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Abstract A robust topology optimization approach is presented which uses the probabilis-
tic first-order second-moment method for the estimation of mean value and variance of
the compliance. The considered sources of uncertainty are the applied load, the spatially
varying Young’s modulus and the geometry with focus on the latter two. In difference to
similar existing approaches for robust topology optimization, the presented approach re-
quires only one solution of an adjoint system to determine the derivatives of the variance,
which keeps the computation time close to the deterministic optimization. For validation,
also the second-order fourth-moment method and Monte Carlo simulations are embedded
into the optimization. For all approaches, the applicability and impact on the resulting de-
sign are demonstrated by application to benchmark examples. For random load, the first-
order second-moment approach provides unsatisfying results. For random Young’s modulus
and geometry however, the robust topology optimization using first-order second-moment
approach provides robust designs at very little computational cost.

Keywords robust topology optimization, reliability-based topology optimization

1 Introduction

Deterministic design optimization can provide designs, which are very sensitive to devi-
ation from the ideal structure or loading situation. This motivated embedding uncertainty
analyses into design optimization. Elishakoff categorized different approaches to analyze
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and propagate uncertainty into probabilistic methods, fuzzy set and anti-optimization with
set theoretical approaches [9]. All type of methods have been used for optimization under
uncertainty, as summarized for instance in the overview article by Yao et al. [35]. Though
these different approaches are motivated by very different concepts, Kriegesmann et al. [20]
showed for composite cylinders under axial compression that anti-optimization using the
set theoretical approach and the probabilistic first-order second-moment method lead to the
same response surface for optimization, when fed with the same information.

In the current paper, uncertainties are handled using probabilistic methods (for an overview
see, e.g. [12,8]). Embedding probabilistic analyses in optimization is referred to as robust
design optimization (RDO) or reliability-based design optimization (RBDO). RDO typically
targets reducing some cost function and at the same time reducing the variance of this (or
another) cost function. RBDO typically includes constraints not to exceed a certain bound
with a predefined probability. RBDO is often more costly, since determining a quantile as-
sociated with a low probability often requires more computation time than determining the
variance. However, it allows using sequential approaches and hence, decoupling of the opti-
mization and the probabilistic analysis. For an overview of RDO and RBDO approaches the
reader is referred to [36] and [30].

RDO and RBDO approaches have been applied to topology optimization referred to
as robust topology optimization (RTO) or reliability-based topology optimization (RBTO).
First works used the Solid Isotropic Material with Penalization (SIMP) approach for topol-
ogy optimization of compliance and the performance measure approach for the probabilistic
analysis [2,27]. Following works made use of the fact the RBTO problem can be decoupled
into a deterministic optimization and subsequent probabilistic analysis, yielding a sequen-
tial approach [18,17,25]. Luo et al. [26] followed a similar approach for probabilistic stress
constraints. In the majority of these works, the applied load is considered as random in-
put parameter. Bae et al. [2] and Kharmanda et al. [18] considered the Young’s modulus as
random, but constant over the design space. Hence, all random parameters considered are
independent of the design. The same holds for works in which other approaches are used
for the topology optimization within the RBTO, namely the level set approach [10,7,11,33]
and evolutionary structural optimization [19].

A Monte Carlo based RBTO approach considering random loads was presented by Zhao
and Wang [37]. Papadimitriou and Mourelatos [28] presented a more efficient approach for
such problems, which is based on Taylor series expansion. Jalalpour and Tootkaboni [16]
also used a Taylor series based RBTO, but considered the Youngs modulus as a spatially
varying parameters, described by random fields. The basis for this approach was developed
for truss structures, which however was formulated in a general way and allowed its exten-
sion to topology optimization [1,15].

Sigmund [31,34] suggested modeling “eroded” and “dilated” designs within the topol-
ogy optimization by considering the density threshold as random. This threshold defines
which density values are considered as void and solid. Schevenels et al. [29] extended this
idea by considering the threshold as a spatially random variable, which allows modeling
geometric deviations within the topology optimization. The RTO used Monte Carlo simula-
tions to determine mean value and standard deviation of the compliance, resulting in large
computational effort. Lazarov et al. used the same approach to model random geometry, but
more efficient approaches for the probabilistic analysis, namely the (Taylor series based)
perturbation technique [22] and the stochastic collocation method [21]. Though providing
better efficiency than using Monte Carlo, these approaches still require significantly more
computation time than standard deterministic optimization.
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The approaches based on Taylor series [22,16,28] have in common, that the computa-
tional effort increases linearly with the number of random parameters for first-order approx-
imations and quadratically for second order approximations.

In the current paper, the approach of Schevenels et al. [29] is followed to model geo-
metric uncertainty. Furthermore, the Young’s modulus is considered as a spatially random
parameter, and also the load is considered as random. The probabilistic approaches used
within the RTO are the first-order second-moment (FOSM) method and the second-order
fourth-moment (SOFM) method. The methods are based on Taylor series of the objective
function at the mean vector. The way the gradient is determined only one additional adjoint
system needs to be solved per iteration. This comes at the cost that the second order approach
scales with the number of design parameters and is therefore not applicable to problems of
reasonable size. The focus however lies on the first-order approach. It does not require any
reduction of random variables, no assumption on the type of distribution of input parameters
and hence no transformation to Gaussian distribution.

The paper is structured as follows. First, the robust design optimization problem consid-
ered is given and the probabilistic approach is described, from which the gradients are de-
rived in a general manner. Then, probabilistic approach and its gradient are given for the case
of robust topology optimization for minimum compliance. Next, the first-order approach is
applied to use cases, showing the potential and limitations of the approach. The results are
assessed by comparison with results of second-order and Monte Carlo based optimization.

2 Robust design optimization formulation

Consider an probabilistic objective function g(x,y), which is a function of the random vector
X and the set of design parameters y. The robust design optimization problem considered is

min
y

fRDO(y) = µg(y)+κ σg(y)

subject to cneq(y)≤ 0

ceq(y) = 0

(1)

Here, fRDO is the objective function of the robust design optimization, cneq(y) is a vector
of inequality constraints and ceq(y) is a vector of equality constraint functions. The mean
µg and the standard deviation σg of the probabilistic objective function can, for instance, be
approximated with Monte Carlo simulations. The scalar κ weights the standard deviation.

In this paper probabilistic approaches are used which do not directly provide the stan-
dard deviation σg, but the variance σ2

g . Therefore, the derivative of the optimization objective
function is written as

∂ fRDO

∂y j
=

∂ µg

∂y j
+κ

1

2
√

σ2
g

∂σ2
g

∂y j
(2)

2.1 Probabilistic approach

The first-order second-moment (FOSM) method employed here has already been proposed
Cornell [6] in 1969 and has been applied widely since then. It is based on a Taylor series
of the objective function expanded at the mean vector of random input parameters, and it
allows approximating the mean value and variance of the objective function. The governing
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equations are given here, as they are the basis for the gradient determination of the RTO
problem considered later.

