Algebraic Computation, Numerical Computation and Verified Inclusions

Siegfried M. Rump
IBM Development and Research
Schoenaicher Strasse 220
D~-7030 Boeblingen

West Germany

Abstract

The three different types of computation - the algebraic manipulation,
the numerical computation and the computation of verified results - are
aiming on different problems and deliver qualitatively different re-
sults, each method having its specific advantages for specific classes
of problems. The following remarks give some thoughts on possible
combinations of all three methods to obtain algorithms benefitting from
the specific strength of either method.

Algebraic computation

Performing algebraic computations on the computer means computing
without errors. When calculating in the ring of integers, the field of
rational numbers or algebraic number fields the result of every single
operation 1is computed exactly, not approximated by some (floating-
point) number. No error occurs in the entire computation and the final
result is the exact result to the given problem as well.

Terms like conversion errors, rounding errors or cancellation errors
as one may associate with computer calculations do not exist in alge-
braic computations. In computer algebra we are definitely in the alge-
braic structure of, say, an algebraic number field with respect to the
zero of a defining polynomial. The representation in algebraic compu-
tations on the computer is an isomorphic image of the mathematical
structure (within the limits of the machine).

-

178

Algebraic computation and numerical computation deliver results o%
different quality and require different amounts of computing time for
their tasks. Of course the advantage of pericrming every calculation
exactly has to be payed. And it depends definitely on the problem, on
what the user wants to get, whether the price of computing time should
be payed or not. But it is inadeguate to call one method better than
the other: they are not comparable. Computing verified inclusions of a
numerical problem is somewhere in between algebraic computation and

purely numerical computation. We will come back to this point later.

Numerical computation

A numerical algorithm aims on an approximation of the exact result us-
ing an approximate computer arithmetic, usually floating-point arith-
metic. The input data is often afflicted with a conversion error if
either the data is obtained from a meter or, the data is given decimal
whereas the computer has a binary or hexadecimal arithmetic. In this
case the problem in the computer is different from the problem the user

wants to solve.

Floating~point operations are afflicted with rounding errors, i.e. the
result of a single floating-point operation is approximately equal to
the exact result of the operation up to a certain error. The relative
error of an operation may become very large if two numbers are sub-
tracted which are almost equal. Then the relative error of the opera-
tion is small but due to the inaccuracy of the two operands the relative
error of the result of the entire calculation may become very large.

Consider the following example on a 5-digit decimal computer. We choose
a decimal computer to avoid conversion errors: every input data is ex-
actly within the format of the computer. Let a=115.4 and b=81.6 and

z = a? - 2b?

Then a?=13317.16 and 2¢b*=13317.12. Both intermediate results are to
be rounded into the set of floating-point numbers on the computer. The
floating-point numbers being immediate neighbours to the intermediate
results are 13317.0 and 13318.0 on our 5-digit decimal computer. Obvi-
ously the best approximation in either case is 13317.0. The relative

179

error of the following subtraction 13317.0-13317.0 is in fact zero
(assuming exact operands); the error of the final result 0.0 instead
of 0.04 is large because the operands of %he suttraction where af-

flicted with rounding errors and cancellation was caused.

There are many examples of simple floating-point computations yielding
approximations far away from the exact solution or even examples where
approximations are calculated where in fact no solution exists. Con-

sider the following polynomial:

p(x) = 67872320568 x* - 95985956257 x? - 135744641136 x +
191971912515

on a 12-digit decimal computer. We apply Newton's iteration with
starting value x°:=2.0 and evaluate the polynomial and its derivative
using Horner's scheme. Note that all coefficients of the polynomial and
its derivative are exactly representable on the computer and an arith-
metic with optimal rounding is used. The following values for the it-
eration are computed:

