triply periodic unless the
periodicity condition is explicitly imposed, see Section 3.2. In our study, we mainly
consider the more general aperiodic ones. Still, we apply periodic boundary con-
ditions due to their superior convergence properties. This is especially important
for multiphase composites with highly contrasted phase mechanical properties for
which the kinematic uniform boundary conditions overestimates the effective
properties at reasonable volume element sizes. For more discussions on the use of
periodic boundary conditions for aperiodic microstructures in homogenization the
reader is referred to, e.g., [25,75—80].

Fig. 6. Volume elements with edge sizes of (left to right) 3, 6, 9, 12, 15 and 18 wave-
lengths. ¢ = 0.40. The corresponding finite element models used 32 x 32 x 32, 64 x
64 x 64,96 x 96 x 96, 128 x 128 x 128, 160 x 160 x 160 and 192 x 192 x 192 voxels,
so that the voxel size is constant.

simulations considering various volume element sizes, see Fig. 6,
and computed the corresponding macroscopic properties. In order
to collect sufficient statistical information, 15 realizations were
generated for each volume element size.

Unless otherwise stated, the results are for aperiodic structures.
The homogenization scheme is computationally implemented with
the finite element method. As detailed in Section 2, we use a fixed '°
wave number |q| = qg and we present the volume element sizes in
terms of number of wavelengths. We use 3D full integration first
order trilinear finite elements through voxelization!! of the
domain. All reported results use fixed sized voxels, where the voxel
size is determined through a mesh convergence analysis, consid-
ering the computational memory and time requirements of the
structures with higher solid volume fractions within the statistical
computations. Since no size dependent constitutive phenomena is
used during modeling, the computed mechanical properties are
equally valid for any ligament size. The underlying statistical
properties require the number of waves approaching infinity. As
explained earlier N = 10000 waves are sufficient in our applica-
tions considering isotropy of the field. Thus, for all applications
with aperiodic structures we use N = 10000.

Motivated by experiments with nanoporous gold made by
dealloying (see below), we consider ¢z in the range of 0.20—0.50.
The crystal lattice of gold has cubic symmetry and is elastically
anisotropic. In the interest of conciseness, this elastic anisotropy is
ignored in the current study. We assume isotropic elasticity of the
solid phase and, for contact with the experiments, use the param-
eters of polycrystalline gold for the Young's modulus Ez and for the
Poisson's ratio vz of the solid phase: Ez = 79 GPa and vz = 0.44
[82].

The macroscopic Young's moduli and Poisson's ratios are now
discussed. Since the macroscopic elastic isotropy is not a priori
satisfied for all volume element sizes, the computations are pre-
sented in terms of aggregate macroscopic elastic properties Eg
(top) and v} as depicted in Fig. 7 for 0.20 and 0.50 phase volume
fractions. Aggregate elastic properties are derived from Voigt and

11 yoxel based approaches are problematic for physical problems dependent on
surface area (such as surface elasticity, thermal transport, electromagnetic radi-
ation and chemical diffusion) as the surface area is appreciably overestimated
[81]. This overestimation cannot be remedied by mesh refinement (e.g., for a
sphere meshed as cubic voxels as the element side length over radius of sphere
ratio tends to zero, the ratio of the voxel mesh surface area to that of a perfect
sphere will tend to 3/v/3=1.73 - in other words, in the limit, the surface area is
overestimated by more than 0.70). As we do not study surface area dependent
problems, the voxel mesh is fully sufficient for the purpose of this work.
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Fig. 7. Effective aggregate properties for Young's modulus Ej (top) and effective
Poisson's ratio vy (bottom) versus volume element (VE) size for (a) 0.20 solid volume
fraction and (b) 0.50 solid volume fraction with corresponding Voigt and Reuss
aggregate property bounds (see Supplementary Material). As anticipated, with
increasing volume element size, the properties converge to their effective values. A
convergence of the effective properties is judged for the volume element size of 12
wavelengths with corresponding values of E* =0.0644+0.0159 GPa and
v* =0.1741+0.0145 for 0.20, and E* = 14.322+0.179 GPa and v* = 0.2813+0.0009
for 0.50 solid volume fraction. Data is presented as mean value u (dots) and standard
deviation ¢ from analysis of 15 random realizations.