FOSM shall not be mixed up with the first order reliability method (FORM) by Hasofer
and Lind [14], which is based on a Taylor series expansion at the most probable point, i.e., at
some limit state function. While FOSM provides only mean value and variance, the FORM
approach allows determining probability of exceedance (i.e. a probability of failure) and in
general requires solving an optimization problem. Consider a objective function g(x), which
is a function of the random vector x with the probability density function fX(x). The mean
value µg and variance σ2

g of the objective function are given by

µg =

∞∫
−∞

g(x) fX(x) dx (3)

and

σ
2
g =

∞∫
−∞

(g(x)−µg)
2 fX(x) dx (4)

The Taylor series of g expanded at the mean vector of random input parameters µ reads

g(x) = g(µ)+
n

∑
i=1

∂g(µ)
∂xi

(xi−µi)+
1
2

n

∑
i=1

n

∑
j=1

∂ 2g(µ)
∂xi ∂x j

(xi−µi)(x j−µ j)+ . . . (5)

Inserting a second-order Taylor series of g into eq. (3) yields

µg ≈ g(µ)+
1
2

n

∑
i=1

n

∑
j=1

∂ 2g(µ)
∂xi ∂x j

cov(Xi,X j) (6)

Any random vector X can be transformed to a vector with uncorrelated entries Z (see sec-
tion A.1). Then, the approximation of the mean reads

µg ≈ g(µ)+
1
2

n

∑
i=1

∂ 2g(µ)
∂ z2

i
var(Zi) (7)

In the same manner, the variance can be approximated. For an uncorrelated random
vector Z, the second order variance approximation is given by

σ
2
g ≈ g2

µ+
n

∑
i=1

(
∂g
∂ zi

)
2

µi,2 +
1
4

n

∑
i=1

(
∂ 2g
∂ z2

i
)

2

µi,4 +gµ

n

∑
i=1

∂ 2g
∂ z2

i
µi,2 +

n

∑
i=1

∂g
∂ zi

∂ 2g
∂ z2

i
µi,3

+
1
2

n

∑
i=1

n

∑
j=i+1

∂ 2g
∂ z2

i

∂ 2g
∂ z2

j
µi,2 µ j,2 +

n

∑
i=1

n

∑
j=i+1

(
∂ 2g

∂ zi ∂ z j
)

2

µi,2 µ j,2−µ
2
g

(8)

where gµ = g(µ) and

µi,k =

∞∫
−∞

(zi−µi)
k fX (zi)dzi (9)

Using a first-order Taylor series yields the following approximations for mean value and
variance of g.

µg ≈ g(µ)

σ
2
g ≈

n

∑
i=1

n

∑
j=1

∂g
∂xi

∂g
∂x j

cov(Xi,X j) =
n

∑
i=1

(
∂g
∂ zi

)2

µi,2
(10)
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Here, only second-order moments of the input variables are required. Therefore, the ap-
proach is referred to as first-order second-moment (FOSM) method [12]. For the second-
order approach, fourth-order moments of the input parameters are required and hence, the
approach will be referred to as second-order fourth-moment (SOFM) method.

For FOSM it is not mandatory to transform the parameters to uncorrelated parameters,
but for SOFM it is. The transformation and how it has to be treated for the differentiation
with respect to design variables is given and discussed in Appendix A.1.

2.2 Derivatives of approximated mean and variance

For solving the robust design optimization problem given in eq. (1) with gradient based
methods, the derivatives of the mean µg and the variance σ2

g with respect to the design
variables yk. For the SOFM approach, the derivatives are given by

∂ µg

∂yk
≈ ∂g

∂yk
+

1
2

n

∑
i=1

∂ 3g
∂ z2

i ∂yk
µi,2 (11)

and

∂σ2
g

∂yk
= 2gµ

∂g
∂yk

+2
n

∑
i=1

∂g
∂ zi

∂ 2g
∂ zi∂yk

µi,2 +
1
2

n

∑
i=1

∂ 2g
∂ z2

i

∂ 3g
∂ z2

i ∂yk
µi,4 +

∂g
∂yk

n

∑
i=1

∂ 2g
∂ z2

i
µi,2

+
n

∑
i=1

∂ 2g
∂ zi∂yk

∂ 2g
∂ z2

i
µi,3 +

1
2

n

∑
i=1

n

∑
j=i+1

(
∂ 3g

∂ z2
i ∂yk

∂ 2g
∂ z2

j
+

∂ 2g
∂ z2

i

∂ 3g
∂ z2

j∂yk

)
µi,2µ j,2

+2
n

∑
i=1

n

∑
j=i+1

∂ 2g
∂ zi∂ z j

∂ 3g
∂ zi∂ z j∂yk

µi,2µ j,2−2µg
∂ µg

∂yk

(12)

Hence, the derivatives of the objective function, which are required for solving an RDO
problem with the second-order approximation, are

∂g
∂ zi

,
∂g
∂yk

,
∂ 2g

∂ zi∂yk
,

∂ 2g
∂ zi∂ z j

,
∂ 3g

∂ zi∂ z j∂yk
(13)

For the FOSM method, the derivatives are given by

∂ µg

∂yk
≈ ∂g

∂yk
(14)

and

∂σ2
g

∂yk
= 2

n

∑
i=1

∂g
∂ zi

∂ 2g
∂ zi∂yk

µi,2 (15)

Hence, for the FOSM method only the first three terms of eq. (13) are required.
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3 Robust topology optimization for minimum compliance

In the following sections, the probabilistic objective function considered is the compliance c
of a structure. The objective of the robust design optimization is to minimize the mean value
µc and the standard deviation σc of the compliance for a given volume ratio v. Each design
variable ρe is associated to one finite element of the design space. The stiffnesses of the finite
elements vary dependent on the design variables ρe according to the Simplified Isotropic
Material with Penalization (SIMP) approach [3] (see eq. (50)). The design variables are
summarized in the design vector ρ. The optimization problem hence reads

min
ρ

µc (ρ)+κ σc (ρ)

subject to

V (ρ)

V0
≤ v

0 < ρmin ≤ ρe ≤ 1

Ku = f

(16)

The compliance c=uT f is determined from the load vector f and the displacement vector
u, which is obtained from a linear finite element (FE) analysis. K is the stiffness matrix of
the FE model.

In the following subsections, the gradient of variance is determined for the case of ran-
dom Young’s modulus and geometry only. As will be shown in section 4.1, FOSM does
not work well for random loads. It is furthermore worth mentioning that for linear elastic
problems, Monte Carlo simulations can be carried out extremely cheap by running unit load
cases and superposing them.

3.1 Filtering design variables and modeling random geometry

The design variables ρe are filtered and projected using the same approach as in [29]. The
filter function and its derivative equal

ρ̃e =

Q
∑

i=1
weiviρi

Q
∑

i=1
weivi

and
∂ ρ̃e

∂ρk
=

wekvk
Q
∑

i=1
weivi

with wei = max(0,R− rei) (17)

Here, vi is the volume of the i-th element, rei is the distance of the i-th element to the e-
th element and R is the filter radius. Q can be the number of elements, but in practical
implementation it is the number of neighbor elements.