2.00000000000

1.73024785661 0.269752143
1.57979152125 0.150456335
1.49923019011 0.080561331
1.45733317058 0.041897020
1.43593403289 0.021399138
1.42511502231 0.010819011
1.41967473598 0.005440286
1.41694677731 0.002727959
1.41558082832 0.001365949
1.41489735833 0.000683470
1.41455549913 0.000341859
1.41438453509 0.000170964
1.41429903606 0.000085499
1.41425628589 0.000042750
1.41423488841 0.000021397
1.41422414110 0.000010747
1.41421847839 0.000005663
1.41421582935 0.000002649
1.41421353154 0.000002298
1.41421353154 0.000000000
1.41421353154 0.000000000

180

In the first column the iterates are displayed, in the second column
the difference between two adjacent iterates. Obviously the iteration
"converges" monotonically with decreasing distance between adjacent
iterates to the final value 1.41421353154. In fact there is no positive
real zero of p. The graph of the polynomial looks like

2.0C00EH1Z

3, 0O00E+00

: : : |
0.0000 4.0000

and around 1.414213 the graph is

1,0L50

1_0000;1j5i3i N~
1,41421295E+0 1,41421400E+00

181
showing all values of p being above O.

From a numerical point of view one immediately recognizes that the it-
eration does not show the expected quadratic behaviour. This is clear
by visual inspection of the numbers. However, the iteration above might

well pass a stopping criterion of a numerical algorithm.

Even the simplest conversion errors might cause an unexpected result
of a computation. Only to mention the difference between 40/5 and
40¢0.2, the first computation delivering the correct value 8.0 on
(hopefully) every computer whereas the answer of the second on many
machines is 7.999999 because 0.2 is not exactly representable in binary
or hexadecimal format. When rounding the result to integers by chopping
the result is 7 instead of 8.

As a last example we mention the following eigenvalue problem, commu-
nicated by A. Neumaier. Consider a lower triangular matrix with 30 rows
and columns, 1's in the diagonal and identical elements 2 below the
diagonal:

100000000000000000000000000000
210000000000000000000000000000
221000000000000000000000000000
222100000000000000000000000000

222222222222222222222222222210
| 22222222222222222222222222221

The matrix has a 30-fold eigenvalue 1, whereas one of the standard
packages for eigenvalue computation calculates without error message

the following approximations for the eigenvalues:

1.7963 - 0.0004i 0.9012 -« 0.5693i
1.7578 + 0.2199i 0.7267 + 0.44321
1.7573 - 0.22041 0.8037 - 0.5107i
1.6501 + 0.40801 0.6665 + 0.3719i
1.6495 - 0.4080i 0.6206 + 0.2988i1
1.4967 + 0.5409i 0.7261 - 0.4436i
1.4964 - 0.5407i 0.5865 + 0.2251i
1.3269 + 0.6127i 0.6657 - 0.37201
1.3270 - 0.6124i 0.5626 + 0.1508i
1.1641 + 0.6317i 0.5482 + 0.0758i

182

1.1643 - 0.6317i 0.6197 - 0.29861
1.0210 + 0.61251 0.5433 + 0.0004i
1.0212 - 0.61281 0.547¢ - 0.075C2
0.9013 + 0.5687i 0.5857 - 0.22461
0.8040 + 0.5102i 0.5620 - 0.15011

The arithmetic in use is equivalent to 17 decimal digits precision.
The examples show that the various sources for errors in floating-point
computations might accumulate to significant errors in the final re-
sult. The following considerations describe arithmetic requirements
to minimize the error of every single floating-point operation. This
will not change the results of the examples above but at least will
leave the certainty that everything possible has been done on the low-

est level.

Let F be a finite subset of the real numbers R considered to be machine
numbers. Then a best possible rounding from the real numbers into F
would be a mapping p satisfying for every real number r

| p(r) - | < | £-1|

for all f in F. This property may be used as a definition for the
rounding p with some extra rule for the case of two machine numbers fl
f£2 having the same distance to the real number r to be rounded.
By definition such a rounding to nearest must satisfy

a€F => p(a) = a

a,bER : a<b => p(a) = p(b)
A floating-point operation * € {+,-,¢,/} is an approximation to the ex-
act, real operation *. Considering the rounding defined above the best
possible approximation to the exact real result, i.e. the result of the
floating-point operation to be defined, would be the image of the exact
result undgf the rounding p. Therefore we define for floating-point

operations * by

(1) a,beF : a*b:=p(a*b) .