Reuss aggregate property bounds of the bulk and shear moduli (see
Supplementary Material for details). For each volume element size,
15 realizations are used. The means of the aggregate macroscopic
Young's moduli and Poisson's ratios swiftly converge to their

effective values with growing volume element size with a narrower
error bar. The aggregate effective Young's modulus EJ,, and
aggregate effective Poisson's ratio vz are well converged as the
volume element size reaches 12 wavelengths. Therefore, 12 wave-
lengths is identified as the RVE size. At this point,
EfXygr = 0.0644+0.0159 GPa and v}, =0.1741+0.0145 for 0.20,
and E}x = 14.322+0.179 GPa and v}; = 0.2813+0.0009 for 0.50
solid volume fraction.'” The scatter in the results for 0.50 solid
volume fraction is smaller than at 0.20. Most remarkably, the
effective Young's modulus for the former is nearly two orders of
magnitude larger than for the latter.

For sufficiently large volume element size, the elastic behavior
in the computations approaches the isotropy of the random field.
We verify this in 1080 simulations whose results are demonstrated
in Figs. 8 and 9. Since AY = 0 represents isotropy and AY > 0, one
anticipates decreasing universal anisotropy index with increasing
volume element size. As depicted in Fig. 8, for both volume frac-
tions, our results fall below 0.5 and, thus, sufficiently meet isotropy
expectation if the volume element size is 12 wavelengths or larger.
For 0.20 and 0.50 solid volume fractions, the anisotropy indices
read 0.2270+0.0890 and 0.0221+0.0077, respectively, where the
latter structure has about ten times less anisotropy. Fig. 9 demon-
strates the volume element size influence on the directional
dependence of normalized Young's modulus for 0.20 and 0.50 solid
volume fractions. Here, the results are ordered vertically from
minimum (bottom) to maximum anisotropy index (top). Plots of
the first column of Fig. 9(a), that is for the volume element size of 3
wavelengths, signal a substantial deviation from isotropy. Here, the
load transfer along directions where there is lack of percolation of
the matter is highly disturbed. Thus, the stiffness along such di-
rections is computed to be quite small and this creates an extreme
polarity in the directional response of material. As the volume
element size gets larger, the surface morphologies tend to that of a
sphere. For 0.50 solid volume fraction, this tendency is much faster.
Even for the smallest volume element size, no extreme polarization
is observed. At this solid volume fraction, the solid and pore phases
are symmetric in content, and percolation prevails.

In addition to the stochastic aperiodic structures, we also
considered periodic structures as described in Section 3.2. The
effective elastic properties of periodic, but not cubic symmetric,
structures were computed based on 15 realizations satisfying H =
V146, hence the volume element edge length 12 wavelengths.
These results are presented in the subsequent section.

6.3. Scaling law for elastic properties

As demonstrated in the preceding section, by using a RVE size of
12 wavelengths or higher, one can sufficiently reduce the gap be-
tween Voigt and Reuss aggregate property bounds and the uni-
versal anisotropy index. Therefore, aggregate effective elastic
properties in fact represent effective elastic properties of the me-
dium. This allows us to drop the subscript HVR and concisely use E*
and v* while denoting the effective Young's modulus and Poisson’s
ratio, respectively. The variation of the converged effective Young's
modulus results from our study with solid fraction is displayed by
the circles in Fig. 10(a). The mean values are obtained using com-
putations conducted over 15 realizations. The first notable obser-
vation is that our periodic structures with 96 waves give sensibly
the identical behavior as our aperiodic ones with 10000 waves. The
mutual consistency supports the validity of both approaches.

12 Although not shown as plots, we determined Kz = 0.0329:£0.0077 GPa and
ufyg = 0.0275+£0.0069 GPa for 020, and K}y =10.915+0.1763 GPa and
ufiyr = 5.5888+0.0665 GPa for 0.50 solid volume fraction.
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Fig. 8. Convergence of macroscopic universal anisotropy index with increasing volume
element size for (a) 0.20 and (b) 0.50 solid volume fraction. Mean values decay fast
with corresponding error bars getting smaller as the volume element size increases.
For a 0.20 solid volume fraction smaller volume element sizes result in a relatively
higher anisotropic response. Data is presented as mean value u (dots) and standard
deviation ¢ from analysis of 15 random realizations.

It is also remarkable that, between solid fractions of 0.50 and
0.20, E* drops by more than two orders of magnitude. As a refer-
ence, the dashed line in the figure represents the Gibson-Ashby
scaling law for the effective elasticity of open cell foams [6,38],

E* 5
T _ = C] ¢Bv (24)
Eg
where we choose C; = 1 as the value that is typically used when the
scaling law is compared to experimental data for nanoporous gold
[8,10,13—15,83]. The figure makes it strikingly apparent that the
steep variation of E* with the solid fraction is not compatible with
the much more shallow power law scaling of the Gibson-Ashby law.