As discussed by Clausen and Andreassen [5], by using the filter function (17) it is im-
plicitly assumed that the design variables are continuous at the edge of the design space.
To avoid this effect the filter needs to be adjusted near the design space edge. The sum in
the denominator is extended to the outside of the design space, assuming that there is zero
density. This modification is however not applied to areas of boundary conditions and load
application. The approach is referred to as padding in the following. An example of design
variables ρ and their associated filtered variables ρ̃ without and with padding are shown in
figure 1, 2 and 3. In this example, the boundary conditions are at the top of the design space.
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Fig. 1 Example field of design
variables ρ

Fig. 2 Example field of filtered
variables ρ̃ without padding

Fig. 3 Example field of filtered
variables ρ̃ with padding

Therefore, there is a small region on the top left corner of figure 3, where the padding is not
applied, even if it is applied to the rest of the structure.

The filtered variables ρ̃e are projected to ¯̃ρe using the Heaviside approximation (43).
These projected variables ¯̃ρe are used to scale the stiffness of the finite elements. Examples
for projected variables ¯̃ρ without and with padding and using a constant projection threshold
η are shown in figure 4 and 5.

Fig. 4 Example field of pro-
jected variables ¯̃ρ without
padding using a fixed η

Fig. 5 Example field of pro-
jected variables ¯̃ρ with padding
using a fixed η

Schevenels et al. [29] suggested to consider the threshold η as a spatially varying vari-
able to model randomness of geometry. An example for a random field of η is shown in
figure 6. The projected variables ¯̃ρ obtained with this varying η are shown in figure 7 and
8 without and with padding. The example shows how important the consideration of filter
boundary conditions (padding) according to Clausen and Andreassen [5] is especially for
modeling random geometric variations at the design space edge.

Fig. 6 Example random field of
the projection threshold η

Fig. 7 Example field of pro-
jected variables ¯̃ρ without
padding using a variable η

Fig. 8 Example field of pro-
jected variables ¯̃ρ with padding
using a variable η
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3.2 Gradient determination

In this section, the gradient of mean value and variance estimated by the first-order second-
moment (FOSM) approach are derived. A spatially varying random variable α is considered,
which influences the stiffness matrix, but not the load. Hence, α represents the Young’s
modulus E or the projection threshold η .

Using the FOSM approximation (10), the mean value and the variance of the compli-
ance, as well as the derivative of the mean value, are determined from the displacement
vector u and derivatives of K.

µc ≈ c (18)

∂ µc

∂ ¯̃ρk
=

∂c
∂ ¯̃ρk

=−uT ∂K
∂ ¯̃ρe

u (19)

σ
2
c ≈

n

∑
i=1

n

∑
j=1

(
uT ∂K

∂αi
u
)(

uT ∂K
∂α j

u
)

cov(αi,α j) (20)

Since the derivatives of K are given explicitly, only the equilibrium condition Ku = f has to
be solved. For the derivative of the variance the term λT (Ku− f) is added to eq. (20). The
derivative then reads

∂σ2
c

∂ ˜̄ρk
=

n

∑
i=1

n

∑
j=1

(
2uT ∂K

∂αi

∂u
∂ ¯̃ρk

+uT ∂ 2K
∂αi∂ ¯̃ρk

u
)(

uT ∂K
∂α j

u
)

+

(
uT ∂K

∂αi
u
)(

2uT ∂K
∂α j

∂u
∂ ¯̃ρk

+uT ∂ 2K
∂α j∂ ¯̃ρk

u
)

cov(αi,α j)+λT
(

∂K
∂ ¯̃ρk

u+K
∂u
∂ ¯̃ρk

) (21)

Simplifying the expression and isolating ∂u
∂ ¯̃ρk

yields

∂σ2
c

∂ ˜̄ρk
= 2

(
uT ∂ 2K

∂αk∂ ¯̃ρk
u
) n

∑
j=1

(
uT ∂K

∂α j
u
)

cov(αk,α j)+λT ∂K
∂ ¯̃ρk

u

+

{[
4

n

∑
i=1

n

∑
j=1

cov(αi,α j)

(
uT ∂K

∂α j
u
)(

uT ∂K
∂αi

)]
+λT K

}
∂u
∂ ¯̃ρk

(22)

Requesting the term in curly brackets to equal zero yields the following system of linear
equations.

Kλ=−4
n

∑
i=1

n

∑
j=1

(
uT ∂K

∂α j
u
)

cov(αi,α j)

(
∂K
∂αi

u
)

(23)

Having solved this equation for λ, the derivative is given by

∂σ2
c

∂ ¯̃ρk
= 2

(
uT ∂ 2K

∂αk∂ ¯̃ρk
u
) n

∑
j=1

(
uT ∂K

∂α j
u
)

cov(αk,α j)+λT ∂K
∂ ¯̃ρk

u (24)

Compared to the deterministic optimization, one additional solution of a system of linear
equations is required, namely eq. (23), for which the already decomposed stiffness matrix is
used.

When α is considered to be the spatially varying Young’s modulus, the required deriva-
tives of the stiffness matrix

∂K
∂αi

=
∂K
∂Ei

(25)
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and
∂ 2K

∂αi∂ ¯̃ρi
=

∂ 2K
∂Ei∂ ˜̄ρi

(26)

are given by eq. (71) and eq. (72). When considering random geometry, represented by a
spatially varying projection threshold, the derivatives of the stiffness matrix

∂K
∂αi

=
∂K
∂ηi

=
∂K
∂ ˜̄ρi

∂ ¯̃ρi

∂ηi
(27)

and
∂ 2K

∂αi∂ ¯̃ρi
=

∂ 2K
∂ηi∂ ¯̃ρi

=
∂ 2K

∂ ¯̃ρi∂ ¯̃ρi

∂ ¯̃ρi

∂ηi
(28)

are given by eq. (80) and eq. (82).
When using the SOFM approach, mixed second partial derivatives of u with respect to

¯̃ρ and a random variable, of with respect to a different ¯̃ρ occur. The authors did not see any
possibility to isolate theses expressions and using the adjoint method for determining the
gradient. Hence, in the following section the direct differentiation is used when using the
SOFM method, by simply inserting the expressions given in appendix A.3 into eq. (11) and
(12). The computational cost of this approach does not allow any practical application and
is only used for comparison.

Table 1 Comparison of computational cost for determining the gradient of the objective function of the RTO
problem considered using different probabilistic approaches

Probabilistic approach Solutions of Ku = f Solutions of adjoint systems
FOSM (adjoint of variance) 1 1
SOFM (direct differentiation) 1 Nρ +Nα +Nρ ×Nα

Perturbation approach (first order) 1 Nα

Perturbation approach (second order) 1 Nα +N2
α

Monte Carlo Nsamp 0

Nρ : number of design variables
Nα : number of random variables
Nsamp: number of samples/realizations used

In [22], Lazarov et al. present a RTO approach using the perturbation technique, which
is also based on Taylor series expansions. While in the current paper the Taylor series is
directly applied to approximate the objective function (namely the compliance), Lazarov
et al. use Taylor expansions for the stiffness matrix K, the displacement u and the force
f. These expansions are used to obtain required derivatives, where the number of adjoint
systems to be solved only depends on the number of random parameters. An overview and
comparison of the computational efforts is given in table 1.