In other words the following diagram commutes:

183

*

Moreover one is interested in the largest floating-point number being
less than or equal to the exact result and the smallest floating-point
number being greater than or equal to the exact result. By changing the
rounding modus, the arithmetical operations with these properties can
be defined by (1) as well. All these operations are in fact
implementable on computers. The definition agrees with the IEEE 754
floating-point standard; e.g. the Intel 8087 supports all these oper-

ations.

When defining the complex operations starting from the real floating-
point operations we run into the following difficulty. Consider the

complex multiplication
(a+bi)*(c+di) = (ac-bd)+(ad+bc)i

Here 4 real multiplications and two real additions/subtractions occur.
When replacing every such real operation by its corresponding
floating-point operation we can't assume (1) to be satisfied. Consider
as an example on our 5-digit decimal computer
~

(1 + 1.0001i) * (1 + 0.99999i) =

(1:1.000170.99999) + (0.99999:1.0001)1 =

(1:1.000089999) + 2.00009i -2

(11.0001) + 2.0001i =

-0.0001 + 2.0001i

instead of the best possible rounded result in 5 decimal digits
-0.000089999 + 2.0001i

In order to satisfy (1), intermediate roundings have to be avoided, in
fact, we may use (1) again as a definition for the complex floating-

184

point arithmetic. The same can be done for vector and matrix oper-

ations.

The main problem is obviously to calculate scalar products with suffi-
cient accuracy. This is indeed possible, (1) can be used as a definition

for a computer arithmetic (cf. {KuMi81l] for more details).

From a mathematical point of view the structure of the space of machine
numbers with floating-point operations is very poor. An isomorphism
from real numbers into the finite set of floating-point numbers is, of
course, not possible and it is easy to see that a homomorphism as well
is impossible under simplest assumptions. But even associativity is not
possible in todays floating-point systems. In fact the following can
be proved (cf. [Ru86}): If for some adjacent floating-point numbers a
and b the half differences (a-b)/2 and (b-a)/2 are again floating-point
numbers, then the law of associativity for the addition is not satis-
fied. In todays floating-point systems this assumption is true for all
floating-point numbers except in the underflow range. The assumption
is not valid for fixed-point number systems where in fact addition is

associative.

Verified inclusions

Even when using the best possible floating-point arithmetic (more pre-
cisely: a floating-point arithmetic performing a minimum error in every
operation) the results of combined floating-point operations may still
be afflicted with large errors.
If, for instance, the value of

z = x* - 4%y? - 4°y* for x = 665857.0 and y = 470832.0

is calculated on a main frame with equivalent to 17 decimals in the

mantissa, the result is

z = -469762048.0

A second computation with interchanged second and third term, i.e. the

value of

185
z2 = X* = 4ey* - gey?
with the same values for x and y yields
z = -474653696.0

indicating the exact value might be around -470 million. In fact the
true value is

A common approach to get more information on the error of a floating-
point computation is to evaluate in more than one precision and compare
the results. However, this does not imply any guarantee of the cor-

rectness of coinciding figures. Consider the following example. Compute
£ = 333.75 b® + a? (lla?b? - b® - 121b* - 2) + 5.5b* + a/(2b)
for a = 77617.0 and b = 33096.0

To calculate the value of the polynomial a FORTRAN program has been
written, the computer in use is a S/370 main frame. All input data is
exactly representable, the only errors occurring in the computation are
rounding errors and mainly cancellation errors. In order to test the
arithmetic rather than standard functions every exponentiation is re-
placed by successive multiplications. The program calculates the values
for £ in single, double and extended precision equivalent to approxi-
mately 6, 17 and 34 decimal digits precision. The obtained values are
the following:

single precision : £f = + 1.172603 ...
double precision : f = + 1.17260394005317847
extended precision : £ = + 1.17260394005317863185

All three values agree in the first 7 figures, whereas the true value
for f is

(2) exact value : f = - 0.827396059946821§
indicating that the first figures -0.827396... are guaranteed and the

sixteenth figure after the decimal point is between 3 and 4. This re-

186

sult was obtained by an algorithm yielding verified inclusions. It is

guaranteed to be correct.

