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Abstract
In this paper we study the problem of extending functions with values in a locally 
convex Hausdorff space E over a field � , which has weak extensions in a weighted 
Banach space F�(Ω,�) of scalar-valued functions on a set Ω , to functions in a vec-
tor-valued counterpart F�(Ω,E) of F�(Ω,�) . Our findings rely on a description of 
vector-valued functions as continuous linear  operators and extend results of Frerick, 
Jordá and Wengenroth. As an application we derive weak-strong principles for con-
tinuously partially differentiable functions of finite order and vector-valued versions 
of Blaschke’s convergence theorem for several spaces.

Keywords extension · Vector-valued · �-product · Weight · weak-strong principle

Mathematics Subject Classification 46E40 · 46A03 · 46E10

1 Introduction

This paper centres on the problem of extending a vector-valued function f ∶ Λ → E 
from a subset Λ ⊂ Ω to a locally convex Hausdorff space E if the scalar-valued func-
tions e′◦f  are extendable for each e� ∈ G ⊂ E� under the constraint of preserving 
the properties, like holomorphy, of the scalar-valued extensions. This problem was 
considered, among others, by Grothendieck [27, 28], Bierstedt [6], Gramsch [23], 
Grosse-Erdmann [25, 26], Arendt and Nikolski [2–4], Bonet, Frerick, Jordá and 
Wengenroth [7, 18, 19, 31, 32] and us [38].

Often, the underlying idea to prove such an extension theorem is to use a rep-
resentation of an E-valued function by a continuous linear operator. Namely, if 
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F(Ω)∶=F(Ω,�) is a locally convex Hausdorff space of scalar-valued functions 
on a set Ω such that the point evaluations �x at x belong to the dual F(Ω)� for 
each x ∈ Ω , then the function S(u) ∶ Ω → E given by x ↦ u(�x) is well-defined for 
every element u of Schwartz’ �-product F(Ω)�E∶=Le(F(Ω)�� ,E) where the dual 
F(Ω)� is equipped with the topology of uniform convergence on absolutely convex 
compacts subsets of F(Ω) , the space of continuous linear operators L(F(Ω)�

�
,E) 

is equipped with the topology of uniform convergence on the equicontinuous 
subsets of F(Ω)�

�
 and E is a locally convex Hausdorff space over the field � . In 

many cases the function S(u) inherits properties of the functions in F(Ω) , e.g. if 
F(Ω) = (O(Ω), �co) is the space of holomorphic functions on an open set Ω ⊂ ℂ 
equipped with the compact-open topology �co , then the space of functions of the 
form S(u) with u ∈ (O(Ω), �co)�E coincides with the space O(Ω,E) of E-valued 
holomorphic functions if E is locally complete. Even more is true, namely, that 
the map S ∶ (O(Ω), �co)�E → (O(Ω,E), �co) is a (topological) isomorphism (see 
[7, p. 232]). So suppose that there is a locally convex Hausdorff space F(Ω,E) of 
E-valued functions on Ω such that the map S ∶ F(Ω)�E → F(Ω,E) is well-defined 
and at least a (topological) isomorphism into, i.e. to its range. The precise formu-
lation of the extension problem from the beginning is the following question.

Question 1.1 Let Λ be a subset of Ω and G a linear subspace of E′ . Let f ∶ Λ → E 
be such that for every e� ∈ G , the function e�◦f ∶ Λ → � has an extension in F(Ω) . 
When is there an extension F ∈ F(Ω,E) of f, i.e. F∣Λ = f  ?

Even the case Λ = Ω is interesting because then the question is about proper-
ties of vector-valued functions and a positive answer is usually called a weak-
strong principle. From the connection of F(Ω)�E and F(Ω,E) it is evident to seek 
for extension theorems for vector-valued functions by extension theorems for 
continuous linear operators. In this way many of the extension theorems of the 
aforementioned references are derived but in most of the cases the space F(Ω) 
has to be a semi-Montel (see [23, 28, 38]) or even a Fréchet–Schwartz space (see 
[7, 18, 23, 25–27, 31, 38]) or E is restricted to be a semi-Montel space (see [6, 
38]). The restriction to semi-Montel spaces F(Ω) resp. E, i.e. to locally convex 
spaces in which every bounded set is relatively compact, is quite natural due 
to the topology of the dual F(Ω)�

�
 in the �-product F(Ω)�E and its symmetry 

F(Ω)�E ≅ E�F(Ω).
In the present paper we treat the case of a Banach space which we denote by 

