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VIII Notation

Notation

The notation of tensors, some operators1 and matrices are briefly introduced here. Tensors
and tensor products are used within the Cartesian coordinate system with unit base vectors

∼

E 1,
∼

E 2 and
∼

E 3. Note that the Einstein summation convention is applied.

Tensors

A Scalar value

∼

X = Xi
∼

E i First-order tensor (vector)

∼

S = Sij
∼

E i ⊗
∼

E j Second-order tensor
3

∼

Q = Qijk
∼

E i ⊗
∼

E j ⊗
∼

E k Third-order tensor
4

∼

C = Cijkl
∼

E i ⊗
∼

E j ⊗
∼

E k ⊗
∼

E l Fourth-order tensor

Tensor operations

∼

u ⊗
∼

v = ui vj
∼

E i ⊗
∼

E j Dyadic product

∼

S ·
∼

F = Sij Fij Inner product

∼

S
∼

F = Sij Fjk
∼

E i ⊗
∼

E k Tensor product

Matrices

u Local element column vector

J Local element matrix

r, R Global column vector, global matrix

1Additional operators will be discussed when they appear for the first time.
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Abstract
Cellular materials are of increasing interest since they offer a unique combination of proper-
ties like, for example, high mechanical stiffness or damping features and low weight. However,
the modeling and computation of such materials is difficult due to size dependent boundary
layer effects and deformation-induced anisotropy caused by reorientations and cell buckling.
In order to capture such effects, there exist a variety of analytical and numerical methods.
In this thesis numerical approaches are developed and applied, mainly focusing on numerical
homogenization techniques. These multiscale techniques are based on the principle of scale
separation, where an explicit microstructure is embedded into a macroscopic framework. The
scales are coupled together by projection of macroscopic strain-like quantities and homoge-
nization of microscopic stress-like quantities. Therefore, a nested boundary value problem,
commonly referred to as the FE2-problem, has to be solved. Depending on the underlying
continuum theory there are first-order and higher-order FE2-schemes. In earlier FE2-schemes,
the spatial discretization of the microscale was based on (dimensionally reduced) low-order
finite elements. This work applies higher-order continuum finite element methods, which are
known to be highly efficient and very robust.

In particular, three different homogenization schemes have been developed: A two-dimensional
hyperelastic first-order FE2-scheme using classical continua has been applied on both scales
to investigate cellular materials under large deformations focusing on deformation-induced
anisotropy. In order to detect size effects, a higher-order FE2-scheme with restriction to 2D
and small deformations has been designed. It is based on the micromorphic continuum theory
and includes its subcontinua like, for example, the micropolar theory. The results of these
schemes have been verified successfully by microscopically resolved reference computations.

In three dimensions a first-order homogenization approach was developed, which computes
effective linear elastic properties of any microstructured material whereby the microstructure
is represented by computed tomography (micro CT-scans). The key feature of this approach
is the application of a higher-order fictitious domain method allowing for fast and simple
discretization of micro CT-scans. The approach has been verified numerically by considering
solid- and foam-like materials and validated by comparision to experiments with commercially
available foams. In the validation the pure foam material under compression and shear has
been investigated and in addition sandwich plates consisting of aluminum faceplates and a
foamed core were subjected to bending experiments.

The thesis concludes with microscopic stability investigations of two- and three-dimensional
open-cell foam-like structures under large strain compression whereby the discretization has
been performed by anisotropic hyperelastic higher-order finite elements. It could be observed
that cellular materials under compression do not exhibit any distinct point of instability, since
buckling of the individual cell walls does not occur simultaneously. This observation is in
accordance with experimental investigations.
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Zusammenfassung
Zelluläre Materialien erlangen eine immer größere Bedeutung, da sie eine einzigartige Kombi-
nation aus Eigenschaften wie zum Beispiel hoher mechanischer Steifigkeit oder Dämpfungsei-
genschaften bei gleichzeitig geringem Gewicht bieten. Die Berechnung solcher Materialien ist
schwierig, da maßstabsabhängige Randschichteffekte und deformationsgetriebene Anisotropie,
welche durch Zellumorientierungen bedingt ist, auftreten können. Um diese Effekte zu er-
fassen, existieren eine Reihe analytischer und numerischer Verfahren. In dieser Arbeit wird
ein numerischer Zugang gewählt, wobei hauptsächlich numerische Homogenisierungsverfahren
betrachtet werden. Diese Mehrskalentechniken basieren auf dem Prinzip der Skalenseparation,
wobei eine explizite Mikrostruktur in eine makroskopische Berechnung integriert wird. Die
Skalen sind gekoppelt über Projektion makroskopischer verzerrungsartiger Größen und Ho-
mogenisierung mikroskopischer spannungsartiger Größen, wodurch ein geschachteltes Rand-
wertproblem gelöst werden muss, welches gewöhnlich als FE2-Problem bezeichnet wird. In
Abhängigkeit von den verwendeten Kontinuumstheorien kann man zwischen FE2-Schemata
erster und höherer Ordnung unterscheiden. Im Gegensatz zu existierenden FE2-Schemata,
in denen die räumliche Diskretisierung auf (oftmals dimensionsreduzierten) finiten Elementen
niedriger Ordnung basiert, werden in dieser Arbeit finite Kontinumselemente höherer Ord-
nung, die sich als sehr effizient und robust erwiesen haben, verwendet.

Insgesamt sind drei unterschiedliche Homogensierungsschemata entwickelt worden: Ein zwei-
dimensionales hyperelastisches FE2-Schema erster Ordnung, welches klassische Kontinua auf
beiden Skalen verwendet, ist angewandt worden, um Schaumstrukturen unter großen Ver-
formungen zu untersuchen. Hierbei lag das Hauptaugenmerk auf deformationsgetriebener
Anisotropie. Zur Erfassung von Maßstabseffekten ist ein FE2-Schema höherer Ordnung mit
Einschränkung auf zwei Dimensionen und kleine Verformungen entwickelt worden. Es basiert
auf der mikromorphen Kontinuumstheorie und schließt deren Unterkontinua, wie beispiels-
weise die mikropolare Theorie, ein. Die Ergebnisse beider Schemata sind erfolgreich an
mikroskopisch voll aufgelösten Referenzrechnungen verifiziert worden.

Im Dreidimensionalen ist ein Homogenisierungsansatz erster Ordnung entwickelt worden, wel-
cher effektive linear elastische Eigenschaften mikrostrukturierter Materialien berechnet, wobei
die Mikrostruktur durch Mikrotomographie (CT-Scans) repräsentiert wird. Der Hauptvorteil
des Homognisierungsansatzes ist die Anwendung einer Fictitious Domain Methode höherer
Ordnung, die eine schnelle und einfache Diskretisierung der mikroskopischen CT-Scans er-
möglicht. Der Ansatz ist numerisch an massiven und schaumartigen Materialien verifiziert
worden. Eine Validierung erfolgt durch die Modellierung von Experimenten mit kommerziellen
Schäumen. Hierbei wurden sowohl der reine Schaum unter Druck und Scherung als auch Sand-
wichplatten, die aus Aluminium Deckschichten mit geschäumten Kernen bestehen, untersucht.

Die Arbeit schließt ab mit mikroskopischen Stabilitätsuntersuchungen an zwei- und dreidi-
mensionalen offenporigen Schaumstrukturen unter starker Kompression, wobei die Diskreti-
sierung durch hyperelastische finite Elemente höherer Ordnung erfolgt. Hierbei zeigt sich,
dass zelluläre Materialien keine ausgeprägten Instabilitätspunkt besitzen, da das Ausknicken
der Zellwände nicht gleichzeitig auftritt. Diese Beobachtung deckt sich mit experimentellen
Untersuchungen.
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Chapter 1

Introduction

1.1 Motivation

There is an increasing interest in cellular materials, since they combine properties like, for
example, damping respectively insulation features and high mechanical stiffness with low mass
density. One can distinguish between open-cell and closed-cell materials, see Figures 1.1 and
1.2.

Figure 1.1: Open-cell aluminum foam Figure 1.2: Closed-cell polymeric foam

Let us consider a few applications of such materials:

• In vehicle construction, bumpers, girders, catalytic converters and heat exchangers are
made of foam-like materials.

• Cellular materials are widely used in civil engineering for thermal protection shields and
sound absorbers.

• In mechanical engineering closed-cell aluminum foams are applied to rollers or sliding
tables.

• Sandwich structures with foamed cores can be found in ship and aircraft construction.

Cellular materials show a complex mechanical behavior which becomes obvious in the following
example: We consider three independent mechanical tests of a foam-like specimen as depicted
in Figure 1.3. From these tests one can obtain the mechanical parameters E, K, and G. It is
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Figure 1.3: Foam-like specimen subjected to three independent tests

well known that for isotropic, homogeneous materials these parameters are not independent,
and the following relation

Gtheoretical =
3EK

9K − E
= Gexperimental (1.1)

should hold. However, in the case of foam-like materials equation (1.1) is not valid. The reason
lies in the fact that such materials feature, for example, deformation-induced anisotropy due to
local reorientations and cell buckling [31, 55, 71, 77, 84, 100, 108] or size-dependent boundary
layer effects [3, 10, 13, 69, 78, 102].
Size-dependency means that the mechanical properties depend on the specimen’s size. Imagine
specimens with different height H that are subjected to a shear test, see Figure 1.4. Here, one
observes that with increasing height the effective shear modulus G decreases and converges
towards a certain bulk value. In the next section methods that allow for modeling of cellular
materials are presented.
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)
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ū ∝ Hū ∝ Hū ∝ H

Figure 1.4: Size effect in a shear test with specimens of different heights H; note that prescribed
displacements ū ∝ H are applied to the top and bottom and periodic boundary conditions
are assumed at the left and right hand side

1.2 Modeling of cellular materials

In this section we give an overview of modeling approaches of (heterogeneous) cellular ma-
terials. There are basically two approaches, refer to Figure 1.5: The microscopic approach,
see Gibson and Ashby [41], Diebels and Steeb [19], Tekoğlu [93] and the macroscopic

approach, see for example Eringen et al. [29, 65], Anderson and Lakes [4], Diebels and
Steeb [20]. In the microscopic approach the structure is microscopically resolved by finite

microscopic approach macroscopic approach

Figure 1.5: Modeling of cellular materials

elements and allows all microscopic effects to be studied. However, this method involves a
high number of degrees of freedom, and it is therefore limited to small problems. A possible
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application of this approach is reference computations, which can be applied to verify for ex-
ample the results obtained by macroscopic modeling.

The macroscopic approach is based on extended continuum theories and replaces the mi-
croheterogeneous material with an extended homogeneous macromaterial allowing for higher-
order effects, for example size effects. Extended continua can be classified into higher-order

theories and higher-grade theories. In the first group additional degrees of freedom are in-
troduced. The most popular representative is the micropolar or Cosserat theory [15] where
microrotations are assumed. This is a subcontinuum of the class of micromorphic continua [30].
The second group does not require additional degrees of freedom but higher-order derivatives
of the macroscopic displacement field [12, 40]. Although the numerical efficiency of macro-

scopic modeling is much higher as compared to microscopic modeling, it is limited by the fact
that the material parameters are difficult to obtain as shown by Lakes [70].

A promising combination of both approaches is the FE2 method. This method is based on
the principle of scale separation or MMM-principle as stated by Huet [60], refer to Figure
1.6. Here, three different scales are considered: the macro-, meso-, and microscale. While

D d δ>> >>

macrolevel mesolevel microlevel

Figure 1.6: MMM-principle: different levels

the macroscale describes the entire structure as a continuum, the mesoscale gives an insight
into the microtopology, and finally, the microscale resolves the microstructure on the atomistic
level. In this thesis the step between meso- and microscale is assumed to be very large, and
not considered further. For simplification of the nomenclature the term meso will be replaced
by micro in the sequel. In order to brigde the scales the FE2-method is applied, compare with
Figure 1.7. In this method, a characteristic microstructure with volume Vm is embedded into
a macroscopic finite element framework via projection and homogenization rules and thus the
complicated macroscopic constitutive equations are replaced by the solution of nested bound-
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projection of

homogenization of

deformation-like quantities

stress-like quantities

Vm

∼̄

uM

Figure 1.7: The FE2-method: Solving a nested boundary value problem

ary value problems (BVP), refer to Feyel [33, 34, 35] or Kouznetsova [67]. Since the nested
BVPs especially on the microscale are computationally expensive, improvements like, for ex-
ample, consistent material tangents have been suggested by Miehe [72, 73] and Schröder

[87] and, in addition, distributed computing of the microscopic BVPs has been performed [67].

There are first-order FE2 schemes with standard continuum theories on both macro- and mi-
crolevel [73], and schemes of higher-order with extended continuum theories at least on the
macrolevel [28, 36, 37, 38, 63, 62].

The microstructure itself can be either a Representative Volume Element (RVE) as proposed
by Hill [52] or a Testing Volume Element (TVE) as introduced by Nemat-Nasser and Hori

[75]. The RVE is chosen such that it represents statistically the micromechanical properties
of the material. In general this leads to large RVEs and therefore to a high number of degrees
of freedom, as demonstrated for hardened cement paste by Hain [46]. In contrast, the TVE
is much smaller than the RVE. The TVE only provides the basic mechanical properties of the
material, i.e. that it can be too stiff or too weak depending on its boundary conditions.

1.3 Scope and outline of this work

In the above mentioned work on numerical homogenization the underlying (microstructural)
finite element discretizations were based on either dimensionally reduced elements and / or
low-order continuum solid elements and thus might suffer from model errors, locking pheno-
mena and low convergence rates. In order to overcome such problems, in this thesis spatial
discretization strategies based on continuum higher-order finite element methods (p-FEM) are
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suggested for two- and three-dimensional first- and higher-order multiscale methods1. Let us
highlight the major advantages of this novel approach:

• Higher-order finite elements have been demonstrated to provide high convergence rates,
i.e. they are computationally more efficient, and are robust against locking effects in
linear and nonlinear problems of solid and structural mechanics [22, 23, 25, 26, 27, 51,
76, 91].

• In a continuum-based approach the numerical treatment of geometrical nonlinearities
of thin-walled structures is straight-forward since no drilling degrees of freedom arising
in classical beam, plate, and shell theories need to be considered. Another advantage
of continuum-based modeling is that three-dimensional constitutive models can be ap-
plied directly without any additional assumptions like, for example, vanishing transverse
normal stresses (σzz = 0).

• Thin- and thick-walled beam-like or shell-like structures can be accurately discretized
with anisotropic continuum-based elements, where different polynomial degrees are cho-
sen in thickness and in longitudinal respectively in plane direction.

We will demonstrate the p-version’s efficiency by several numerical examples whereby the fo-
cus lies on open-cell materials: In two dimensions cross-like and honeycomb structures are
concerned, and in three dimensions real-world sandwich materials with an open-cell core are
investigated.

After having defined the scope of this work let us give a detailed outline:

• In chapter 2 a summary of classical continuum mechanics is given. The summary com-
prises kinematics, balance equations, variational formulation, and constitutive modeling
for the hyperelastic case. Furthermore, the micromorphic continuum theory is briefly
introduced, which will be the basis for the higher-order FE2 scheme.

• Spatial discretization techniques for classical continua are discussed in chapter 3:

– The p-version of the FEM for hyperelasticity is reviewed and improved further. The
review includes the discretization of the variational formulation, shape functions,
anisotropic elements for thin structures, and mapping techniques. In order to re-
duce the computational effort a quasi-spatial formulation has been developed and
implemented. The gain in efficiency compared to the previous material formulation
has been estimated and verified numerically.

– The finite cell method (FCM) which is a fictitious domain method of higher-order
is briefly discussed. In this method the burden of mesh generation is shifted to the
numerical integration. Therefore, it is highly attractive for discretizing material
specimens stemming from three-dimensional micro tomography (CT-scans).

1Note that the higher-order FE2 methods enhanced by p-FEM within this thesis are based on joint works
with Jänicke et al. [62, 63], where the micromorphic continuum theory has been applied.
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• In chapter 4 multiscale methods are presented where the microscale is discretized by the
p-version of the FEM. In two dimensions we propose a first-order FE2 scheme designed
for large deformations using distributed computing of the microstructures, and in ad-
dition a higher-order FE2 scheme for small deformations is set up. In the higher-order
FE2 scheme special attention has been paid to the design of projection rules suited for
the p-version. In three dimensions a homogenization approach of first-order suited for
small deformations applying the FCM was developed. This approach allows for directly
computing effective material parameters from micro CT-scans.

• In the numerical examples given in chapter 5 the special mechanical features of cellular
materials are investigated:

– The first-order scheme was mainly applied to detect deformation-induced anisotropy
in artificially generated honeycomb microstructures. In addition, boundary condi-
tions for such microstructures have been proposed and numerically verified.

– Size effects were studied by the higher-order FE2 scheme for cross- and foam-like
microstructures. Furthermore, an application to a sandwich structure under bend-
ing is included. All of the computations have been verified by microscopic reference
computations.

– The three-dimensional homogenization approach was used for extracting effective
material parameters of microstructured materials. Hereby, general guidelines for
an efficient discretization of cellular materials (given in terms of CT-scans) and for
a representative number of foam cells has been developed. Equipped with these
guidelines open-cell Polyurethane foams have been homogenized and the results
have been validated by experiments with the pure foam material and composites,
namely sandwich plates.

– The last part of the examples is dedicated to stability considerations including
eigenvalue analysis at two- and three-dimensional foam-like structures under large
strain compression.

• A summary of this work and future research possibilities can be found in chapter 6.
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Chapter 2

Continuum mechanics

In this chapter we review some basics of continuum mechanics as far as they are of interest
within this work. In section 2.1 classical continuum mechanics is considered, while in section
2.2 an extended continuum theory, the micromorphic continuum theory, is presented.

2.1 Classical continuum mechanics

In this section we deal with kinematics, stress state and balance equations, variational for-
mulations and finally constitutive modeling with focus on hyperelasticity. The contents are
strongly influenced by textbooks like [8, 49, 105], where the reader can find more details.

2.1.1 Kinematics

This section describes the motion of a deformable body and suitable strain measures.

2.1.1.1 Motion

The motion of a deformable body B is considered as depicted in Figure 2.1. The body can be
viewed as an ensemble of continuously distributed particles or material points. These points
are labeled by the coordinates

∼

X of the reference configuration at time t0 utilizing the Carte-

sian basis
∼

EI . The current positions of these points are described by the coordinates
∼

x of the
current configuration at t with the Cartesian basis

∼

e i. Note that in the following only
∼

EI

will be used within figures.

Within this thesis quantities like, for example, tensors or operators referring to the reference
configuration are denoted by capital letters or in some exceptions by an index 0, and small
letters are used for quantities of the current configuration. The position of a particle at time
t is given by the mapping

∼

x =
∼

ϕ (
∼

X , t) . (2.1)

One has to distinguish between two ways of describing the motion of a body:

• The Eulerian way utilizes the spatial description. Here, the observer monitors at a
distinct spatial position the movement of particles passing through this position.
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∼

X

∼

x (
∼

X , t)

∼

u(
∼

X , t)

∼

EX

∼

EY

∼

EZ

B

∼

ϕ(B)

dA

da
∼

N ∼

n

∂B
∂

∼

ϕ(B)

dV
dv

∼

O

∼

ϕ(
∼

X , t)

Reference configuration at t0 Current configuration at t

Figure 2.1: Motion of a deformable body [105]

• In the Lagrangian approach the material description is used. The observer is con-
nected to a distinct material point.

The Eulerian approach is commonly applied in fluid mechanics. In solid and structural
mechanics the Lagrangian description is very popular. To describe the deformation of the
body, the deformation gradient tensor

∼

F is introduced

d
∼

x =
∼

Fd
∼

X , (2.2)

which associates infinitesimal line elements d
∼

x of the current configuration with line elements
of the reference configuration d

∼

X .
∼

F is commonly denoted as

∼

F = Grad
∼

ϕ(
∼

X , t) = FiI
∼

e i ⊗
∼

EI =
∂xi

∂XI
∼

e i ⊗
∼

EI = xi,I
∼

e i ⊗
∼

EI (2.3)

and classified as a two-point tensor with base vectors of both configurations. The uniqueness
of the mapping (2.1) excludes any singularity of

∼

F. Therefore, the determinant of
∼

F must
fulfill

J = det
∼

F > 0 . (2.4)

The Jacobian J is utilized for the transformation of surface area elements between both
configurations via Nanson’s formula

d
∼

a =
∼

n da = J
∼

F−T
∼

N dA = J
∼

F−T d
∼

A (2.5)
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where
∼

n and
∼

N are the outer normal vectors of the deformed and undeformed bodies, respec-
tively, see Figure 2.1. Volume elements of both configurations are related by

dv = J dV . (2.6)

The displacement vector
∼

u(
∼

X , t) is defined as

∼

u(
∼

X , t) =
∼

x −
∼

X =
∼

ϕ(
∼

X , t)−
∼

X . (2.7)

Inserting (2.7) into (2.3) yields

∼

F = Grad (
∼

X +
∼

u(
∼

X , t)) =
∼

I + Grad
∼

u =
∼

I +
∼

H , (2.8)

with
∼

I denoting the second-order unit tensor. The following transformation applied to an
arbitrary vector field

∼

W (
∼

X ) =
∼

w(
∼

x )

Grad
∼

W = grad
∼

w
∼

F ⇐⇒ grad
∼

w = Grad
∼

W
∼

F−1 (2.9)

allows us to express the inverse of
∼

F in terms of grad
∼

u

∼

F−1 =
∼

I− grad
∼

u . (2.10)

2.1.1.2 Strain measures

In this section we introduce different strain measures which will be utilized in this thesis. The
Green-Lagrange strain tensor is defined as

∼

E =
1

2
(
∼

C−
∼

I) , (2.11)

where

∼

C =
∼

FT
∼

F (2.12)

is the right Cauchy-Green deformation tensor related to the reference configuration. In
indical notation

∼

E can be written as

∼

E = EIJ
∼

EI ⊗
∼

EJ with EIJ =
1

2
(FiIFiJ − δIJ) . (2.13)

The Kronecker symbol is defined as

δij =

{
1 if i = j
0 if i 6= j

. (2.14)

Inserting (2.8) into (2.11) yields

∼

E =
1

2
(
∼

H+
∼

HT +
∼

HT
∼

H) , (2.15)

highlighting the nonlinearity of
∼

E. When considering infinitesimal (small) deformations
∼

HT
∼

H
is neglected and we obtain the classical engineering strain tensor

∼

ε =
1

2
(
∼

H+
∼

HT) =
1

2
(uI,J + uJ,I)

∼

EI ⊗
∼

EJ . (2.16)
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A strain measure related to the current configuration is the Euler-Almansi strain tensor

∼

e =
1

2
(
∼

I−
∼

b−1) , (2.17)

with

∼

b =
∼

F
∼

FT (2.18)

denoting the left Cauchy-Green deformation tensor. The relation between
∼

e and
∼

E is
established by push forward

∼

e =
∼

F−T
∼

E
∼

F−1 (2.19)

and pull back operations

∼

E =
∼

FT
∼

e
∼

F . (2.20)

2.1.2 Stress state and balance equations

Imagine a deformable body in its current configuration where a force ∆
∼

p̂ acts on an area ∆a
normal to

∼

n at a point
∼

x as shown in Figure 2.2. The spatial traction vector is defined as

∼

x

∆
∼

p̂

∆a
∼

n

Figure 2.2: Stress state in the current configuration

∼

t = lim
∆a→0

∆
∼

p̂

∆a
. (2.21)

The Cauchy theorem associates
∼

t with
∼

n via a linear relation

∼

t =
∼

σ
∼

n , (2.22)

where
∼

σ is the Cauchy stress tensor.

The local equilibrium of a deformable body is governed by balance equations. In a system
where mass is conserved, the balance of mass must hold

ρ dv = ρ0 dV , (2.23)
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where ρ and ρ0 are the current and initial densities, respectively. The local balance of equilib-

rium is formulated as

div
∼

σ + ρ
∼

f =
∼

0 (2.24)

with ρ
∼

f representing volume forces. The balance of equilibrium of momentum yields

∼

σ =
∼

σT , (2.25)

resulting in the symmetry of the Cauchy stress tensor. A continuum fulfilling (2.25) is called
a classical or Boltzmann continuum1.

Up to now stresses only refer to the current configuration. In general and more particular
in the context of numerical homogenization (see chapter 4) it is desirable to have additional
stress measures. Since a given state of stress does not change physically when referred to
another configuration the following transformation applying equation (2.5) is valid

∫

a

∼

σ
∼

n da =

∫

A

∼

σ J
∼

F−T
∼

N dA =

∫

A

∼

P
∼

N dA (2.26)

yielding the first Piola-Kirchhoff stress tensor

∼

P = J
∼

σ
∼

F−T = PiI
∼

e i ⊗
∼

EI with PiI = J σij (FIj)
−1. (2.27)

Note that
∼

P is a two-point tensor. The counterpart to the spatial traction vector (2.22) is the
first Piola-Kirchhoff stress vector

∼

p =
∼

P
∼

N . (2.28)

Finally, the balance of equilibrium with respect to the reference configuration can be reformu-
lated as

Div
∼

P + ρ0
∼

f =
∼

0 . (2.29)

A stress measure only referring to the initial configuration is the second Piola-Kirchhoff

stress tensor

∼

S =
∼

F−1
∼

P = J
∼

F−1
∼

σ
∼

F−T . (2.30)

It represents a full pull back of
∼

σ. In Table 2.1 useful conversions between the different stress
tensors are summarized.