Analyzing the expression above yields immediately the extreme sensi-
tivity with respect to the input data. The 8th power of a 5-digit number
yields a 40 digit result and a 1 figure (left of the decimal point)
result on a 34-digit computer is by no means of any significance. On
the other hand the polynomial need not to occur at once, the input data
may be read from a file and the user can't analyze every operation in

a million operation program.

It should be mentioned that in algebraic computation it wouldn't be

difficult to calculate f. The immediate answer is
£ = - 54767 / 66192

On the other hand when replacing the first multiplication sign by a

division
g = 333.75/b% + a? (1la?b? - b* - 121b* - 2) + 5.5b* + a/(2b)
for a = 77617.0 and b = 33096.0 ,

it wouldn't be a problem to calculate the value of g even in single
precision to full accuracy; the algebraic system would yield

g = - 768539344521461436737506070395056170002860340199430094403
/ 1752232712494953955278716928 ,

a rational number with 85 figures total. The example shows clearly how
using numerical or algebraic computations may be of advantage or dis-

advantage depending on the problem and what the user wants to get.

In the following we will sketch how such verified inclusion can be
calculated on a computer, details can be found in the literature. The
exact value given in (2) shows a result of an algorithm calculating
verified inclusions. The output is an approximation with a guaranteed
error bound. All figures of the approximation before the error bound
are verified to be correct.

187

The main principle is to verify that some set contains a solution of
the given problem, where the verification has to be performed on the
computer. There are well-known theorems stating the existence of a
fixed point of a function in a set, namely Brouwer's Fixed Point Theo-
rem: If a continuous function maps a nonempty, closed, bounded and
convex subset X of a Banach space into itself, then this function has
at least one fixed point within the set X. In order to obtain a zero
of a function f (continuously differentiable) Brouwer's Fixed Point

Theorem may be applied to the simplified Newton iteration
g(x) = x - R f(x) ,

where R is an approximate inverse of the Jacobian of f at some point.
A fixed point y of g yields R*f(y) = O and if R is not singular f(y) =
0.

To apply these considerations in a computer program, either some matrix
R has to be found which is nonsingular or, the nonsingularity of a given
matrix R has to be verified. Furthermore the image g(X) has to be com-
puted. The first problem is solved by the following lemma (here formu-

lated for the real or complex number space).

nxn

Lemma. Let ze&R" (Cn), Be RV (C) and @ # X¢ R (Cn) being compact.

1f
z + Be*X C int(X) ,

then p(B) < 1, there is one and only one xE¢€ rR? (Cn) with z+Be*x = X

and this x satisfies (I-B) Yez = x € int(X).

int(X) denotes the interior of X, I is the identity matrix and all op-

erations in use are the power set operations.

Note that compared to Brouwer's Fixed Point Theorem our assumption is
slightly stronger (inclusion in the interior of X is required),
whereas, on the other hand, X need not to be convex.

With these considerations the following theorem can be proved for the

inclusion of the solution of a system of nonlinear equations.

188

n nxn

Theorem. Let f : R =-> R™ be a C' function, s€ R™", xe R" and

[ngn being compact. If
(3) - Sef(x) + {I - Ref'(x X)}*X ¢ int(X) ,

then there is one and only one ye x+X with £(y)=0.

The crucial point is the verification of (3) on a computer. In order
to check (3) for a given set X this set has to be represented on the
computer, calculations involving X are to be performed and the inclu-
sion in the interior of X has to be checked. For this purpose we use
interval arithmetic. For the principles of interval arithmetic the
reader is referred to [AlHe83]. One of the basic properties of interval

arithmetic is
ae A, beB => a*be A*B for * € {+,~,*,/}
for intervals A and B.