F�(Ω) because its topology is induced by a weight � . We use the methods devel-
oped in [19] and [32] where, in particular, the special case that F�(Ω) is the space 
of bounded smooth functions on an open set Ω ⊂ ℝ

d in the kernel of a hypoel-
liptic linear partial differential operator resp. a weighted space of holomorphic 
functions on an open subset Ω of a Banach space is treated. The lack of compact 
subsets of the infinite dimensional Banach space F�(Ω) is compensated in [19] 
and [32] by using an auxiliary locally convex Hausdorff space F(Ω) of scalar-
valued functions on Ω such that the closed unit ball of F�(Ω) is compact in F(Ω) . 
They share the property that S ∶ F�(Ω)�E → F�(Ω,E) and S ∶ F(Ω)�E → F(Ω,E) 
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are topological isomorphisms into but usually it is only known in the latter case 
that S is subjective as well under some mild completeness assumption on E. For 
instance, if F�(Ω,E)∶=H∞(Ω,E) is the space of bounded holomorphic functions 
on an open set Ω ⊂ ℂ with values in a locally complete space E, then the space 
F(Ω,E)∶=(O(Ω,E), �co) is used in [19].

Let us outline the content of our paper. We give a general approach to the 
extension problem for Banach function spaces F�(Ω) . It combines the methods 
of [19] and [32] with the ones of [35] like in [38] which require that the spaces 
F�(Ω) and F�(Ω,E) have a certain structure (see Definition 2.3). To answer Ques-
tion 1.1 we have to balance the sets Λ ⊂ Ω and the spaces G ⊂ E′ . If we choose 
Λ to be ’thin‘, then G has to be ’thick‘ (see Section 3) and vice versa (see Sec-
tion 4). In Section 5 we use the results of Section 3 to derive and improve weak-
strong principles for differentiable functions of finite order. Section 6 is devoted 
to vector-valued Blaschke theorems.

2  Notation and Preliminaries

We use essentially the same notation and preliminaries as in [38, Section 2]. We 
equip the spaces ℝd , d ∈ ℕ , and ℂ with the usual Euclidean norm | ⋅ | . By E we 
always denote a non-trivial locally convex Hausdorff space over the field 𝕂 = ℝ 
or ℂ equipped with a directed fundamental system of seminorms (p

�
)
�∈� and, in 

short, we write E is an lcHs. If E = � , then we set (p
�
)
�∈�∶={| ⋅ |}. For more 

details on the theory of locally convex spaces see [17, 30] or [40].
By XΩ we denote the set of maps from a non-empty set Ω to a non-empty set 

X and by L(F, E) the space of continuous linear operators from F to E where F 
and E are locally convex Hausdorff spaces. If E = � , we just write F�∶=L(F,�) 
for the dual space and G◦ for the polar set of G ⊂ F . We write F ≅ E if F and E 
are (linearly topologically) isomorphic. We denote by Lt(F,E) the space L(F, E) 
equipped with the locally convex topology t of uniform convergence on the 
finite subsets of F if t = � , on the absolutely convex, compact subsets of F if 
t = � and on the bounded subsets of F if t = b . We use the symbol t(F�,F) for the 
corresponding topology on F′ . A linear subspace G of F′ is called separating if 
f �(x) = 0 for every f � ∈ G implies x = 0 . This is equivalent to G being �(F�,F)-
dense (and �(F�,F)-dense) in F′ by the bipolar theorem. Further, for a disk D ⊂ F , 
i.e. a bounded, absolutely convex set, the vector space FD∶=

⋃
n∈ℕ nD becomes a 

normed space if it is equipped with gauge functional of D as a norm (see [30, p. 
151]). The space F is called locally complete if FD is a Banach space for every 
closed disk D ⊂ F (see [30, 10.2.1 Proposition, p. 197]).

Furthermore, we recall the definition of continuous partial differentiability of a 
vector-valued function that we need in many examples, especially, for the weak-
strong principle for differentiable functions of finite order in Section 5. A func-
tion f ∶ Ω → E on an open set Ω ⊂ ℝ

d to an lcHs E is called continuously par-
tially differentiable (f is C1 ) if for the n-th unit vector en ∈ ℝ

d the limit
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exists in E for every x ∈ Ω and (�en )Ef  is continuous on Ω ( (�en )Ef  is C0 ) for every 
1 ≤ n ≤ d . For k ∈ ℕ a function f is said to be k-times continuously partially dif-
ferentiable (f is Ck ) if f is C1 and all its first partial derivatives are Ck−1 . A function 
f is called infinitely continuously partially differentiable (f is C∞ ) if f is Ck for every 
k ∈ ℕ . For k ∈ ℕ0 ∪ {∞} the linear space of all functions f ∶ Ω → E which are Ck 
is denoted by Ck(Ω,E) . Let f ∈ C

k(Ω,E) . For � ∈ ℕ
d
0
 with ���∶=

∑d

n=1
�n ≤ k we set 

(��n )Ef∶=f  if �n = 0 , and

if �n ≠ 0 as well as

If E = � , we usually write �� f∶=(��)�f .
In addition, we use the following notion for the relation between the �-product 

F(Ω)�E and the space F(Ω,E) of vector-valued functions that has already been 
described in the introduction.