2.1.3 Variational formulations

In the previous sections kinematical relations, stress measures and balance equations with
respect to both reference and current configuration have been presented in terms of partial
differential equations. A discussion of constitutive relations, which link stresses with strains,
is postponed to section 2.1.4. In order to set up a boundary value problem (BVP), boundary
conditions have to be considered:

1Extended continua will be addressed in section 2.2.2.
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Table 2.1: Conversion between stress tensors [49]

∼

P
∼

S
∼

σ

First Piola stress tensor
∼

P
∼

F
∼

S J
∼

σ
∼

F−T

Second Piola stress tensor
∼

S
∼

F−1
∼

P J
∼

F−1
∼

σ
∼

F−T

Cauchy stress tensor
∼

σ J−1
∼

P
∼

FT = J−1
∼

F
∼

PT J−1
∼

F
∼

S
∼

FT

• Displacement or Dirichlet boundary conditions

∼

u =
∼̄

u (2.31)

are prescribed either on ∂vu or ∂Vu.

• Traction or Neumann boundary conditions either refer to ∂vt

∼

t =
∼̄

t (2.32)

or to ∂Vt

∼

T = ¯
∼

T . (2.33)

Assuming that constitutive relations will be specified later, the BVP is complete in its strong
form. Unfortunately, an analytical solution is in general only possible for simple BVPs, and
approximation methods like the Finite Element Method, which will be dealt with in chapter
3, are commonly applied. Here, the governing partial differential equations have to be fulfilled
only in a weak sense. The necessary variational formulations leading to a weak form will be
derived in the following. The derivation for the initial configuration starts from the balance of
equilibrium (2.29). According to the method of weighted residuals we multiply (2.29) by a test
function

∼

v , which vanishes on ∂Vu and integrate over the computational domain V , leading to

G(
∼

ϕ,
∼

v) =

∫

V

(

Div
∼

P + ρ0
∼

f
)

·
∼

v dV = 0 . (2.34)

Integration by parts, application of the divergence theorem, and incorporation of traction
boundary conditions gives

G(
∼

ϕ,
∼

v) =

∫

V

∼

P ·Grad
∼

v dV −
∫

V

ρ0
∼

f ·
∼

v dV −
∫

∂Vt

∼

T ·
∼

v dA = 0 . (2.35)

Interpreting Grad
∼

v as the directional derivative2 of the deformation gradient which corre-
sponds to the first variation δ

∼

F of
∼

F highlights the work conjugacy of
∼

P and δ
∼

F.

2Refer to section 3.1 for more details.
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To further modify (2.35) two transformations can be performed: Firstly, using
∼

P · Grad
∼

v =

∼

S · δ
∼

E, where

δ
∼

E =
1

2
(
∼

FT Grad
∼

v +GradT
∼

v
∼

F) , (2.36)

equation (2.35) is rewritten as

G(
∼

ϕ,
∼

v) =

∫

V

∼

S · δ
∼

EdV −
∫

V

ρ0
∼

f ·
∼

v dV −
∫

∂Vt

∼

T ·
∼

v dA = 0 . (2.37)

Secondly, transforming (2.35) with the help of equations (2.6), (2.9), (2.23), and Table 2.1 to
the current configuration yields

g(
∼

ϕ,
∼

v) =

∫

v

∼

σ · grad
∼

v dv −
∫

v

ρ
∼

f ·
∼

v dv −
∫

∂vt

∼

t ·
∼

v da = 0 . (2.38)

The symmetry of
∼

σ enables us to replace grad
∼

v by the symmetric expression

∇S
∼

v =
1

2

(
grad

∼

v + gradT
∼

v
)
. (2.39)

Inserting (2.39) into (2.38) finally results in

g(
∼

ϕ,
∼

v) =

∫

v

∼

σ · ∇S
∼

v dv −
∫

v

ρ
∼

f ·
∼

v dv −
∫

∂vt

∼

t ·
∼

v da = 0 . (2.40)

2.1.4 Constitutive models

In section 2.1.2 the equilibrium equations have been established in terms of stresses without
any knowledge about the material under consideration. Knowing that the stresses result from
the deformation of the material, which itself can be described by strains, it is convenient
to establish relationships between stresses and strains. These relationships are known as
constitutive equations and depend on the type of material.

2.1.4.1 Hyperelastic materials

Throughout this thesis only (hyper-)elastic materials are considered. For these materials the
work done by stresses is only dependent on the initial state at time t0 and the current state at
time t of deformation. This behavior is termed path independent. An important consequence
of the path-independency is that a strain energy (density) function Ψ per unit volume exists.
Assuming that Ψ depends on the initial configuration the second Piola-Kirchhoff stress
tensor can be derived as [8]

∼

S = 2
∂Ψ

∂
∼

C
=

∂Ψ

∂
∼

E
. (2.41)

A push forward of (2.41) yields the Cauchy stress tensor. In the reference configuration the
relationship between the stress state and the strain state is given by the symmetric fourth-order
material or Lagrangian elasticity tensor

4

∼

C =
∂

∼

S

∂
∼

E
= 2

∂
∼

S

∂
∼

C
= 4

∂2Ψ

∂
∼

C ∂
∼

C
= CIJKL

∼

EI ⊗
∼

EJ ⊗
∼

EK ⊗
∼

EL . (2.42)
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Performing a push forward the spatial or Eulerian elasticity tensor emerges as

4

∼

c = J−1 FiI FjJ FkK FlLCIJKL
∼

e i ⊗
∼

e j ⊗
∼

e k ⊗
∼

e l . (2.43)

Now, let us present two different hyperelastic materials: We start with the isotropic St. Venant-

Kirchhoff material. The strain energy density function is given by

Ψ =
1

2
Λ (tr(

∼

E))2 + µ
∼

E ·
∼

E (2.44)

with tr(·) denoting the trace operator and Λ and µ are the material or Lamé constants3. The
application of equations (2.41) and (2.42) leads to

∼

S = Λ tr(
∼

E)
∼

I + 2µ
∼

E (2.45)
4

∼

C = 2µ
4

∼

I + Λ
∼

I⊗
∼

I , (2.46)

with
4

∼

I as the fourth-order unit tensor. The elasticity tensor in equation (2.46) is identical
to the one of the classical Hookean material law of linear elasticity. In order to transform
equations (2.44) and (2.45) to the linear case

∼

E has to be replaced by
∼

ε. The St. Venant-

Kirchhoff material law is applicable when dealing with large rotations, but for large strains
it is not useful. To be more illustrative, imagine a rod with initial length L = 1 which is
subjected to tension and compression. In Figure 2.3 the reaction force is plotted against l.
Two observations can be made for the compressive regime: At l =

√
3/3 the reaction force

0

0 1 2

l

√
3
3

re
ac
ti
on

fo
rc
e

compression tension

Figure 2.3: St. Venant-Kirchhoff’s material law under large uniaxial strains

exhibits a minimum, i.e. there is a point of instability, and at l = 0 the reaction force vanishes
which is, of course, unphysical. In order to circumvent these problems, an isotropic Neo-

Hookean material [8] is utilized within this thesis where the strain energy (density) function
per unit volume is given by

Ψ =
µ

2
(I

∼

C − 3)− µ ln(J) +
Λ

2
(ln(J))2 (2.47)

3Note that these constants are related to Young’s modulus via E = (3Λ+2µ)µ/(Λ+µ) and to Poisson’s
ratio via ν = Λ/(2 (Λ + µ)).
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with I
∼

C = tr(
∼

C). The corresponding second Piola-Kirchhoff stress tensor equals

∼

S = µ (
∼

I−
∼

C−1) + Λ ln(J)
∼

C−1 , (2.48)

and the material elasticity tensor is

4

∼

C = Λ
∼

C−1 ⊗
∼

C−1 + 2 (µ− Λ ln(J))
4

∼

I C
−1

, (2.49)

where

4

∼

I C
−1

= I C−1

IJKL ∼

EI ⊗
∼

EJ ⊗
∼

EK ⊗
∼

EL with I C−1

IJKL = (
∼

C−1)IK (
∼

C−1)JL . (2.50)

The Cauchy stress tensor emerges as

∼

σ =
µ

J
(
∼

b−
∼

I) +
Λ

J
ln(J)

∼

I , (2.51)

and the spatial elasticity tensor reads

4

∼

C =
Λ

J ∼

I⊗
∼

I +
2

Λ
(µ− Λ ln(J))

4

∼

ι (2.52)

In equation (2.52)
4

∼

ι is the push forward of (2.50) with components

ιijkl = FiI FjJ FkK FlL I
C−1

IJKL = δik δjl . (2.53)

2.2 The micromorphic continuum theory

In this section a brief review of the micromorphic continuum theory is given. The contents
are strongly influenced by [62] and the literature cited therein, where more details and further
reading can be found. The section includes kinematics, deformation measures and balance
equations. Finally some remarks concerning constitutive modeling are stated. Throughout this
section, index M indicates macroscopic quantities, and m is used for microscopic quantities.

2.2.1 Kinematics and deformation measures

The deformable body B consists of a set of infinitesimal material points. In contrast to the
classical continuum theory as described in section 2.1 these material points are deformable and
capture a small but finite space. In order to resolve the contradiction between the infinitesimal
character of a material point on the one hand and its finite dimension on the other hand we
replace each deformable point by a geometrical point P and an attached triad of vectors ∆

∼

X .
These vectors represent the additional degrees of freedom stemming from the deformation of
the material points. A micromorphic material point P can be described by the position vector

∼

XM of its volume centroid and the attached vector ∆
∼

X , see the physical picture in Figure 2.4.
In Eringen [30] the definition of micromorphic continuum of grade one is given as follows: A
material body B is called micromorphic continuum of grade one, if its motions are described

by the mappings

∼

xM =
∼

ϕ̂M(
∼

XM , t) and ∆
∼

x = ∆
∼

ϕ̂(
∼

XM ,∆
∼

X , t) , (2.54)
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∼

Xm

∼

XM

∼

xm

∼

xM

∼

um

∼

uM

∆
∼

X

∆
∼

x

B

∼

ϕ̂(B)

P (
∼

X ,∆
∼

X )
p(

∼

x ,∆
∼

x , t)

∂B

∂
∼

ϕ̂(B)

∼

OM

Reference configuration at t0 Current configuration at t

Figure 2.4: The physical picture of a micromorphic continuum

which possess continuous partial derivatives with respect to
∼

XM and t, and if they are invertible

uniquely

∼

XM =
∼

ϕ̂−1
M (

∼

xM , t) and ∆
∼

X = ∆
∼

ϕ̂−1(
∼

xM ,∆
∼

x , t) . (2.55)

The macroscopic deformation gradient is defined in the classical way (see equation (2.2)) as

d
∼

xM =
∼

FM d
∼

XM , (2.56)

with

JM = det
∼

FM (2.57)

denoting its determinant.

For the microdeformation within a micromorphic continuum of grade one we assume a linear
mapping

∆
∼

x =
∼̄

χM ∆
∼

X , (2.58)

in which
∼̄

χM denotes the microdeformation tensor. A polar decomposition of
∼̄

χM reads

∼̄

χM =
∼

R̄M
∼

ŪM , (2.59)

where
∼

R̄M is called rotation tensor and
∼

ŪM denotes the stretch tensor. These tensors possess
the following properties

∼

R̄
T
M =

∼

R̄
(−1)
M , det

∼

R̄M = 1 ,
∼

ŪM =
∼

Ū
T
M . (2.60)

Now, focusing on
∼̄

χM we can distinguish different subcontinua:
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• If
∼

ŪM =
∼

I and
∼̄

χM =
∼

R̄M only rigid body rotations of the material points can be

represented. This subcontinuum is called micropolar or Cosserat continuum, [15].

• Setting
∼

R̄M =
∼

I and
∼̄

χM = j̄M
∼

I, where j̄M is called microdilantancy, we obtain the
microdilatant continuum.

• Allowing for symmetric microdeformations, i.e.
∼

R̄M =
∼

I and
∼̄

χM =
∼̄

χT
M , leads to the

microstrain continuum.

• A combination of the microdilatant and micropolar continuum is called microstretch

continuum where
∼̄

χM = j̄M
∼

R̄M .

A general review of different subcontinua has been given by Forest [39].

The calculation of the square of the deformed arc length

(d(
∼

xm +∆
∼

x ))2 =

(

∼

FM d
∼

XM +
∼̄

χM d∆
∼

X +

(

Grad
23

T

∼̄

χM ∆
∼

X

)

∆
∼

X

)2

(2.61)

motivates the introduction of a set of three independent deformation measures
∼

FM ,
∼̄

χM , and
Grad

∼̄

χM which are two-point tensors and not objective in general. A form-invariant set of
deformation measures is given by the microdeformation tensor

∼

F̄M =
∼̄

χ
(−1)
M ∼

FM , (2.62)

the right Cauchy-Green microdeformation tensor

∼

C̄M =
∼̄

χT
M

∼̄

χM , (2.63)

and the curvature tensor

3

∼

Γ̄
M

=
∼̄

χ
(−1)
M Grad

∼̄

χM . (2.64)

Note that (2.62) to (2.64) refer to the reference configuration.

2.2.2 Balance equations

In the current configuration the balance of equilibrium reads

div
∼

σM + ρ
∼

fM =
∼

0 (2.65)

compare with equation (2.24), and the balance of equilibrium of momentum is

div
3

∼

q
M

+
∼

σM −
∼

hM + ρ
∼

cM =
∼

0 (2.66)

with ρ
∼

cM as the volumic double forces which can be interpreted, for example, as an intrinsic
angular momentum. In (2.66) spatial higher-order stress tensors appear, namely the couple

stress tensor
3

∼

q
M

and the hyper stress tensor
∼

hM =
∼

hT
M , which allow for

∼

σM 6=
∼

σT
M in general.
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The transformation of (2.65) and (2.66) to the reference configuration yields

Div
∼

PM + ρ0
∼

fM =
∼

0 (2.67)

and

Div
3

∼

Q
M

+ (
∼

PM −
∼

HM)
∼

FT
M + ρ0

∼

cM =
∼

0 . (2.68)

Here, the first Piola-Kirchhoff stress tensor

∼

PM = JM
∼

σM
∼

F−T
M (2.69)

the material version of the hyper stress tensor

∼

HM = JM
∼

hM
∼

F−T
M , (2.70)

and the material version of the couple stress tensor

3

∼

Q
M

= JM
3

∼

q
M ∼

F−T
M (2.71)

have been introduced. Note that in analogy to
∼

PM ,
∼

HM and
3

∼

Q
M

are two-point tensors.

2.2.3 Constitutive models

Constitutive models for extended continua can be found e.g. in [17, 18, 36, 37, 74]. As
mentioned above, additional material parameters are required which are difficult to obtain from
experiments [70]. Thus, (numerical) multiscale methods, which circumvent such difficulties,
are justified.
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Chapter 3

Spatial discretization

In this chapter we discretize the classical (nonlinear) continua as described in section 2.1.
Note, however, that these concepts can be applied to extended continua as well, compare
with [62, 78]. The discretization is based on the p-version of FEM on the one hand and its
specialization the FCM on the other hand. The general derivation of the FEM is strongly
guided by [8, 105], the p-version’s part refers to [21, 90, 91], and the FCM is described in
[24, 80]. The outline of this chapter is as follows: Starting from the linearization of the
variational formulation the FEM including shape functions and iterative solution methods
is presented, whereby special focus lies on an efficient formulation suited for the p-version.
Afterwards, the FCM is briefly re-called.

3.1 Linearization of the variational formulation

Nonlinear problems in continuum mechanics are treated by linearization of the nonlinear set
of equations and iteratively solving a series of linear systems of equations. In the context of
the FEM the Newton-Raphson method which is based on a consistent linearization of the
variational problem is very popular. In this section the linearized weak forms of section 2.1.3
are derived. It is convenient to perform the linearization of the weak form in the reference
configuration and push it forward to the current configuration. The reason for this approach
is that the reference volume element dV is constant during linearization. The linearized
representation of the weak form is given by

L [G]

∣
∣
∣
∣

∼

ϕ=
∼

ϕ̄

= G(
∼

ϕ̄,
∼

v)
︸ ︷︷ ︸

(2.37)
∼

ϕ=
∼

ϕ̄

+DG(
∼

ϕ̄,
∼

v) [∆
∼

u] = 0 , (3.1)

where
∼

ϕ̄ is a known state of deformation1. In (3.1) G(
∼

ϕ̄,
∼

v) is the weak form evaluated at

∼

ϕ̄. If we assume that both body forces and external forces are independent of the state of

deformation, only the first part of (2.37) has to be considered for the directional derivative in

1Since we restrict ourselves to hyperelasticity in this thesis only the state of deformation is relevant.
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the direction of [∆
∼

u]. Applying the product rule we obtain

DG(
∼

ϕ̄,
∼

v) [∆
∼

u] = D





∫

V

∼

S · δ
∼

EdV



 [∆
∼

u] (3.2)

=

∫

V

(D
∼

S [∆
∼

u] · δ
∼

E +
∼

S ·D δ
∼

E [∆
∼

u]) dV .

The directional derivative of δ
∼

E as stated in equation (2.36) reads

D δ
∼

E [∆
∼

u] =
1

2

(
GradT ∆

∼

u Grad
∼

v +GradT
∼

v Grad∆
∼

u
)

(3.3)

where

D
∼

F [∆
∼

u] =
d

dǫ
(
∼

I + Grad (
∼

u + ǫ∆
∼

u))

∣
∣
∣
∣
ǫ=0

= Grad∆
∼

u (3.4)

was used. The directional derivative of the second Piola-Kirchhoff stress tensor is

D
∼

S [∆
∼

u] =
4

∼

C∆
∼

E (3.5)

with

∆
∼

E = D
∼

E [∆
∼

u] =
1

2
(
∼

FT Grad∆
∼

u +GradT ∆
∼

u
∼

F) , (3.6)

and, assuming hyperelasticity,
4

∼

C is defined by equation (2.42). Inserting (3.3) and (3.6) into
(3.2) we finally arrive at

DG(
∼

ϕ̄,
∼

v) [∆
∼

u] =

∫

V

(

Grad∆
∼

u
∼

S ·Grad
∼

v + δ
∼

E ·
4

∼

C∆
∼

E

)

dV , (3.7)

where the symmetry of
∼

S was exploited. A push forward of (3.7) gives the directional derivative
of the weak form with respect to the current configuration

D g(
∼

ϕ̄,
∼

v) [∆
∼

u] =

∫

v

(

grad∆
∼

u
∼

σ · grad
∼

v +∇S
x∼

v · 4
∼

c∇S
x ∆∼

u
)

dv . (3.8)

The elasticity tensor
4

∼

c can be computed by means of (2.43). With (2.40) evaluated at
∼

ϕ̄ and

(3.8) we obtain the linearized weak form of the current configuration

L [g]

∣
∣
∣
∣

∼

ϕ=
∼

ϕ̄

= g(
∼

ϕ̄,
∼

v)
︸ ︷︷ ︸

(2.40)
∼

ϕ=
∼

ϕ̄

+D g(
∼

ϕ̄,
∼

v) [∆
∼

u] = 0 . (3.9)
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3.2 The Finite Element Method

In this section we closely follow Wriggers [105] and Bonet and Wood [8] when discretizing
the weak forms and their linearizations by the FEM. The goal is to arrive at a series of systems
of linear equations which can be solved iteratively by the Newton-Raphson method. As
stated in section 2.1.1.1 there are basically two approaches: The spatial one related to the
current configuration, and the material one related to the reference configuration, which lead,
of course, to the same results. It is well-known that a spatial formulation is more efficient than
a material formulation [7, 8, 48, 105]. Especially in the context of numerical homogenization
involving large deformations a spatial formulation would help to lower the high computational
effort on the microscale. Referring to section 1.3 we apply the p-version of the FEM to the
microscopic scale which is known to be very efficient. The p-version utilizes larger elements
than the classical h-version and commonly applies a mapping concept with mapping functions
defined in the reference configuration, see section 3.4.5. Thus, we developed and implemented
a quasi-spatial formulation where the undeformed geometry is discretized but differentiation
and integration operations are performed with respect to the spatial configuration. In the
following the weak forms in both configurations will be discretized in order to illustrate the
differences between the above mentioned formulations whereby a special focus lies on the
spatial formulation in order to highlight its importance. Note that a Bubnov-Galerkin

approach is used, where for both the field variables
∼

u and the test functions
∼

v the same
Ansatz is made.

3.2.1 Basic concepts

Let us recall the main idea of the FEM: The original domain V with boundary ∂V is approx-
imated by Ω and ∂Ω. The approximation, called discretization, is provided by subdividing Ω
into ne finite elements Ωe

V ≈ Ω =
ne⋃

e=1

Ωe (3.10)

where
⋃

denotes the assembly operator. The primary field variables are approximated within
one element by

uEX ≈ uFE = N u , (3.11)

where N is the matrix of shape functions. To be more specific, we define

uT
FE =

[

ux uy uz

]

,

N =









N1(ξ) 0 0 N2(ξ) 0 . . . 0

0 N1(ξ) 0 0 N2(ξ) . . . 0

0 0 N1(ξ) 0 0 . . . Nn(ξ)









, (3.12)

uT =

[

ux1
uy1 uz1 ux2

uy2 uz2 · · · uxn
uyn uzn

]

,
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where Ni(ξ) are the n shape functions2 defined in the element’s local ξ-coordinate system,
compare with the simplified two-dimensional representation of Figure 3.1. The column vector
u contains the coefficients related to the shape functions of the finite element approximation.
The linearized weak forms contain derivatives with respect to global coordinates. Since the

ξ

ξ

ξ

ηη

η

Ω2

Ωe

ωe

j

Q ,J

ϕ,F

(-1,-1) (+1,-1)

(+1,+1)(-1,+1)

X 1

X 2

X 3

X 4
x 1

x 2

x 3

x 4

Figure 3.1: Mapping of the deformation of a finite element Ωe [105]

shape functions are defined in the element’s local coordinate system the following transforma-
tions stemming from the chain rule are performed

∇XNJ = J−1∇ξNJ , (3.13)

∇xNj = j −1∇ξNj , (3.14)

where

J =









X1,ξ X2,ξ X3,ξ

X1,η X2,η X3,η

X1,ζ X2,ζ X3,ζ









, j =









x1,ξ x2,ξ x3,ξ

x1,η x2,η x3,η

x1,ζ x2,ζ x3,ζ









(3.15)

are called Jacobian matrices. Here, a bijective mapping based on local element coordinates
ξ is used

X = Q(ξ) ⇐⇒ ξ = Q−1(X ) , (3.16)

where the mapping function Q can be quite general, refer to section 3.4.5 for more details
on mapping functions. The global coordinates x (in the current configuration) and hence j

2More details on these functions will be presented in section 3.4.
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needed for the spatial derivatives are not known initially. However, this is not a problem for
a quasi-spatial formulation: Referring to Figure 3.1 and again following the chain rule we can
deduce that

j = J FT , (3.17)

where the deformation gradient F can be determined directly via equation (2.8), here in
matrix notation and discrete quantities

F = I +Gradu = I +
n∑

J=1

uJ ⊗∇XNJ . (3.18)

Note that in a pure spatial formulation the situation is vice versa. Here, j is available, but for
F more computational effort is required, since the derivatives with respect to reference config-
uration as given in (3.13) cannot be computed directly. In order to resolve this circumstance,
one would have to evaluate equation (2.10) and then invert the resulting quantity. Hence, the
term quasi will be skipped.

3.2.2 Integration

The weak forms involve integration over the computational domain. Since in the Finite El-
ement Method the domain is subdivided into a number of elements, the integration is to be
carried out within each element individually. It is common to perform the integration within
the standard element’s domain Ω2

∫

Ωe

(·)dΩe =

∫

Ω2

(·)detJ dΩ2 =

∫

ξ

(·)detJ dξ , (3.19)

∫

ωe

(·)dωe =

∫

Ω2

(·)detj dΩ2 =

∫

ξ

(·)detj dξ .

Since in general the integration cannot be performed analytically a Gaussian quadrature is
applied, which reads in a one-dimensional setting as follows

1∫

−1

(·) dξ ≈
n∑

i

(·)|ξi wξi . (3.20)

In (3.20) ξi denote the quadrature points at which the integrand (·) has to be evaluated and
wξi are the corresponding weights [90]. Applying n quadrature points allows to integrate a
polynomial of degree p = 2n − 1 exactly. However, one has to bear in mind that, due to the
mapping, the integrand is usually not a polynomial. Therefore, the quadrature is not exact,
even if the number of integration points will be increased. The one-dimensional quadrature
can be extended in a straightforward manner to two-dimensional integrals

1∫

−1

1∫

−1

(·) det J dξ dη ≈
nj∑

j

ni∑

i

(·)|(ξi,ηj) det J|(ξi,ηj) wξi wηj , (3.21)
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and to three-dimensional integrals

1∫

−1

1∫

−1

1∫

−1

(·) det J dξ dη dζ ≈
nk∑

k

nj∑

j

ni∑

i

(·)|(ξi,ηj ,ζk) det J|(ξi,ηj ,ζk) wξi wηj wζk , (3.22)

where J represents either J or j .