For the practical application of the theorem above an algorithm has to
be designed with several further improvements compared to (3). For
more details see [Ru83] and [Ru84]. These algorithms operate in single
or double precision arithmetic with a speed comparable to standard nu-
merical floating-point algorithms but delivering verified, guaranteed
bounds for the result. Standard problems like linear equations (also
over- and underdetermined), general nonlinear eguations, polynomial
zeros, optimization, eigenproblems and others are covered. These algo-
rithms are available in the IBM program product ACRITH, part of them
in the SIEMENS program product ACRITHMOS (cf. [IBM86] and [SIE86]).

An algorithm for calculating guaranteed inclusions for systems of non-
linear equations f(x)=0 works, in principle, as fecllows (an initial

approximation has to be given):

1) Use a traditional floating-point algorithm to improve the

given approximation yielding an approximate solution x

2) Define a small (relative diameter in the order of the

relative rounding error) interval X with floating-point

bounds containing x

3) Try to verify formula (3)

4) If (3) is not satisfied apply an itereticn scheme To

improve X

The goal of the algorithm is to proof the conjecture that the set X has
the property to contain exactly one zero of the nonlinear system. We
try to verify this conjecture by the sufficient criterion (3). If (3)
is true, we have the verification, if not, an iteration scheme is ap-
plied (cf. [RuB83]). Conditions depending on X can be given, when (3)
is satisfied and when the iteration finishes (cf. [Ru84]). They show
that even extremely ill-conditioned problems can be handled by inclu-
sion algorithms.

Another application of inclusion algorithms are problems with data af-
flicted with tolerances. All algorithms can be used almost unchanged
to work with uncertain data. In this case the guaranteed results have
the following property. Take any combination of real (complex) numbers
out of the input tolerances and solve the problem with this data. Then
it is guaranteed that all problems generated in this way do have a
solution and that a solution to every single of these problems lies

within the computed guaranteed bounds. This is a worst case analysis.

Compared to a numerical Monte Carlo like approach this method is even
faster because the inclusion algorithms for data afflicted with toler-
ances need about the same computing time as for data without toler-
ances, whereas the computing time for the Monte Carlo approach is the
time for one application of a standard numerical algorithm multiplied

by the number of random sample problems generated.

It is guaranteed that a computed inclusion covers in fact all possible
solutions to all problems with data within the input tolerances.
Moreover bounds can be computed how sharp the computed inclusion is,
i.e. a percentage can be computed with the property that the inclusion
interval becomes wrong when narrowing the diameter by this percentage.
All guarantees are correct from a mathematical point of view; the com-

puted bounds are correct as long the machine performs correctly.

It is inadmissible to compare the results of the inclusion methods with
the numerical Monte Carlo approach: The first method yields guaranteed
error bounds with guaranteed estimations on the sensitivity of every

parameter [Neu87], the other method gives numerical estimations of the

190

error bounds *without guarantee. In fact it may happen that bounds
produced by the Monte Carlo ansatz are orders of magnitude to small
[KuRu87].

It should be mentioned that a Jacobian need neither to be calculated
symbolically nor to be approximated numerically. The inclusion algo-
rithm for systems of nonlinear equations requires an inclusion of the
value of the Jacobian at a certain point. There is a very interesting
algorithm for this task which has been found and forgotten several
times. It calculates the value of the derivative (or simultaneously all
partial derivatives) at a certain point together with the computation
of the value of the function. It is very fast, accurate and allows the
easy calculation of an inclusion of all derivatives and it can be pro-
grammed very easily. It may also be applied to compute coefficients of
Taylor series. For details see [Ra8l]. Following we give a simple ex-

ample without formalizing the method.