3.3 Connection with reliability based topology optimization with compliance constraint

The FOSM approach and hence, the gradients derived above can also be used for reliability
based topology optimization as, for instance, also carried out by Jalalpour and Tootkaboni
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[16]. To depict this, consider the deterministic optimization problem, where now compared
to (16) objective function and constraint are interchanged.

min
ρ

V (ρ)

subject to

c(ρ)≤ c0

0 < ρmin ≤ ρe ≤ 1

Ku = f

(29)

Here, c0 is the maximum allowed compliance. In the corresponding RBTO problem, c0 may
be exceed with a given probability p̄. The optimization problem then reads

min
ρ

V (ρ)

subject to

P(C (ρ)> c0) = 1−FC (c0)≤ p̄

0 < ρmin ≤ ρe ≤ 1

Ku = f

(30)

The FOSM and SOFM approaches only provide stochastic moments but no probability of
exceedance FC(c0) (in difference to approximations at the most probable point [14]). Only,
when a certain type of distribution is assumed for C, FC is given based on the moments. Any
distribution can be normalized such that its mean equals 0 and its variance equals 1. Then,
FC can be expressed in terms of the normalized distribution FN .

FC (c0) = FN

(
c0−µc

σc

)
(31)

Then, the probabilistic constraint of (30) can be expressed as

P(C (ρ)> c0) = 1−FN

(
c0−µc (ρ)

σc (ρ)

)
≤ p̄

⇔ c0−µc (ρ)

σc (ρ)
≥ F−1

N (1− p̄) = b̄

⇔ 0≥ µc (ρ)+ b̄σc (ρ)− c0

(32)

The value b̄ is dependent on the chosen distribution type and the desired probability p̄.
(In the current formulation b̄ equals the reliability index, typically denoted as β , see, e.g.,
[12].) For instance, assuming Gauss distribution and choosing probability of p̄ = 1% yields
b̄ = 2.33. For the same p̄, assuming Gumbel distribution of C yields b̄ = 1.64 and assuming
Logistic distribution yields b̄ = 4.60. It is however difficult to justify a distribution type in
advance. (For the Monte Carlo simulations in the following sections the compliance turned
out to be highly skewed.) The intention of this section however is mainly to motivate a value
for κ in eq. (16). As can be seen form eq. (32), the objective function (16) can be seen as an
upper bound, associated with a certain associated with a certain probability of exceedance
if κ is replaced by b̄. This helps to choose an order of magnitude of κ .
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4 Example and results

The presented approaches are applied to two examples from literature. For all examples, the
method of moving asymptotes [32] with some modifications suggested by Li and Khandel-
wal [24]. The initial move limit, relaxation factor and tightening factor were chosen con-
servatively with sini = 0.2, sincr = 1.2 and sdecr = 0.7. All examples are run with a penalty
factor of p = 3, a Young’s modulus of E = 1 and a Poisson’s ratio of ν = 0.3. For the Heav-
iside approximation (43), the value of η = 0.5 was kept constant through the optimization
(except for modeling geometric imperfections, where η varies). The slope parameter β was
increased gradually, starting with β = 1 and increasing it every iteration by 0.25 up to a
maximum value of β = 10, unless otherwise stated. A further increase of β in many cases
jeopardize the convergence.

Note that for values of β close to 1, the projection function (43) is ¯̃ρ ≈ ρ̃ , which is equiv-
alent to not performing the projection step. Since the geometric variation come into play
through the projection, this means that for the case of random geometry the first iterations
are performed as for the deterministic optimization and that the influence of randomness
increases continuously.

4.1 RTO of tension bar with random load

The methods derived above are applied to an example with random load. The example is
shown in figure 9, where the horizontal force is random with zero mean. Similar (or the
same) example has been considered in many works, in which the load is considered as
random variable [27,10,26,4]. All relevant parameters used within this example are given
in table 2. The optimization problem (16) is solved with κ = 3.

FxFy

150

5
0

Fig. 9 Design space and load of the tension bar example

Table 2 Properties of the tension plate, similar to [26]

Dimensions: 150x50
Element size Le = 1
Volume fraction V/V0 = 10%
Filter radius r = 4
Deterministic load Fy = 1
Random load Fx : µ = 0, σ = 1/3
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Fig. 10 Result of deterministic topology optimiza-
tion of the tension bar

Fig. 11 Result of robust topology optimization
with random load orientation using Monte Carlo

Fig. 12 Result of robust topology optimization
with random load orientation using FOSM

Fig. 13 Result of robust topology optimization
with random load orientation using SOFM

The deterministic optimization provides a straight bar (see figure 10), since the hor-
izontal force is not present in this optimization. The RTO using Monte Carlo simulation
provides a two bar design (figure 11), as it is reported in literature. Also result from the
RTO using the SOFM approach shown in figure 13 provides a two bar design, but with more
inclination compared to the optimization with Monte Carlo. The RTO using FOSM fails for
this example (see figure 12). The Monte Carlo simulations have been carried out with 100
samples. The realization have not been modified during the optimization to ensure smooth
convergence.

In table 3, the mean value µc and standard deviation σc of the compliance of the final re-
sult is given for all approaches. Both moments were determined by Monte Carlo simulation
with 100 realizations. For FOSM and SOFM, the moments determined by the approaches
themselves are given in addition. The large discrepancy of µc and σc given by FOSM and
Monte Carlo shows how inaccurate the assumption of a linear objective function is for the
given case. For SOFM, the results are in much better agreement.

The deterministic optimization requires one solution of the equilibrium system per iter-
ation. Optimizing with Monte Carlo here requires 100 times as much. For FOSM, only one
adjoint system needs to be solved additionally compared to the deterministic approach, but
it provides very unsatisfying results for the given example. For the optimization with SOFM
n+m+n×m = 5000+2+2×5000 = 15002 adjoint systems need to be solved (see section
3). Hence, the computational effort is much larger than for the Monte Carlo, even for the
small example considered.

Table 3 Mean value and standard deviation of the compliance of the design obtained by different RTO
approaches

Approach µc σc
Deterministic 23.3 33.9
Monte Carlo 11.4 4.4
FOSM 14.0*, 35.3 0.5*, 39.7
SOFM 10.0**, 10.5 3.2**, 5.0
*determined by FOSM, **determined by SOFM
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Figure 14 shows that the deterministically optimized design has a lower compliance for
Fx = 0, which is at the cost of a much higher increase of the compliance for Fx 6= 0.