3.2.3 Discretization of the weak forms

Now, let us discretize the weak form in the current configuration, see (2.40). In view of a
computer implementation it is common to apply the Voigt notation. With

∼

σ ⇐⇒ σT =

[

σxx σyy σzz σxy σyz σxz

]

, (3.23)

∇S
x∼

v ⇐⇒ (∇S
x v)

T =

[

vx,x vy,y vz,z (vx,y + vy,x) (vy,z + vz,y) (vx,z + vz,x)

]

we rewrite the first term of (2.40)

∫

v

∼

σ · ∇S
x∼

v dv =
ne⋃

e=1

∫

ωe

(∇S
x v)

T σ dωe (3.24)

=
ne⋃

e=1

n∑

i=1

vT
i

∫

ωe

bT
i σ dωe

=
ne⋃

e=1

n∑

i=1

vT
i

∫

Ω2

bT
i σ detj dΩ2 =

ne⋃

e=1

n∑

i=1

vT
i r i(u) = vTr(u) ,

where

bT
j =









Nj,x 0 0 Nj,y 0 Nj,z

0 Nj,y 0 Nj,x Nj,z 0

0 0 Nj,z 0 Nj,y Nj,x









(3.25)

is the spatial strain-displacement matrix which exhibits a sparse structure as in the linear case,
and r i is the element’s vector of internal forces3. The counterpart to (3.24) can be derived in
an analogous way leading to

∫

V

∼

S · δ
∼

EdV =
ne⋃

e=1

n∑

I=1

vT
I

∫

Ω2

BT
I S detJ dΩ2 =

ne⋃

e=1

n∑

I=1

vT
I RI(u) = vTR(u) . (3.26)

3In the context of numerical homogenization this vector is useful for computing nodal (reaction) forces at
boundaries with Dirichlet boundary conditions, refer to [50].
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Note that the strain-displacement matrix with respect to the reference configuration is fully
populated

BJ =




















F11 NJ,X F21 NJ,X F31 NJ,X

F12 NJ,Y F22 NJ,Y F32 NJ,Y

F13 NJ,Z F23 NJ,Z F33 NJ,Z

F11 NJ,Y + F12 NJ,X F21NJ,Y + F22 NJ,X F31 NJ,Y + F32 NJ,X

F12 NJ,Z + F13 NJ,Y F22 NJ,Z + F23 NJ,Y F32 NJ,Z + F33 NJ,Y

F13 NJ,X + F11 NJ,Z F23NJ,X + F21 NJ,Z F33 NJ,X + F31 NJ,Z




















. (3.27)

For the remaining terms in (2.40) and (2.37) we obtain

∫

v

ρ
∼

f ·
∼

v dv +

∫

∂vt

∼

t ·
∼

v da =
ne⋃

e=1

n∑

i=1

vT
i

∫

ωe

ρ f Ni dωe (3.28)

+
nr⋃

r=1

n∑

i=1

vT
i

∫

∂ωte

Ni t d∂ωte

=
ne⋃

e=1

n∑

i=1

vT
i p i +

nr⋃

r=1

n∑

i=1

vT
i p t

i = vTp ,

respectively
∫

V

ρ0
∼

f ·
∼

v dV +

∫

∂Vt

∼

T ·
∼

v dA =
ne⋃

e=1

n∑

I=1

vT
I

∫

Ωe

ρ0 f NI dΩe (3.29)

+
nr⋃

r=1

n∑

I=1

vT
I

∫

∂Ωte

NI T d∂Ωte

=
ne⋃

e=1

n∑

I=1

vT
I P I +

nr⋃

r=1

n∑

I=1

vT
I P t

I = vTP ,

where nr is number of element edges / faces corresponding to the Neumann boundary.

With (3.24) and (3.28) (and (3.26) and (3.29), respectively) the discrete versions of the weak
forms are

vT (r(u)− p) = 0 , (3.30)

vT (R(u)−P) = 0 . (3.31)

Due to the arbitrariness of the test function v we arrive at systems of nonlinear equations

g(u) = r(u)− p = 0 , (3.32)

G(u) = R(u)−P = 0 . (3.33)
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3.2.4 Discretization of the linearized weak forms

In this section the linearized weak forms (3.9) and (3.1) respectively will be discretized. Herein,
only the directional derivatives D g(

∼

ϕ̄,
∼

v) [∆
∼

u] and DG(
∼

ϕ̄,
∼

v) [∆
∼

u] respectively need to be

considered, since G(
∼

ϕ̄,
∼

v) and g(
∼

ϕ̄,
∼

v) respectively have already been treated above. With the
discretization of the spatial gradients

grad∆u =
n∑

k=1

∆uk ⊗∇xNk , (3.34)

grad v =
n∑

i=1

v i ⊗∇xNi ,

the first term of (3.8) becomes

∫

v

grad∆
∼

u
∼

σ · grad
∼

v dv =
ne⋃

e=1

n∑

i=1

n∑

k=1

vT
i

∫

ωe

gT
i σ̂ gk dωe ∆uk , (3.35)

where

gT
j =









Nj,x Nj,y Nj,z 0 0 0 0 0 0

0 0 0 Nj,x Nj,y Nj,z 0 0 0

0 0 0 0 0 0 Nj,x Nj,y Nj,z









. (3.36)

Note that (3.35) is commonly referred to as the geometric part of the stiffness matrix. In
(3.35) the Cauchy stresses are arranged such that

σ̂ =








σ̌

σ̌

σ̌








with σ̌ =








σxx σxy σxz

σyy σyz

sym σzz







. (3.37)

For the second term of (3.8) the discretization gives

∫

v

∇S
x∼

v · 4
∼

c∇S
x∆∼

u dv =
ne⋃

e=1

n∑

i=1

n∑

k=1

vT
i

∫

ωe

bT
i d bk dωe ∆uk , (3.38)

where d is the matrix form4 of
4

∼

c, and bj is given by equation (3.25). Now, the advantage
of a spatial formulation compared to a material one is obvious: Due to the sparsity of bj

multiplications in the matrix-matrix products bT
i d bk can be avoided reducing the overall

computational effort. Combining (3.35) and (3.38) yields

∫

v

(

grad∆
∼

u
∼

σ · grad
∼

v +∇S
x∼

v · 4
∼

c∇S
x∆∼

u
)

dv =
ne⋃

e=1

n∑

i=1

n∑

k=1

vT
i kTik

∆uk (3.39)

4How to cast a (fourth-order) tensor into matrix form is outlined in [48].
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with the spatial element tangent (or stiffness) matrix of dimension 3× 3 in 3D

kTik
=

∫

ωe

(
gT
i σ̂ gk + bT

i d bk

)
dωe (3.40)

related to the unknowns i and k. The application of the assembly operator
⋃

gives

ne⋃

e=1

n∑

i=1

n∑

k=1

vT
i kTik

∆uk = vT kT ∆u (3.41)

where kT is the global tangent (or stiffness) matrix. The way to discretize the directional
derivative with respect to the reference configuration (3.7) is similar. The resulting tangent
element matrix of dimension 3× 3 in 3D is

K TIK
=

∫

Ωe

(

GT
I Ŝ GK +BT

I D BK

)

dΩe , (3.42)

where all derivatives are to be computed with respect to the reference configuration. In (3.42)
GT

I Ŝ GK has the same structure as its spatial counterpart and hence the computational
effort is similar. But for BT

I D BK this is not the case. The reason is that the material

strain-displacement matrix B , see (3.27), is fully populated and does not allow for efficient
multiplications. Note that in section 3.5 a comparison between a spatial formulation and a
material formulation is carried out.

Now, let us summarize equations (3.24), (3.28), and (3.41) in order to obtain the discrete
linearized weak form of the current configuration

vT (kT ∆u+ r(u)− p) = 0 . (3.43)

Again, due to the arbitrariness of the test function we arrive at

kT ∆u+ r(u)− p
︸ ︷︷ ︸

g(u)

= kT ∆u+ g(u) = 0 . (3.44)

The counterpart to (3.44) is

KT ∆u+R(u)−P
︸ ︷︷ ︸

G(u)

= KT ∆u+G(u) = 0 . (3.45)

3.2.5 Relative error in the energy norm

In this section we introduce the relative error in the energy norm ‖e‖E(Ω) which is a useful
measure for the quality of a discretization. We define

‖e‖E(Ω) =

√

|URef − UFE|
URef

, (3.46)
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where URef is the reference strain energy, and UFE corresponds to the FE-approximation. The
strain energy itself is obtained by integrating a general strain energy (density) function Ψ, as
introduced in section 2.1.4, in the reference configuration for all elements

U =
ne∑

e=1

∫

Ωe

Ψe dΩe . (3.47)

In the case of a linear relationship between strains and stresses we can further specify (3.47)
for St. Venant-Kirchhoff’s material law as

U SV =
1

2

ne∑

e=1

∫

Ωe

ST
e E e dΩe , (3.48)

and consequently for Hooke’s law

UH =
1

2

ne∑

e=1

∫

Ωe

σT
e εe dΩe . (3.49)

3.3 Solution of the linearized system of equations

The nonlinear algebraic equation system (refer to equations (3.32) and (3.33) respectively)
stemming from the FE-discretization is rewritten

g(u, λ) = r(u)− λp = 0 , (3.50)

G(u, λ) = R(u)− λP = 0 , (3.51)

where λ scales the applied loads. For simplicity, the notation of the spatial version will be
used in the following.

Thanks to the linearization (3.44), the solution of the nonlinear system (3.50) can be reduced
to solving a series of linear systems. Within this series we continuously evaluate a modified
version of (3.44), namely

g(uk, λk) + kT (uk)∆u = 0 , (3.52)

at a known state uk and for a specific load level λk. The Newton-Raphson scheme is
summarized in Algorithm A-1.

With a view to numerical homogenization the so called discrete Newton-Raphson algorithm
is of interest. Here, an analytical derivation of the tangent matrix is circumvented. Instead, a
forward difference scheme is applied where

km ≈ 1

∆h

[g(uk +∆h · em, λk)− g(uk, λk)] , (3.53)

is obtained for the m-th column of the tangent matrix. In (3.53) ∆h is the step size and em is
a vector which has one non-zero entry (=1) at position m and is zero elsewhere. For the case
of N unknowns the tangent matrix is assembled as

kT =

[

k1 k2 · · · kN

]

. (3.54)
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Algorithm A-1 Newton-Raphson algorithm

1: set k = 1, u0
1 = 0

2: define load steps λ1, . . . , λn

3: repeat
4: set i = 0
5: repeat
6: compute gi

k = g(ui
k, λk) and ki

Tk
= kT (u

i
k)

7: solve the linear system of equations gi
k + ki

Tk
∆ui+1

k = 0

8: compute ui+1
k = ui

k +∆ui+1
k

9: set i = i+ 1
10: until ‖ui

k‖ < tolerance
11: set u0

k+1 = ui
k, k = k + 1

12: until λk = λn

Provided a proper choice of ∆h this scheme can give useful results, see [105] and the literature
cited therein. Unfortunately, due to the large number of evaluations of g the computational
effort is high.

3.4 Shape functions

As indicated above, there are basically two versions of the FEM, which control the error of the
discretization differently: The h-version that applies mesh-refinement and the p-version that
keeps the mesh fixed and raises the polynomial degree of the Ansatz function. A combination
of both methods is called hp-version. In Figure 3.2 the relative error in the energy norm (as
defined in (3.46)) is plotted for different refinement strategies using a double-logarithmic scale.
The h- and p-versions show algebraic rates of convergence for a problem with singularities,

h-version,
uniform mesh refinements

ungraded mesh
uniform p-version,

uniform p-version,
strongly graded mesh

hp-version
or p-version
for smooth solutions

lo
g
‖e

‖ E
(Ω

)
[%

]

log N [-]

1

1

1
β = 1

2
min(p, λ)

β = λ

β = λ

Figure 3.2: Relative error in the energy norm for h-, p- and hp-version FEM for a two-dimensional
linear elastic problem with singularities

where the p-version has twice the convergence rate of the h-version. The hp-version shows
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exponential convergence. If there are no singularities, the p-version converges exponentially,
too.

3.4.1 Introductory example

Before going into detail with the p-version’s shape functions, we demonstrate with a numerical
example some advantages of the p-version like, for example, robustness against locking effects
even for high element aspect ratios. In this example, a small ring is deformed by two opposite
forces, see Figure 3.3. Here, not only shear locking but also other phenomena like membrane
or trapezoidal locking may occur [66]. In Figure 3.4 the mechanical model is illustrated. Due

Figure 3.3: Pinched ring - setup

∼

EX

∼

EY

t

R

f ∝ t2

umax

Figure 3.4: Pinched ring - mechanical model

to double symmetry only a quarter of the whole ring has to be considered, and symmetry
boundary conditions are applied. The discretization is depicted for the lowest and highest
aspect ratio R/t in Figures 3.5 and 3.6. Since there are singularities at the edge where the
load is applied, a strongly graded mesh is utilized. An analytical solution of the maximum

Figure 3.5: Pinched ring - mesh for R/t = 5 Figure 3.6: Pinched ring - mesh for R/t = 500
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deflection umax, which is based on the classical beam theory, can be found in [45] and reads

umax =
F R3

8E I

(

π − 8

π

)

,

where F =
∫

t
f dt. In the following, R is constant and Young’s modulus E is chosen such

that umax = 1 if no locking is present. Now, let us investigate the maximum deflection umax

depending on the slenderness R/t. In Figure 3.7 the results are shown for polynomial degrees
p from one to eight in a double-logarithmic style. Obviously, locking is encountered with

10
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0.001

10−4

10−5

10−6

100 1000 10000
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p = 4
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p = 8

R/t

u
m
a
x

Figure 3.7: Pinched ring - locking effects

polynomial degrees from one to four. In the case of p = 4 locking is not that pronounced, and
from p = 5 on locking no longer plays a role. In Figure 3.8 the relative error in the energy
norm is plotted against the number of degrees of freedom N in a double-logarithmic style.
We observe a high rate of convergence for the different aspect ratios. With the exception of
R/t = 500, where conditioning problems are present, the error can be reduced significantly
below 1% due to the p-extension. In order to further improve the results an hp-version has to
be applied. In the following sections we illuminate the p-version’s shape functions.

3.4.2 Higher-order shape functions for 1D

For higher-order finite elements that are used in the p-version either Lagrangian or hierarchic
shape functions can be used. Both of them lead, of course, to the same results, but hierarchic
shape functions have some advantages, for example a better condition number of the resulting
stiffness matrices and a hierarchic structure. These advantages will be addressed below.
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Figure 3.8: Pinched ring - relative error in the energy norm

3.4.2.1 Lagrangian shape functions

Lagrangian polynomials are given by the formula

N
(p)
i (ξ) =

p+1
∏

j=1, j 6=i

ξ − ξj
ξi − ξj

, (3.55)

where p is the polynomial degree and ξi and ξj are the coordinates of the nodes. The sum of
all Lagrange polynomials for a given polynomial degree p equals 1, i.e. they form a partition

of unity.

Lagrangian elements of order p have p + 1 nodes; all of the nodes are equally spaced. For
each polynomial degree the complete set of shape functions changes. The Lagrangian shape
functions for polynomial order one, two, and three are

for p = 1:

N
(1)
1 (ξ) = 1/2(1− ξ)

(3.56)N
(1)
2 (ξ) = 1/2(1 + ξ)

for p = 2:

N
(2)
1 (ξ) = 1/2 ξ (ξ − 1)

N
(2)
2 (ξ) = (1 + ξ) (1− ξ) (3.57)

N
(2)
3 (ξ) = 1/2 (ξ + 1) ξ
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for p = 3:

N
(3)
1 (ξ) = −1/16 (3 ξ + 1) (3 ξ − 1) (ξ − 1)

N
(3)
2 (ξ) = 9/16 (ξ + 1) (3 ξ − 1) (ξ − 1)

(3.58)N
(3)
3 (ξ) = −9/16 (ξ + 1) (3 ξ + 1) (ξ − 1)

N
(3)
4 (ξ) = 1/16 (ξ + 1) (3 ξ + 1) (3 ξ − 1)

Figure 3.9 shows the Lagrangian shape functions up to p = 3.

p = 1

p = 2

p = 3

Figure 3.9: Lagrangian shape functions for p= 1, 2, 3

3.4.2.2 Hierarchic shape functions

Hierarchic shape functions are given by

N1(ξ) = 1/2(1− ξ) (3.59)

N2(ξ) = 1/2(1 + ξ)

Ni(ξ) = φi−1(ξ), i = 3, 4, ..., p+ 1

with

φj(ξ) =

√

2j − 1

2

ξ∫

−1

Lj−1(x) dx =
1√

4j − 2
(Lj(ξ)− Lj−2(ξ)) , j = 2, 3, ...

where Lj(ξ) are the Legendre polynomials. The Legendre polynomials can be determined
by applying the Rodriguez formula

Ln(x) =
1

2n n!

dn

d xn
(x2 − 1)n , x ∈ (−1, 1), n = 0, 1, 2, ... . (3.60)
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The hierarchic shape functions for p = 1, 2, 3, ..., 8 are given by

N1(ξ) = 1/2(1− ξ)

N2(ξ) = 1/2(1 + ξ)

N3(ξ) = 1/4
√
6
(
ξ2 − 1

)

N4(ξ) = 1/4
√
10
(
ξ2 − 1

)
ξ

N5(ξ) = 1/16
√
14
(
5 ξ4 − 6 ξ2 + 1

)
(3.61)

N6(ξ) = 3/16
√
2ξ
(
7 ξ4 − 10 ξ2 + 3

)

N7(ξ) = 1/32
√
22
(
21 ξ6 − 35 ξ4 + 15 ξ2 − 1

)

N8(ξ) = 1/32
√
26ξ

(
33 ξ6 − 63 ξ4 + 35 ξ2 − 5

)

N9(ξ) = 1/256
√
30
(
−140 ξ2 − 924 ξ6 + 630 ξ4 + 5 + 429 ξ8

)
.

Hierarchic elements have no internal nodes. Only the linear shape functions are nodal shape
functions. The remaining shape functions correspond to internal modes or bubble modes. A
new shape function is added for each polynomial degree. The other shape functions remain
the same as before which allows for an elegant implementation. Note that for hierarchic shape
functions the partition of unity is not fulfilled. Figure 3.10 shows the hierarchic shape functions
up to p = 3. The orthogonality property of Legendre polynomials implies

p = 1

p = 2

p = 3

Figure 3.10: Hierarchic shape functions for p=1, 2, 3

1∫

−1

dNi

dξ

dNj

dξ
dξ = δij, i ≥ 3 and j ≥ 1 or i ≥ 1 and j ≥ 3 , (3.62)

which results in a better conditioning of the corresponding stiffness matrices.

3.4.3 Hierarchic shape functions for quadrilaterals

In two dimensions, a quadrilateral element formulation applying the Ansatz functions in-
troduced by Szabó and Babuška [90] is used. Here, two different types of Ansatz spaces
are taken into consideration: the trunk space Spξ,pη

ts (Ωq
2
) and the larger tensor product space

Spξ,pη
ps (Ωq

2
).
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ξ

η

pξ

pη

N1 N2

N3N4

E1

E2

E3

E4

Ωq
2
= [(−1, 1)× (−1, 1)]

Figure 3.11: Standard quadrilateral element: definition of nodes, edges and polynomial degree

In Figure 3.11 the standard quadrilateral finite element is depicted which allows for different
polynomial degrees in the element’s local directions. We obtain the shape functions by ten-
sor products of one-dimensional shape functions as provided by equation (3.59). The shape
functions can be divided into three groups, compare with Figure 3.12:

1. Nodal modes: These modes

NNi

1,1(ξ, η) =
1

4
(1 + ξi ξ)(1 + ηi η) , i = 1, ..., 4 (3.63)

are the standard bilinear shape functions with (ξi, ηi) denoting the local coordinates of
the ith node.

2. Edge modes: They are defined separately for each individual edge and by construction
vanish at all the other edges. The corresponding modes for edge E1 read:

NE1

i,1 (ξ, η) =
1

2
(1− η)φi(ξ) (3.64)

3. Internal modes: The internal modes

N int
i,j (ξ, η) = φi(ξ)φj(η) (3.65)

are nonzero only in the interior of the quadrilateral element.

The indices i, j of the shape functions denote the polynomial degrees in the local directions
ξ, η. The matrix of shape functions N as given in equation (3.12) can now be specified as

N =
[
N N N E N int

]
, (3.66)
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where

N N =






NN1

1,1 ... NN4

1,1

NN1

1,1 ... NN4

1,1




 (3.67)

represents the nodal modes, and

N E =
[
N E1 ... N E4

]
(3.68)

collects for each edge the edge modes separately. For edge E1, for example, we have

N E1 =






NE1

2,1 ... NE4

pξ,1

NE1

2,1 ... NE4

pξ,1




 . (3.69)

Finally, N int includes the internal modes

N int =






N int
2,2 ... N int

pξ,pη

N int
2,2 ... N int

pξ,pη




 . (3.70)

Note that zero entries have been skipped in equations (3.67)-(3.70). Let us consider two-
dimensional thin-walled structures, for example the pinched ring presented in section 3.4.15

or cell walls of foam-like materials. Here, the thickness direction has to be treated differently
in order to obtain an efficient discretization. As indicated above, this is accounted for by
using anisotropic Ansatz functions for the two-dimensional displacement field. Therefore, the
polynomial degree q in the thickness direction is chosen differently from the polynomial degree
p in the longitudinal direction, see Figure 3.13, whereby p ≥ q.

3.4.4 Hierarchic shape functions for hexahedrals

In three dimensions, the p-version’s implementation is based on a hexahedral element formu-
lation as shown in Figure 3.14 [21, 22], again using the Ansatz functions introduced by Szabó

and Babuška [90], whereby three different types of Ansatz spaces are considered: the trunk

space Spξ,pη ,pζ
ts (Ωh

2
), the tensor product space Spξ,pη ,pζ

ps (Ωh
2
) and the anisotropic tensor product

space Sp,p,q(Ωh
2
). The three-dimensional shape functions are classified into four groups:

1. Nodal modes: These modes

NNi

1,1,1(ξ, η, ζ) =
1

8
(1 + ξi ξ)(1 + ηi η)(1 + ζiζ), i = 1, ..., 8 (3.71)

are the standard trilinear shape functions where (ξi, ηi, ζi) are the local coordinates of
the ith node.

5Note that only isotropic elements have been applied in this example. Using anisotropic elements would
lower the overall number of degrees of freedom.
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p, ξ
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ξ

η

∼

Ex, ux
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Ey, uy
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2

2

3

3

4

4

Figure 3.13: Beam-like element with different local orientations and polynomial degrees

2. Edge modes: They are defined separately for each individual edge. If we consider, for
example, edge E1 (see Figure 3.14), the corresponding edge modes read:

NE1

i,1,1(ξ, η, ζ) =
1

4
(1− η)(1− ζ)φi(ξ) (3.72)

3. Face modes: These modes are defined separately for each individual face. If we con-
sider, for example, face F1, the corresponding face modes read:

NF1

i,j,1(ξ, η, ζ) =
1

2
(1− ζ)φi(ξ)φj(η) (3.73)

4. Internal modes: The internal modes

N int
i,j,k(ξ, η, ζ) = φi(ξ)φj(η)φk(ζ) (3.74)

are purely internal and nonzero only within the hexahedral element.

The indices i, j, k of the shape functions again denote the polynomial degrees in the local
directions ξ, η, ζ. Having defined the complete set of shape functions for the three-dimensional
hexahedral element, the matrix of shape functions can be set up

N =
[
N N N E N F N I

]
, (3.75)

where the superscripts N, E, F, I indicate nodal, edge, face and internal modes respectively. At
the end of this section let us illustrate how to discretize thin-walled structures by an example,
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pη, p

pζ , q

Ωh
2
= [(−1, 1)× (−1, 1)× (−1, 1)] Spξ,pη ,pζ

ts (Ωh
2
),Spξ,pη ,pζ

ps (Ωh
2
),Sp,p,q(Ωh

2
)

Figure 3.14: Standard hexahedral element Ωh
2
: definition of nodes, edges, faces and polynomial

degree [21]

see Figure 3.15. Here, all hexahedral elements are oriented such that their local ζ-direction
corresponds to the thickness direction of the plate. Thus, it is easy to apply anisotropic Ansatz
spaces like, for example, the anisotropic tensor product space Sp,p,q(Ωh

2
).

∼
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∼
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∼

EZ
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Figure 3.15: Modeling plate-like structures with hexahedral elements [21]

3.4.5 Mapping functions

As stated above, in the p-version the mesh is left unchanged, and convergence is obtained by
local or global increase in the polynomial degree. Therefore, it is very important to accurately
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model the geometry of the structure with the fixed number of elements in use. This calls for a
method which is able to describe complex geometries using a few elements only. To this end,
the blending function method proposed by Gordon and Hall [44] is applied.

Before describing this method, it is useful to classify the different mapping concepts:

• the isoparametric concept
This concept implies that the shape functions describing the variation of the unknowns
are the same as those applied for the definition of geometry.

• the superparametric concept
The shape functions used for the description of the geometry are more complex than
those for the unknown function.

• the subparametric concept
Here, the description of the unknown function is more general than that of the geometry.

It is important to distinguish between the different mapping concepts because the accuracy
of a finite element solution is not only given by the approximation of the unknowns but also
depends on the description of geometry.