Consider f(x) = { x * sin(x) + exp(1/x) }? at x=2. The following diagram
shows how to calculate the value of f and f' simultaneously. In the
leftmost column the commands are displayed

value derivative
X 2 1 x' =1
enter
sin 0.909 -0.416 (sin u)' = u' cos u
1.819 0.077 (uv)' = u'v + uv'
X 2 1 x' =1
1/ 0.5 -0.25 (1/u)' = -u'/u?
exp 1.649 -0.412 (exp u)' = u' exp u
+ 3.467 -0.335 (u+v)' = u' + v'
()? 12.022 -2.324 (u?*)' = 2uu’

as they would have to be entered in an HP-Calculator for evaluating f
at x=2. The next two columns show the intermediate values in the cal-
culation of the function values and the derivative, the rightmost col-
umn the formulas used to calculate the values in the derivative column.
Programming the algorithm using two stacks, one for the function values
and one for the derivative, allows a very fast and easy implementation.

The well-known laws for calculating the derivative of a sum, product,

inverse, sin, exp etc. are used and applied to the values on the

191

stacks. Because all intermediate function values and derivative values

are known (they are on the stack) programming the method is very easy.

The approach sketched above to calculate the inclusion of the zero of
a system of nonlinear equations should be sharply distinguished from
applying interval arithmetic in a naive manner. It is true that when
replacing every operation in a numerical algorithm by its corresponding
interval operation the final result contains the true solution of the
given problem. Unfortunately the diameter of the intervals tend to grow
very rapidly when trying this approach, finally yielding results of
little significance.

Using formulas 1like (3) diminishes the overestimation by interval
arithmetic and, most important, uses the original data (the function
f) in the calculation. In the naive approach, every step depends only
on its immediate predecessor resulting in the well-known effect of

rapidly increasing diameters.

Some words should be added on the difference between operations in the
power set over real or complex numbers, operations in the set of in-
tervals over real or complex numbers and operations in the set of
floating-point intervals over real or complex numbers (intervals with
floating-point bounds). Let us consider power sets and intervals over
complex numbers. We use rectangles parallel to the axis as intervals.

With the induced order relation we write complex interval as
[e,f] = { zeC | e <2z < f }

for complex numbers e < f. An image of the power set multiplication
of two such intervals A and B may be obtained in the following way.
Take any point on the boundary of A and multiply it by the boundary of
B, yielding a rectangle. The convex hull of all these rectangles is then
the result of the power set multiplication of A and B.

The interval multiplication of A and B yields the smallest interval
(rectangle parallel to the axis) containing every product a*b for a in
A, b in B. The floating-point interval multiplication of A and B is the
smallest interval with floating-point bounds containing this set.

Consider an example. Let

A=[-0.2~41,0.3-~-0.51} , B=1]-4+2i, 2.5+ 2.51]

192

Then the three products of A and B (power set product, interval product
and floating-point interval product) look like the following.

= 10C0E+C0 e« <+ o ¢ —
-Z.00000E-01

The actual calculation of the power set product is performed by taking
20 sample points on each edge of the boundary of A and multiplying it
by the boundary of B. The origin is contained in the interval products

but not in the power set product.

It seems difficult to calculate the smallest rectangle parallel to the
axes enclosing the power set product of A and B. In higher dimensions
it seems to be impossible to perform this calculation on the computer.
However, regarding the fact that all terms in the real and imaginary
part in every component of a matrix can be treated separately leads to

the solution of this problem. For details cf. [AlHe83] or [Mo79]).

193

Combining the methods

The first and last mentioned method, algebraic computation and comput-
ing guaranteed bounds, have most in common of the three, where in fact
even this is little. Both methods are aiming on true results, where the
first delivers the exact answer, the latter delivers error bounds for
the solution. At least if the problem is to find an answer to a guestion
such as "is there a zero of the polynomial p between a and b" either
of the two methods may be applied. Numerical computation hardly fits
into this context. However, even numerical results (values without er-
ror bounds from a mathematical point of view) may help the other two

methods to perform faster.

Let us start by listing some problems which may be solved by one method

but hardly by any of the two others.