Definition 2.1 (�-into-compatible, [38, 2.1 Definition, p. 4]) Let Ω be a non-empty 
set and E an lcHs. Let F(Ω) ⊂ �

Ω and F(Ω,E) ⊂ EΩ be lcHs such that �x ∈ F(Ω)� 
for all x ∈ Ω . We call the spaces F(Ω) and F(Ω,E) �-into-compatible if the map

is a well-defined isomorphism into. We call F(Ω) and F(Ω,E) �-compatible if S is 
an isomorphism. If we want to emphasise the dependency on F(Ω) , we write SF(Ω) 
instead of S.

Definition 2.2 (strong, consistent) Let Ω and � be non-empty sets and E, F(Ω) ⊂ �
Ω 

and F(Ω,E) ⊂ EΩ be lcHs. Let �x ∈ F(Ω)� for all x ∈ Ω and T� ∶ F(Ω) → �
� and 

TE ∶ F(Ω,E) → E� be linear maps. 

(a) We call (TE, T�) a consistent family for (F,E) if we have for every u ∈ F(Ω)�E 
that S(u) ∈ F(Ω,E) and 

(b) We call (TE, T�) a strong family for (F,E) if we have for every e� ∈ E� , 
f ∈ F(Ω,E) that e�◦f ∈ F(Ω) and 

(�en )Ef (x)∶= lim
h → 0

h ∈ ℝ, h ≠ 0

f (x + hen) − f (x)

h

(��n )Ef∶= (�en )E ⋯ (�en )E

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

�n-times

f

(��)Ef∶=(��1 )E ⋯ (��d )Ef .

S ∶ F(Ω)�E → F(Ω,E), u ⟼ [x ↦ u(�x)],

∀ x ∈ � ∶ T�

x
∶=�x◦T

� ∈ F(Ω)� and TES(u)(x) = u(T�

x
).

∀ x ∈ � ∶ T�(e�◦f )(x) = (e�◦TE(f ))(x).
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This is a special case of [38, 2.2 Definition, p. 4] where the considered family 
(TE

m
, T�

m
)m∈M only consists of one pair, i.e. the set M is a singleton. In the introduc-

tion we have already hinted that the spaces F(Ω) and F(Ω,E) for which we want 
to prove extension theorems need to have a certain structure, namely, the follow-
ing one.

Definition 2.3 (generator) Let Ω and � be non-empty sets, � ∶ � → (0,∞) , F(Ω,E) 
a linear subspace of EΩ and TE ∶ F(Ω,E) → E� a linear map. We define the space

where

Further, we call (TE, T�) the generator for (F�(Ω),E) , in short (F�,E) . We write 
F�(Ω)∶=F�(Ω,�) and omit the index � if E is a normed space. If we want to 
emphasise dependencies, we write |f |F�(Ω),� instead of |f |

�
.

This is a special case of [35, Definition 3, p. 1515] where the family of 
weights only consists of one weight function. For instance, if Ω∶=� , TE∶=idEΩ 
and �∶=1 on Ω , then F�(Ω,E) is the linear subspace of F(Ω,E) consisting of 
bounded functions, in particular, if Ω ⊂ ℂ is open and F(Ω,E)∶=O(Ω,E) , then 
F�(Ω,E) = H∞(Ω,E) is the space of E-valued bounded holomorphic functions 
on Ω . Due to (E, (p

�
)
�∈�) being an lcHs with directed system of seminorms the 

topology of F�(Ω,E) generated by (| ⋅ |
�
)
�∈� is locally convex and the system 

(| ⋅ |
�
)
�∈� is directed but need not be Hausdorff.

Proposition 2.4 Let F(Ω) and F(Ω,E) be �-into-compatible, (TE, T�) a consistent 
family for (F,E) and a generator for (F�,E) and the map i ∶ F�(Ω) → F(Ω) , f ↦ f  , 
continuous. We set

where B◦F(Ω)�

F�(Ω)
∶={y� ∈ F(Ω)� | ∀ f ∈ BF�(Ω) ∶ |y�(f )| ≤ 1} and BF�(Ω) is the closed 

unit ball of F�(Ω) . Then the following holds. 

(a) F�(Ω) is Hausdorff and �x ∈ F�(Ω)� for all x ∈ Ω.
(b) Let u ∈ F(Ω)�E . Then 

 In particular, 

F𝜈(Ω,E)∶=
{
f ∈ F(Ω,E) | ∀ 𝛼 ∈ � ∶ |f |

𝛼
< ∞

}

|f |
�
∶= sup

x∈�

p
�

(
TE(f )(x)

)
�(x).