What can also be seen from figure 14 is why the FOSM approach fails to provide a ro-
bust design. The FOSM approach implies the assumption that the objective function (here
the compliance) is a linear function of the random variable (here, the load Fx). Since the
second derivative of the compliance with respect to loads is constant (see eq. (61)), the
function is in fact quadratic. For Fx = 0 the compliance has a minimum and hence, the first
derivative equals zero (see figure 14). Since only the first derivatives are considered for the
first-order variance approximation (10), the variance is estimated to equal zero. Hence, RTO
with FOSM provides the same result as a deterministic optimization for the considered case.
The same phenomenon is observed when the mean value of Fx is non-zero, because also then
the compliance has a minimum with respect to Fx at the mean of Fx. This phenomenon is

Fig. 14 Compliance as a function of the horizontal load Fx for the deterministically optimized structure and
the optimal design provided by the SOFM approach

well known and already reported in textbooks [13] and therefore, first-order approaches are
not recommended for robust design optimization. However, the occurrence of this effect
depends on the random parameter considered. For instance, the compliance is a monotoni-
cally increasing function of Young’s modulus and therefore does not have a minimum at the
mean. This is considered in the following subsection.

For the example considered in this section, the presence of random geometry or ran-
dom Young’s modulus provides the same optimal design as the deterministic optimization.
Therefore, different examples are considered in the following sections.

4.2 RTO of L-beam with random geometry or random Young’s modulus

In this section, robust topology optimization of the L-beam shown in figure 15 is carried
out. Similar examples have been considered for RTO and RBTO approaches in [11] and
[26]. The properties of the example considered are summarized in table 4. The result of the
deterministic optimization is shown in figure 16. For the RTO, the optimization problem
(16) is now solved with κ = 5 in order to enforce the influence of the variance.

First, the geometry is considered as random, which is modeled by spatial variation of
the projection threshold η and which is assumed to be uniformly distributed in the interval
[0.3,0.7]. For the FOSM approach, the variance of the distribution are required, which are
given in eq. (33) for uniform distribution of the interval [η−,η+].

σ
2
η = (η+−η

−)2/12 (33)
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F
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5
0

6
0

60

Fig. 15 Design space and load of the L-beam example

Table 4 Properties of L-beam example

Dimensions: 150x150
Element size Le = 1
Volume fraction V/V0 = 20%
Filter radius r = 3
Applied load F = 1
Correlation lengths lc = 20

Fig. 16 Result of deterministic topology optimization of the L-beam

For the Monte Carlo simulations, realization of a Gaussian random field ξ are generated,
which are transformed to realizations of the uniformly distributed threshold η via their cu-
mulative distribution functions Fξ and Fη as follows (see also [29]).

η = F−1
η (Fξ (ξ )) (34)

The results from optimizations with Monte Carlo simulations and with FOSM method are
shown in figure 17 and 18, respectively. Both designs have slightly more material at the
inner corner compared to the deterministic results (see figure 19 and 20). The reason is
that variations of the geometry at the corner penalize the stiffness of the design. Besides
that, the topology of all three designs is very similar. The locations of the connecting bars
obtained with Monte Carlo differ slightly and turned out to be slightly different in each opti-
mization run, depending on the realizations of the random field. The results in table 5 show
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that the designs obtained from both RTO approaches indeed have a lower standard devia-
tion of the compliance than the deterministic design. The values estimated by the FOSM
method deviate from the results obtained from Monte Carlo simulations with 1000 realiza-
tions, which is not surprising due to the assumption of linearity of the objective function
implicitly made using the FOSM approach. The discrepancy however is much smaller than
for the use case with random load. Though the FOSM approach underestimates the standard
deviation significantly, the design obtained using FOSM in the RTO is more robust than the
deterministically optimized design.

The SOFM method could not be used, because the required computational cost was too
high for this case due to the model size.

Fig. 17 Result of robust topology optimization
of the L-beam with random geometry using
FOSM

Fig. 18 Result of robust topology optimization
of the L-beam with random geometry using
Monte Carlo

Fig. 19 Difference of deterministic and RTO re-
sults using FOSM, grey: equal, black: determin-
istic, white: FOSM

Fig. 20 Difference of deterministic and RTO re-
sults using Monte Carlo, grey: equal, black: de-
terministic, white: Monte Carlo

For the investigation of the influence of a spatial varying, random Young’s modulus, a
standard deviation of 0.1 (and hence, 10% of the mean) was chosen and the same correlation
length as for the random geometry is used. The design obtained from RTO using FOSM and
Monte Carlo hardly differ from the deterministic design. The same holds for the mean and
standard deviation of the compliance, given in table 5. Optimizations with a much higher
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standard deviation of the Young’s modulus provide designs that are more different. However,
compared to most materials a standard deviation of 10% is already relatively large.

Table 5 Mean value and standard deviation of the compliance of the L-beam designs obtained by different
RTO approaches, determined by Monte Carlo simulation with 1000 realizations

Random geometry Random Young’s modulus
Approach µc σc µc σc
Deterministic 459 42.6 395.2 9.5
Monte Carlo 416 18.3 393.5 9.5
FOSM 438*, 476 10.6*, 29.3 389.3*, 394.6 9.4*, 9.5

*determined by FOSM

4.3 RTO of a cantilever beam random geometry

In this section, the FOSM based approached is applied to the cantilever beam considered
by Lazarov et al. [22], considering random geometry. The properties are summarized in
table 6. Lazarov et al. used a PDE filter with a filter parameter of RPDE = 0.01. According
to [23], this corresponds to a filter radius of R = 2

√
3RPDE = 0.0346 when using the density

filter (17), which is used here. The correlation length of 2.5 is relatively large compared to
the dimensions of the design space. This is beneficial when using the discrete Karhunen-
Loève transform 41, since ”stochastic fields with large correlation lengths compared with
the physical domain dimensions can be represented with a small number of the expansion
modes.” [22]

Table 6 Properties of the cantilever beam example, according to [22]

Dimensions: 4x1
Element size Le = 0.01
Volume fraction V/V0 = 50%
Filter radius r = 0.0346
Applied load F = 0.1
Correlation lengths lc = 2.5

Since in [22] padding was not used at the design domain edges, results are determined
with and without padding. The deterministically optimized design with and without padding
are given in figure 21. Unsurprisingly, the when using padding and thereby considering
geometric variability along the design space edge yields a higher standard deviation. This
demonstrates the importance of using padding for the filter along the design domain edges
when considering geometric variability.

For this example, the convergence behavior of the RTO using FOSM was very sensi-
tive to the continuation of β . Here, β was increased by 1.0 every 50 iterations. Still, the
robustness optimizations diverged at some point. Therefore, the best results found during
the optimization are given, which were obtained after 153 (with padding) and 151 (without
padding) iterations. The obtained designs are shown on 22. For the case of no padding, the
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inaccuracy of the FOSM approach, caused by the assumption of linearity, provided a result,
which is actually less robust than the deterministic design. For the case of using padding, the
robustness was improved by the RTO. The optimal design found by [22] was not reached.