In a finite element simulation study of the elastic properties of

stochastic microstructures, Roberts and Garboczi [25] propose a
scaling law that explicitly accounts for the presence of a percolation
threshold given by E* = Eg[[¢5 — ¢o]/[1 — ¢o]]""- This motivates our
plot of the normalized E* versus [¢z — ¢5]/[1 — ¢&] in Fig. 10(b). As
derived in Section 4.4, ¢f =[1+erf(2-1/2)]/2=0.159 is the
percolation threshold of our random field microstructures. Since
the linear regression does not extrapolate to E* = Ez at ¢z = 1, we
are led to propose a modified version of the Roberts-Garboczi
scaling law in the form

X {qbg—cpgr 25)

Eg 1-¢h

If averaged over the data for periodic and aperiodic structures,
the linear regression suggests C; = 2.03+0.16 and m = 2.56+0.04.
The excellently linear behavior of our effective Young's moduli in
the representation of Fig. 10(b) provides convincing evidence for
the stiffness to vanish along with the topological genus at precisely
the percolation limit. This differs from the statement by Roberts
and Garboczi'® who, exploring structures in a more restricted range
of phase fractions and working with their original scaling equation,
suggested that E* may vanish at a solid fraction which is above the
percolation limit [25].

The fit to our numerical results with Eq. (25) is reproduced in
Fig. 10(a) as the solid line. Also shown (noncircular symbols) is
experimental data from Refs. [13—15],[83] for the reduced effective
Young's modulus of the material that motivates our study, nano-
porous gold, with different solid fraction. That data underlines the
finding — highlighted in the experimental studies and confirmed by
atomistic simulation [19,55,56] of nanoporous gold — that the
material is generally more compliant than predicted by the Gibson-
Ashby law. Our compilation of the experimental data emphasizes
that this deviation systematically increases as the solid fraction is
reduced. Most remarkable, however, is the excellent agreement of
our simulations with experiments.

The variation of the converged effective Poisson's ratio results
from our study with solid fraction is displayed by the circles in
Fig. 11. Here, the noncircular symbols show experimental data for
the elastic Poisson's ratio of nanoporous gold from Refs. [15,16]. It is
seen that our results agree, within error bars, with the experiment.
The agreement confirms the notion that our random field micro-
structure provides a faithful model for the structure of dealloying-
made nanoporous gold. In comparison with the Young's modulus,
v* exhibits a more moderate variation with ¢z. We found a highly
linear behavior when plotting »* versus log(¢z) as a solid line in
Fig. 11, which fits to the empirical law

¥ = Dy logd)B + Do, (26)

taking D and D, as fitting parameters. The slopes for the periodic
and aperiodic structures are within the range D; = 0.116+0.003,
whereas the extrapolated value for ¢z =1 is D, = 0.363+0.002.
Extrapolating this behavior to the percolation threshold indicates
that the Poisson's ratio may remain finite there, contrary to Young's
modulus. The dashed line in the figure represents the Gibson-
Ashby model calculation for the effective Poisson's ratio. This
calculation of a constant Poisson's ratio of 0.30 falls short to reflect
the experimentally observed reduction in the transverse strain to
axial strain ratio.
Our findings has two important implications:

13 Although in Roberts and Garboczi's proposal, bulk Young's modulus is recov-
ered at ¢ = 1, Eq. (25) with C, #1 this is not the case. Thus, extrapolation of Eq.
(25) with computed parameters to ¢z > 0.5 should not be made.
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Fig. 9. Directional dependence of normalized Young's modulus for increasing volume element size for (a) 0.20 and (b) 0.50 solid volume fraction. 15 realizations for each volume
element size are shown. The results are vertically ordered from less (top) to more (bottom) isotropic. In accordance with Fig. 8, for smaller volume element sizes a high directional
dependence of Young's modulus is observed. A highly reduced directional dependence of Young's moduli is observed for 0.50 solid volume fraction as compared to the 0.20 solid
volume fraction. The colors correspond to the radius at each surface point with red denoting a maximum and blue denoting a minimum which are individually computed for each
figure. Elastic isotropy is represented by a sphere. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