F
�
�(Ω,E)∶=S({u ∈ F(Ω)�E | u(B◦F(Ω)�

F�(Ω)
) is bounded in E})

sup
y�∈B

◦F(Ω)�

F�(Ω)

p
�
(u(y�)) = |S(u)|F�(Ω),� , � ∈ �.
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(c) S(F𝜈(Ω)𝜀E) ⊂ F
𝜀
𝜈(Ω,E) ⊂ F𝜈(Ω,E) as linear spaces. If F(Ω) and F(Ω,E) are 

even �-compatible, then F
�
�(Ω,E) = F�(Ω,E).

Proof Part (a) follows from the continuity of i and the �-into-compatibility of F(Ω) 
and F(Ω,E) . Let us turn to part (b). Like in [35, Lemma 7, p. 1517] it follows from 
the bipolar theorem that

where acx denotes the closure w.r.t. �(F(Ω)�,F�(Ω)) of the absolutely convex hull 
acx of the set D∶={T�

x
(⋅)�(x) | x ∈ �} on the right-hand side, and that

by consistency, which proves part (b).
Let us address part (c). The continuity of i implies the continuity of the inclusion 

F�(Ω)�E ↪ F(Ω)�E and thus we obtain u∣F(Ω)� ∈ F(Ω)�E for every u ∈ F�(Ω)�E . 
If u ∈ F�(Ω)�E and � ∈ � , then there are C0,C1 > 0 and an absolutely convex com-
pact set K ⊂ F𝜈(Ω) such that K ⊂ C1BF𝜈(Ω) and

which implies S(F𝜈(Ω)𝜀E) ⊂ F
𝜀
𝜈(Ω,E) . If f∶=S(u) ∈ F

�
�(Ω,E) and � ∈ � , then 

S(u) ∈ F(Ω,E) and

by consistency, yielding F
𝜀
𝜈(Ω,E) ⊂ F𝜈(Ω,E) . If F(Ω) and F(Ω,E) are even �

-compatible, then S(F(Ω)�E) = F(Ω,E) , which yields F
�
�(Ω,E) = F�(Ω,E) by 

part (b).   ◻

The canonical situation in part (c) is that F
�
�(Ω,E) and F�(Ω,E) coincide 

as linear spaces for locally complete E as we will encounter in the forthcoming 
examples, e.g. if F�(Ω,E)∶=H∞(Ω,E) and F(Ω,E)∶=(O(Ω,E), �co) for an open 
set Ω ⊂ ℂ . That all three spaces in part (c) coincide is usually only guaranteed by 
[35, Theorem 14 (ii), p.1524] if E is a semi-Montel space. Therefore the ’mingle-
mangle‘ space F

�
�(Ω,E) is a good replacement for S(F�(Ω)�E) for our purpose.

F
𝜀
𝜈(Ω,E) = S({u ∈ F(Ω)𝜀E | ∀ 𝛼 ∈ � ∶ |S(u)|F𝜈(Ω),𝛼 < ∞}).

B
◦F(Ω)�

F�(Ω)
= acx{T�

x
(⋅)�(x) | x ∈ �},

sup
y�∈B

◦F(Ω)�

F�(Ω)

p
�
(u(y�)) = sup

y�∈acx(D)

p
�
(u(y�)) = sup

y�∈D

p
�
(u(y�))

= sup
x∈�

p
�

(
u(T�

x
)
)
�(x) = sup

x∈�

p
�

(
TE(S(u))(x)

)
�(x)

= |S(u)|F�(Ω),�

sup
y�∈B

◦F(Ω)�

F�(Ω)

p
�
(u(y�)) ≤ C0 sup

y�∈B
◦F(Ω)�

F�(Ω)

sup
f∈K

|y�(f )| ≤ C0C1,

|f |F𝜈(Ω),𝛼 = sup
x∈𝜔

p
𝛼
(u(T�

x
)𝜈(x)) < ∞
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3  Extension of vector‑valued functions

In this section the sets from which we want to extend our functions are ’thin‘. 
They are so-called sets of uniqueness.

Definition 3.1 (set of uniqueness) Let F�(Ω) be a Hausdorff space. A set U ⊂ 𝜔 is 
called a set of uniqenes for (T�,F�) if

This definition is a special case of [38, 3.1 Definition, p.8] because 
T�

x
∈ F�(Ω)� for all x ∈ � by [35, Remark 5, p. 1516]. The span of {T�

x
| x ∈ U} 

is weak∗-dense in F�(Ω)� by the bipolar theorem if U is a set of uniqueness for 
(T�,F�) . The set U∶=� is always a set of uniqueness for (T�,F�) as F�(Ω) is an 
lcHs by assumption. Next, we introduce the notion of a restriction space which is 
a special case of [38, 3.3 Definition, p.8].