Fig. 21 Result of deterministic topology optimization without padding (left) and with padding (right) of the
cantilever beam considered in [22]

Fig. 22 Result of robust topology optimization using FOSM of the cantilever beam considered in [22] with
random geometry without padding (left) and with padding (right)

Table 7 Mean value and standard deviation of the compliance of the cantilever beam, determined by Monte
Carlo simulations with 1000 realizations

no padding with padding
Approach µc σc µc σc
Deterministic 3.66 0.138 3.74 0.211
FOSM 3.83*, 3.85 0.090*, 0.176 4.10*, 3.85 0.165*, 0.179
Second order
perturbation approach** 3.68 0.083

*determined by FOSM, **values from [22]

4.4 RTO under distributed load with random geometry

As a last example, a problem with a distributed load shown in figure 23 is considered, which
is similar to an example in [37]. The dimensions and parameters are summarized in table 8.
Due to the evenly distributed load, the deterministic optimization provides a design with
gray elements (density between 0 and 1) in the area of the load introduction (see figure 24).
Therefore, the design is very sensitive to variations in the threshold parameter η , which is
why the interval of η is chosen to be [0.4,0.6]. The effect can easily be avoided by adding a
solid layer to the load introduction as non-design space. The example was nevertheless cho-
sen as it is in order to shown the capabilities of the RTO approach in presence of significant
sensitivity.

The designs obtained from deterministic and robustness optimization are shown in fig-
ure 24 and 25. The design derived by the RTO is more solid in the load introduction area
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150

Fig. 23 Design space and load of an example with distributed load

Table 8 Properties of distributed load example, similar to [37]

Dimensions: 150x150
Element size Le = 1
Volume fraction V/V0 = 30%
Filter radius r = 4
Applied load q0 = 1
Correlation lengths lc = 20

than the deterministically optimized design, which causes a reduction of sensitivity. The
mean values and standard deviations of these design are determined by Monte Carlo simu-
lations with 10000 realizations, and are given in table 9.

Fig. 24 Result of deterministic topology opti-
mization of the distributed load example

Fig. 25 Result of robust topology optimization
of the distributed load example with random ge-
ometry using FOSM

5 Conclusions and Outlook

A robust topology optimization approach is presented, which utilizes the first-order second-
moment (FOSM) method for the estimation of mean value and variance of the compliance.
The approach requires very little computational cost independently of the number of ran-
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Table 9 Mean value and standard deviation of the compliance of the distributed load example, determined
by Monte Carlo simulations with 10000 realizations

Approach µc σc
Deterministic 984 20.9
FOSM 1036*, 1043 10.6*, 11.8

*determined by FOSM

dom parameters, since only one adjoint system needs to be solved per iteration. The FOSM
approach lacks accuracy, because it is based on a first-order Taylor series expansion of the
objective function. The objective function considered in this paper is the compliance of
a structure and the random parameters are the applied load, the geometry or the spatially
varying Young’s modulus. The approach is applied to different use cases. For a random
load, the FOSM approach is not applicable. For random geometry and Young’s modulus
however, the FOSM approach provides reasonable results at low computational cost, even
though it does not estimate the variance of the compliance correctly. The importance of a
correct filter function at the edges of the design domain especially for geometric deviations
is demonstrated.

Future work should focus on RTO considering the stress, as this is an important opti-
mization problem in practice and at the same time, the stress is expected to be more sensitive
to local variations in geometry and material properties.

A Appendix

A.1 Transformation to uncorrelated parameters

Equations (7) and (8) are only valid for uncorrelated variables. (Eq. (8) actually furthermore requires inde-
pendence for its derivation. Gaussian random variables are independent if they are uncorrelated, but that does
not hold for all types of distributions.) Correlated variables therefore need to be transformed to uncorrelated
variables.

A random vector X with mean vector µ and covariance matrix Σ can be transformed to a random vector
Z with uncorrelated entries by

x =Σ
1
2 z+µ (35)

The mean values of the entries of Z equals 0, the variances are normalized to 1 and all covariances of two
entries equal 0. Note that if X follows gaussian distribution, all entries of Z are independent, i.e. all joint
moments equal 0. For other Z are still uncorrelated but not necessarily independent.

The derivative of eq. (35) equals
∂x
∂z

=Σ
1
2 (36)

If the objective function g is given as a function of correlated variables X, the transformation is used to
allow using the above given approaches for uncorrelated variables Z. The derivatives of g with respect to x
are the transformed to the derivatives with respect to z by using the chain rule.

∂g
∂z

= (
∂x
∂z

)T ∂g
∂x

= (Σ
1
2 )T ∂g

∂x
(37)

Similarly, the mixed second partial derivative of g equals

∂ 2g
∂z∂yk

= (Σ
1
2 )T ∂ 2g

∂x∂yk
(38)

and the third derivative reads
∂ 3g

∂z∂z∂yk
= (Σ

1
2 )T ∂ 3g

∂x∂x∂yk
Σ

1
2 (39)
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The root of the covariance matrix Σ can be found from the spectral decomposition of Σ.

Σ
1
2 = Q D

1
2 (40)

Here, Q is the matrix with eigenvectors qi and D is a diagonal matrix with eigenvalues λi of Σ. Then, eq. (35)
can also be written as

x = µ+
m

∑
i=1

qi
√

λi zi (41)

This representation shows that the transformation (35) is similar to principal component analysis or discrete
Karhunen-Loève transform. It is often used to reduce the number of random variables, (i.e. the dimensionality
of the design space), by choosing the number of modes considered m to be smaller than the number of
correlated random variables n (i.e. the length of x). The argument for neglecting an eigenvector is that the
associated eigenvalue and hence, the variance in the direction of the eigenvector, is small. However, a small
variance does not necessarily mean that the variation in this direction has a low impact on the response
function. To illustrate that, consider a homogeneous 2D random field with exponential correlation function
(42).

C = exp
(
−|x2− x1|2

l2
c

)
(42)

The random field has the dimension 40x20, it is discretized by 80x40 elements and the correlation length
equals lc = 4. In figure 26 four eigenvectors (or eigenmodes) of the correlation matrix are shown. Modes 1
and 7 correspond to large variation, but describe only a gradually spatial variation. In contrast to that, modes
75 and 109 represent very short-range spatial variation, which is more critical for the applications considered
in this paper (random Young’s modulus and random geometry). For that reason, in the current paper the
transformation (35) is only used to transform correlated to uncorrelated parameters, but not to reduce the
number of parameters.

Fig. 26 Karhunen-Loève modes/eigenvectors 1, 7, 75 and 109 of an example random field

A.2 Heaviside projection approximation and its derivatives

At the end of the topology optimization using the SIMP approach, the filtered design variable ρ̃ is projected
to a values of either 0 or 1 in order to avoid elements with intermediate density. This projection is done by the
Heaviside function. In the current work follows the approach of performing the Heaviside projection in each
iteration step, mainly because this allows modeling the random variation of the geometry as suggested by
Schevenels et al. [29]. Since the Heaviside function is not differentiable, it is approximated by the projection
function proposed by Wang et al. [34].

¯̃ρ =
tanh(βη)+ tanh(β (ρ̃−η))

tanh(βη)+ tanh(β (1−η))
(43)

For the mapping of the derivatives with respect to ¯̃ρ derivatives with respect to ρ as in eq. (49), the
derivative of the projection function with respect to the filtered variable is required.