Let us now illustrate the blending function method in two dimensions6 by considering a quadri-
lateral element where edge E2 is assumed to be part of a curved boundary (see Figure 3.16).
The geometry of edge E2 is defined by a parametric function E 2 = [E2X(η), E2Y (η)]

T. The

ξ

η

∼

EX

∼

EYN1 N2

N3N4

E1

E2

E3

E4

Q

X 1

X 2

X 3

X 4

E2X(η)

E2Y (η)

Figure 3.16: Blending function method for quadrilateral elements [21]

transformation of the local coordinates into the global coordinates as stated in equation (3.16)

6For the three-dimensional case refer to [11, 22, 91].
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can be formulated by the two functions

X = QX(ξ, η) =
4∑

i=1

NNi

1,1(ξ, η)Xi +

(

E2X(η)−
(
1− η

2
X2 +

1 + η

2
X3

))
1 + ξ

2

Y = QY (ξ, η) =
4∑

i=1

NNi

1,1(ξ, η)Yi +

(

E2Y (η)−
(
1− η

2
Y2 +

1 + η

2
Y3

))
1 + ξ

2
,

where the first term corresponds to the standard bilinear mapping, which is familiar from the
isoparametric concept for quadrilateral elements with p = 1. The second term takes the curved
edge E2 into account. Therefore, the bilinear mapping is augmented by the blended difference
between the curve E 2 = [E2X(η), E2Y (η)]

T and the straight line connecting the nodes N2 and
N3. The blending term (1 + ξ)/2 ensures that the opposite edge E4 – where (1 + ξ)/2 = 0 –
is not affected by the curvilinear description of edge E2.

If a quadrilateral is to be considered where all the edges are curved, the blending function

method can be expanded such that the mapping reads:

X = QX(ξ, η) =
1

2
(1− η)E1X(ξ) +

1

2
(1 + ξ)E2X(η) +

1

2
(1 + η)E3X(ξ) +

1

2
(1− ξ)E4X(η)−

−
4∑

i=1

NNi

1,1(ξ, η)Xi

(3.76)

Y = QY (ξ, η) =
1

2
(1− η)E1Y (ξ) +

1

2
(1 + ξ)E2Y (η) +

1

2
(1 + η)E3Y (ξ) +

1

2
(1− ξ)E4Y (η)−

−
4∑

i=1

NNi

1,1(ξ, η)Yi

where:

EiX(ξ), EiY (ξ), for i = 1, 3

(3.77)
EiX(η), EiY (η), for i = 2, 4

are parametric functions describing the geometry of the edges Ei, i = 1, . . . , 4. The blending

function method, therefore, allows for a large variety of element shapes which are defined by the
nodal coordinates X i = [Xi, Yi]

T , i = 1, . . . , 4 and the parametric functions (3.77) describing
the geometry of the edges.

3.5 Comparison between a spatial and a material finite

element formulation

This section is subdivided into two parts: Firstly, we will give an estimation of the speedup of a
spatial formulation as compared to a material formulation, where we assume three-dimensional
hyperelastic behavior based on the Neo-Hookean material law, see equation (2.47). In the
second part, we will verify our estimation within a numerical hyperelastic compression test.
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3.5.1 Estimation of the computational effort

In this section the effort for computing the tangential stiffness matrices kT , equation (3.40),
and K T , equation (3.42), respectively will be estimated in terms of floating point multiplica-
tions and depending on the polynomial degree p.

The number of degrees of freedom N for the tensor product space of a Lamé-problem is

N(p) = d (p+ 1)d , (3.78)

and the number of integration points I of a Gaussian quadrature equals

I(p) = (p+ 1)d . (3.79)

As indicated above, the spatial formulation mainly influences the second part of the tangential
stiffness matrix, kT , namely bT d b. Firstly, we will focus on the spatial formulation: b

given in equation (3.25) is sparse or, more precisely, half of the entries are zero. The matrix

representation of the spatial Neo-Hookean elasticity tensor
4

∼

c, refer to (2.52), with the
abbreviations Λ′ = Λ/J and µ′ = (µ− Λ lnJ)/J ,

d =




















Λ′ + 2µ′ Λ′ Λ′ 0 0 0

Λ′ + 2µ′ Λ′ 0 0 0

Λ′ + 2µ′ 0 0 0

µ′ 0 0

µ′ 0

sym µ′




















(3.80)

has only 12 non-zero entries. In order to investigate the number of multiplications the product
bT d b can be split into two parts. For x = bT d we have

nx(p) = 2 d ·N(p) · I(p) , (3.81)

multiplications, and for y = x b we have

ny(p) = d ·N(p) · (N(p) + 1)

2
· I(p) (3.82)

multiplications whereby symmetry was accounted for. The total number of multiplications is

nbTdb(p) = nx(p) + ny(p) . (3.83)

Secondly, the material formulation will be considered: Here, both B and D are fully popu-

lated7. For X = BT D we have

nX(p) = 2 d · 2 d ·N(p) · I(p) , (3.84)

7For D compare with the corresponding tensor quantity as stated in equation (2.49).
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and for Y = X B

nY (p) = 2 d ·N(p) · (N(p) + 1)

2
· I(p) , (3.85)

resulting in

nB TDB(p) = nX(p) + nY (p) (3.86)

multiplications.

The estimated reduction of floating point multiplications thanks to bT d b can be measured
by

Etheo
bTdb = 100 · (nB TDB − nbTdb)

nB TDB

. (3.87)

As stated above, the effort for the product g T σ̂ g and G T Ŝ G is similar and thus the number
of multiplications, avoiding zero entries and exploiting symmetry, is

ngTσ̂ g(p) = nGTŜ G(p) = d ·N(p) · I(p) + d ·N(p) · (
N(p)
d

+ 1)

2
· I(p) . (3.88)

A comprehensive survey has to take into account the effort for providing the matrices b, g
and B , G, respectively. This effort will be investigated separately for both formulations. For
the material formulation the evaluation of shape functions and the filling of b requires

nb(p) = d ·N(p) · p2 · I(p) , (3.89)

and for B

nB(p) = 2 d ·N(p) · p2 · I(p) . (3.90)

We observe that the spatial formulation only requires half of the effort, when comparing (3.89)
with (3.90). For g and G respectively, the only thing that has to be taken into account is the
filling of the corresponding matrices, because the corresponding shape functions have already
been computed. Knowing that g and G have the same structure we can define

ng(p) = nG(p) = d ·N(p) · I(p) . (3.91)

The overall number of multiplications for the computation of the tangential stiffness matrices
is

nkT (p) = nbTdb(p) + nb(p) + ng Tσ̂g(p) + ng(p) , (3.92)

nKT
(p) = nB TDB(p) + nB(p) + nGTŜG(p) + nG(p) , (3.93)

and the estimated overall reduction of floating point multiplications is defined analogously to
(3.87) as

Etheo
kT

= 100 · (nKT
− nkT )

nKT

. (3.94)
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3.5.2 Numerical example

In order to verify the estimation for the tensor product space, an inhomogeneous three-dimen-
sional hyperelastic compression test as shown in Figure 3.17 is performed [81].

∼

EX

∼

EY∼

EZ

ux = uy = 0

ux = 0

uy = 0

t̄z

ux = uy = uz = 0
10

5

5
55

Figure 3.17: Inhomogeneous compression test: geometry and boundary conditions

The material parameters in (2.47) are µ = 80.194 MPa and Λ = 400889 MPa. The face load
is applied incrementally until it reaches a magnitude of t̄z = 100 MPa. We discretize the ge-
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Figure 3.18: Relative reduction in multiplications due to bT d b: Estimation for the tensor product

space and numerical experiment

ometry depicted in Figure 3.17 by 108 isotropic hexahedral elements and apply both the trunk
space and the tensor product space. In Figure 3.18 the estimated and the measured relative
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reduction EbTdb thanks to the application of bT d b instead of BT D B is plotted against the
polynomial degrees p = 1, . . . , 8. Note that the comparison of the numerical experiment with
the estimation is based on the reduction in computation time, assuming a linear relationship
between the number of multiplications and the computation time. The estimation Etheo

bTdb tends
to 50%, which simply stems from the fact that only half of the entries in the spatial matrices
are non-zero whereas the material matrices are fully populated. The measured value shows
a higher reduction for both Ansatz spaces. This discrepancy can be explained by the fact
that the estimation does not account for the hardware. The loss of efficiency for the tensor

product space from p = 5 and from p = 8 for the trunk space on stems from the very large size
of the matrices, which no longer fit into the cache of the utilized computer (AMD Opteron
2.4 GHz, 4GB RAM, Cache 1MB, Linux) anymore. Figure 3.19 depicts the overall reduction
EkT , taking into account all steps in generating the tangential stiffness matrix. Compared to

E
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Figure 3.19: Reduction due to the spatial formulation: Estimation for the tensor product space and
numerical experiment

Figure 3.18 where only bT d b was considered, a lower threshold is obtained for Etheo
kT

. This
originates from that computational part which is not influenced by the spatial formulation,
namely the multiplications in gT σ̂ g and GT Ŝ G and the computations of shape functions.
Fortunately, both the estimation and the numerical experiment indicate that this part is small
and therefore its influence on the element stiffness matrix is low.
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3.6 The Finite Cell Method

This section explains the basic concepts of the Finite Cell Method (FCM) as far as they are
essential within the context of numerical homogenization. The presentation closely follows the
work of [24, 80], where the reader can find more information.

3.6.1 Basic concepts

The FCM can be interpreted as a combination of a fictitious or embedding domain approach
with high-order Finite Element Methods. It therefore combines the fast, simple generation
of meshes with high convergence rates. The main idea is to embed the original or physical
domain Ω into a geometrically larger domain Ωem of a simpler shape. This is shown in Figure
3.20 where Dirichlet and Neumann boundary conditions are indicated for completeness,
but will not be discussed further. For the discretization of the embedded domain an indicator

+ =

ū

t̄

Ω

Ωem \ Ω

Ωem

Figure 3.20: The domain Ω is embedded in Ωem

function

α(X) =







1.0 ∀X ∈ Ω

0.0 ∀X ∈ Ωem \ Ω
(3.95)

is introduced. This indicator function allows for a mesh which is independent of the original
domain, i.e. the elements of the embedding domain do not necessarily fulfill the usual geometric
properties of elements for the original domain Ω, as they may be intersected by ∂Ω. To
distinguish them from classical elements they will be called finite cells. It is simpler and
more advantageous to initially assume cells to be rectangular hexahedrals (cuboids) resulting
in a constant Jacobian matrix, see Equation (3.15), of the cell-wise mapping. Figure 3.21
illustrates the situation for a two-dimensional setting, where cells lying completely outside
the physical domain (i.e. α = 0.0) have been omitted. The union of all nc cells forms the
embedding domain

Ωem =
nc⋃

c=1

Ωc , (3.96)

where Ωc is the domain represented by a cell. For the computation of a cell’s stiffness matrices,
the indicator function α(X ) is again crucial. We simply insert α into (3.40) and (3.42)
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ū

t̄

Ωem

Figure 3.21: The embedding domain Ωem is discretized using rectangular cells

respectively and obtain

K cIK =

∫

Ωc

(
BT

cI
α(X )D B cK

)
dΩc . (3.97)

In a practical implementation (3.97) is integrated by a Gaussian quadrature, see section
3.2.2. Here, two cases have to be taken into account:

• For cells which are completely filled with homogeneous material, the numerical integra-
tion is exact due to the constant Jacobian matrix.

• For cells which are cut by ∂Ω a composed integration is necessary due to the discontinu-
ous integrand. To this end, a cell is subdivided into nsc block-shaped sub-cells, equipped
with an rst-coordinate system, see Figure 3.22.

Note that with a proper integration scheme and depending on the type of problem, the FCM
can yield an exponential rate of convergence, if a p-extension is performed.

3.6.2 Grid generation for the FCM

The main advantage of the FCM and embedding or fictitious domain methods in general is their
extremely fast and simple grid generation. Since the Cartesian grids applied in the analysis
do not need to be aligned to curved boundaries, the meshing process is straightforward. A
structured mesh with a resolution of nx×ny×nz cells in the x, y and z-direction is created and
cells which are completely outside the domain Ω are disregarded. It is therefore evident that
FCM is especially well suited to problems where the original definition of the computational
domain is based on voxel models, like those obtained from a CT-scan, for example from an
open-cell foam as shown in section 4.3.2. When using standard Finite Element Methods,
major difficulties arise in the creation of the geometrical model required for the process of
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Figure 3.22: Composed integration of hexahedral elements based on sub-cells [24]

mesh generation. Our approach, which is based on the Finite Cell Method, has the important
advantage that the voxel model obtained from a CT-scan can be used as an immediate basis
for the computation, without the necessity of segmentation.
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Chapter 4

Numerical homogenization

In this chapter we will cover both two- and three-dimensional multiscale analysis. In two
dimensions, first- and higher-order homogenization methods will be presented, whereby in the
first-order analysis large deformations are included. The higher-order homogenization methods
are restricted to small strains. Here, non-homogeneousDirichlet boundary conditions suited
for p-FEM play an important role and are discussed in detail. In three dimensions a first-
order scheme designed for small deformations will be developed whereby the focus lies on
the extraction of effective material properties from real-world cellular materials via CT-scans
and FCM. Note that the notation of section 2.2 is adopted, i.e. M indicates macroscopic
quantities, and m is used for microscopic quantities.

4.1 Introduction

In section 1.2 the FE2 method was introduced. It allows for the coupling of different scales,
i.e. quantities are transferred from the macro- to the microlevel and vice versa. There are FE2

methods of first- and higher-order. In first-order FE2 scheme the macroscale is assumed to be
much larger than the microscale and no microstructural length information like for example,
the cell’s height, has to be transported. Therefore, classical continua are sufficient on both
scales. Size effects are excluded within such schemes but deformation-induced anisotropy un-
der large deformations can be modeled [88].

Higher-order FE2 methods are based on extended continua at least on the macroscale and offer
the possibility of transporting microstructural length information. They have been success-
fully applied to investigating boundary layer dependent size effects within cellular materials
[28, 36, 37, 38, 63, 67].

Now, let us go into more detail and illuminate how the coupling of scales is performed: At each
macroscopic integration point a microstructure is attached, and the (constant) macroscopic
deformation-like quantities are projected onto the microstructure’s boundary leading to a
Dirichlet BVPm. After solving the BVPm, homogenized stress-like quantities are transferred
back to the macroscale. The resulting nested BVP is sketched for the two-dimensional case
in Figure 4.1.
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∆
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Figure 4.1: Nested boundary value problem in the reference configuration

4.2 Two-dimensional multiscale analysis

Note that this section is strongly guided by [62] and the literature cited therein where more
information and especially microstructural interpretations can be found.

4.2.1 FE2 method of first-order

In this section we summarize the FE2 method of first-order including large deformations,
compare with Feyel and Chaboche [35] and Kouznetsova [67]. The summary includes
projection and homogenization rules and some ideas for an efficient implementation.

4.2.1.1 Projection

Referring to Figure 4.1, the attached microstructure assuming unit thickness tm = 1 is a
rectangle with dimensions am and bm and volume Vm = tm · am · bm. The center of the
microstructure is located at position

∼

XM , and ∆
∼

X is called the branch vector. Now, let us
investigate the relation between the microscopic and the macroscopic displacement field. We
have to minimize the difference between both fields

F(
∼

uM) = 〈(
∼

um −
∼

uM)2〉 → min , (4.1)

where the volume average is based on an averaging theorem as stated in [67] and [75]

〈·〉 =
1

Vm

∫

Vm

(·) dVm . (4.2)
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The minimization of (4.1) is carried out by evaluating

∂F
∂

∼

uM
=

∼

0 (4.3)

and results in

〈
∼

um −
∼

uM〉 =
∼

0 . (4.4)

With ∆
∼

u =
∼

um −
∼

uM we can rewrite (4.4) yielding

〈∆
∼

u〉 = 〈
∼

um −
∼

uM〉 =
∼

0 , (4.5)

which means that beside a rigid body motion due to
∼

uM the average of the microscopic
displacement field vanishes. Furthermore, one may define

Grad
∼

uM = 〈Grad
∼

um〉 , (4.6)

compare with [67]. In order to establish a projection rule we assume the microscopic displace-
ment field to be a polynomial of degree one

∆
∼̄

u =
∼

AM(
∼

XM , t) +
∼

BM(
∼

XM , t)∆
∼

X +
∼

v , (4.7)

where (̄·) emphasizes the fact that the projection rule will lead to aDirichlet boundary value
problem. In (4.7)

∼

v represents possible periodic fluctuations of the microscopic displacement
field. These fluctuations are associated with periodic boundary conditions and can be regarded
as a relaxation of the Dirichlet boundary value problem. Note that in this thesis alternative
concepts are proposed and applied respectively and thus we assume

∼

v =
∼

0 1. The coefficient
tensors

∼

AM and
∼

BM only depend on
∼

XM and t, and therefore are constant on Vm. In order
to express the coefficient tensors in terms of macroscopic quantities we insert (4.7) into (4.5)
and (4.6) and solve the resulting system of equations. We then obtain

∼

AM =
∼

0

∼

BM = Grad
∼

uM ,

where
∼

AM =
∼

0 means that rigid body modes are excluded. Finally, the projection rule emerges
as

∆
∼̄

u = Grad
∼

uM ∆
∼

X . (4.8)

4.2.1.2 Homogenization

In order to derive a homogenization rule we have to evaluate the Hill-Mandel condition
which demands the equivalence of the strain energy rate in the macroscopic material point
and the volume average of the microscopic strain energy rate of the attached microstructure
[52, 53]. In the reference configuration the Hill-Mandel condition reads

〈
∼

Pm · (Grad∆
∼̄

u)′〉 =
∼

PM · (Grad
∼

uM)′ (4.9)

1In [67] the reader can find more information on periodic boundary conditions.
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where

(·)′ =
d(·)
dt

=
∂(·)
∂t

+ grad (·)
∼

x ′ (4.10)

is the material time derivative.

Firstly, we rewrite the left-hand side of (4.9) by inserting the balance of moment (2.29) (ne-
glecting volume forces) and applying the divergence theorem

〈
∼

Pm · (Grad∆
∼̄

u)′〉 =
1

Vm

∫

Vm

∼

Pm · (Grad∆
∼̄

u)′ dVm (4.11)

=
1

Vm

∫

Vm




Div (

∼

PT
m (∆

∼̄

u)′)− (∆
∼̄

u)′ ·Div
∼

Pm
︸ ︷︷ ︸

=ρ0
∼

f=
∼

0




 dVm

=
1

Vm

∫

Vm

Div (
∼

PT
m (∆

∼̄

u)′) dVm

=
1

Vm

∫

Γm

∼

pm · (∆
∼̄

u)′ dΓm ,

whereby

Div(
∼

AT
∼

b) =
∼

A ·Grad
∼

b +
∼

b ·Div
∼

A

has been applied. Note that in (4.11)
∼

pm =
∼

Pm
∼

Nm is the first Piola-Kirchhoff stress vector

as stated in equation (2.28).

Secondly, the time derivative of (4.8)

(∆
∼̄

u)′ = (Grad
∼

uM ∆
∼

X )′ = (Grad
∼

uM)′ ∆
∼

X (4.12)

is inserted into (4.11)

〈
∼

Pm · (Grad∆
∼̄

u)′〉 =
1

Vm

∫

Γm

(
∼

pm · (Grad
∼

uM)′ ∆
∼

X ) dΓm (4.13)

=
1

Vm

∫

Γm

(
∼

pm ⊗ ∆
∼

X ) dΓm · (Grad
∼

uM)′

= 〈
∼

Pm〉 · (Grad
∼

uM)′ =
∼

PM · (Grad
∼

uM)′

allowing the identification of the homogenization rule. The integration of (4.13) can be sim-
plified when using discrete quantities at the nodes, see Figure 4.1, of the microscopic finite
element discretization

〈Pm〉 =
1

Vm

n∑

i=1

r(i)m ⊗∆X(i) . (4.14)



54 4. Numerical homogenization

To this end the sum of the dyadic product of the nodal forces r
(i)
m , compare with equation

(3.24) and the branch vector for all boundary nodes (i = 1, . . . , n) is evaluated. In order to
obtain the Cauchy stresses from (4.14) we perform a push forward (compare with Table 2.1)

σM =
1

JM
〈Pm〉FT

M . (4.15)

4.2.1.3 Implementation aspects

We want to give some remarks regarding practical implementation. Due to theMMM-principle

we have k independent microscopic BVPms and hence the FE2 approach is perfectly paral-
lelizable. This is illustrated in Figure 4.2. Within the nonlinear BVPM the Master program

Worker1

Worker2
Workern−1

Workern

σM

σMσM

σM FM

FM
FM

FM

distribute the k independent BVPms

Master program

· · ·

FE analysis on macroscale (BVPM)

Figure 4.2: Distributed computing of microscopic BVPms

distributes in each step of the iterative solution procedure the k independent BVPms to the
Workers, obtains the homogenized stresses σM and solves the macroscopic equation system.
The Master program is based on a discrete Newton-Raphson algorithm (i.e. applying a
numerical tangent) as mentioned at the end of section 3.3. Note that this algorithm is suf-
ficient for our purpose since we are only dealing with geometric nonlinearities, for including
material nonlinearities like viscosity or damage suitable algorithms are described in works of
Miehe, e.g. [72]. On the microlevel (i.e. the Workers) a hyperelastic high-order finite ele-
ment formulation as described in chapter 3 is applied. The different BVPms are solved by a
Newton-Raphson scheme on a Linux cluster.

4.2.2 FE2 method of higher-order

As stated above, boundary layer dependent size effects are present in cellular materials. In
order to account for these effects higher-order FE2 methods are required, compare with section
1.2. The higher-order projection and homogenization scheme applied within this thesis has
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already been derived for micromorphic continua in [62]. It is briefly reviewed and then adapted
to the p-version. For the adaption an efficient treatment of non-homogeneous Dirichlet

boundary conditions, which arise within the microscopic BVPms, has been developed and
implemented.

4.2.2.1 Projection

Similar to section 4.2.1.1 we have to introduce a functional

F(
∼

uM ,
∼̄

χM) = 〈
{

∼

um −
(

∼

uM + (
∼̄

χM −
∼

I)∆
∼

X
)}2

〉 → min , (4.16)

where the macroscopic displacement field
∼

uM +(
∼̄

χM −
∼

I)∆
∼

X refers to the micromorphic theory

of grade one. Minimization of (4.16)

dF =
∂F
∂

∼

uM
︸ ︷︷ ︸

=
∼

0

· d
∼

uM +
∂F
∂

∼̄

χM
︸ ︷︷ ︸

=
∼

0

· d
∼̄

χM = 0 (4.17)

yields

∂F
∂

∼

uM
= 0 : 〈∆

∼

u〉 =
∼

0 , (4.18)

∂F
∂

∼̄

χM

= 0 :
∼̄

χM −
∼

I = 〈∆
∼

u ⊗∆
∼

X 〉
∼

G−1
m . (4.19)

Note that (4.18) corresponds to (4.5) of the first-order case. In (4.19)

∼

Gm = 〈∆
∼

X ⊗∆
∼

X 〉 (4.20)

is the geometry tensor depending on the microstructure’s shape. Particularizing to the rect-
angular case, see Figure 4.1, the components of

∼

Gm are

[
∼

Gm] =
1

12






a2m 0

0 b2m




 . (4.21)

For the microscopic displacement field we assume

∆
∼̄

u =
∼

AM(
∼

XM , t) +
∼

BM(
∼

XM , t)∆
∼

X +
1

2

3

∼

C
M
(
∼

XM , t)(∆
∼

X ⊗∆
∼

X ) (4.22)

+
1

6

4

∼

D
M
(
∼

XM , t)(∆
∼

X ⊗∆
∼

X ⊗∆
∼

X ) ,

which is polynomial of degree three. Note that due to the extended kinematics and deformation
quantities a polynomial of degree three is required. Similar to section 4.2.1.1, the coefficient
tensors can be expressed in terms of macroscopic quantities

∼

AM = −1

2
Grad

∼̄

χM ∼

Gm (4.23)

∼

BM =
1

2

(

5 (
∼̄

χM −
∼

I)− 3Grad
∼

uM

)

(4.24)

3

∼

C
M

= Grad
∼̄

χM (4.25)

4

∼

D
M

= 5
(

(
∼̄

χM −
∼

I)−Grad
∼

uM

) 4

∼

I
∼

G−1
m . (4.26)
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Again, rigid body modes are excluded, and we set
∼

AM =
∼

0 . Inserting equations (4.24) to
(4.26) into (4.22) gives the complete projection rule

∆
∼̄

u =
1

2

(

(5(
∼̄

χM −
∼

I)− 3Grad
∼

uM)∆
∼

X +Grad
∼̄

χM(∆
∼

X ⊗∆
∼

X )
)

(4.27)

−5

6

({

(
∼̄

χM −
∼

I)−Grad
∼

uM

} 4

∼

I
∼

G−1
m

)

(∆
∼

X ⊗∆
∼

X ⊗∆
∼

X ) .

The consistency of the extended projection rule (4.27) with the one of the first-order pro-
jection rule, see (4.8), is shown in [62]. Let us briefly illustrate the idea: Firstly, we set the
extended quantities in (4.27) to zero. Then the remaining higher-order projection rule and the
first-order rule (4.8) are evaluated at the boundaries and, as expected, lead to the same results.

In component form (4.27) reads

∆ūx =
1

2
((5 (χ̄xxM

− 1)− 3ux,XM
)∆X + 5 (χ̄xyM − 3ux,YM

)∆Y (4.28)

+ χ̄xx,XM
(∆X)2 + 2 χ̄xy,XM

∆X ∆Y + χ̄xy,YM
(∆Y )2

)

−
(

10

am · am
(χ̄xxM

− 1− ux,XM
)(∆X)3 +

10

bm · bm
(χ̄xyM − ux,YM

)(∆Y )3
)

and

∆ūy =
1

2
((5 (χ̄yxM

− 1)− 3uy,XM
)∆X + 5 (χ̄yyM − 3uy,YM

)∆Y (4.29)

+ χ̄yx,XM
(∆X)2 + 2 χ̄yx,YM

∆X ∆Y + χ̄yy,YM
(∆Y )2

)

−
(

10

am · am
(χ̄yxM

− uy,XM
)(∆X)3 +

10

bm · bm
(χ̄yyM − 1− uy,YM

)(∆Y )3
)

.