Any calculation of exact values such as arithmetic in an algebraic
number field Q(«) could hardly be performed in numerical computation
or using inclusion algorithms. The same holds true for e.g. calculat-
ing the Galoisgroup of a polynomial. These problems arising in math-
ematical spaces can hardly be transformed to fit in a finite set of
floating-point numbers. But there are even numerical problems, where
algebraic computation is superior to the other two. Consider the in-
version of a large Hilbert matrix, say 50x50. Using a general numerical
or inclusion algorithm for matrix inversion couldn't solve this problem
in standard floating-point formats of todays computers. Using rational
exact arithmetic eliminates rounding errors and cancellation errors and

therefore the numerical difficulties with this particular problem.

Todays very large (sparse) linear systems arising in technical appli-
cations can't be treated with algebraic computation and (up to now)
hardly with inclusion algorithms. The same 1is true for differential
equations where just the definition fills dozens of pages. The reason
is the tremendous speed of floating-point operations (compared to a
software simulated exact arithmetic or interval operations), especially
on todays vector and/or parallel computers. As soon as the numerical
solution is at the time boundary of what can be performed any degrada-
tion in the computing time of only a small percentage is inacceptable.
This situation may change for inclusion methods when more computers and
programming languages do support directed roundings by hardware and

appropriate operators.

194

On the other hand approximation delivered by numerical algorithms might
be inaccurate. Here is the advantage of inclusion algorithms. Even for
extremely ill-conditioned problems inclusions wil. be ccmputed and, if
the precision in use does not suffice, an appropriate message will be
given rather than an inaccurate result. Another set of problems which
can hardly be treated by numerical algorithms or algebraic computation
as efficient as by inclusion algorithms are problems with data af-
flicted with tolerances. Here inclusion algorithms still yield guaran-
teed bounds for all possible solutions. With the estimation of the
quality of the inclusion (how much can the diameter be narrowed without
loosing the inclusion property) this yields an immediate sensitivity

analysis.

There are few problems where the three methods, algebraic computation,
numerical computation and inclusion methods, can compete. But there are
areas where the methods may benefit from their respective specific ad-

vantages.

Consider the problem of calculating the sign of an algebraic number.
Let ¥ Qfx] be the defining polynomial for the algebraic number a, [a,b]
be an interval with rational endpoints a and b such that o is the only
zero of Y in [(a,b] and let B = P(u«) for some polynomial P with rational
coefficients. The sign of B is the sign of the polynomial P at a, where

@ is usually not given numerically but as described above.

This is a typical problem where no exact value is asked for but simply
the sign +, 0 or -. We may exclude 0 by calculating gcd(P,Y¥) or by as-
Ssuming Y to be irreducible. An approach combining the advantages of
either method could be the following:

1) Calculate « to floating-point precision with Newton iteration

2) Replace a by the interval I with floating-point bounds of

smallest diameter
3) Calculate P(I) using inclusion methods. If 0¢ P(I) then stop.
4) Eventually repeat steps 1 to 3 in higher precision; if up to

a limit precision always 0€ P(I) then apply algebraic methods

(e.g. root isolation).

195

In the approach it is tried to map as much as possible into floating-
point computations. The result is guaranteed to be correct because if
OfP(I) then for all x€ I holds P(x)<0 or P(x)-_, especia..y for a€ I
and the sign is determined. There is a paper following a similar ap-
proach but using naive interval arithmetic instead of an inclusion al-

gorithm. Even then the computing times drop drastically (cf. [Pi76]).