∂ ¯̃ρ
∂ ρ̃

=
β (sech(β (ρ̃−η)))2

tanh(βη)+ tanh(β (1−η))
(44)

Furthermore, for the derivatives of the stiffness matrix with respect to η in eq. (80), (82), (84) and (87),
the first and second derivative of the projection function with respect to η are required, which are given by

∂ ¯̃ρ
∂η

= β
u1

v
−β

u2u3

v
(45)
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and
∂ 2 ¯̃ρ
∂η2 = β

u′1v−u1 v′

v2 −β
u′2u3v+u2u′3v−u2u3v′

v2 (46)

with
u1 = tanh2 (β (ρ̃−η))− tanh2 (βη)

u2 = tanh(β (ρ̃−η))+ tanh(βη)

u3 = tanh(β (1−η))− tanh(βη)

v = tanh(β (1−η))+ tanh(βη)

u′1 = 2β
[
− tanh(β (ρ̃−η))+ tanh3 (β (ρ̃−η))− tanh(βη)+ tanh3 (βη)

]
u′3 = β

[
tanh2 (β (1−η))+ tanh2 (βη)−2

]
u′2 = β

[
tanh2 (β (ρ̃−η))− tanh2 (βη)

]
v′ = β

[
tanh2 (β (1−η))− tanh2 (βη)

]

(47)

A.3 Derivatives of compliance

In the current paper, µc and σc are estimated using the FOSM and SOFM approach. Hence, the derivatives
summarized in eq. (13) (in terms of y and z) are required to solve the optimization problem with a gradient
based approach. In the following subsections, these derivatives are given for different random parameters,
namely for load, Young’s modulus and geometry. In any case, also the derivatives of compliance with respect
to the design variables are required. The derivative of c with respect to the projected variable ρ̃ is given by

∂c
∂ ¯̃ρk

=−uT ∂K
∂ ¯̃ρk

u (48)

Then, by application of the chain rule, the derivative with respect to the design variable ρ is obtained.

∂c
∂ρk

=
∂c

∂ ¯̃ρe

∂ ¯̃ρe
∂ ρ̃e

∂ ρ̃e

∂ρk
(49)

The derivative of the stiffness matrix can be determined on element level. Using the SIMP approach, the
element stiffness matrix of the i-th element equals

ki = ¯̃ρ pk0 (50)

and derivatives are given by

∂ki

∂ ¯̃ρk
=

{
p ¯̃ρ p−1

i k0 for i = k

0 else

∂ 2ki

∂ ¯̃ρ j∂
¯̃ρk

=

{
p(p−1) ¯̃ρ p−2

i k0 for i = j = k

0 else

∂ 3ke

∂ ¯̃ρ i∂
¯̃ρ j∂

¯̃ρk
=

{
p(p−1)(p−2) ¯̃ρ p−3

i k0 for e = i = j = k

0 else

(51)

In multiple derivatives shown in the subsequent section, the derivative of the displacement vector u with
respect to projected variable ¯̃ρ is required, which is given by

∂u
∂ ¯̃ρk

=−K−1 ∂K
∂ ¯̃ρk

u (52)

Instead determining the inverse of K, the following system is solved.

K
∂u
∂ ¯̃ρk

=− ∂K
∂ ¯̃ρk

u (53)

Since the stiffness matrix K needs to be decomposed only once, the solution is relatively fast. Still, the
number of times this system of linear equation needs to be solved is the main driver for the computational
cost, if these entities are explicitly required.
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A.3.1 Minimizing compliance with random load

When considering entries of the load vector fi as random parameters, the following derivative of the compli-
ance with respect to the loads needs to be determined.

∂c
∂ fi

,
∂c

∂ρk
,

∂ 2c
∂ fi∂ f j

,
∂ 2c

∂ fi∂ρk
,

∂ 3c
∂ f ∂ f j∂ρk

(54)

The differentiation of c w.r.t. f reads

∂c
∂ fi

=

(
∂u
∂ fi

)T

f+uT ∂ f
∂ fi

(55)

where
∂ f
∂ fi

= ei (56)

ei is the unit vector. For determining ∂u
∂ fi

the equilibrium (Ku = f) is differentiated w.r.t. fi.

∂K
∂ fi︸︷︷︸
=0

u+K
∂u
∂ fi

=
∂ f
∂ fi

= ei ⇒ ∂u
∂ fi

= K−1ei (57)

Inserting this in (55) yields

∂c
∂ fi

=
(
K−1ei

)T f+uT ei = eT
i K−T f︸ ︷︷ ︸

u

+uT ei = 2uT ei = 2ui (58)

Hence, the first derivative of c simply reads
∂c
∂ fi

= 2ui (59)

Differentiating (59) with respect to ¯̃ρ yields

∂ 2c
∂ fi∂ ¯̃ρk

= 2
∂ui

∂ ¯̃ρk
(60)

For SOFM, (59) needs to be differentiated with respect to another entry of the load vector f j , which
reads

∂ 2c
∂ fi∂ f j

= 2
∂ui

∂ f j
= 2K̄i j (61)

where K̄i j is the entry of the inverse stiffness matrix. In order to avoid determining the inverse of K, ∂ui
∂ f j

can
be determined by solving the following system (once per random entry of the load vector).

K
∂u
∂ f j

= e j (62)

The SOFM method furthermore requires the third derivative of the compliance. For that, eq. (60) is
written as

∂ 2c
∂ fi∂ ¯̃ρk

= 2
∂ui

∂ ¯̃ρk
= 2eT

i

(
−K−1 ∂K

∂ ¯̃ρk
u
)

(63)

Differentiating this expression w.r.t. f j provides

∂ 3c
∂ fi∂ f j∂ ¯̃ρk

=−2eT
i K−1 ∂K

∂ ¯̃ρk

∂u
∂ f j

(64)

In order to avoid determining the inverse, the derivatives can be determined by solving

K
∂ 3c

∂ f∂ f j∂ ¯̃ρk
=−2

∂K
∂ ¯̃ρk

∂u
∂ f j

(65)

The derivatives (60) and (64) are given with respect to the projected variable. The derivatives with respect to
the design variable is obtained by applying the chain rule as in eq. (49).