In Figure 4.6 and 4.7 a deformation mode, where all strain-like quantities except for uy,XM
are

zero, is shown. For additional modes and further discussions please refer to [62, 64].

4.2.2.2 Dirichlet boundary conditions for p-FEM

The projection of the extended deformation modes defines a nonhomogeneous BVPm in the
reference configuration with a prescribed polynomial displacement field ∆

∼̄

u(∆
∼

X ) up to order
three as presented in section 4.2.2.1. In the p-version elements are larger than in the classical
h-version. Therefore, we face two problems with our p-elements: The linear nodal modes which
interpolate the nodal values are not sufficient for an accurate representation of ∆

∼̄

u(∆
∼

X ) and
the hierarchic edge modes are non-interpolatory and can therefore not be directly applied to
impose the Dirichlet boundary conditions defined at the edge of a two-dimensional p-finite
element. In order to resolve this problem, in a first step we interpolate

∼̄

u(∆
∼

X ) by means of
Lagrangian nodal shape functions applying the non-equidistant collocation points proposed
by Babuška and Chen [14], compare with table A.1. In a second step we perform a projec-
tion of the interpolatory polynomial into the set of hierarchic shape functions utilized by the
p-finite elements.
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In the following we will show the details of this approach: For the ease of notation we consider
just one component of the prescribed Cartesian displacement vector2, denoted by ∆ū. Since
computational efficiency plays an important role in the FE2-method, we take advantage of the
fact that the edges of the p-elements, which are applied to discretize the microstructure,
are parallel to the Cartesian coordinate system. To be more specific, let us consider the
situation as depicted in Figure 4.3. A straight boundary edge of a p-element is parallel to

(X1m , Y1m) (X2m , Y2m)

ξ

η

ū

ū

FE node

BaCh point

∆
∼

X

∼

EXm

∼

EYm

Figure 4.3: Discretized microstructure with one-dimensional prescribed displacement function ∆ū of
degree p = 3

either
∼

EXm
or

∼

EYm
and bounded by two nodes (X1m , Y1m) and (X2m , Y2m). Depending on the

orientation of the element, the corresponding local coordinate of the element’s edge is either
ξ or η. Considering the element depicted in Figure 4.3, we have Y1m = Y2m and the mapping
function of the corresponding edge simplifies to

Ym = Ym → Xm(ξ) = N1(ξ)Xm1
+N2(ξ)Xm2

and we obtain a constant Jacobian

J =
dXm

dξ
=

Xm2
−Xm1

2
. (4.30)

The interpolation of ū (where ∆ has been omitted for the sake of simplicity) with nL = pL+1
Lagrangian polynomials of degree pL reads

ūL =
nL
∑

j=1

N
(pL)
j (ξ) ūL

j = N (pL) ūL with ūL
j = ū(∆

∼

X (ξBaCh)) (4.31)

where ξBaCh denote the aforementioned collocation points. In order to obtain the corres-
ponding representation in terms of the hierarchic shape functions Ni, a least-squares fit of the

2This is not a general restriction and is only made for simplifying the discussion. In the practical imple-
mentation ∆

∼̄

u has the spatial dimension d = 2.
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derivatives of the prescribed displacement functions is performed

F =
1

2

Xm2∫

Xm1

(

dūN

dX
−

dūL

dX

)2

dX (4.32)

=
1

2

1∫

−1





nN
∑

i=1

dNi

dξ
J−1 ūN

i −
nL
∑

j=1

dN
(pL)
j

dξ
J−1 ūL

j





2

J dξ

=
1

2

1∫

−1





nN
∑

i=1

dNi

dξ
ūN
i −

nL
∑

j=1

dN
(pL)
j

dξ
ūL
j





2

dξ J−1 → min .

Note that nN = pN + 1 is the number of the hierarchic shape functions up to a polynomial
degree of pN , where pN ≥ pL. Minimization of (4.32) yields a linear equation system

∂ F
∂ūN

k

=

1∫

−1




dNk

dξ





nN
∑

i=1

dNi

dξ
ūN
i −

nL
∑

j=1

dN
(pL)
j

dξ
ūL
j







 dξ J−1 = 0 (4.33)

k=1,...,nN

→
1∫

−1





(

dN

dξ

)T
dN

dξ
ūN −

(

dN

dξ

)T
dN (pL)

dξ
ūL



 dξ J−1

= (K ūN −AūL) J−1 = 0

with

K =











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






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2

−1
2

0 0 . . . 0

1
2

0 0 . . . 0

1 0 . . . 0

1 . . . 0

. . .

sym 1


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















A =




















1
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2

0 0 . . . 0

−1
2

1
2

0 0 . . . 0

A31 A32 A33 A34 . . . A3nL

A41 A42 A43 A44 . . . A4nL

. . .

AnN1 AnN2 AnN3 AnN4 . . . AnNnL




















.

Now, the advantage of taking the derivatives of the displacement functions is obvious: Except
for the first two rows / columns, K is only populated on the main diagonal, compare with
equation (3.62). In addition, due to the fact that the nodal values can be determined directly,
i.e. ūN

1 = ūL
1 and ūN

2 = ūL
2 , only a matrix-vector multiplication AūL has to be computed and

no system of equations has to be solved.
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4.2.2.2.1 Numerical example

Here, a macroscopic state of deformation

∼

FM =






0 + 1 1.0

0 0 + 1






∼

e iM ⊗
∼

EIM

i.e. with ux,YM
= 1.0 is considered. Inserting this state into (4.28) results in a superposition

of linear and cubic modes. These modes are then projected onto two quadratic homogeneous
microstructures of identical size (1×1)mm but with different discretizations: Discretization 1
uses only one p-element while discretization 2 is based on 400 p-elements, see Figures 4.4 and
4.5 respectively. In both cases the tensor product space is applied. Furthermore, we assume
linear elastic, isotropic behavior with Young’s modulus E = 210GPa and Poisson’s ratio
ν = 0.3. For a polynomial degree of p = pN = pL = 3, each discretization exactly represents

Figure 4.4: Discretization 1 using one p-
element

Figure 4.5: Discretization 2 using 400 p-
elements

the boundary’s deformation pattern, see Figures 4.6 and 4.7. However, the differences in the
contourplots of the shear stresses3 σxy, for which the same color scheme (σxy ∈ (−55, 484)GPa)
has been used, indicate that a polynomial degree p = 3 for discretization 1 is too low, and
a p-extension is suggested. In Figure 4.8 the relative error in the energy norm, compare
with Equation (3.49), of discretization 1 is plotted against the number of degrees of freedom
N in a double-logarithmic style. The reference value has been obtained by a p-extension
with discretization 2. Due to singularities at the corners we only obtain an algebraic rate of
convergence. Nevertheless, from p = 5 on, ‖e‖E(Ω) is significantly below 1 %.

3The shear stresses were exemplarily chosen, i.e. all other strains/stresses differ, too.
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Figure 4.6: Discretization 1: deformation
due to ux,YM

= 1.0, contour plot
of σxy for p = 3; scaling factor
0.1

Figure 4.7: Discretization 2: deformation
due to ux,YM

= 1.0, contour plot
of σxy for p = 3; scaling factor
0.1

4.2.2.3 Homogenization

The departure point for the derivation of appropriate homogenization rules is the extended
Hill-Mandel condition particularized to the reference configuration

〈
∼

Pm · (Grad∆
∼

u)′〉 =
∼

P̄M ·
(
5

2
(
∼̄

χM)′ − 3

2
(
∼

FM)′
)

+
∼

H̄M ·
(

(
∼̄

χM)′ − (
∼

FM)′
)

(4.34)

+
3

∼

Q
M

· (Grad
∼̄

χM)′ ,

where

∼

P̄M =
∼

PM +
∼

ĤM , (4.35)

∼

H̄M = −5

2 ∼

PM − 3

2 ∼

ĤM , (4.36)

∼

ĤM = (
∼

HM −
∼

PM)
∼

F̄
(T)
M , (4.37)

3

∼

Q̄
M

=
3

∼

Q
M
·̂ (

∼̄

χ
(−T)
M ,

∼

I) . (4.38)

Note that the operator ·̂ in (4.38) is defined as

3

∼

C ·̂ (
∼

A,
∼

B) = CKLM ALN BMO
∼

EK ⊗
∼

EN ⊗
∼

EO . (4.39)

Transforming the left hand side of (4.34) as shown in (4.11) and again inserting the time
derivative of the microscopic displacement field (4.22)

(∆
∼̄

u)′ = (
∼

BM(
∼

XM , t))′∆
∼

X +
1

2
(
3

∼

C
M
(
∼

XM , t))′(∆
∼

X ⊗∆
∼

X ) (4.40)

+
1

6
(
4

∼

D
M
(
∼

XM , t))′(∆
∼

X ⊗∆
∼

X ⊗∆
∼

X )
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Figure 4.8: Discretization 1: p-extension with p = 3, . . . , 8

gives

〈
∼

Pm · (Grad∆
∼

u)′〉 =
1

Vm

∫

Γm

(
∼

pm ⊗∆
∼

X ) dΓm · (
∼

BM(
∼

XM , t))′ (4.41)

+
1

2Vm

∫

Γm

(
∼

pm ⊗∆
∼

X ⊗∆
∼

X ) dΓm · (
3

∼

C
M
(
∼

XM , t))′

+
1

6Vm

∫

Γm

(
∼

pm ⊗∆
∼

X ⊗∆
∼

X ⊗∆
∼

X ) dΓm · (
4

∼

D
M
(
∼

XM , t))′ .

We can identify in (4.41)

∼

P̄M =
1

Vm

∫

Γm

(
∼

pm ⊗∆
∼

X ) dΓm , (4.42)

3

∼

Q̄
M

=
1

2Vm

∫

Γm

(
∼

pm ⊗∆
∼

X ⊗∆
∼

X ) dΓm , (4.43)

4

∼

H̄
M

=
1

6Vm

∫

Γm

(
∼

pm ⊗∆
∼

X ⊗∆
∼

X ⊗∆
∼

X ) dΓm . (4.44)

Note that for a rectangular microstructure the fourth-order hyper stress tensor can be reduced
to the second-order one via

∼

H̄M = −5
4

∼

H̄
M
(
4

∼

I
∼

G−1
m ) . (4.45)

For a practical implementation equations (4.42) to (4.44) have to be brought into a discrete
(i.e. nodal based) form as demonstrated for the first-order FE2 scheme, refer to equation
(4.14).
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4.3 Three-dimensional homogenization

This section is structured as follows: After a short introduction to the three-dimensional FE2

method of first-order with restriction to small strains we focus on a homogenization approach
to determine effective material parameters of real microstructured materials. This approach
was proposed by Hain [46]. Its basic idea is to transform CT-scans of micro structured
materials into RVEs4. The effective material parameters can be extracted from the RVEs. In
contrast to [46], which followed an h-FEM discretization strategy for the RVEs, we apply here
the FCM, as introduced in section 3.6.

4.3.1 Projection and homogenization

Here, the projection and homogenization rules for the three-dimensional case assuming in-
finitesimal strains are summarized, refer also to Figure 4.9. A formal derivation is skipped
since it has been presented in section 4.2. The projection rule

∆
∼̄

u =
∼

εM ∆
∼

X , (4.46)

has the same structure as (4.8). The only difference lies in the strain-like quantity, namely
Grad

∼

uM is replaced by
∼

εM . For the homogenization we replace in (4.14) Pm by σm yielding

〈σm〉 =
1

Vm

n∑

i=1

r(i)m ⊗∆X(i) (4.47)

where n is the number of boundary nodes. For the extraction of effective material parameters

∼

EXM

∼

EYM∼

EZM

r
(i)
m

Vm

∼

Nm

∼

OM

∼

Om
∼

XM

∼

Xm

∆
∼

X

FE boundary node

Figure 4.9: Three-dimensional microstructure with boundary nodes

the average engineering strain tensor is of importance. We define

〈
∼

εm〉 =
1

2
(〈Grad

∼

um〉+ 〈Grad
∼

um〉T) . (4.48)

4Note that RVE stands for Representative Volume Element and was introduced in section 1.2.
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where the average displacement gradient reads

〈Grad
∼

um〉 =
1

Vm

∫

Vm

(Grad
∼

um) dVm . (4.49)

Next, the volume integral is transformed to a surface integral resulting in

〈Grad
∼

um〉 =
1

Vm

∫

Γm

(
∼

um ⊗
∼

Nm) dΓm (4.50)

with
∼

Nm as the outer unit normal vector, compare with Figure 4.9.

Now, rewriting (4.48) we obtain

〈
∼

εm〉 =
1

2Vm

∫

Γm

(
∼

um ⊗
∼

Nm +
∼

Nm ⊗
∼

um) dΓm . (4.51)

Finally, we arrive at the discrete form of (4.51)

〈εm〉 =
1

2Vm

n∑

i=1

(

(u(i)
m ⊗N(i)

m +N(i)
m ⊗ u(i)

m )A(i)
m

)

(4.52)

whereby A
(i)
m is the area associated with node (i). For an equidistant FCM grid with element

size h the resulting surface mesh is depicted in Figure 4.10. One only has to distinguish

h

h

h h
h
2

h
2

corner node

edge node

interior node

Vm

∼

EXm

∼

EYm
∼

EZm

Figure 4.10: Equidistant surface mesh with gray-shaded areas A
(i)
m
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between areas associated with corner, edge and interior nodes. However, at edge and corner
nodes there are two and three possibilities, respectively, of how to define a normal vector. In
order to circumvent this problem, these nodes are treated two and three times, respectively,
in (4.52), whereby only the area associated with the corresponding normal vector is used.

4.3.2 Effective material parameters

The departing point for computing the effective material parameters is, as mentioned above,
a micro CT-scan with domain ΩCT from which we extract a subdomain Ωsub. Now, one could
directly apply linear Dirichlet boundary conditions as given in (4.46) to Ωsub. However,
when dealing with heterogeneous materials, boundary layer effects may become dominant,
thus throwing doubt on the the resulting stresses and forces. In order to resolve this problem,
one could apply periodic boundary conditions as mentioned in section 4.2.1.1 or, as performed
in this thesis, one embeds the subdomain into a window Ωwin with thickness twin and averaged
stiffness which is - of course - initially unknown and thus has to be determined iteratively.
This approach is known as the window or self-consistency method, refer to [46, 107] and the
literature cited therein. In Figure 4.11 the procedure is sketched for the two-dimensional case,
in three dimensions it works analogously. We are now in a position to set up the FCM-model:

ΩCT ΩsubΩwin

twin

Γwin

extract Ωsub

Figure 4.11: Two-dimensional illustration of the window method

For Ωsub the FCM is used, and for Ωwin a classical p-version is sufficient, since no voids or
inclusions are present there. Since in general the microstructure is represented by discrete
voxel data and the derivation of a geometric model would be encountered with high effort, the
current FCM-version mainly uses a voxel-based piecewise description of the geometry. Note
that the microstructure’s elastic properties within Ωsub correspond to its bulk value, and - as
mentioned above - the parameters of the window are the microstructure’s effective parameters
which are unknown initially and therefore have to be determined iteratively. Within this
iterative process the effective parameters of the RVE, i.e. the entries of the material matrix
C eff , are computed by numerical differentiation, compare with the discrete version of the
Newton-Raphson method as described in section 3.3. To this end we choose an arbitrary
macroscopic state of strain

∼

ε and disturb it component-wise by ∆ε 6= 0 leading to seven load
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cases5. Using Voigt notation allows for column-wise storing of the load cases

ε̃ =

[

ε̃1 . . . ε̃7

]

. (4.53)

We project (4.53) via (4.46) onto the window’s boundary Γwin, solve the BVP, and using (4.47)
and (4.52) obtain stresses

〈σ̃〉 =

[

〈σ̃1〉 . . . 〈σ̃7〉
]

(4.54)

and strains

〈ε̃〉 =

[

〈ε̃1〉 . . . 〈ε̃7〉
]

. (4.55)

for the subdomain Ωsub, respectively. Finally, the components of C eff can be computed by

C eff
ij ≈







(〈σ̃ i
1〉 − 〈σ̃ i

j+1〉)
‖〈ε̃1〉 − 〈ε̃j+1〉‖L2

if j <= 3

1

2

(〈σ̃ i
1〉 − 〈σ̃ i

j+1〉)
‖〈ε̃1〉 − 〈ε̃j+1〉‖L2

if j > 3

, (4.56)

where superscripts index the individual vector-components of the ( ·̃)-quantities and the factor
1/2 is due to Voigt notation. Note that C eff is written down explicitly in equation (A.1).
In order to determine a proper window size this procedure is carried out for different values
of twin. In Algorithm A-2 we summarize the whole procedure. Note that for each twin the
computation of the effective properties is repeated until the Frobenius norm of the difference
of two consecutively computed effective material matrices falls within a prescribed tolerance.

Some remarks to Algorithm A-2:

• Since the material parameters of the subdomain Ωsub are constant, the stiffness matrices
K sub

e need to be computed only once.

• For setting up Dirichlet boundary conditions the penalty method is used, see [32].

• The solution toKũ = F(∆˜̄u) is computed efficiently by the Parallel Sparse Direct Solver
PARDISO which allows for multiple right-hand sides [85, 86].

5Note that indices m and M will be skipped within this section in order to avoid overloading the notation.
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Algorithm A-2 Determination of C eff

1: read in CT data ΩCT

2: extract a subdomain Ωsub from ΩCT

3: discretize Ωsub by the FCM
4: for all esub do
5: compute K sub

e

6: end for
7: set C eff = I
8: for c = 1, . . . , 7 do
9: ε̃c = I

10: if c > 1 then
11: ε̃ c−1

c − = ∆ε
12: end if
13: end for
14: for all twin do
15: embed Ωsub into the window with nwin boundary nodes
16: repeat
17: set C old = C eff

18: set C win
e = C eff

19: for all ewin do
20: compute K win

e =
∫

Ωe

BTwin
e C win

e B win
e dΩe

21: end for
22: assemble global stiffness matrix K out of K sub

e and K win
e

23: for i = 1, . . . , nwin do
24: for c = 1, . . . , 7 do
25: ∆˜̄u

(i)
c = ε̃ c∆X(i)

26: end for
27: end for
28: set up Dirichlet problem and solve Kũ = F(∆˜̄u) simultaneously
29: for i = 1, . . . , nsub do
30: for c = 1, . . . , 7 do

31: 〈σ̃c〉+ =
(

r̃
(i)
c ⊗∆X(i)

)

/Vsub

32: 〈ε̃c〉+ =
(

(ũ
(i)
c ⊗N(i) +N(i) ⊗ ũ

(i)
c )A

(i)
sub

)

/Vsub

33: end for
34: end for
35: for i = 1, . . . , 6 do
36: for c = 1, . . . , 6 do
37: C eff

ic =
(
〈σ̃ i

1〉 − 〈σ̃ i
c+1〉

)
/ ‖〈ε̃1〉 − 〈ε̃c+1〉‖L2

38: if c > 3 then
39: C eff

ic / = 2
40: end if
41: end for
42: end for
43: until

(∥
∥C eff −C old

∥
∥
Frob

/
∥
∥C old

∥
∥
Frob

)
< tolerance

44: end for
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Chapter 5

Numerical investigations

In this chapter we present our numerical examples. We hereby apply all of the homogenization
schemes which were developed in chapter 4: In two dimensions the focus lies on deformation-
induced anisotropy under large displacements and size effects. In three dimensions we will
homogenize solid-like and foam-like materials and apply the resulting effective material pa-
rameters to verification and validation examples with special focus on sandwich structures.
In addition, a microscopic approach will be performed for stability investigations of cellular
materials.

5.1 Two-dimensional numerical homogenization

5.1.1 First-order FE2 with large deformations

In this section the FE2 approach of first-order including large deformations as described in
section 4.2.1 will be investigated numerically for cellular materials [88]. Before going into
detail, we briefly review some important publications concerning nonlinear analysis of cellular
materials: Zhu et al. [108] subjected tetrakaidecahedral cells to high strain compression,
and the numerical results were validated experimentally. Similar investigations can be found in
the works of e.g. Laroussi et al. [71] or Wang and Cuitiño [100]. Note that Wang and
Cuitiño included the analysis of deformation-induced anisotropy and anisotropy depending
on the initial cell orientation. Two-dimensional computations with honeycomb structures un-
der large deformations including plasticity can be found in Triantafyllidis and Schraad

[97]. Ohno et al. [77] presented a homogenization framework allowing the study of mi-
croscopic bifurcation under compression. A method to determine an appropriate number of
unit cells in an RVE was described by Saiki et al. [84]. Different load cases (tension, com-
pression, and shear) were studied within a homogenization concept proposed by Hohe and
Becker [55]. Deformation-induced anisotropy was detected here, too.

After this brief review let us give an outline of our analysis: We start with a TVE1 where the
accuracy of a corresponding discretization with p-FEM by means of a hierarchical p-refinement
will be investigated. Then the proposed FE2 framework of first-order in combination with
the TVE is applied to three specific examples: A uniaxial tension test, a simple shear test

1Note that TVE stands for Testing Volume Element and was introduced in section 1.2.
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and a bending test. Here, the focus lies on finding suitable boundary conditions for the
TVE, the TVE’s size, and measuring the deformation-induced anisotropy qualitatively and
quantitatively.

5.1.1.1 TVE, discretization and boundary conditions

The TVE corresponds to a section of a fully resolved foam-like structure and its size should be
large enough to provide basic deformation mechanisms. In Figure 5.1 an undisturbed TVE of
size < 1 > is depicted. TVE<1> consists of hexagons, whereby one hexagon is generated out
of six beams. Note, that the hexagons have quadratic shapes, i.e. their beams do not have
the same length. For a more realistic modeling of foam-like materials we introduce random

Figure 5.1: Undisturbed TVE of
size < 1 >

Figure 5.2: TVE of size < 1 > with
random disturbances [88]

disturbances to the geometry of the TVE. To achieve this, the original coordinates of the
TVE are randomly disturbed, see Figure 5.2. These random disturbances can be regarded
as imperfections, which govern microstructural buckling patterns, i.e. the secondary path
is entered directly and therefore a possible bifurcation problem is circumvented. A detailed
description of microstructural buckling phenomena including bifurcation analysis is given e.g.
in [55, 77, 84, 106]. In order to study the influence of the TVE’s size we introduce two
additional TVEs of increasing size (where apart from disturbances, the geometric properties
correspond to TVE<1>), as shown in Figures 5.3 and 5.4. A fully resolved foam-like structure
as shown in Figure 5.5 will be used for creating reference solutions. In a further step, we
consider the discretization of the TVE. Figure 5.6 depicts TVE<1> being discretized with
quadrilateral elements of high-order. By means of αm the TVE’s original

∼

EXm
,
∼

EYm
-coordinate

system can be rotated into the
∼

ĒXm
,

∼

ĒYm
-coordinate system. The TVEs of size < 2 > and

< 4 > are discretized analogously. Since the p-version of the FEM allows the use of continuum
elements with high aspect ratio, the TVE is meshed by two-dimensional beam-like elements
(Figure 5.6, B), that are connected by trapezoidal elements (Figure 5.6, A). Two different
types of boundary conditions are defined: A hard support uses the element’s edge for setting
the displacement and therefore corresponds to prescribing both translational and rotational
degrees of freedom as in classical beam theory (Figure 5.6, C); a soft support uses only one
single node and therefore corresponds to a pin support (Figure 5.6, D). For the beam-like
elements an anisotropic Ansatz in the local element directions (refer to section 3.4.3) is chosen,
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Figure 5.3: TVE of size < 2 > with
random disturbances [88]

Figure 5.4: TVE of size < 4 > with
random disturbances [88]

Figure 5.5: Fully resolved foam-like structure with random disturbances [88]
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∆ūy
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Ē Ym

αm

Figure 5.6: Discretized TVE<1> with random disturbances [88]

for the other elements the Ansatz is isotropic, i.e. p = q. The accuracy of a p-refinement
based on the tensor product space should then be investigated. In [92] it is demonstrated that
a polynomial degree of q = 3 in thickness direction is sufficient and yields a good accuracy.
For the isotropic elements, we set p = q = 3 in both local directions of the element. The
question of how to choose the polynomial degree p in the longitudinal direction of the beam-
like elements is still open. To answer this question, we apply an arbitrary state of deformation
to TVE<1> assuming soft support via (4.8), where

∼

FM =






0.1 + 1 −0.13

0.16 −0.15 + 1






∼

e iM ⊗
∼

EIM

is fully populated and unsymmetrical, leading to a nonlinear BVPm. The deformation is
applied in 10 load steps, assuming hyperelastic material behavior, see (2.47). We choose
µm = 80.8 GPa and Λm = 121.1 GPa, which corresponds to a compressible material, i.e.
Poisson’s ratio ν = 0.3. The polynomial degree p = 3, . . . , 10 is gradually increased. In
Figure 5.7 the strain energy (3.47) is plotted against the number of degrees freedom N . It can
be observed that p = 5 yields a good accuracy. For conservative results we set p = 6 for the
subsequent numerical examples.
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Figure 5.7: Strain energy at the final load step plotted against the number of degrees of freedom [88]

5.1.1.2 Numerical examples

The numerical examples presented in this section are obtained by applying the proposed
FE2 framework. On the macroscale we use bi-quadratic eight-noded Lagrangian finite
elements, each with 4 Gaussian points. Note that the underintegration does not lead to any
numerical problems. This is due to the fact that the zero energy modes, which might occur,
are non-communicable; also refer to [66]. The load on the macroscale is applied incrementally.
At each Gaussian point of the macroscale a microstructure (TVE) is attached. For each
macroscopic integration point the corresponding microstructure is randomly disturbed (as
depicted in Figure 5.2), yielding a statistical distribution of the disturbances which leads to
small inhomogeneities in macroscopic stresses and strains even when dealing with homogeneous
macroscopic boundary conditions. Again, the material parameters in (2.47) are set to µm =
80.8 GPa and Λm = 121.1 GPa.