Definition 3.2 (restriction space) Let G ⊂ E′ be a separating subspace, F�(Ω) a 
Hausdorff space and U a set of uniqueness for (T�,F�) . We denote by F�G(U,E) the 
space of functions f ∶ U → E such that for every e� ∈ G there is fe� ∈ F�(Ω) with 
T�(fe� )(x) = (e�◦f )(x) for all x ∈ U.

The time has come to use our auxiliary spaces F(Ω) , F(Ω,E) and F
�
�(Ω,E) 

from Proposition 2.4.

Remark 3.3 Let (TE, T�) be a strong, consistent family for (F,E) and a generator for 
(F�,E) . Let F(Ω) and F(Ω,E) be �-into-compatible and the inclusion F�(Ω) ↪ F(Ω) 
continuous. Consider a set of uniqueness U for (T�,F�) and a separating subspace 
G ⊂ E′ . For u ∈ F(Ω)�E such that u(B◦F(Ω)�

F�(Ω)
) is bounded in E, i.e. S(u) ∈ F

�
�(Ω,E) , 

we set f∶=S(u) . Then f ∈ F(Ω,E) by the �-into-compatibility and we define 
f̃ ∶ U → E , f̃ (x)∶=TE(f )(x) . This yields

for all x ∈ U and fe�∶=e�◦f ∈ F(Ω) for each e� ∈ E� by the strength of the family. 
Moreover, T�

x
(⋅)�(x) ∈ B

◦F(Ω)�

F�(Ω)
 for every x ∈ � , which implies that for every e� ∈ E� 

there are � ∈ � and C > 0 such that

by strength and consistency. Hence fe� ∈ F�(Ω) for every e� ∈ E� and f̃ ∈ F�G(U,E)

.

Under the assumptions of Remark 3.3 the map

∀ f ∈ F�(Ω) ∶ T�(f )(x) = 0 ∀ x ∈ U ⇒ f = 0.

(3.1)(e�◦f̃ )(x) = (e�◦TE(f ))(x) = T�(e�◦f )(x)

|fe� |F𝜈(Ω) = sup
x∈𝜔

||e
�
(
u(T�

x
(⋅)𝜈(x)

)|| ≤ C sup
y�∈B

◦F(Ω)�

F𝜈(Ω)

p
𝛼
(u(y�)) < ∞
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is well-defined and linear. In addition, we derive from (3.1) that RU,G is injective 
since U is a set of uniqeness and G ⊂ E′ separating.

Question 3.4 Let the assumptions of Remark 3.3 be fulfilled. When is the injective 
restriction map

surjective?

Due to Proposition 2.4 (c) the Question 1.1 is a special case of this question if 
Λ ⊂ Ω =∶ 𝜔 and U∶=Λ is a set of uniqueness for (id

�Ω ,F�) . To answer Question 
3.4 for general sets of uniqueness we have to restrict to a certain class of ’thick‘ 
separating subspaces of E′.

Definition 3.5 (determine boundedness [7, p. 230]) A linear subspace G ⊂ E′ deter-
mines boundedness if every �(E,G)-bounded set B ⊂ E is already bounded in E.

E′ itself always determines boundedness by Mackey’s theorem. Further examples 
can be found in [38, 3.10 Remark, p.10] and the references therein. We recall the 
following extension result for continuous linear operators.

Proposition 3.6 ( [19, Proposition 2.1, p. 691]) Let E be locally complete, 
G ⊂ E′ determine boundedness, Z a Banach space whose closed unit ball BZ 
is a compact subset of an lcHs Y and X ⊂ Y ′ be a �(Y �, Z)-dense subspace. 
If 𝖠 ∶ X → E is a �(X, Z)-�(E,G) continuous linear map, then there exists 
a (unique) extension ̂� ∈ Y�E of � such that ̂�(B◦Y �

Z
) is bounded in E where 

B◦Y �

Z
∶={y� ∈ Y � | ∀ z ∈ BZ ∶ |y�(z)| ≤ 1}.

Now, we are able to generalise [19, Theorem 2.2, p. 691] and [32, Theorem 10, 
p. 5].

Theorem 3.7 Let E be locally complete, G ⊂ E′ determine boundedness and F(Ω) 
and F(Ω,E) be �-into-compatible. Let (TE, T�) be a generator for (F�,E) and a 
strong, consistent family for (F,E) , F�(Ω) a Banach space whose closed unit ball 
BF�(Ω) is a compact subset of F(Ω) and U a set of uniqueness for (T�,F�) . Then the 
restriction map

is surjective.

Proof Let f ∈ F�G(U,E) . We set X∶=span{T�

x
| x ∈ U} , Y∶=F(Ω) and Z∶=F�(Ω) . 