Given a finite element model with n elements and m random loads, n systems need to be solved for
eq. (60), m systems need to be solved for eq. (61), and the system (65) needs to be solved n×m times.
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A.3.2 Minimizing compliance with random Young’s modulus

Next, the Young’s modulus is considered as a spatially varying parameter. Hence, the Young’s moduli Ei of
each finite element are considered as correlated random variables. The derivatives that need to be determined
are

∂c
∂Ei

,
∂c

∂ρk
,

∂ 2c
∂Ei∂ρk

,
∂ 2c

∂Ei∂E j
,

∂ 3c
∂EiE j∂ρk

(66)

The derivative of c w.r.t. the Young’s modulus reads

∂c
∂Ei

= fT ∂u
∂Ei

+uT ∂ f
∂Ei︸︷︷︸
=0

(67)

Differentiating the equilibrium system (Ku = f) w.r.t. Ei reads

∂K
∂Ei

u+K
∂u
∂Ei

=
∂ f

∂Ei︸︷︷︸
=0

⇒ ∂u
∂Ei

=−K−1 ∂K
∂Ei

u (68)

Inserting this into eq. (67) yields

∂c
∂Ei

= fT
(
−K−1 ∂K

∂Ei
u
)
=−uT ∂K

∂Ei
u (69)

The derivative of the stiffness matrix K with respect to Ei is obtained from the element stiffness matrix
ki of the i-th element. The element stiffness matrix is given by

ki (Ei,ρi) =
Ei

E0
¯̃ρ p

i k0 (70)

where k0 is the unscaled element stiffness matrix with the initial Young’s modulus E0. Hence, the derivative
equals

∂ki

∂E j
=


1

E0
¯̃ρ p

i k0 for i = j

0 else
(71)

and

∂ 2ki

∂E j∂ ¯̃ρk
=


1

E0
p ¯̃ρ p−1

i k0 for i = j = k

0 else
(72)

The second derivative of ki with respect to Ei equals zero.
The second derivatives of the compliance are given by

∂ 2c
∂Ei∂ ¯̃ρ j

=−2uT ∂K
∂Ei

∂u
∂ ¯̃ρ j
−uT ∂K

∂Ei∂ ¯̃ρ j
u (73)

and
∂ 2c

∂Ei∂E j
=−2uT ∂K

∂Ei

∂u
∂E j

(74)

The derivative of u with respect to Ei is determined by solving

K
∂u
∂E j

=− ∂K
∂E j

u (75)

The third derivative of the compliance reads

∂ 3c
∂Ei∂E j∂ ¯̃ρk

=−2
(

∂u
∂ ¯̃ρk

)T
∂K
∂Ei

∂u
∂E j
−2uT ∂K

∂Ei∂ ¯̃ρk

∂u
∂E j
−2uT ∂K

∂Ei

∂u
∂E j∂ ¯̃ρk

(76)
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For the second derivative of the displacement vector, the following system of linear equation is solved.

K
∂ 2u

∂Ei∂ ¯̃ρk
=− ∂K

∂Ei

∂u
∂ ¯̃ρk
− ∂ 2K

∂Ei∂ ¯̃ρk
u− ∂K

∂ ¯̃ρk

∂u
∂Ei

(77)

For eq. (73) the system (53) needs to be solved n times. The derivatives (74) and (76) are not required for
FOSM, but only for the SOFM approach. For the latter, eq. (75) needs to be solved n times and eq. (77) needs
to be solved n2 times. In total, the SOFM approach required 2n+n2 solutions of systems of linear equations.

Again, the derivatives are given with respect to the projected variable and need to be transformed to
derivatives with respect to design variables as in eq. (49).

A.3.3 Minimizing compliance with random geometry

The randomness of the geometry is modeled as first proposed by Schevenels et al. [29]. The basic idea is to
consider the projection threshold η of the projection function (43) as a spatially varying random parameter.
Hence, there is a different (but correlated) projection threshold ηi for each finite element of the design space,
which the following derivatives need to be derived.

∂c
∂ηi

,
∂c

∂ρk
,

∂ 2c
∂ηi∂ρk

,
∂ 2c

∂ηi∂η j
,

∂ 3c
∂ηi∂η j∂ρk

(78)

The derivative of the compliance with respect to ηi is given by

∂c
∂ηi

=−uT ∂K
∂ηi

u (79)

The derivation is similar to the derivation of (69).
The derivative of the stiffness matrix K with respect to the threshold η is determined using the chain

rule. The derivative of K with respect to the projected design parameter ¯̃ρ is known (see eq. (51)) and the
derivative of ¯̃ρ with respect to η is obtained from the chosen projection function, see eq. (45).

∂K
∂ηi

=
∂K
∂ ¯̃ρ i

∂ ¯̃ρ i
∂ηi

(80)

The second derivatives with respect to η and ¯̃ρ reads

∂ 2c
∂ηi∂ ¯̃ρk

=−2uT ∂K
∂ηi

∂u
∂ ¯̃ρk
−uT ∂ 2K

∂ηi∂ ¯̃ρk
u (81)

The derivatives of the first term are known. The second derivative of the K with respect to η and ¯̃ρ reads

∂ 2K
∂ηi∂ ¯̃ρk

=


∂ 2K

∂ ¯̃ρ i∂
¯̃ρ i

∂ ¯̃ρ i
∂ηi

for i = k

0 else
(82)

The second derivatives with respect to different ηi and η j equals

∂ 2c
∂ηi∂η j

=−2uT ∂K
∂ηi

∂u
∂η j
−uT ∂ 2K

∂ηi∂η j
u (83)

Here, the second derivative of K with respect to different ηi and η j is required, which is given by

∂ 2K
∂ηi∂η j

=


∂ 2K
∂ ¯̃ρ2

i

(
∂ ¯̃ρ i
∂ηi

)2

+
∂K
∂ ¯̃ρ i

∂ 2 ¯̃ρ i

∂η2
i

for i = j

0 else

(84)

Furthermore, the derivative of u with respect to η is required. Similarly as eq. (53) it is determined from

K
∂u
∂η j

=− ∂K
∂η j

u (85)
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Finally, the third derivative of the compliance is given by

∂ 3c
∂ηi∂η j∂ ¯̃ρk

=−2
(

∂u
∂ ¯̃ρk

)T
∂K
∂ηi

∂u
∂η j
−2uT ∂ 2K

∂ηi∂ ¯̃ρk︸ ︷︷ ︸
=0 for i 6=k

∂u
∂η j
−2uT ∂K

∂ηi

∂ 2u
∂ ¯̃ρ j∂

¯̃ρk

∂ ¯̃ρ j

∂η j

−2uT ∂ 2K
∂ηi∂η j︸ ︷︷ ︸
=0 for i 6=k

∂u
∂ ¯̃ρk
−uT ∂ 3K

∂ηi∂η j∂ ¯̃ρk︸ ︷︷ ︸
=0 for i6= j 6=k

u
(86)

Here, the third derivative of K is required, which is given by

∂ 3K
∂ηi∂η j∂ ¯̃ρk

=


∂ 3K
∂ ¯̃ρ3

i

(
∂ ¯̃ρ i
∂ηi

)2

+
∂ 2K
∂ ¯̃ρ2

i

∂ 2 ¯̃ρ i

∂η2
i

for i = j = k

0 else

(87)

The second derivative of u with respect to ¯̃ρi is obtained by solving

K
∂ 2u

∂ ¯̃ρ j∂ ¯̃ρk
=− ∂ 2K

∂ ¯̃ρ j∂ ¯̃ρk︸ ︷︷ ︸
=0 for j 6=k

u− ∂K
∂ ¯̃ρk

∂u
∂ ¯̃ρ j
− ∂K

∂ ¯̃ρ j

∂u
∂ ¯̃ρk

(88)

For the FOSM method, the derivatives (79) and (81) are required, which involves solving (53) n times.
The SOFM approach additionally requires n times solving (85) and n2 times solving (88).
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