5.1.1.2.1 Uniaxial tension test

We start with a macroscopic uniaxial tension test as shown in Figure 5.8. To this end, the
displacement u is split into a top and a bottom displacement, on the left boundary symmetry
conditions are applied, and the right boundary is free. The macroscopic mesh consists of
10 × 10 bi-quadratic finite elements. The width of the mesh is B = 2mm and the height is
H = 2mm. A series of FE2 computations for a varying size of the TVE is performed and the
results are compared to a reference solution. In the FE2 computations αm is set to 0◦ for all
microstructures. The reference solution is obtained by using the fully resolved microstructure
(microscopic computation), applying 2D continuum p-elements with p = 6 and q = 3 resulting
in 367680 degrees of freedom, refer to Figure 5.5. Note that nearly no difference between soft
and hard support conditions for the reference solutions was observed for moderate engineering
strains (≤ 10%). This fact can be explained by St. Venant’s principle: The boundary
layers are very small compared to the whole structure and therefore do not influence the
overall mechanical behavior. As Dirichlet boundary conditions for the TVE we chose hard
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Figure 5.8: Uniaxial tension test [88]

support conditions. In a first step, the influence of the size of the microstructure (TVE) is
investigated in the small strain regime for both types of boundary conditions. In Figure
5.9 the results for the hard support conditions are compared. To do so, the resulting force
Fy =

∫

a

σyy da is plotted against the engineering strain εyy. From this it can be observed

that the FE2 computation with hard support yields a very stiff behavior even for TVE<4>.
The reason for this stiffening effect lies in the accumulation of strong boundary layer effects
within each TVE. Note that in this case a smaller TVE yields a stiffer mechanical behavior,
see [19]. For soft support conditions a much better agreement with the reference solution for
an increasing size of the microstructure can be observed, see Figure 5.10. In fact, for TVE<4>

nearly no difference with the microscopic computation is observed.

Next, we investigate the influence of large strains. In Figure 5.11 the macroscopic load-
engineering-strain curve (Fy vs. εyy) is depicted. From this it is evident that in the case of a
hard support, the stiffness is dramatically overestimated, as expected (FE2 TVE<1> and hard
support). Considering a soft support, the FE2 computation agrees well with the curve of a
reference solution, until a strain of εyy ≈ 10% is reached. For higher strains the difference
between both curves becomes more pronounced (FE2 with TVE<1> and soft support). If the
size of the microstructure (TVE) is increased, a better agreement with the reference solution
is obtained (FE2 with TVE<2> and soft support). This curve ends at a strain εyy ≈ 27.5%
due to highly distorted elements.

To investigate the effect of anisotropy, the TVE is rotated by an angle of αm = 90◦. Again,
a reference solution is obtained based on a fully resolved structure, where the geometry and
material parameters are chosen to be the same. The resulting curves are depicted in Figure
5.12. Again, it is observed that the FE2 computation with hard support differs significantly
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Figure 5.9: Tension test: Influence of the microstructure’s size applying hard support, αm = 0◦ [88]
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Figure 5.11: Tension test: Load-engineering-strain curve for orientation αm = 0◦ [88]
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from the reference solution (microscopic approach), especially for small values of εyy. However,
the soft support boundary conditions yield a very good agreement with the reference solution
(microscopic computation). Therefore, we apply in the following only soft support condi-
tions. These soft support conditions can be regarded as fluctuations relaxing the Dirichlet

boundary conditions.

In Figure 5.13, the transversal contraction ∆B
∆H

is plotted against the engineering strain. In
both cases a high transversal contraction is obtained. For αm = 90◦ one observes even a
maximum. The result is not surprising, since in general foam-like structures exhibit high
transversal contractions in tension.
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Figure 5.13: Tension test: Transversal contraction for orientations αm = 0◦ and αm = 90◦ [88]

5.1.1.2.2 Simple shear test

In the simple shear test as depicted in Figure 5.14 we apply periodic boundary conditions to
the left and to the right boundary. One benefit of the periodic boundary conditions is, of
course, the reduction in the number of elements; here only 1×10 elements are used. Note that
this shear test could also be performed with one single TVE. This would be more efficient, but
the small inhomogeneities in macroscopic stresses and strains due to statistical disturbances
varying between the TVEs would be excluded. The height of the specimen is set to H = 2mm.
In Figure 5.15 the macroscopic load-shearing-angle curve (Fxy vs. tan(γ) = u

H
) and the

deformed TVEs at the midpoint
∼

MM (refer to Figure 5.14) for two different orientations of the
TVE are shown. A nonlinear curve is observed until tan(γ) ≈ 0.3, which then transforms into a
straight line. The pictures of the deformed TVEs indicate that there is a deformation-induced
anisotropy, i.e. the gradual change of the load carrying behavior from bending to tension;
compare with [55, 100]. For a more quantitative investigation of this deformation-induced
anisotropy, the principal angle for the Cauchy stress tensor

∼

σ and the Euler-Almansi
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Figure 5.14: Simple shear test with periodic boundary conditions [88]
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strain tensor
∼

e

ϕ
∼

σ =
1

2
atan

(

2σxy

σxx − σyy

)

(5.1)

ϕ
∼

e =
1

2
atan

(

2 exy

exx − eyy

)

are introduced respectively. We define the ratio between ϕ
∼

σ and ϕ
∼

e as

R =
ϕ

∼

σ

ϕ
∼

e
. (5.2)

Note that for an isotropic material law R = 1. In Figure 5.16 the ratio-shearing-angle curves
(R vs. tan(γ) = u

H
) are plotted for the midpoint

∼

MM of the structure. A curve obtained by
using the isotropic macroscopic material law as stated in (2.47) is included, too. In contrast
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Figure 5.16: Shear test: Ratio-shearing-angle curve for orientations αm = 0◦ and αm = 90◦ [88]

to the computation based on this isotropic macroscopic material law, the ratios of the FE2

computations are not constant, which is an indicator of anisotropic material behavior.

Next, we consider the influence of the orientation αm of the TVEs on the resulting stress,
compare with [100]. We apply the same state of deformation (i.e. shearing)

∼

FM =






1 + 0.0 0.1

0.0 1 + 0.0






∼

e iM ⊗
∼

EIM

to TVE<1>, TVE<2>, and TVE<4> for each αm, which is subdivided into five load steps. In
Figures 5.17 to 5.25 the components of the homogenized Cauchy stresses are plotted using
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the same scale for all TVEs. They show obvious anisotropic behavior, i.e. they depend on αm,
and their shape depends on the TVE size. Note that there is no significant influence of the
disturbances on the anisotropy, i.e. the disturbances are too small to regularize the mechanical
behavior. Comparing the maximum stress values for the three TVEs, one realizes that they
decrease with increasing TVE size. This decrease is directly associated with the application of
displacement boundary conditions: If the TVE size is increased, the stresses will converge to a
limit, i.e. the TVE is representative for the material under consideration and can therefore be
termed RVE [52, 67]. Note however that our TVEs are too small to be representative, since
no convergence in stresses is obtained, yet. Another interesting point is, that, although we are
dealing with a shear test, the normal stresses σxxM

and σyyM are dominant. This observation
is directly connected to the inherent properties of the microstructure (TVE). In Figures 5.26,
5.27, and 5.28 the principal angle computed from the Cauchy stress tensor is plotted. Again,
an anisotropic behavior depending on αm can be observed.
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5.1.1.2.3 Bending test

In the macroscopic bending test a beam-like structure is symmetrically loaded by a prescribed
displacement. Due to symmetry only half of the system has to be modeled, see Figure 5.29.
The macroscopic mesh consists of 20 × 5 elements. The length is L = 8mm and the height
is H = 2mm. Therefore, the aspect ratio L/H of the beam equals 4. This example is
referred to as inhomogeneous, since bending is in general a combination of shear, tension and
compression. The macroscopic load-displacement curves (Fxy vs. u) for two different TVE
orientations αm = 0◦ and αm = 90◦ are shown in Figure 5.30. From this it is evident that the
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[88]

load-displacement curves obey nonlinear behavior. Let us focus on the displacement uyM at
the midline of the macrostructure which is evaluated at the cutline indicated in Figure 5.29.
Figure 5.31 shows uyM for u = 1.0 over the beam’s length for the two different orientations
of the TVE and additionally for a computation based on an isotropic macroscopic material
law. Whereas the rotation of the TVE by 90◦ is almost without effect, a very small difference
between the results of the FE2 approach and the isotropic macroscopic material law can be
observed.

5.1.1.3 Computational effort

Finally, let us give an impression of the computational effort: The FE2-computation in the
large strain tension test with TVE<2>, refer to Figure 5.11, took around two days2 on a Linux

cluster. On this cluster the BVPM is solved by an AMD Athlon 2500+ CPU and the BVPms
are distributed to 10 Worker nodes based on Intel 2.4 GHz CPUs, compare with the imple-
mentation scheme as described in section 4.2.1.3. In contrast, the corresponding microscopic
reference solution was computed within 2 hours using one single AMD Opteron with 2.4 GHz.

Therefore, from a computational point of view the FE2-method is not attractive, and one may
wonder why and where to apply such a demanding method in practice, or, in other words: Is
it possible to increase its efficiency and are there any cases where this method is of advantage?

Before answering this question please recall that our investigations have been performed within
the scope of basic research: The FE2-approach has been combined with p-FEM for the first

2Note that a similar computation time was measured for the bending test. Only the shear test could be
computed within hours thanks to the application of periodic boundary conditions leading to a lower number
of macroscopic integration points.



5.1. Two-dimensional numerical homogenization 83

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0  1  2  3  4  5  6  7  8

u
y
M

[m
m
]

xM [mm]

isotropic macroscopic material law
FE2 TVE<1> and αm = 0◦

FE2 TVE<1> and αm = 90◦

Figure 5.31: Bending test: Midline displacement uyM for u = 1.0 [88]

time and applied to two-dimensional cellular materials, whereby proposals for polynomial
degrees and boundary conditions have been derived. Coming back to the question one can
state that FE2-methods would be much more efficient if the nested BVP is avoided. This
is, however, only possible if the material’s answer on the microscopic level is assumed to be
linear. In this case effective material properties can be extracted via numerical homogenization
procedures first and then applied to arbitrary complex macroscopic structures where a pure
microscopic approach would fail due to problems in mesh generation and non-manageable
systems of equations even in 2D.



84 5. Numerical investigations

5.1.2 Higher-order FE2 with small deformations

In this section, we want to apply the higher-order homogenization procedure introduced in sec-
tion 4.2.2 to two different kinds of periodic grid structures which small statistical disturbances
of the geometry. In particular, we focus on squared and honeycomb grid structures, refer to
[64]. Linear-elastic material behavior in a regime of small strains is considered using Hooke’s
law (Young’s modulus E = 70 GPa, Poisson’s ratio ν = 0.3). Due to this assumption a
tabulated solution for the microstructures can be computed before hand and thus the nested
BVP is circumvented.

Throughout the numerical examples, the struts connecting the grid nodes on the microscale ex-
hibit a length lm = 1.5mm as well as a thickness of tm = 0.1mm, i.e. the aspect ratio is 1/15.
The struts are discretized by quadrilateral continuum elements accounting for anisotropic
higher-order Ansatz functions, refer to section 3.4.3. Besides the unit-cell calculation, this
micro discretization is also applied to generate reference solutions with full microscopic res-
olution. On the macroscale, rectangular finite elements are used with full quartic 16-noded
Lagrangian Ansatz functions for the displacement field as well as for the microdeformations.

L

h
∼

EXM

∼

EYM

I

II

III

IV

Figure 5.32: Schematic sketch of the macroscopic experimental setup, assignment of the boundaries
and the sample dimensions [64].

At first, a slightly disturbed squared grid structure under shear deformation will be exa-
mined. Afterwards, the investigations will be extended to honeycomb structures under shear
deformations. Additionally, a three-point bending test of a sandwich panel will be discussed.

5.1.2.1 Squared grid structure

5.1.2.1.1 Microtopology

Let us start our considerations with the microtopology of the squared grid structure. As has
been mentioned before, we assume the microstructure to be slightly disturbed. To this end the
positions of the different grid nodes may vary within a circle of radius r = 2/3 · δ · lm around
their exact position in a perfectly periodic structure, where δ is a disturbance parameter to
be varied throughout the following studies. An exemplary disturbed unit cell as well as a
representative sample for a reference experiment are depicted in Figures 5.33 a) and b) for
(δ = 0.2). In order to capture the statistics of unit cell disturbance within the proposed FE2
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a) b)

Figure 5.33: a) Disturbed unit cell and b) disturbed sample of the square grid structure (δ = 0.2)
[64]

scheme, the overall micromorphic material parameters have been computed evaluating 100
statistically disturbed unit cells. In comparison, the reference computations have also been
averaged over 50 statistically disturbed states.

5.1.2.1.2 Shear test

For the shear test in the
∼

EXM
direction, the samples are assumed to be of infinite length

L → ∞, see Figure 5.32. Boundaries II and III are subjected to clamping conditions, i.e.
no rotations of the beam-like connecting struts can appear. Expressed in terms of the mi-
crodeformation tensor of the micromorphic model, the clamping boundary condition reads

∼̄

χII
M =

∼̄

χIII
M =

∼

I. The overall shear stiffness for the squared grid structure has been investigated

for increasing overall sample sizes h. As is well-known from the literature, e.g. [19, 94] and
various others, this leads to the observation of a boundary layer effect due to clamping condi-
tions which leads to stiffening. The boundary layer is only controlled by the distance to the
boundary and, consequently, has the same thickness for small as well as for large samples, refer
to Figure 5.34, where n denotes the number of unit cells in the

∼

EYM
direction and therewith

the overall height of the sample h = n · lm.

Besides the decreasing influence of the boundary layer with increasing sample size, one also
may notice that the skew-symmetric part of the microdeformation tensor

∼̄

χM is dominant
and up to two orders of magnitude more pronounced than the symmetric part. This leads to
the conclusion that the micropolar continuum model, by definition assuming an orthogonal
microdeformation, should also be able to describe the overall material behavior of a squared
grid structure. Indeed, micropolar media accounting for orthotropic material symmetries have
been identified in the literature by analytical homogenization of squared grids composed of
Bernoulli beam elements, [1, 5, 101].
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Figure 5.34: Shear test of a squared grid structure. Development of the microshear deformations
over the normalized sample height within the FE2 calculations of the shear test for
several sample sizes, a) symmetric, b) skew-symmetric part [64]

a) b)

Figure 5.35: Deformed unit cell during shear test, a) center of the sample and b) at the top boundary
of the sample. The deformation in a) is fully periodic. Note that this periodicity is
achieved without application of any periodic fluctuation field but is only controlled by
the cubic loading condition [64].



5.1. Two-dimensional numerical homogenization 87

reference

micromorphic

micropolar

first-order

n [-]a)

|tI
I
I

x
|[
-]

1

1.1

1.2

1.3

5 10 15 20 25 30 35 40

reference

micromorphic

micropolar

first-order

n [-]

5 10 15 20 25 30 35 40

0

-0.1

-0.2

b)

|tI
I
I

x
|−

|tI
I
I

x
re
f|
[-
]

Figure 5.36: Shear test of a squared grid structure (δ = 0.3). a) Normalized traction at surface III.
b) Error of the FE2 calculations relative to the reference solution [64].

In Figure 5.35, two representative deformation states of an undisturbed unit cell as predicted
by the numerical homogenization approach are depicted for the shear test a) in the center
of the sample and b) close to boundary III, respectively. It is remarkable that the intro-
duced loading condition enriches the deformation modes in such a way that cubic periodicity
is represented. Even in the situation Figure 5.35 a) far away from any clamped boundary
the interplay between the shear components of the macroscopic displacement gradient on the
one hand and the macroscopic microdeformation tensor on the other exhibits a deformation
state which totally differs from that of first-order FE2 linear loading conditions, compare with
Figures 5.37 and 5.38. By contrast, the unit cell deformation predicted close to the boundary

Figure 5.37: State of deformation due to first-
order FE2

Figure 5.38: State of deformation due to higher-
order FE2

is dominated by bending of the struts similar to that which would be expected in reference
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computations.

In order to verify the homogenization model in a quantitative manner, the shear moduli ex-
pressed in terms of normalized3 shear boundary tractions are depicted for different sample
sizes n in Figure 5.36. With regard to the reference computation, we observe the stiffening ef-
fect due to the boundary layer accounting for up to 27% (n = 4). For increasing sample sizes,
the stiffening effect decreases and vanishes for infinite sample heights. Whilst the first-order
FE2 approach is not able to describe bending effects and stiff boundary layers at all, the mi-
cromorphic as well as the micropolar homogenized model predict the reference computations
with high accuracy even for the smallest sample (n = 4). Hence, the micropolar model seems
to suffice for the overall modeling of squared grid structures.
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Figure 5.39: Shear test of a single-cross microstructure. Error of the micromorphic FE2 calculations
relative to the reference solution for different disturbance numbers δ [64].

Finally, we would like to discuss the influence of the disturbance. For that reason, the same
evaluation as before was carried out with an increasing disturbance measure 0 ≤ δ ≤ 0.8, see
Figure 5.39. We have found the quality of the homogenized model to strongly depend on the
periodic regularity of the unit cell which is of course violated by the disturbance. For δ > 0.4,
this type of polynomial loading condition loses its geometrical relevance and fails.

3Note that the normalization is based on the first-order results, i.e. |tIII
x

| = tIII
x

/tIII
x first−order .
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5.1.2.2 Honeycomb grid structure

amam

bm

tm

Figure 5.40: Disturbed unit cell of the honeycomb grid structure (δ=0.2). The unit cell is split into
two microvolumes with the edge length am =

√
3 · lm/2 and bm = 3 · lm/2, where lm is

the length of the connecting struts in the undisturbed state [64].

5.1.2.2.1 Microtopology

In the sequel, we will discuss the higher-order homogenization scheme applied to honeycomb
grid structures. Again, the ideal positions of the grid nodes have been statistically disturbed
within a radius r = 2/3 · δ · lm around their regular position. For the microscale modeling
within the extended FE2 scheme, two different orientations of grid nodes, resulting in the
formulation of two different unit cells, can be found in Figure 5.40. The overall stress response
of the microstructure can then be calculated as the average of the two different orientations.

5.1.2.2.2 Shear test

Let us consider first the shear test in the
∼

EXM
direction with L → ∞, compare with Figure

5.32, where h = 3/2 · n · lm. At boundary II and III, clamping conditions are prescribed,
i.e.

∼̄

χII
M =

∼̄

χIII
M =

∼

I in terms of the overall micromorphic model. In Figure 5.41, the shear
components of the microdeformation tensor predicted by the homogenization approach are
plotted over the sample height for different values n. Similar to the squared grid structure,
we observe a pronounced size effect, dependent on the stiff boundary layer. But when com-
paring the results for χ̄xyM and χ̄yxM

, we do not observe any symmetry or skew-symmetry of
the microdeformation tensor

∼̄

χM , either within the boundary layer or within the regions not
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influenced by the clamping boundary conditions.
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Figure 5.41: Shear test of a honeycomb microstructure. Development of the microshear deformations
over the normalized sample height within the FE2 calculations of the shear test for
several sample sizes, a) χ̄xyM , b) χ̄yxM

[64].

Thus, for the proposed homogenization methodology with the introduced polynomial loading
condition, the micropolar continuum model is not able to describe the micromechanical defor-
mation processes of honeycomb structures in an adequate way. This result agrees with results
found in the literature, e.g. [83, 95], where the authors were unable to identify micropolar
material parameters for honeycomb structures in an unique way.

a) b)

Figure 5.42: Deformed set of unit cells observed a) in the center b) on the top boundary of the
sample. The unit cell in Figure a) is artificially continued due to the periodicity of
the observed deformation states. Again, no further periodic fluctuations but the cubic
projection polynomial have been taken into account [64].
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Figure 5.43: Positions of the deformed microstructures of Figure 5.42 in the sample
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Figure 5.44: Shear test of a honeycomb microstructure (δ = 0.2). a) Normalized traction at surface
III. b) Error of the FE2 calculations relative to the reference solution [64].



92 5. Numerical investigations

The deformation states predicted by the homogenized model are projected onto the unit cells
and the resulting deformation patterns are visualized in Figures 5.42 a) and b) for the sit-
uation in the center of the sample and close to the boundary, respectively, see Figure 5.43
for the corresponding positions. In order to demonstrate the periodic character of the cubic
deformation modes, the unit cell has been periodically continued for the former case. Note
that, again, no fluctuations in addition to the polynomial loading conditions are taken into
account.

Finally, let us quantitatively compare the effective shear modulus predicted by the homoge-
nized model in comparison to the reference calculation. In Figure 5.44, the normalized surface
traction is plotted versus the number of unit cells in vertical direction (δ = 0.2). For n = 5
we observe a stiffening effect of about 1.15 compared to the (nearly) clamping free state at
n = 40. Whereas the first-order FE2 model accounting for linear loading conditions is only
able to predict the (nearly) clamping-free state, the micromorphic homogenized model leads
to reasonable results even for small sample sizes.

Due to the kinematical misfit of the micropolar overall continuum model, the homogenized
model overestimates the stress responses which are not depicted here.

5.1.2.2.3 Bending test of a sandwich panel

In the following, we will extend the complexity of the macroscopic boundary value problem to-
wards bending-dominated loading. The overall size of the sample is chosen to be L = 16·

√
3·lm

and h = 3/2 · n · lm. In Figure 5.45 a fully resolved microstructure for reference computations
is shown for n = 9.

Figure 5.45: Sandwich structure: Microscopic resolution for n = 9 with δ = 0.2

The left and the right boundaries I and IV are clamped. The top and the bottom bound-
aries II and III are glued to thin surface sheets (E = 70GPa, ν = 0.3) of thickness
tm = 0.5mm such that clamping can also be assumed between the surface sheets and the
cellular core. For the bending process, the right boundary IV undergoes the vertical displace-
ment uyM = −0.01mm.

The components of the microdeformation tensor as predicted by the homogenized model are
depicted in Figure 5.46. At first, one may observe that there are boundary layers active at
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c) d)
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Figure 5.46: The four components of the microdeformation tensor
∼

χ̄M observed in the sandwich
bending test for n = 9. Note that for visualization purposes the height has been scaled
by 1.6̄ [64].
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the clamped boundaries as well as at the glued surface sheets, compare with Figures 5.46 c)
and d) for the microshear deformations. Again, the microshear deformations do not exhibit
any symmetry or skew-symmetry. However, additional microstretch deformations can be ob-
served, see Figures 5.46 a) and b), i.e. the micromechanical deformation behavior is much
more complex than can be described by the micropolar continuum model within the proposed
homogenization framework.

Finally, Figure 5.47 shows a quantitative comparison between the reference calculation and
the homogenized model. As long as the structure is not chosen too small (n > 4 in the

∼

EYM
direction), the stiffening effect due to the boundary layers by clamping are predicted in

a highly accurate manner whereas the classical first-order approach is not sensitive to these
effects by definition.
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Figure 5.47: Bending test of the sandwich structure (δ = 0.2). a) Reaction force in
∼
EYM

-direction
on surface IV normalized with respect to a compact sample of the same mass as the
compound. b) Error of the FE2 calculations with respect to the reference solution [64].

5.1.2.3 Some remarks

In the numerical examples, the soundness of the proposed cubic loading conditions has been
investigated for slightly disturbed periodic grid structures. In the shear test, it has been found
that for squared grid structures the micromorphic as well as the micropolar homogenized model
lead to reasonable results as long as the disturbances are not too large. In particular, stiffening
effects due to boundary layers have been predicted in a very accurate manner. However, we
have observed an increasing error in the homogenized model when increasing the disturbance
parameter.

In an analogous way, the homogenized model has been applied to a disturbed honeycomb struc-
ture. Whereas the micropolar restriction has been found not to be the ideal choice due to the
missing skew-symmetry of the microdeformation tensor, only the full micromorphic substitute
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medium has been studied. For small disturbances, the homogenized model has produced rea-
sonable results for the shear test as well as for the additional bending test of a sandwich panel.

Altogether, it has been demonstrated that the introduced homogenization approach is able
to describe the micromechanical deformation mechanisms of the investigated grid structures
in terms of overall extended deformation quantities and the related overall stresses. However,
the proposed homogenization scheme has not been found to be very robust against statistical
disturbances. Thus, a certain regularity of the microstructure is required and the periodic-
ity should not be disturbed too much. One-to-one applicability to really stochastic cellular
structures, e.g. found by Voronoi tessellation, can not be expected. This can be explained
by the special choice of the cubic loading conditions accounting for a symmetry point at the
center of each boundary of the unit cell. For slender structures, the cubic part of the loading
condition describes a rotation of this symmetry point. Of course, this rotation is sound for
the investigated unit cells, where connecting struts have been cut just in these boundary mid-
points. For arbitrary cellular unit cells, this geometrical interpretation of the cubic parts as
rotations loses its meaning because the connecting struts are then cut at arbitrary positions
of the boundary of the unit cell which are in general not identical to the midpoints of these
boundaries.
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5.2 Three-dimensional numerical homogenization - ef-

fective material parameters

In this section the method for extracting effective material parameters, refer to section 4.3,
is verified by numerical studies. Afterwards a short introduction to sandwich structures is
given. Since in this thesis sandwich materials with cellular cores are dealt with, guidelines for
extracting effective material parameters of such cores, i.e. of foams, will be developed. The
numerical results are compared to experimental data and finally a complex sandwich structure
is considered.

