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Abstract: Minimally invasive robotic surgery offer benefits
such as reduced physical trauma, faster recovery and lesser
pain for the patient. For these procedures, visual and haptic
feedback to the surgeon is crucial when operating surgical
tools without line-of-sight with a robot. External force sensors
are biased by friction at the tool shaft and thereby cannot
estimate forces between tool tip and tissue. As an alternative,
vision-based force estimation was proposed. Here, interaction
forces are directly learned from deformation observed by an
external imaging system. Recently, an approach based on
optical coherence tomography and deep learning has shown
promising results. However, most experiments are performed
on ex-vivo tissue. In this work, we demonstrate that models
trained on dead tissue do not perform well in in vivo data. We
performed multiple experiments on a human tumor xenograft
mouse model, both on in vivo, perfused tissue and dead tissue.
We compared two deep learning models in different training
scenarios. Training on perfused, in vivo data improved model
performance by 24% for in vivo force estimation.
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Problem

Robot-assisted surgery for minimally invasive in-
terventions has become popular since physical trauma can
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be reduced through motion compensation and scaling [1].
Over the last decade, visual feedback for these systems has
considerably improved through image fusion of preoper-
ative data and head-mounted displays. However, many
systems still lack force feedback which can be beneficial
during surgical tasks to avoid malfunction or damage to
organs as well as in distinguishing tissues with respect to
type and condition [2].

Force feedback can be enabled through electro-
mechanical force sensors that are attached to the tool
base outside of the surgical field. However, biased force
measurement due to friction forces at the tool shaft is un-
desirable. Gessert et al. [3] proposed a miniature force
sensor integrated in the tool tip. These force sensors can be
problematic due to sterilization, biocompatibility and
integration in microsurgical instruments with a working
channel. Therefore, vision-based force estimation was
proposed as contact free alternative.

Previous approaches in vision-based force estimation
included deformable template matching methods [4] or
mechanical deformation models [5]. These methods are
mainly based on single shots of the sample. A different
more recent approach is to include temporal information in
force estimation models. This approach provides a more
realistic scenario since in vivo tissue is always in motion
due to pulsation, breathing and force interaction between
surgical tools and tissue. This can be modeled efficiently
with convolutional neural networks (CNNs) or recurrent
neural networks (RNN) and was demonstrated with
RGB(D)-images [6].

Recently, optical coherence tomography (OCT) was
proposed as an imaging modality which provides a high
spatial and temporal resolution for vision-based force
estimation. Feasibility in mapping the OCT surface defor-
mation to forces was demonstrated [7]. Also, learning force
estimates from full OCT volumes with CNNs has been
studied [8, 9] where promising results were achieved on ex-
vivo data.

Predicting forces acting on ex-vivo tissue surrogates is
always limited to a feasibility approach in the laboratory.
These measurements do not reflect the complex physio-
logical and biomechanical properties of in vivo tumor tis-
sue which leads to a different elastic response than ex-vivo
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tissue [10]. A static laboratory setup neglects properties
such as the surrounding soft tissue of the tumor, pulsation,
breathing, muscle twitches or speckle characteristics.

In this paper, we investigate vision-based force estima-
tion in a human tumor xenograft mouse model. We employed
a high-speed OCT imaging device to acquire OCT volumes at a
high temporal rate. We employ two different 4D CNNs that
process the high-dimensional 4D spatio-temporal OCT data
for predicting forces acting on the tissue. We investigate how
the deep learning models performed in an in vivo setting
when being trained on either perfused or dead tissue data.
Force estimation has been studied with different tissue types,
however, there are no studies with tumor tissue so far.

Material and methods
Experimental setup

For data acquisition, the following experimental setup shown in Figure 1
was designed. A robot (H-820.D1, Physik Instrumente) for positioning the
OCT field of view (FOV) relative to the tumor was employed. Note, the
position of a volume does not change relative to a world reference system.
Rather, the mouse which is fixed with tape to a heated bed (37°C) was
driven. The heated bed can be easily mounted to the robot with a 3D
printed adapter and prevents cooling of the narcotized mouse. A high-
speed OCT imaging system with an A-scan rate of approximately 1.5 MHz
was used. An A-scan was defined as a one-dimensional resolved depth
signal. By moving an A-Scan along both lateral axes an OCT volume can
be acquired. Each volume includes 32 x 32 scanlines in both lateral di-
rections and 430 px along the depth dimension. The physical size of each
volume is approximately 2.5 x 2.5 x 3.5 mm in air and the temporal
resolution was set to 100 Hz. As a surgical tool, a needle with a diameter of
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2 mm attached to a force sensor (Nano 43, ATI) for ground-truth annota-
tion was employed. The needle can be forwarded with a stepper motor
along the needle axis which represents a typical surgical pushing task [6].

Xenograft mouse model

Experiments were conducted on pathogen-free balb/c severe com-
bined immunodeficient (SCID) mice (Charles River, Wilmington, MA,
USA). They were housed in individually ventilated cages and provided
with sterile water and food ad libitum. For injection, 1 x 10° viable
human HT29 colon cancer cells in 200 pm cell culture medium were
injected subcutaneously into the right flank. Experiments were per-
formed on mice if the primary tumors exceeded 1.2 cm or ulcerated the
mouse skin. All experiments were approved by the local licensing
authority (Freie und Hansestadt Hamburg, Behorde fiir Gesundheit
und Verbraucherschutz, Amt fiir Verbraucherschutz, project NO37/
2019) and supervised by the institutional animal welfare officer.