Whether the approach works or not depends on the sensitivity of evalu-
ating P near o. However experience shows that in algebraic computations
this problem is often not ill-conditioned; the sometimes high computing
times of pure algebraic algorithms originate in the exact computation
within the algebraic number field (cf. [Ru76])

Another area where inclusion algorithms may help speeding up algebraic
algorithms is real or complex root isclation for a polynomial P. As in
the previous example it is not asked for a precise value but for real
or complex intervals Ii each containing precisely one zero of P. A
stepwise approach could be the following:

1) Replace the coefficients of P by the floating-point number

nearest to each of them yielding a polynomial S

2) Use a traditional floating-point algorithm to compute

floating-point approximations to the zeros of S

3) Replace the coefficients of P by the intervals with floating-
point bounds of smallest diameter containing the original

coefficients of P yielding a polynomial T

4) Use inclusion methods to calculate inclusions of the zeros
of T based on the floating-point approximations computed in
step 2

5) Eventually repeat steps 1 to 4 with higher precision or use
purely algebraic methods.

Corresponding algorithms are on the way to be implemented.

There are also examples where algebraic computations may help in pure
numerical computations. One of the problems in solving a system of
nonlinear equations is the computation of an initial approximation to

a solution. Here Groebner bases may help to find such approximations.

196

Conclusion

Either of the methods - algebraic computation, numerical computation
and computing verified inclusions - has its specific advantages. There
are many problems where the methods may be complementary to one an-

other, some examples have been shown above.

In the future algorithms should be designed taking advantage of the
strength of the specific approaches and combining them. For the im-
plementation of such algorithms software shells have to be built al-
lowing to work numerically without and with bounds and to work
algebraically and symbolically in one programming environment. There
is a big chance to start a new era of algorithms and many people are

waiting for it.

Literature

[AlHe83] Alefeld, G. and Herzberger, J.: Introduction to Interwval
Computations, Academic Press, 1983. ACADEMIC PRESS, New York
(1981).

[IBM86] ACRITH, High-Accuracy Arithmetic Subroutine Library, Program

Description and User's Guide, IBM Publications, Document
Number SC33-6164-~3 (1986).

[KuMi81] Kulisch, U. and Miranker, W.L.: Computer Arithmetic in The-
ory and Practice, ACADEMIC PRESS, New York (1981).

[KuRu87] Kulisch, U. and Rump, S.M.: Rechnerarithmetik und die
Behandlung algebraischer Probleme, in Buchberger/Feilmeier/
Kratz/Kulisch/Rump: Rechnerorientierte Verfahren, B.G.
Teubner (1986).

[Mo79] Moore, R.E.: Methods and Applications of Interval Analysis,
SIAM Studies in Applied Mathematics, (1979).

[Ra81]

{Neu87]

[Pi76]

[Ru76]

[Ru83]

[Ru84]

[Ru85]

[SIE86]

197

Rall, L.B.: Automatic Differentiation: Technigues and Ap-

plications, Springer Lecture Notes in Computer Science, 120
(1981).

Neumaier, A.: Private communication.

Pinkert, J.R.: Interval Arithmetic Applied to Polynomial
Remainder Sequences, Proceedings of the 1976 ACM Symposium

on Symbolic and Algebraic Computation, New York, 214-218,
(1976) .

Rump, S.M.: On the Sign of a Real Algebraic Number, Pro-
ceedings of the 1976 ACM Symposium on Symbolic and Algebraic
Computation, New York, 238-241, (1976).

Rump, S.M.: Solving Algebraic Problems with High Accuracy,
in "A New Approach to Scientific Computation", Edts. U.W.
Kulisch and W.L. Miranker, ACADEMIC PRESS, p. 51-120 (1983).

Rump, S.M.: Solution of linear and nonlinear algebraic prob-

lems with sharp, guaranteed bounds, COMPUTING Supplementum
5, 23 Seiten, (1984).

Rump, S.M.: Properties of a Higher Order Computer Arithme-
tic, Proceedings of the 11th IMACS World Congress, Oslo,
(1985); also in modified form in IMACS Transactions on Sci-

entific Computation - 85, North Holland, (1986).

ARITHMOS, Benutzerhandbuch, Siemens AG, Bestellnummer U
2900-J-287-1, (1986).

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14
	Seite 15
	Seite 16
	Seite 17
	Seite 18
	Seite 19
	Seite 20
	Seite 21