5.2.1 Verification of the proposed method

In order to verify the method as developed in section 4.3 we numerically investigate heteroge-
neous solid-like materials. Heterogeneous materials consist of at least two different materials
like, for example, a matrix material with pores (no material) or inclusions. In this case one
defines the volume fraction as

ϕV =
Vpores/inclusions

Vtotal

· 100 [%] . (5.3)

∼

EX

∼

EY

∼

EZ

Figure 5.48: Material with randomly distributed pores

5.2.1.1 Geometry and BVPs

The materials are represented utilizing an implicit description of the geometry [24]. The over-
all dimensions are l3, where l = 10mm. The first material consists of a matrix with randomly
distributed ellipsoids with ϕV = 3%, see Figure 5.48.

The second one can be regarded as a unidirectional fiber reinforced composite where the fibers
are parallel to

∼

EX with ϕV = 18%, compare with Figure 5.49.
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∼

EX

∼

EY

∼

EZ

Figure 5.49: Unidirectional fiber reinforced composite

In both cases, the linear elastic material parameters of the matrix are Young’s modulus
Ematrix = 5000MPa and Poisson’s ratio νmatrix = 0.3. For the ellipsoids, two cases are
considered:

• pores (no material), i.e. E pores = 0.0MPa and ν pores = 0.0.

• stiffer material, i.e. E inc = 10 · Ematrix = 50GPa and ν inc = 0.3.

For the fibers we choose E fiber = E inc and ν fiber = ν inc.

In Figure 5.50 the surfaces of the materials are labeled by indices which will be used for the
definition of boundary conditions.

1

2

3
4

5

6

∼

EX

∼

EY
∼

EZ

Figure 5.50: Surface indices for materials of Figures 5.48 and 5.49

We investigate two load cases, namely uniaxial compression and general three-dimensional

loading, as summarized in Table 5.1.
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Table 5.1: Load cases, boundary conditions, and loads of the macroscopic BVPs

Surface

Load case Volume load 1 2 3 4 5 6

1: Uniaxial

compression no ūz = 0 free free ūy = 0 ūx = 0 t̄z = −100

2: General f̄x = 300

loading f̄y = 200 ūz = 0 free free ūy = 0 ūx = 0 free

f̄z = 100

The BVPs are solved

• with effective materials properties. To this end C effs are extracted by Algorithm A-2 in
combination with the FCM first and then applied to a macroscopic computation using
classical p-FEM.

• directly

– by the FCM and

– by classical h-FEM using the commercial FE-Solver Marc4.

5.2.1.2 Effective material parameters

We start with the extraction of effective material parameters: The domain Ωsub, see Figure
4.11, is resolved by a grid of c3 cells, whereby c = 8 corresponds to the coarse grid and c = 16
corresponds to the fine one. For the window’s thickness we choose twin = { 0.1, 1, 2, 3 }. The
polynomial degree of all elements and cells varies from p = 1, . . . , 8 for the coarse grid and
from p = 1, . . . , 6 for the fine grid. In all of the computations the trunk space is applied. For an
accurate integration the number of Gaussian points in one direction is set to 20 for all cases
and the finite cells are subdivided automatically into subcells, until the error in the volume is
below 0.1%, refer to Figure 3.22. The tolerance of Algorithm A-2 is set to 10−4 resulting in 2
to 6 iteration steps per window thickness.

Before we discuss the effective material matrices C pores, C inc, and C fiber let us perform some
preliminary studies first5. In these studies we investigate the influence of the window’s thick-
ness and of the polynomial degree by investigating C pores

ii , i = 1, . . . , 3, and c = 8.

4Marc is a trademark of MSC Software Corporation, 2 MacArthur Place, Santa Ana, California 92707, US.
5Note that in order to ease the notation, the superscript ’eff’ has been skipped.
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Figure 5.54: C pores
ii vs. twin for c = 8 and

p = 8

In Figures 5.51 to 5.54 C pores
ii for c = 8 is plotted against the window’s thickness for different

polynomial degrees. We realize that the window’s influence is small especially when going to
higher polynomial degrees, and from twin = 2mm there is nearly no change in C pores

ii . Note
that all other combinations of materials and resolutions indicated this fact, too. Thus, we
choose twin = 2mm = l/5 in what follows.

Next, C pores
ii , C inc

ii , and C fiber
ii are plotted against the number of degrees of freedom N , refer to

Figures 5.55 till 5.60. Comparing the Cii obtained by the two grid resolutions and taking into
account the number of degrees of freedom one can state that there is not that much difference
at least for the higher polynomial degrees.

In order to give an impression about the speed of convergence in the effective values we
exemplarily6 consider C fiber with c = 8 and p = 8. Here, we plot in single-logarithmic style

6Note that one observes similar behavior in the other examples, too.
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the error in the Frobenius norm

eFrob =

∥
∥C new −C old

∥
∥
Frob∥

∥C old
∥
∥
Frob

against the number of iterations niter, see Figure 5.61. In addition we investigate the con-
vergence of the coefficients C fiber

ii normalized by their corresponding converged values, where
i = 1, . . . , 3, refer to Figure 5.62. In both cases a fast convergence of the corresponding
quantities can be observed. However, the Frobenius-norm is more restrictive and thus its
application as a break-off criterion for our homogenization algorithm is justified.

Finally, we discuss the effective elasticity matrices. To this end we focus on the matrices
related to the best approximation7, i.e. with p = 6 and the fine grid (c = 16), which read

C pores =













6.28613 · 103 2.63488 · 103 2.62909 · 103 −1.19652 · 100 −2.76569 · 10−1 −3.06974 · 100

6.27533 · 103 2.62677 · 103 −1.44268 · 100 −1.80284 · 100 −1.35254 · 100

6.24562 · 103 −4.55691 · 10−1 −2.24396 · 100 −2.88244 · 100

1.81582 · 103 −5.18662 · 10−1 3.32434 · 10−1

1.80987 · 103 −2.13020 · 10−1

sym 1.81167 · 103













,

C inc =













7.13213 · 103 3.01345 · 103 3.01263 · 103 −4.78127 · 10−1 8.26561 · 10−1 −7.21965 · 10−1

7.12445 · 103 3.01197 · 103 −1.02383 · 100 −1.08522 · 100 1.78403 · 10−1

7.09903 · 103 7.30914 · 10−2 −6.33184 · 10−1 −6.49574 · 10−1

2.04494 · 103 −4.46000 · 10−2 5.82035 · 10−1

2.03983 · 103 −6.79149 · 10−3

sym 2.04140 · 103













,

7Note that the other matrices have the same structure but differ in the absolute values.
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and

C fiber =













1.39782 · 104 3.79747 · 103 3.79499 · 103 0 −4.53954 · 100 0

8.88768 · 103 3.64284 · 103 0 −9.61436 · 10−1 0

8.87197 · 103 0 −1.94896 · 101 0

2.72241 · 103 0 −3.88516 · 100

2.52220 · 103 0

sym 2.71572 · 103













.

We realize that all of the matrices indicate anisotropic material behavior. However, this
behavior is small for the porous and the inclusion material when comparing the absolute
values like, for example, C pores

13 with C pores
15 or C inc

13 with C inc
14 . In C fiber the 11-direction is more

pronounced which is, of course, due to fiber reinforcement.

5.2.1.3 Solution of the BVPs and comparison

After having determined all effective material matrices in the previous section we can solve
the macroscopic BVPs defined in Table 5.1. Let us recall the different solution techniques and
give more details:

• In the case of effective material parameters, the underlying p-FEM mesh consists of
(2×2×2) = 8 equal standard hexahedral elements using the trunk space which leads to
a very low number of degrees of freedom. Since effective material matrices as computed
in the previous section are applied, this discretization is sufficiently accurate.

• For the pure FCM approach, the cell grids, the number of Gaussian points, and the
parameters for controlling the subcells correspond to the ones of section 5.2.1.2, and
again the trunk space is applied.

• In the h-version approach we use ten-noded fully integrated tetrahedral elements and
15-noded fully integrated pentahedrals; to be more specific we have 27582 to 222719
tetrahedrals for the porous material, 35235 to 311464 tetrahedrals in the case of inclu-
sions, and 5824 to 90916 pentahedrals in the fiber example. In Figures 5.63 to 5.66 the
coarsest and the finest mesh are shown. Note that the meshes for the porous domain
are not displayed since they are similar to the ones with the inclusions.

For comparing the quality of the different approaches the strain energy, refer to Equation
(3.49), is plotted against the number of degrees of freedom N in Figures 5.67 to 5.72.

For the porous material there is a very good agreement of the strain energy between the dif-
ferent solution approaches especially for load case 1, see Figures 5.67 and 5.68. Notice that
for the computation with effective material parameters, the strain energy is nearly constant
during the p-extension. The reason for this is twofold: On the one hand C pores is constant in
all integration points and on the hand the material’s anisotropy is not that pronounced, both
of which lead to a quasi-homogeneous solution.

In load case 2 there is a very small but systematic deviation of the solution with effective
parameters from the other ones, because the pore’s influence on the overall volume load can
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Matrix

Inclusions

Figure 5.63: h-version: Coarsest mesh for
the material with inclusions

Matrix

Inclusions

Figure 5.64: h-version: Finest mesh for the
material with inclusions

Matrix

Fibers

Figure 5.65: h-version: Coarsest mesh for
the fiber reinforced material

Matrix

Fibers

Figure 5.66: h-version: Finest mesh for the
fiber reinforced material
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Figure 5.67: Load case 1: Strain energy for
the porous material
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Figure 5.68: Load case 2: Strain energy for
the porous material

only be approximated. To this end the volume loads in the effective computation are reduced
by the pore’s volume fraction, i.e. it is multiplied by 0.97.
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Figure 5.69: Load case 1: Strain energy in
case of inclusions
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Figure 5.70: Load case 2: Strain energy in
case of inclusions

In the example considering inclusions the pure FCM and the effective approach lead to similar
results but seem to deviate slightly from the h-version, refer to Figures 5.69 and 5.70. This
deviation stems from the fact that the material interfaces which lead to kinks in the displace-
ment field are not resolved by the (Cartesian) FCM-grid. Of course, one could adjust the
cells such that they match with the interfaces. If this were done the main advantage of the
FCM, namely fast and simple grid generation, would be lost. However, when looking at the ab-
solute values one can state that the deviation is negligible, i.e. it is about 1.3% for load case 2.

There are some differences between the three approaches in the fiber example, compare with
Figures 5.71 and 5.72. If we take the h-version solution as a reference the maximum error is
about 2.7%. This error occurs for load case 2 when computing with effective material param-
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eters.

In summary we can state that both the pure FCM and the effective computations lead to
accurate results. Due to the fact that for a general volume load the exact positions of pores,
inclusions or fibers are of higher importance, load case 2 is more demanding for the effective
material parameter’s solution which only approximates the geometry in an average sense.

5.2.2 Sandwich materials

In this section we start with an introduction to sandwich materials. Since we want to focus
on sandwich structures with foamed cores we develop general guidelines for extracting effec-
tive parameters via CT-scans and numerical homogenization of any foamed materials. With
these guidelines we compute effective parameters of polymeric foams, which are validated by
mechanical experiments. Hereby, a sandwich plate with a foamed core is included.

5.2.2.1 Introduction

Following Altenbach [2] sandwich materials can be regarded as a special case of general
laminates. Commonly, they consist of two thin faceplates of thickness tface which enclose a
core of thickness tcore, refer to Figure 5.73. The faceplates carry the major part of the normal
stresses due to bending action, refer to Figure 5.74. Therefore, they are made of very stiff
materials like, for example, metal sheets or fiber-reinforced laminates, which offer high tensile
strength. In contrast, the core serves as a distance piece for the faceplates and it directly
influences the bending stiffness, which is proportional to the third power of the thickness.
It has to be designed for shear resistance, because the maximum shear stresses are expected
there, see Figure 5.75.

Commonly, the core is fabricated of lightweight materials like, for example, foam- or honeycomb-
like structures.
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tface

tface

tcore

∼

E transversal

∼

E axial

Figure 5.73: Three-layer sandwich plate with faceplates and core

σface

σface

σcoreMM ε

Figure 5.74: Three-layer sandwich plate under pure bending: displacement field, strains, stresses
[103]

In the following different approaches for modeling of laminates and sandwich materials are
discussed:

• Equivalent single layer models (ESL): These models are based on assumptions
with respect to kinematics and stress distribution in thickness direction, whereby the
originally three-dimensional structure is reduced to a two-dimensional one. The classical
laminate theory (CLT ) is based onKirchhoff’s assumptions of plates or shells and thus
is restricted to thin laminates. The first-order shear theory (FSDT ) applies Mindlin’s
theory and is suited for thicker laminates, too. Beyond that there are shear theories of

higher-order which are able to represent warping. All shear theories share the assumption
that both the displacements and strains in thickness direction to be continuous. However,
this assumption is not true at the layer interfaces if the stiffness of the layers strongly
differs, which is the case for sandwich materials, compare with Figure 5.75 or with [79]
for further explanations.

• Layer-wise theories: Here, a laminar structure is assumed in which each layer is
equipped with an independent displacement field [96]. These displacement fields are
coupled in a suitable way allowing for a more realistic description of the displacements in
thickness direction since zig-zag distributions can be represented. The main disadvantage
is that the overall number of degrees of freedom depends on the number of layers. Zig-
zag theories, which are a sub-group of the layer-wise theories, enhance the displacement
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τ face

τ face

τ coreQQ γ

Figure 5.75: Three-layer sandwich plate under transverse shear load Q: displacement field, strains,
stresses [103]

field of classical theories by piecewise zig-zag functions in order to be able to capture
kinks in the displacement field independently of the number of layers. Examples for
layer-wise and zig-zag theories can be found for beams in [57, 96], for plates in [16] and
for three-dimensional approaches in [68, 79].

• Homogenization strategies: The previous approaches assume the individual layers to
be homogeneous in general. In addition, analytical homogenization strategies have been
developed in particular for non-homogeneous sandwich cores, refer to [54, 56, 58, 98].
For example these cores consist of honeycomb structures which are orthotropic in the
thickness direction.

As mentioned earlier, in this thesis homogenization strategies allowing for a determination of
effective material parameters of foamed cores will be developed and discussed.

5.2.2.2 Effective material parameters of foamed cores

The goal of this section is to extract effective material parameters of foamed materials, and
in particular of Polyurethane (PU) foams. These parameters will then be applied amongst
others to sandwich structures, compare with Figure 5.76.

First of all, it is worth highlighting some works related to effective material properties of foams:
Huber and Gibson described the material behavior of foams by idealized three-dimensional
unit cells and validated their results by experiments [59]. Later, Gong et al. published de-
tailed geometric information about PU foams and established models based on Kelvin cells,
[42, 43]. Their approach was improved by Jang et al. who used 3D CT-scans of polymeric
and Aluminum foams as a basis for FE-models, [61]. These models are based on different
types of cells, including also the Kelvin cells. A similar investigation has been performed for
polymethacrylimide (PMI) foams by Wang et al., who utilized Kelvin cells [99]. The above-
mentioned approaches have the drawback that the foam’s real geometry is only approximated.
In order to overcome these problems, Wismans et al. converted three-dimensional micro CT-
scans of polymeric foams into FE-models in order to study elastic and hyperelastic properties
[104]. However, their approach was restricted to two dimensions, neglecting the importance of
the three-dimensional situation. In contrast to [104], we discretize the real three-dimensional
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Figure 5.76: General sandwich structure with core made of PU foam

geometry which allows three-dimensional linear elastic effective material properties to be fully
extracted.

Figure 5.77: Bending test with a sandwich plate

This section is divided into three parts: The first paragraph includes a preliminary study
with a foam’s CT-scan in order to derive a suitable discretization strategy and to give an idea
about a representative subdomain whereby a brief comparison to the literature is given. In the
second part effective material parameters of PU foams are extracted for different ppi-values,
i.e. pores per inch, while in the last part the numerical results are validated.

5.2.2.2.1 Preliminary study

In our preliminary study we want to find a suitable discretization and a representative subdo-
main. To this end we investigate an equidistant CT-scan of an open-cell Aluminum foam with
10 ppi and ϕV ≈ 9%. The scan consists of 733× 729× 704 voxel whereby each voxel has the
volume V = 60.331×60.331×60.331µm3 which provides a proper resolution of the individual
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Figure 5.78: Proper resolution of the individual cell walls by the CT-scan

cell walls, compare with Figure 5.78. Since we want to keep this preliminary study as general
as possible all measures will be given in terms of voxel. This is not a problem as long as a
proper resolution of cell walls is ensured. As mechanical parameters for the cell walls within a
linear elastic analysis we assume Young’s modulus E = 70 GPa and Poisson’s ratio ν = 0.3.
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Figure 5.79: Strain energy U vs. number of degrees of freedom N for different FCM resolutions

We start with the discretization and cut out a subdomain of nx×ny ×nz = 200×200×200 =
l3 = 2003 voxel at voxel position (x, y, z) = (100, 100, 100) in positive coordinate directions.
Note that approximately 18 foam cells are included in this subdomain. We formulate for this
subdomain a BVP where the bottom is fully clamped and the top is loaded by ūz = −1.0
voxel. A p -extension with three different finite cell resolutions is performed: 103, 203, and
403 finite cells, i.e. 20, 10, and 5 voxel per finite cell. In the adaptive numerical integration
of the finite cells the number of Gaussian points in one direction is 20. Based on numerical
studies it turns out that a tolerance of 0.1% for the integration error of the finite cells leads to
accurate results. In Figure 5.79 the resulting strain energy U is plotted against the number of
degrees of freedom N . If we relate the accuracy in the strain energy to the number of degrees
of freedom the 10 voxel per finite cell resolution for p ≥ 5 seems to be appropriate. To be



110 5. Numerical investigations

more specific, this resolution with p = 5 results in N = 295335, and the corresponding strain
energy U ≈ 26.31 is only 1.3% different to the finest resolution in which we have 5 voxel per
finite cell and p = 6. Thus, we choose 10 voxel per finite cell and p = 5 in the following.
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Figure 5.80: Cii vs. twin for the subdomain with 200 × 200 × 200 voxel starting at position
(100,100,100)

Next, we embed the subdomain into windows with a thickness of twin = { 1, 5, 10, 20, 40 }. The
window’s influence on Cii where i = 1, . . . , 6 is depicted in Figure 5.80. In sections 5.1.1.2.1
and 5.1.2 it was demonstrated that cellular materials exhibit size dependent boundary layer
effects under various load conditions (shear, tension, bending). Note that in general shear
experiments exhibit a very high size dependency. In view of a two-scale approach such effects
lead to an overestimation of the mechanical properties even when utilizing large subdomains
(microstructures). Thus, means like, for example, the introduction of pin supports at the
microstructures boundaries or the application of periodic boundary conditions have been pro-
posed in order to relax such local stiffening effects [88]. The window method has a similar
effect and for a constant number of foam cells one can find that the thicker the window the less
the stiffening is pronounced. However, in the practical application of the resulting effective
elasticity matrices to macroscopic problems the distance to the boundary is not known in
advance and is, of course, also not constant within the macroscopic domain. Therefore, one
has to find a compromise with respect to the choice of twin. For the foam at hand we choose
twin = 10 = l/20.

Another observation is that the z-direction is more pronounced indicating anisotropy. This is
not surprising since in the manufacturing process of foam materials there is a rise direction in
which the cells are elongated [59, 61]. Normal to the rise direction the cells are nearly equiaxed
and one can define A = h1/h2 whereby h1 is measured in the rise direction. In the foam at
hand we have A ≈ 1.5 and as indicated above the rise direction coincides with

∼

EZ , refer to
Figure 5.81.

It is obvious that an equal number of foam cells in all coordinate directions is desirable. Thus,
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Figure 5.81: Illustration of rise direction and cell anisotropy
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Figure 5.82: C̄ii vs. Ωsub. The errors bars indicate the standard deviation sii as defined in (5.5).
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for the generation of subdomains A has to be taken into account. If we denote the subdo-
main’s size in the xy-plane by lxy then the size in rise direction emerges as lz = A · lxy and
the subdomain’s volume is Ωsub = l2xy · lz = A · l3xy. Consequently, for the window’s thickness
we have lxy/20 and lz/20, respectively.

Next we need to determine a representative subdomain. To this end, the subdomain’s size
and the starting positions are varied for statistical reasons. In particular, we propose lxy =
{ 180, 200, 260, 300, 320 } and for each size n = 10 samples with randomly distributed starting
positions are chosen. In Figure 5.82 the arithmetic mean value

C̄ij =
1

n

n∑

k=1

C k
ij (5.4)

is plotted against Ωsub including error bars indicating the standard deviation

sij =

√
√
√
√

1

n− 1

n∑

k=1

(
C̄ij − C k

ij

)2
. (5.5)

We notice that the mean values slightly increase as the subdomain’s size grows. An expla-
nation for this can be found in the extended probability of local stiffening effects like, for
example, closed faces [61], compare with Figure 5.83.

∼

EX

∼

EY

Figure 5.83: Two closed faces marked by circles

Almost converged values for C̄ii are obtained from Ωsub = 40500 · 103 voxel on, resulting in
N ≈ 1.9 · 106 degrees of freedom corresponding to 4 × 4 × 4 foam cells. In Figure 5.85 the



5.2. Three-dimensional numerical homogenization - effective material parameters 113

corresponding subdomain’s FCM mesh with 15153 cells is shown.

Figure 5.84: Subdomain Ωsub = 40500 · 103
voxel

Figure 5.85: FCM mesh of subdomain
Ωsub = 40500 · 103 voxel

Note that in [99] a similar number of cells was identified for PMI foams. One additional
remark: The computation time for this subdomain size, whereby 9 iteration steps have been
performed in order to match the demanding tolerance of eFrob < 10−3, is about five hours.
Hereby, a compute server with 48 cores (AMD Opteron 8425) has been used. For further
discussions, it is of advantage to consider the mean effective elasticity matrix. To this end we
show the one associated with 40500 · 103 voxel

C̄ 40500·103 =




















367.606 120.665 221.621 −0.965 6.136 23.670

371.579 232.999 −0.588 10.577 16.468

926.978 2.311 24.700 42.073

117.069 3.565 2.402

155.743 3.622

154.299




















.
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Investigating the structure of C̄ 40500·103 one may find similarities to an elasticity matrix of a
transverse isotropic material

C trans−iso =




















C11 C12 C13 0 0 0

C11 C13 0 0 0

C33 0 0 0

(C11 − C12)

2
0 0

C44 0

sym C44




















,

which is as mentioned above due to the fact that cells normal to the rise direction are nearly
equiaxed. Referring to [9] Young’s modulus can be computed for the transverse/rise direction
by

Etrans/rise =
(C 2

11 · C33 + 2 · C 2
13 · C12 − 2 · C 2

13 · C11 − C33 · C 2
12)

(C 2
11 − C 2

12)
(5.6)

and for the plane of isotropy by

Eplane =
(C 2

11 · C33 + 2 · C 2
13 · C12 − 2 · C 2

13 · C11 − C33 · C 2
12)

(C11 · C33 − C 2
13)

. (5.7)

In our example we have Etrans/rise ≈ 725 MPa and Eplane ≈ 300 MPa which is in the same
order of magnitude as the measurements reported by Jang [61] for an aluminum foam with
10 ppi, A ≈ 1.3, and ϕV ≈ 8.7% with E J

trans/rise ≈ 585 MPa and E J
plane ≈ 363 MPa.

The main results obtained in this section can be summarized as follows:

• Provided a proper resolution of the individual cell walls by the CT-scan, 10 voxel per
finite cell and p = 5 yields accurate results.

• For a representative subdomain 4× 4× 4 foam cells should be included.

• It is known that the window’s size influences the computation of the effective properties
[46, 47]. For foamed materials this is even more pronounced due to size effects which
can lead to stiffening. Therefore it is recommended to numerically investigate the in-
fluence of the window size for the foam at hand. It might be a good idea to compute
effective material properties for different values of the window size and to apply the re-
sulting elasticity matrices depending on the distance to the boundary of the macroscopic
problem.
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Figure 5.86: PU foams with different densities (10-30 ppi), taken from Saarschaum Saarbrücken,
Germany - www.saarschaum.de

5.2.2.2.2 Effective material parameters of PU foams

In this paragraph we determine the effective material matrices for a specific PU foam. Three
different densities with 10, 20, and 30 ppi are considered, compare with Figure 5.86, and the
volume fraction is ϕV ≈ 2.3%.

For each density, three equidistant CT-Scans with approximately 700 × 700 × 700 voxel on
average have been generated. Hereby, the volume of the voxel V is related to the ppi-value
in order to ensure an equal number of foam cells. More particularly, for 10 ppi we have
V10 = 62.697× 62.697× 62.697µm3, for 20 ppi V20 = 43.766× 43.766× 43.766µm3, and for 30
ppi it is V30 = 28.732×28.732×28.732µm3. The linear elastic parameters of the base material
are assumed to be EPU = 400 MPa and νPU = 0.49 which is in accordance with the literature
[6]. For the extraction of effective material parameters we make use of the suggestions con-
cerning discretization and subdomain size as stated in paragraph 5.2.2.2.1. Consequently, we
use 4× 4× 4 foam cells, and in preliminary studies it has turned out that again twin = l/20 is
a proper choice for the window’s thickness. The number of samples per density is n = 12, i.e.
four samples per scan are taken.