-0 00 0e

~



C. Soyarslan et al. / Acta Materialia 149 (2018) 326—340 337

1 P
0.1¢ k!
T e
mm L
PN 0.01F * QO aperiodic [+ ] ]
M ' © periodic [+ 0]
— it [Call¢s — #B]/[1 — oF])"]
— - Gibson-Ashby [¢%]
Hodge et al. 2009
o Briot et al. 2014
0.001 ¢ * Mameka et al. 2016 E
Liu et al. 2016, Liu and Jin 2017
A Badwe et al. 2017
0.0003 ' ' ' '
0.2 0.3 04 0.5 1
phase volume fraction ¢z [—]
()
1 :
Q aperiodic [ £ o]
© periodic [p £ o]
—fit [Calls — 9F)/[1 — ¢5)1"]
0.1+ k!
X
S}
P L |
& 0.01
0.001 ¢ k!
0.0003 ' ' !
0.1 0.2 0.3 1
65 — ¢51/[1 — d5) [-]
(b)

Fig. 10. Variation of normalized effective Young's modulus, E* /E, with solid fraction,
¢5. (a) Log-log representation. Circles: numerical results for aperiodic and periodic
structures of present work. Other noncircular symbols: experimental results for
nanoporous gold with Refs. [13—15],[17,18,83] Lines: Gibson-Ashby scaling law for
open-cell foams, Eq. (24), and modified Roberts-Garboczi law of the present work, Eq.
(25), with fitting parameters from part b) of this figure. (b) E*/Esz versus
[65 — ¢5]/[1 — ¢}] where ¢} is the solid fraction of the percolation-to-cluster transi-
tion. Circles: numerical results for aperiodic and periodic structures, as in a). Straight
line: fit with Eq. (25). Data is presented as mean value u (dots) and standard deviation
¢ from analysis of 15 random realizations.

o Firstly, the agreement suggests that the random-field micro-
structure of our study is in fact a rather accurate representation
of the microstructure in experimental nanoporous gold. This
provides strong support for the use of similar structures in
atomistic simulation studies of nanoporous gold, such as refer-
ences [19,55,56].

Secondly, our findings suggest that reducing the solid fraction of
nanoporous gold systematically brings its microstructure closer
to the percolation-to-cluster transition by reducing its topo-
logical genus. That notion is anticipated in Ref. [13] based on
findings for the microstructural evolution during coarsening of
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Fig. 11. Variation of effective Poisson's ratio, v* (linear scale), with solid fraction, ¢z
(logarithmic scale). Circles: numerical results for aperiodic and periodic structures of
present work. Other noncircular symbols: experimental results for nanoporous gold
from Refs. [15,16], as detailed in legend. Lines: Gibson-Ashby value for open-cell foams
[6] and fit with Eq. (26). Data is presented as mean value u (dots) and standard de-
viation ¢ from analysis of 15 random realizations.

spinodal-like structures [84,85]. The important role of connec-
tivity for the mechanical behavior of nanoporous gold is also
advertized in studies determining measures for the scaled genus
of nanoporous gold experimentally [23,24]. While such studies
remain to be combined with systematic measurement of the
mechanical behavior, convincing support comes from a
comparative analysis of stiffness and strength, which invokes
connectivity to reconcile the observations [14]. By combining
information on the topology and on the effective elastic
behavior in a wider range of solid fractions, our observations
provide the most direct evidence so far for a link between
connectivity and stiffness of nanoporous gold. Specifically, we
advertise the impact of a systematic drop in connectivity at
lesser solid fraction in the material.

The deviation between the stiffness of nanoporous gold and the
Gibson-Ashby scaling has led to the proposition of modified scaling
laws. Sun et al. [55] proposed a correction that accounts for a
transition between bending and tensile deformation as a function
of the solid fraction. Huber et al. [47], in their analysis of scaling,
also acknowledged that transition but pointed further to the role of
structural disorder. Yet, scaling equations that account for the
percolation-to-cluster transition have not previously been dis-
cussed in context with nanoporous gold. Our results provide strong
evidence that this latter phenomenon may hold the key for un-
derstanding the systematic deviation between experimental
nanoporous gold stiffness data and the classic foam scaling
relations.