The consistency of (TE, T�) for (F,E) yields that X ⊂ Y ′ . From U being a set of 

(3.2)RU,G ∶ F
�
�(Ω,E) → F�G(U,E), f ↦ (TE(f )(x))x∈U ,

RU,G ∶ F
�
�(Ω,E) → F�G(U,E), f ↦ (TE(f )(x))x∈U ,

RU,G ∶ F
�
�(Ω,E) → F�G(U,E)
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uniqueness of Z follows that X is �(Z�, Z)-dense. Since BZ is a compact subset of Y, it 
follows that Z is a linear subspace of Y and the inclusion Z ↪ Y  is continuous, which 
yields y�

∣Z
∈ Z� for every y� ∈ Y � . Thus X is �(Y �, Z)-dense. Let 𝖠 ∶ X → E be the 

linear map determined by �(T�

x
)∶=f (x) . The map � is well-defined since G is 

�(E�,E)-dense. Due to

for every e� ∈ G and x ∈ U we have that � is �(X, Z)-�(E,G)-continuous. We apply 
Proposition 3.6 and gain an extension ̂� ∈ Y�E of � such that ̂�(B◦Y �

Z
) is bounded in 

E. We set F∶=S(̂�) ∈ F
�
�(Ω,E) and get for all x ∈ U that

by consistency for (F,E) , implying RU,G(F) = f  .   ◻

For a continuous function � ∶ � → (0,∞) and a complex lcHs E we define the 
Bloch type spaces

with

and the complex derivative

If E = ℂ , we write f �(z)∶=(�1
ℂ
)ℂf (z) for z ∈ � and f ∈ O(�) . We set 

�∶={0} ∪ {(1, z) | z ∈ �} , define the operator TE ∶ O(�,E) → E� by

and the weight �∗ ∶ � → (0,∞) by

Then we have for every � ∈ � that

and with F(�,E)∶=O(�,E) we observe that F�∗(�,E) = B�(�,E) with generator 
(TE, Tℂ).

Corollary 3.8 Let E be a locally complete lcHs, G ⊂ E′ determine bounded-
ness, � ∶ � → (0,∞) continuous and U∗ ⊂ � have an accumulation point in � . 

e�(�(T�

x
)) = (e�◦f )(x) = T�

x
(fe� )

TE(F)(x) = TES(̂�)(x) = ̂�(T�

x
) = f (x)

B𝜈(�,E)∶={f ∈ O(�,E) | ∀ 𝛼 ∈ � ∶ |f |
𝜈,𝛼 < ∞}

|f |
�,�∶=max

(
p
�
(f (0)), sup

z∈𝔻

p
�
((�1

ℂ
)Ef (z))�(z)

)

(�1
ℂ
)Ef (z)∶= lim

h → 0

h ∈ ℂ, h ≠ 0

f (z + h) − f (z)

h
, z ∈ 𝔻, f ∈ O(𝔻,E).

TE(f )(0)∶=f (0) and TE(f )(1, z)∶=(�1
ℂ
)Ef (z),

�∗(0)∶=1 and �∗(1, z)∶=�(z), z ∈ �.

|f |
�,� = sup

x∈�

p
�

(
TE(f )(x)

)
�∗(x), f ∈ B�(�,E),
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If f ∶ {0} ∪ ({1} × U∗) → E is a function such that there is fe� ∈ B�(�) for each 
e� ∈ G with fe� (0) = e�(f (0)) and f �

e�
(z) = e�(f (1, z)) for all z ∈ U∗ , then there exists a 

unique F ∈ B�(�,E) with F(0) = f (0) and (�1
ℂ
)EF(z) = f (1, z) for all z ∈ U∗.

Proof We take F(�)∶=(O(�), �co) and F(�,E)∶=(O(�,E), �co) . Then we have 
F�∗(�) = B�(�,E) and F�∗(Ω,E) = B�(�,E) with the weight �∗ and generator 
(TE, Tℂ) for (F�∗,E) described above. The spaces F(�) and F(�,E) are �-com-
patible by [7, p. 232] in combination with [36, Remark 5.4, p. 264] and the gen-
erator is a strong, consistent family for (F,E) (see e.g. [37, Theorem 4.5, p. 368]). 
F�∗(�) = B�(�) is a Banach space and

for every z ∈ � , yielding

for all 0 < r < 1 and f ∈ B�(�) . We deduce from the inequality above that BF�∗(�)
 

is compact in the Montel space (O(�), �co) . We note that the �-compatibility of 
F(Ω) and F(Ω,E) in combination with the consistency of (TE, Tℂ) for (F,E) 
gives F

�
�∗(�,E) = F�∗(�,E) as linear spaces by Proposition 2.4 (c). In addition, 

U∶={0} ∪ {(1, z) | z ∈ U∗} is a set of uniqueness for (Tℂ,F�∗) by the identity theo-
rem, proving our statement by Theorem 3.7.   ◻

4  Extension of locally bounded functions

To obtain an affirmative answer to Question 3.4 for general separating subspaces of 
E′ we have to restrict to a certain class of ’thick‘ sets of uniqueness.