In Figure 5.87 selected entries of C̄ii are plotted against the ppi-values including error bars
for the standard deviation8. One realizes that there is not that much difference between the
entries of the 10 and 20 ppi foams and that the 30 ppi foam has lower stiffness.

Using equations (5.6) and (5.7) we can compute the effective moduli in transverse and plane
direction as:

• 10 ppi: E 10
trans/rise ≈ 187 KPa and E 10

plane ≈ 67 KPa

• 20 ppi: E 20
trans/rise ≈ 182 KPa and E 20

plane ≈ 70 KPa

• 30 ppi: E 30
trans/rise ≈ 144 KPa and E 30

plane ≈ 62 KPa

These values confirm the statements with respect to the different foams, too.

8Note that in section B.1 the effective material matrices with standard deviation are shown explicitly.
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Figure 5.87: Selected entries of C̄ii vs. ppi-values.

5.2.2.2.3 Validation

The effective material parameters of the PU foams presented in paragraph 5.2.2.2.2 shall be
validated by mechanical experiments. To this end, we investigate different foams under uniax-
ial compression and simple shear, and in addition we perform three-point bending tests with
sandwich plates. In all of the experiments the foam’s rise direction coincides with

∼

EZ .

Let us describe the experiments in more detail: In Figure 5.88 a sketch of the compression
and the shear experiment is shown, and in Table 5.2 the corresponding geometric properties
and boundary conditions can be found. Two remarks shall be given:

• In the compression experiment the specimen’s lateral contraction at top and bottom was
not restricted. Therefore, quarter symmetry and symmetry boundary conditions can be
used. Consequently, only A = B = 50mm is taken into account in the numerical model
instead of the real dimensions A = B = 100mm.

• In the shear experiment the material is perfectly bonded to the shear plates at surface
1 and 6 and thus displacement boundary conditions are quite natural.

In the bending test, compare with Figures 5.77 and 5.89, the thin faceplates are made of
aluminum (E = 70 GPa, ν = 0.3). It is carried out for three different heights H =
{40, 60, 80} mm. Due to symmetry only half of the system is taken into account.

In Figures 5.90 and 5.91 the corresponding p -FEM meshes are depicted. Note that the meshes
are refined in order to account for possible singularities. In the bending test attention has been
paid to accurately modeling the line load and the line support with solid elements. Numerical
studies have shown that for b ≤ t/5 the deviation of the solid-like line support from a real line
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Figure 5.88: Geometric properties and surface indices of uniaxial compression and simple shear ex-
periment

Table 5.2: Geometric properties and boundary conditions for uniaxial compression and simple shear
experiment, refer to Figure 5.88. Note that ū ∝ H.

Surface

Experiment A B H 1 2 3 4 5 6

[mm] [mm] [mm]

Uniaxial

compression 50∗ 50∗ 50, 100, 200 ūz = 0 free free ūy = 0 ūx = 0 ūz = ū

Simple ūx = 0 ūx = ū

shear 200 60 40, 60, 80 ūy = 0 free free free free ūy = 0

ūz = 0 ūz = 0
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Figure 5.89: Geometric properties and boundary conditions for three-point bending experiment; all
measures in mm.
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Figure 5.90: Compression / shear test: p -FEM mesh consisting of 27 hexahedrals

In all of the computations a polynomial degree p = 8 has been chosen which ensures accurate
results. Now, let us discuss the experimental and numerical results in detail. Note that since
the numerical approach is limited to small deformations, only a single point is computed at a
certain state of deformation and no curve is plotted.

We start with the compression test, see Figures 5.92 to 5.94 where the reaction force Fz is
plotted against the compressive strain εzz. First of all one realizes that the experiments indi-
cate no distinct size effect. This is not surprising since the specimens include large numbers of
foam cells in the z-direction, for which size effects are less pronounced, compare with section
5.1.2. To give an example the 10 ppi foam of H = 50 mm already has about 20 foam cells.
Furthermore, one can state that the 10 ppi foam has the highest compression resistance which
is in accordance to the fact that this foam exhibits the thickest ligaments. It is closely followed
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Figure 5.91: Bending test: p -FEM mesh consisting of 17 hexahedrals including refinements
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Figure 5.92: Uniaxial compression with 10
ppi: Reaction force Fz vs. εzz
for H = 50, . . . , 200.
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Figure 5.93: Uniaxial compression with 20
ppi: Reaction force Fz vs. εzz
for H = 50, . . . , 200.
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by the 20 ppi foam. In the numerical computations the effective properties are constant over
the macroscopic integration points and due to first-order homogenization there is no change in
Fz if H is increased. Thus, one cannot distinguish between the different heights H. However,
the numerical results are located within the experimental scatter band.

In the shear test, as plotted in Figures 5.95 to 5.97, size effects are present, i.e. the smaller
specimens behave more stiffly than the larger ones. These effects are more pronounced for
the 20 and 30 ppi foams. In addition, when comparing the absolute values, the 20 and 30 ppi
foams are stiffer than the 10 ppi foams. The reason can be found in the different load carrying
behavior under shear. Whereas larger cells are bending dominated over a longer range, smaller
cells are tension dominated even for small deformations. The mismatching of the numerical
results with the experiments for 20 and 30 ppi is therefore not astonishing. Note that the
small scatter of the numerical reaction forces would vanish if periodic boundary conditions
would have been applied which of course would not fit to the experiment.
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Figure 5.94: Uniaxial compression with 30
ppi: Reaction force Fz vs. εzz
for H = 50, . . . , 200.
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Figure 5.95: Simple shear with 10 ppi: Re-
action force Fx vs. γ for H =
40, . . . , 80.

Now, let us discuss the bending test, see Figures 5.98 to 5.100 where F̄z is plotted against
the uz at the position of F̄z. In the experimental curves size effects are clearly visible. Let us
give a brief mechanical explanation: As mentioned earlier bending is a combination of tension,
compression and shear. The contribution of the individual stresses to the resulting state of
stress depends on the aspect ratio between length and height (L/h): Whereas for slender
beams with L/h > 10 the shear components become negligible, they may play an important
role if thick beams with L/h < 5 are investigated. In the examples at hand we are dealing with
beams where L/h < 2.9. Therefore, shear deformations /stresses are present and stronger size
effects are expected.

Again, such size effects are not taken into account by the first-order homogenization scheme.
However, the numerical results are not that far away from the experiments at least for H = 60
mm and H = 80 mm. Two explanations can be given: Firstly, as shown above, a state of
compression can be modeled with sufficient accuracy. Dealing with small deformations we can
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Figure 5.96: Simple shear with 20 ppi: Re-
action force Fx vs. γ for H =
40, . . . , 80.
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Figure 5.97: Simple shear with 30 ppi: Re-
action force Fx vs. γ for H =
40, . . . , 80.

assume that this is also true for tension. Thus, the compressive and tensile parts of the bend-
ing state can be represented by the numerical model. Secondly, the thin solid-like faceplates
can be modeled with arbitrary accuracy by the p -version’s elements.
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Figure 5.98: Three-point bending with 10
ppi: Tip force F̄z vs. uz for
H = 40, . . . , 80.
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Figure 5.99: Three-point bending with 20
ppi: Tip force F̄z vs. uz for
H = 40, . . . , 80.

Finally, we assess our validation: Hereby, one has to take into account that there are uncer-
tainties with respect to the micromechanical parameters and that the numerical computation
is limited to small deformations, i.e. it is not possible to account for geometric effects like,
for example, deformation-induced anisotropy. However, as long as size effects do not play a
dominant role the numerical results are at least in moderate accordance with the experiments.
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Figure 5.100: Three-point bending with 30 ppi: Tip force F̄z vs. uz for H = 40, . . . , 80.
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5.3 Microscopic approach - large strain compression

In this section we subject two- and three-dimensional foam-like structures to numerical large
strain compression tests, whereby the focus lies on stability investigations due to cell buckling.
The microscopic approach as introduced in section 1.2 is chosen since it allows for studying
all mechanical effects in detail, but at high computational costs.

Referring to [105] the stability of a structure can be assessed in parallel to the FEA by:

• Eigenvalue analysis : In each converged step of the Newton-Raphson procedure an
eigenvalue analysis of the global tangent matrix kT is performed and the smallest eigen-
value ωmin is extracted. In practical computations, a point of instability is detected if
ωmin < 10−5.

• Analysis of the diagonal elements of kT : During the triangularization of kT = LT DL
the matrix D contains the diagonal elements Dii. One can distinguish between three
cases:

all Dii > 0 → point of stability

at least 1 Dii = 0 → indifferent point

at least 1 Dii < 0 → point of instability

In our investigations the second case will not occur since we are applying small imper-
fections to our structures.

Note that eigenvalue analysis is computationally more expensive especially in 3D.

5.3.1 Preliminary study

Before analyzing foam-like structures a preliminary study is performed, where the classical
Euler-case 1 is investigated. Figure 5.101 a) shows its geometry and boundary conditions.

The critical load can be computed analytically

Fcrit =
π2EI

4l2
.

Assuming Young’s modulus as E = 1000GPa, I = 83.3mm4, and l = 100mm yields Fcrit ≈
20561.7 N. A small imperfection is chosen in order to trigger buckling, and a geometrically
nonlinear FEA is performed. In Figure 5.101 b) the smallest eigenvalue ωmin is plotted against
the overall force. One observes that ωmin tends to zero, when F tends to Fcrit. The critical
value obtained by the FEA is 20354.4 N, which is quite close to the analytical solution, i.e. the
deviation is approximately 1%. Note that at this critical load level negative diagonal elements
appear for the first time during the iterative solution process. More precisely, the maximum
number of negative diagonal elements associated with this critical load level is two. From this
simple example one may deduce that both approaches for investigating a structure’s stability
are reliable. This statement will be confirmed in the next section.
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Figure 5.101: Euler-case 1: geometry, boundary conditions and smallest eigenvalue (ωmin) vs. over-
all force (F )

5.3.2 Two-dimensional analysis

We start with a numerical two-dimensional large strain compression test. The discretized
structure of Figure 5.102 is loaded by a prescribed displacement. In order to ensure a more
realistic modeling, the geometry is statistically disturbed.

free

free
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ux = 0

ux = uy = 0

uy = ū
Unit cell

Zoom

Figure 5.102: Foam-like two-dimensional structure: geometry, boundary conditions, unit cell, and
discretization

Anisotropic finite elements of polynomial degrees p = 6 and q = 3 are applied to the beam-like
cell components. The connecting trapezoidal elements are isotropic with p = q = 3, compare
with section 5.1.1.1. As geometric parameters we have: H ≈ 50mm, B ≈ 50mm, the beam
lengths are between 1.2, . . . , 2mm, and the thickness of the beams is 0.1mm. The material pa-
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rameters in the Neo-Hookean material law are set to µ = 80.769GPa und Λ = 121.15GPa
assuming plane strain.

Firstly, the load-compression curve (Fy vs. εyy) is discussed, see Figure 5.103.
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Figure 5.103: Foam-like two-dimensional structure: load-compression curve

The curve exhibits the characteristic behavior of foam-like materials under compression, see
Fátima Vaz and Fortes [31]. The curve can be divided into three regions:

• Until εyy ≈ 6% the curve exhibits a steep slope. This is the bending dominated region.

• For εyy > 6% the slope flattens strongly, i.e. changes in Fy are small. Therefore, this
region is termed as a stress plateau in the literature. The reason for the flattening is
that more and more cells start to buckle.

• At εyy ≈ 20% some cells come into contact with each other. This third region (crushing
region) cannot be investigated since no contact formulation has been implemented, yet.

Although Figure 5.103 does not indicate any global point of instability, let us investigate the
structure’s stability by the help of the above mentioned methods in order to detect possible
local instabilities. In Figure 5.104 ωmin is shown as a function of εyy. We recognize two local
minima located at εyy ≈ 17.5% and εyy ≈ 20.6%. While the second point is associated with
highly disturbed elements and the abort of the computation the first point might be a candi-
date for local instabilities.

In order to verify the results of the eigenvalue analysis, the development of negative diagonal
elements is evaluated. To this end the maximum number of negative diagonal elements nneg

showing up during the Newton-Raphson iteration of a load step λstep is plotted against
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Figure 5.104: Foam-like two-dimensional structure: eigenvalue analysis

λstep
9 in Figure 5.105, and for comparison ωmin is included.

There are two clusters of nneg, which coincide with ωmin, i.e. both methods again lead to the
same results.

Finally, we zoom into the load-compression curve for εyy = 17.2, . . . , 18%, see Figure 5.106.
The curve shows small oscillations which are located in the region close to the occurrence of
the first negative eigenvalue respectively at the first clustering of nneg.

5.3.3 Three-dimensional analysis

In this section we investigate a three-dimensional large strain compression test as depicted in
Figure 5.107. The computation is force controlled by the load factor λ. Three-dimensional
cellular structures can be modeled by combining polyhedron unit cells as shown by Ströhla,
Winter and Kuhn [89]. The unit cell our computation is based on can be found in Figure
5.108 on the left hand side. It is already discretized and consists of 60 brick- and beam-
like three-dimensional higher-order solid elements based on the trunk space. The bricks are
isotropic with p = q = 4, and the beams are anisotropic with p = 6 and q = 4 resulting in
287,438 degrees of freedom. In Figure 5.108 on the right hand side the composed structure
is depicted to which the boundary conditions of Figure 5.107 are applied. In each spatial
direction four unit cells are used. In the interior the brick-like elements are statistically dis-
turbed ensuring a more realistic modeling of the foam. The thickness of the beams is 1mm,
and the length has an average of approximately 10mm. This leads to an equilateral cube

9Note that no negative diagonal elements have been detected for λstep < 585.
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with dimension D = 113.13mm. For the material constants in the Neo-Hookean we choose
µ = 26.923 GPa and Λ = 40.384 GPa. The numerical simulation yields a load-compression
curve (Fz vs. εzz), as plotted in Figure 5.109, which is, as in the two-dimensional case, in good
agreement with experimentally obtained curves.
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Figure 5.107: Three-dimensional cellular structure: boundary conditions

Figure 5.108: Three-dimensional cellular structure: composed out of unit cells
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Figure 5.110: Three-dimensional cellular structure: nneg vs. λstep and for comparison Fz vs. λstep

Finally, the structure’s stability is discussed: Since an eigenvalue analysis, as demonstrated
above, does not provide more information than the diagonal elements and would be computa-
tionally more expensive in 3D it is omitted here. Thus, only the development of the maximum
number of negative diagonal elements nneg is investigated, see Figure 5.110. We realize that
during the computation negative elements occur at λstep = 28 for the first time and simulta-
neously Fz shows a small oscillation but no minimum. The clustering of negative elements at
λstep = 37 is not surprising since during this step the computation aborted due to numerical
problems, compare with the two-dimensional case.
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Chapter 6

Summary and future research
possibilities

The motivation of this work is the complex mechanical behavior of cellular materials gov-
erned by phenomena like, for example, size dependent boundary layer effects and deformation-
induced anisotropy caused by reorientations and local cell buckling. In order to capture such
phenomena numerical homogenization or FE2 methods based on the principle of scale sep-
aration have been applied and further developed. In such methods, a distinction between
at least a macro and micro scale coupled by projection and homogenization rules is made,
resulting in a (possibly nonlinear) nested boundary value problem. In addition, a pure mi-
croscopic approach, where the structure is resolved on the microscopic level, was used for
reference computations and stability investigations. For the discretization on the microlevel,
i.e. of the individual cell walls, higher-order continuum finite element methods, which are
known to be very robust, have been applied for the first time. The advantage of a contin-
uum based approach is that no kinematic restrictions have to be taken into account and that
the in-cooperation of nonlinear material laws is straightforward. More specifically, linear and
nonlinear (hyperelastic) p-version solid finite elements were used for microstructures. In a
preliminary step the efficiency of the nonlinear p-elements has been improved by introducing
a quasi-spatial formulation based on spatial derivatives of the displacement field. In numerical
studies it could be shown that the overall gain in efficiency was up to 60% compared to a
material formulation. In addition a higher-order fictitious domain method, namely the finite
cell method (FCM), came into operation when discretizing microstructures stemming from
micro tomography (CT-scans).

Let us summarize the three different homogenization schemes developed in this thesis whereby
the corresponding numerical examples are discussed in detail:

• A two-dimensional hyperelastic first-order FE2 (classical continua on both scales) has
been implemented. It is based on a numerical tangent and its efficiency was improved
by using distributed computing of the microscopic problems. In the numerical examples
honeycomb microstructures including statistically distributed imperfections were focused
on. Suitable boundary conditions have been proposed and verified by reference compu-
tations first and then applied to shear and bending multiscale computations. Here, the
main focus was put on anisotropy and deformation-induced anisotropy which could be
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captured by our methods. However, due to the nonlinear nested boundary value problem
and despite the fact that distributed computing has been used, it turned out that the
efficiency of a FE2 is low even in two dimensions. This fact is in accordance with the
literature.

• In order to avoid the nested boundary value problem the next FE2 scheme, a higher-
order scheme, was restricted to small deformations which allows for a tabulated solution
of the microstructures. To be more specified the macroscale was equipped with the mi-
cromorphic continuum theory and its subcontinua allowing for size effects. Thus, the
projection and homogenization rules become more involved, i.e. they include terms up to
order three. Dealing with p-FEM on the micro scale special attention has been paid to the
application of the cubic projection rule. To this end, inhomogeneous Dirichlet bound-
ary conditions described by polynomials have been derived, implemented and tested.
Afterwards, size effects have been detected under shear in cross-like and honeycomb-like
microstructured materials with the higher-order scheme. Herein, the relevance of the
micromorphic continuum theory was outlined. In addition an application to sandwich
materials was given, where a sandwich plate was subjected to three point bending. All
of the FE2 computations have been verified successfully whereby only small geometric
disturbances could be admitted.

• For obtaining effective material properties of real-world three-dimensional microstruc-
tured materials a first-order homogenization approach with restriction to small deforma-
tions has been set up. The microstructure itself is embedded into a window of effective
properties also referred to as window method. Since these properties are not known in
advance they have to be determined iteratively. The key feature of this approach is a
discretization strategy based on the FCM which allows for the fast and simple conversion
of CT-data into numerical models. In a first numerical study the approach has been veri-
fied by computations with solid-like heterogeneous microstructures. Afterwards, general
guidelines concerning discretization and a representative number of foam cells have been
derived for cellular materials and compared to the literature. Equipped with these guide-
lines mechanical experiments with polymeric open-cell PU foams have been computed,
whereby effective properties have been extracted first and then applied to macroscopic
models of the corresponding experiments. The experiments cover compression and shear
tests with the pure foam material on the one hand and bending of sandwich plates on
the other hand. Despite the fact that there are uncertainties with respect to the mi-
cromechanical parameters and despite the limitation of the homogenization scheme to
small deformations a good agreement with the experiments could be reached as long as
size effects were not dominant like, for example, in the shear test.

• In the last part of the numerical examples two- and three-dimensional foam-like struc-
tures were subjected to large strain compressions test where no scale separation has
been made. In an accompanying analysis where the eigenvalues were computed on the
one hand and the diagonal elements of the factorized tangential stiffness matrix were
observed on the other hand, it has been demonstrated that there is no global point of
instability. This is typical for cellular materials under compression since buckling of the
individual cell walls does not occur simultaneously.
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In summary one can state that all of the above-mentioned mechanical phenomena associated
with cellular materials could be investigated by the methods developed and implemented in
this thesis. The results could be verified by reference computations. In the case of the open-
cell PU foams a validation could be performed whereby size effects could not be taken into
account due to the first-order homogenization. Note that at least for the three-dimensional
homogenization approach, the applicability to real engineering problems is possible.

Now, let us look ahead to possible future research:

• The efficiency of the nonlinear (nested) first-order FE2 scheme should be improved fur-
ther. To this end, the numerical tangent should be replaced by a consistent tangent.

• Further developments of the higher-order FE2 scheme is planned, in order to account for
arbitrary irregular microstructures. To this end, the projection rule should be extended
to the whole microstructure, i.e. it is not restricted to the boundary anymore, compare
with [64].

• Since size effects cannot be captured by a first-order scheme, the focus of the three-
dimensional homogenization approach should be applied to solid-like materials. Possible
applications would be composite materials, where one could investigate the change in
effective stiffness for different types of reinforcement. In addition damage could be
included, whereby one has to set up corresponding functions that describe the damage
process. Due to its generality the first-order homogenization approach could be adapted
to commercial FE-software, too. Of course, its key feature, the FCM, would then be
excluded. However, as indicated above there are several applications, which may be
relevant in industry.
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Appendix A

Some definitions

A.1 Elasticity matrix obtained via numerical differenti-

ation

C eff ≈ (A.1)




























(σ1
xx − σ2

xx)

∆ε12

(σ1
xx − σ3

xx)

∆ε13

(σ1
xx − σ4

xx)

∆ε14

(σ1
xx − σ5

xx)

2∆ε15

(σ1
xx − σ6

xx)

2∆ε16

(σ1
xx − σ7

xx)

2∆ε17

(σ1
yy − σ3

yy)

∆ε13

(σ1
yy − σ4

yy)

∆ε14

(σ1
yy − σ5

yy)

2∆ε15

(σ1
yy − σ6

yy)

2∆ε16

(σ1
yy − σ7

yy)

2∆ε17

(σ1
zz − σ4

zz)

∆ε14

(σ1
zz − σ5

zz)

2∆ε15

(σ1
zz − σ6

zz)

2∆ε16

(σ1
zz − σ7

zz)

2∆ε17

(σ1
xy − σ5

xy)

2∆ε15

(σ1
xy − σ6

xy)

2∆ε16

(σ1
xy − σ7

xy)

2∆ε17

(σ1
yz − σ6

yz)

2∆ε16

(σ1
yz − σ7

yz)

2∆ε17

sym
(σ1

xz − σ7
xz)

2∆ε17





























with

∆ε1j = ‖〈ε̃1〉 − 〈ε̃j〉‖L2
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A.2 Babuška-Chen points

Table A.1: Babuška-Chen points for p = 3, . . . , 8

p abscissas ξi

3 -1.0

-0.4177913013559897

0.4177913013559897

1.0

4 -1.0

-0.6209113046899123

0.0

0.6209113046899123

1.0

5 -1.0

-0.7341266671891752

-0.2689070447719729

0.2689070447719729

0.7341266671891752

1.0

6 -1.0

-0.8034402382691066

-0.4461215299911067

0.0

0.4461215299911067

0.8034402382691066

1.0

7 -1.0

-0.8488719610366557

-0.5674306027472533

-0.1992877299056662

0.1992877299056662

0.5674306027472533

0.8488719610366557

1.0

8 -1.0

-0.8802308527184540

-0.6535334790799030

-0.3477879716116667

0.0

0.3477879716116667

0.6535334790799030

0.8802308527184540

1.0
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Appendix B

Results

B.1 Elasticity matrices of PU-foams with standard de-

viation

In this section the mean effective elasticity matrices C̄ and the corresponding standard devia-
tions s for the PU-foams with 10, 20, and 30 ppi as discussed in paragraph 5.2.2.2.2 are shown
explicitly whereby the unit of measurement is KPa.

C̄ 10 =














88.330871 34.482038 63.223237 −2.387856 −0.722179 1.595839

97.643325 70.246279 −1.162706 1.124662 1.100486

252.991139 −2.783297 −6.460592 2.742869

28.380657 0.074728 0.18462

42.487579 −0.448865

sym 39.681592














,

s 10 =














6.202562 6.089594 7.159217 5.564261 3.710578 10.212453

15.793839 14.851017 5.35346 5.097533 6.821142

35.530756 6.066609 7.254909 12.071817

1.739717 1.875266 1.294509

1.789284 1.677849

sym 3.226813














,

C̄ 20 =














93.108931 32.645311 75.677872 −0.752524 −1.986181 0.595599

88.040143 71.1722 −0.654592 −3.925366 −0.53431

273.472678 −0.789421 −6.127186 −0.192003

27.551906 −0.070942 −0.423725

41.109557 0.292451

sym 42.554927














,



136 B. Results

s 20 =














7.464839 2.047713 5.77409 1.040966 2.204077 6.19197

9.725039 7.408952 1.487821 3.435391 3.17859

14.474297 0.819548 6.537476 10.150542

1.04077 1.277372 0.584515

1.448436 0.425118

sym 1.070789














,

C̄ 30 =














78.852291 26.615409 50.21248 0.589241 −0.165197 1.272528

85.937939 56.588212 0.324952 1.147256 0.766345

192.04502 0.803759 1.589134 3.84127

26.345002 0.449321 0.134291

38.195485 0.372692

sym 37.729789














,

s 30 =














3.50764 2.425848 4.372923 2.003605 1.74434 4.338506

7.817952 6.137127 1.892782 2.61316 3.869907

6.686588 1.197719 6.72161 7.426606

1.232135 1.292385 0.934955

1.910475 0.708291

sym 1.784215














.

Please note that the high standard deviation in the offdiagonal terms stems from the fact that
the individual foams are not perfectly transversely isotropic.
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on an elastic micropolar continuum model for large deformations. Proceedings in Applied

Mathematics and Mechanics, 8(1):10549–10550, 2008.
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[24] A. Düster, J. Parvizian, Z. Yang, and E. Rank. The finite cell method for three-
dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and

Engineering, 197:3768–3782, 2008.
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