Data acquisition and datasets

Each mouse was anesthetized and the skin above the subcutaneous
tumor was carefully removed with a scalpel. Next, the mouse was fixed
to the heated bed which can be easily mounted to the robot. For each
experiment, the robot positions the FOV on the tumor (Figure 1, right).
Next, the surface was detected by forwarding the needle along the
needle shaft direction until a force of 0.02 N was registered. The tumor
was palpated by moving and retracting the needle with a distance of
2 mm while continuously OCT volumes were acquired. For data vari-
ation, we performed palpation at five different velocities ranging from
0.3 mm/s to 0.7 mm/s. Tissue deformation on perfused tissue was
compared to experiments performed on dead tissue. We refer to ac-
quired data as Ante-Mortem (AM) datasets and Post-Mortem (PM)
datasets, respectively. In total 10 AM and 10 PM datasets were ac-
quired from five mice.

Figure 1: Experimental setup for data acquisition. Left: A OCT scan head (A) for volume acquisition was employed. A robot (B) drives a heated
bed (E) on which the mouse is fixed. Tumortissue is deformed with a needle (C) which is driven by a stepper motor (C) along the needle axis. The
force sensor (D) is mounted between the stepper motor and needle. Right: The skin was carefully dissected and the anesthetized mouse was
fixed with tape to the heated bed (left image). The right image indicates the approximate position of the field of view (FOV).
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For deep learning model training and evaluation, a 10-fold cross-
validation (CV) scheme was employed. Each fold contains approxi-
mately 6,000 vol and represents one experiment with the five different
velocities and a different location on the tumor. Iteratively, we leave
out one fold for validation, one fold for testing and train the deep
learning model on all other folds. The final performance is expressed
as the mean across all test folds.

Deep learning architectures

A sequence of 3D OCT volumes represents 4D data that needed to be
processed. For this purpose, we employed 4D spatio-temporal CNNs
that performed simultaneous spatial and temporal processing. Due to
their high-dimensional nature, 4D CNNs are very parameter-intensive
which might lead to a risk of overfitting. Therefore, a more efficient
variant that uses factorized convolutions was employed [11]. Here,
spatial and temporal processing were decomposed by using separate
kernels. Thus, a fully 4D convolutional kernel of size k € R®™@W¢ yag
split into a spatial kernel ks € R"™®"*¢ and a temporal kernel k; €
R&PIXIXC where t is the temporal kernel size, h, w, and d are spatial
kernel sizes and c is the feature channel dimension. This decompo-
sition led to a reduced number of trainable parameters, however, at
the same time, representational power was reduced as the decom-
posed kernel can only represent separable kernels. To ensure proper
gradient propagation throughout the network, both CNNs were built
on the ResNet principle [12] where skip connections enable a reliable
gradient flow throughout network training. The two architectures
ResNet4D and fResNet4D are shown in Figure 2. In each CV iteration,
we trained the models for 50 epochs using Adam optimizer and a
starting learning rate of I, = 10~ and batch size of b = 64. The learning
rate was halved every 20 epochs. Hyperparameters such as the number
of layers, learning rate and batch size were chosen based on validation
performance.

Results

Table 1 shows results for tool tip force predictions from the
two 4D CNN architectures. For all experiments, we report
the mean absolute error (MAE) in mN, the mean absolute
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Table 1: Results for two deep learning architectures. The training
and evaluation sets include either AM or PM data sets referring to
data acquisition in perfused and dead tissue respectively.

Architecture  Train.  Eval. MAE (mN) rMAE  ACC
ResNet4D PM PM 5.77 £+1.83 0.62+0.17 0.69
AM AM 4.88 + 0.85 0.66+0.17 0.67
PM AM 6.06 +1.84 0.85 +0.41 0.36
fResNet4D PM PM 5.97 +1.87 0.65+0.19 0.64
AM AM 4.90 +0.88 0.68+0.27 0.69
PM AM 6.66 +2.27 0.93 +0.49 0.34
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Figure 2: The two 4D CNN architectures employed. The red boxes
represent ResNet blocks with 4D convolutions.

error relative to the target’s standard deviation (tMAE), and
average correlation coefficient (ACC). Only including PM-data
or AM-data for training and evaluation show a similar ACC of
0.69 and 0.67, respectively. If PM-data is used for training and
evaluation is performed on AM-data the ACC is only 0.36. The
results are similar for both architectures. Example predictions
can be seen in Figure 3. Clearly, predictions are best if training
is performed on AM datasets.

Discussion and conclusion

Our results show that 4D CNNs can predict forces in perfused
tumor tissue with an error of 4.8 mN. Further, our results
indicate that CNN’s trained on dead tissue perform poorly
when applied to perfused tissue. Note, all experiments were
performed on tumors that were embedded in soft tissue.
Hence, the change of physiological properties such as
perfusion and breathing motion between the vital and dead
tissue state strongly influences acquired data sets.

Summarized, we find that vision-based force estima-
tion in in vivo data with deep learning models is heavily
influenced by training data. In-vivo force estimation per-
forms substantially better when models are trained on
perfused, in vivo data.
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Figure 3: Example predictions of tool tip forces acting on perfused
tumor tissue. The model was trained with Post-Mortem data (blue) or
Ante-Mortem data (black).
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