7. Conclusions

Based on Cahn's method of levelled Gaussian random fields
made of random superposed standing waves with constant wave-
length, we proposed an efficient and robust method for generating
3D microstructures for nanoporous gold. The method allows a
priori fulfillment of the desired solid volume fraction by its inherent
Gaussian property. Morphological, topological and elastic
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properties of the generated structures were investigated. Compar-
ison of the findings with experimental observations proved that the
method accurately produces many morphological and topological
features of dealloying-made nanoporous gold. We proposed scaling
relations for the variation of the Young's modulus and Poisson's
ratio with the solid volume fraction. These relations qualitatively
differ from the Gibson-Ashby scaling relations for open-cell foams;
the key difference is that systematic changes in the topological
genus, which include a percolation-to-cluster transition at a finite
solid fraction, are accounted for.
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Appendix A. Conversion between non-dimensional quantities

Specific surface areas Sz and S as well as genus density G, are
dimensional properties, thus, they depend on the selected length
scale. Multiplication with a characteristic size supplies non-
dimensionalization and provides quantities which no longer
depend on system size or length-scale. Different length scales have
been used in the literature, for example Refs. [23,86] used the in-
verse of the surface area per unit volume, which is defined in Eq.
(13); Ref. [24] used the mean ligament diameter instead.

In our computations we have used the length L as the charac-
teristic size. As we have mentioned in Section 4.2, for the sym-
metric case we can relate the mean ligament diameter with the
characteristic size as L = L/2. However, in general we expect that
the mean ligament diameter is given as L = h(¢ )L, where h(¢z) is a
function of the solid volume fraction. Numerically we can find this
function by computing the mean ligament diameter of the micro-
structures for different values of ¢z (see Supplementary Material
for details). Fig. 12 shows the numerical value of L for different

o [p+o0]
—og —fit [0.5365 +0.41] ]
0.6 1
0.4+ 1

L (number of wavelengths)

0.20 0.25 0.30 0.35 0.40 0.45 0.50
phase volume fraction ¢p [—]

Fig. 12. Mean ligament diameter as a function of phase volume fraction computed
using the methods provided in Refs. [87,88]. Following [88], the ligament diameter (or
the local thickness) is defined as the diameter of the largest sphere that fits inside the
object and contains the point. Generation of these figures relies on 15 3D random field
generations. Two example sections for ¢, = 0.20 and ¢z = 0.50 are given for conve-
nience, where the black regions represent solid phase. Data is presented as averages of
the means u (dots) and averages of the standard deviations ¢ from ligament diameter
distribution analysis over 15 random realizations.

values of the volume fraction, where we can fit a simple linear
behavior with parameters: L/A = [0.53¢3 + 0.41].

Noting that 2 = L/«, we hence arrive at the following empirical
relation:

L(i, ¢B) = [i/a} 0.53¢5 + 0.41], (27)

which we can also use to express the inverse of the surface-to-
volume ratio as:

(L gs) = %f Lelert" @os-1))", (28)

We can now use these two expressions to convert our computa-
tional/analytical findings to the experimentally available results for
any value of solid volume fraction.

In their Section 2, Ziehmer et al. [33] report a volume fraction of
¢p = 0.296 for as-prepared nanoporous gold. In Ref. [24], they
determine a scaled connectivity density of gZ = 0.124. This can be

converted to the current notation, say gf/ s, using

-13
L
g =g x M : (29)

In view of Eq. (27) with a«=1.23, for ¢ = 0.296, one has
L=0.461L. Thus, with our scaling, g%/> =0.124/0.4613 = 1.267. For
¢ = 0.296, the prediction of the scaled genus density, making use
of Eq. (16), is g5 =1.389. Thus, we have gZ/> /g5 =0.91.

In their Table 1, Mangipudi et al. [23] report volume fractions of
¢p1 = 0.30+0.1 and ¢z, = 0.32+0.5 for their nanoporous gold
samples, for which the scaled connectivity densities are
gM1 — 0,067 and gM2 = 0.043, respectively. These can be con-

verted to the current notation, say gll,\/l’i/ Sfori = 1,2, using

~ 13
i Pl L
gt = gMix [Sl} : (30)

1

In view of Eq. (28) with a=1.23, for ¢5; = 0.30, one has

L/S;'=2.476. Thus, with our scaling g)"'/*~0.067 x 2.4763 =
1.017. For ¢5 = 0.30, the prediction of the scaled genus density,

making use of Eq. (16), is g'' =1.422. For ¢5; = 0.32, one has

[/S;1=2.546. Thus, with our scaling g)"*/*~0.043 x 2.5463 =
0.710. The prediction of the scaled genus density, making use of Eq.

(16), is g?=1.576. Thus, we have g"'/5/g51=0.71 and
a2/ /g5t ~0.45.

Appendix B. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.actamat.2018.01.005.
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