Definition 4.1 (fix the topology) Let F�(Ω) be a Hausdorff space. U ⊂ 𝜔 fixes the 
topology in F�(Ω) if there is C > 0 such that

In particular, U is a set of uniqueness if it fixes the topology. The present defi-
nition of fixing the topology is a special case of [38, 4.1 Definition, p. 18]. Sets 
that fix the topology appear under many different names, e.g. dominating, (weakly) 
sufficient or sampling sets (see [38, p.18-19] and the references therein), and they 
are related to ��(U)-frames used by Bonet et. al in [8]. For a set U, a function 
� ∶ U → (0,∞) and an lcHs E we set

|f (z)| ≤ |f (0)| + ||�
z

0

f �(�)d� || ≤ |f (0)| + |z|
min

�∈[0,z] �(�)
sup

�∈[0,z]

|f �(�)|�(� )

≤ 2max
(
1,

|z|
min

�∈[0,z] �(�)

)
|f |

�

max
|z|≤r |f (z)| ≤ 2max

(
1,

r

min|z|≤r �(z)
)
|f |

�

|f |F�(Ω) ≤ C sup
x∈U

|T�(f )(x)|�(x), f ∈ F�(Ω).
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If U is countable and fixes the topology in F�(Ω) , the inclusion ��(U) ↪ (�U , �co) 
is continuous and ��(U) contains the space of sequences (on U) with compact sup-
port as a linear subspace, then (T�

x
)x∈U is an ��(U)-frame in the sense of [8, Defini-

tion 2.1, p.3]. The next definition is a special case of [38, 4.2 Definition, p. 19].

Definition 4.2 (lb-restriction space) Let F�(Ω) be a Hausdorff space, U fix the topol-
ogy in F�(Ω) and G ⊂ E′ be a separating subspace. We set

for f ∈ FVG(U,E) and

Let us recall the assumptions of Remark 3.3 but now U fixes the topology. Let 
(TE, T�) be a strong, consistent family for (F,E) and a generator for (F�,E) . Let 
F(Ω) and F(Ω,E) be �-into-compatible and the inclusion F�(Ω) ↪ F(Ω) continu-
ous. Consider a set U which fixes the topology in F�(Ω) and a separating subspace 
G ⊂ E′ . For u ∈ F(Ω)�E such that u(B

◦F(Ω)�

F�(Ω)
) is bounded in E we have 

RU,G(f ) ∈ F�G(U,E) with f∶=S(u) ∈ F
�
�(Ω,E) by (3.2). Further, 

T�

x
(⋅)�(x) ∈ B

◦F(Ω)�

F�(Ω)
 for every x ∈ � , which implies that

for all � ∈ � by consistency. Hence RU,G(f ) ∈ F�G(U,E)lb . Therefore the injective 
linear map

is well-defined and the question we want to answer is:

Question 4.3 Let the assumptions of Remark 3.3 be fulfilled and U fix the topology 
in F�(Ω) . When is the injective restriction map

surjective?

Proposition 4.4 ( [19, Proposition 3.1, p. 692]) Let E be locally complete, G ⊂ E′ a 
separating subspace and Z a Banach space whose closed unit ball BZ is a compact 
subset of an lcHs Y. Let B1 ⊂ B◦Y ′

Z
 such that B◦Z

1
∶={z ∈ Z | ∀ y� ∈ B1 ∶ |y�(z)| ≤ 1} 

is bounded in Z. If 𝖠 ∶ X∶=spanB1 → E is a linear map which is bounded on B1 

(4.1)�𝜈(U,E)∶={f ∶ U → E � ∀ 𝛼 ∈ � ∶ ‖f‖
𝛼
∶= sup

x∈U

p
𝛼
(f (x))𝜈(x) < ∞}.

NU(f )∶={f (x)�(x) | x ∈ U}

FVG(U,E)lb∶={f ∈ FVG(U,E) | NU(f ) bounded in E}

=FVG(U,E) ∩ ��(U,E).

sup
x∈U

p
𝛼
(RU,G(f )(x))𝜈(x) = sup

x∈U

p
𝛼

(
u(T�

x
(⋅)𝜈(x))

)

≤ sup
y�∈B

◦F(Ω)�

F𝜈(Ω)

p
𝛼
(u(y�)) < ∞

RU,G ∶ F
�
�(Ω,E) → F�G(U,E)lb, f ↦ (TE(f )(x))x∈U ,

RU,G ∶ F
�
�(Ω,E) → FVG(U,E)lb, f ↦ (TE(f )(x))x∈U ,
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such that there is a �(E�,E)-dense subspace G ⊂ E′ with e�◦� ∈ Z for all e� ∈ G , 
then there exists a (unique) extension ̂� ∈ Y�E of � such that ̂�(B◦Y �

Z
) is bounded in 

E.

The following theorem is a generalisation of [19, Theorem 3.2, p.693] and [32, 
Theorem 12, p. 5].

Theorem 4.5 Let E be locally complete, G ⊂ E′ a separating subspace and F(Ω) and 
F(Ω,E) be �-into-compatible. Let (TE, T�) be a generator for (F�,E) and a strong, 
consistent family for (F,E) , F�(Ω) a Banach space whose closed unit ball BF�(Ω) is 
a compact subset of F(Ω) and U fix the topology in F�(Ω) . Then the restriction map

is surjective.

Proof Let f ∈ F�G(U,E)lb . We set B1∶={T
�

x
(⋅)�(x) | x ∈ U} , X∶=spanB1 , Y∶=F(Ω) 

and Z∶=F�(Ω) . We have B1 ⊂ Y ′ since (TE, T�) is a consistent family for (F,E) . If 
f ∈ BZ , then

for all x ∈ U and thus B1 ⊂ B◦Y ′

Z
 . Further on, there is C > 0 such that for all f ∈ B◦Z

1

as U fixes the topology in Z, implying the boundedness of B◦Z
1

 in Z. Let 𝖠 ∶ X → E 
be the linear map determined by

The map � is well-defined since G is �(E�,E)-dense, and bounded on B1 because 
�(B1) = NU(f ) . Let e� ∈ G and fe′ be the unique element in F�(Ω) such that 
T�(fe� )(x) = (e�◦f )(x) for all x ∈ U , which implies T�(fe� )(x)�(x) = (e�◦�)(T�

x
(⋅)�(x)) . 

Again, this allows us to consider fe′ as a linear form on X (by setting 
fe� (T

�

x
(⋅)�(x))∶=(e�◦�)(T�

x
(⋅)�(x)) ), which yields e�◦� ∈ F�(Ω) = Z for all e� ∈ G . 

Hence we can apply Proposition 4.4 and obtain an extension ̂� ∈ Y�E of � such that 
̂�(B◦Y �

Z
) is bounded in E. We set F∶=S(̂�) ∈ F

�
�(Ω,E) and get for all x ∈ U that

by consistency for (F,E) , yielding RU,G(F) = f  .   ◻

Corollary 4.6 Let E be a locally complete lcHs, G ⊂ E′ a separating subspace, 
� ∶ � → (0,∞) continuous and U∶={0} ∪ ({1} × U∗) fix the topology in B�(�) with 
U∗ ⊂ � . If f ∶ U → E is a function in ��∗(U,E) such that there is fe� ∈ B�(�) for 

RU,G ∶ F
�
�(Ω,E) → F�G(U,E)lb

|T�

x
(f )�(x)| ≤ |f |

F�(Ω) ≤ 1

|f |F�(Ω) ≤ C sup
x∈U

|T�

x
(f )|�(x) ≤ C

�(T�

x
(⋅)�(x))∶=f (x)�(x).

TE(F)(x) = TES(̂�)(x) = ̂�(T�

x
) =

1

�(x)
�(T�

x
(⋅)�(x)) = f (x)
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each e� ∈ G with fe� (0) = e�(f (0)) and f �
e�
(z) = e�(f (1, z)) for all z ∈ U∗ , then there 

exists a unique F ∈ B�(�,E) with F(0) = f (0) and (�1
ℂ
)EF(z) = f (1, z) for all z ∈ U∗.

Proof Observing that f ∈ F�∗G(U,E)lb with F�∗(�) = B�(�)) our statement fol-
lows directly from Theorem 4.5 whose conditions are fulfilled by the proof of Corol-
lary 3.8.   ◻

Sets that fix the topology in B�(�) play an important role in the characterisation 
of composition operators on B�(�) with closed range. Chen and Gauthier give a 
characterisation in [12] for weights of the form �(z) = (1 − |z|2)� , z ∈ � , for some 
� ≥ 1 . We recall the following definitions which are needed to phrase this characteri-
sation. For a continuous function � ∶ � → (0,∞) and a non-constant holomorphic 
function � ∶ � → � we set

and define the pseudohyperbolic distance

(see [12, p. 195-196]). For 0 < r < 1 a set E ⊂ � is called a pseudo r-net if for every 
w ∈ � there is z ∈ � with �(z,w) ≤ r (see [12, p.198]).

Theorem 4.7 ( [12, Theorem 3.1, p. 199, Theorem 4.3, p. 202]) Let � ∶ � → � be 
a non-constant holomorphic function and �(z) = (1 − |z|2)� , z ∈ � , for some � ≥ 1 . 
Then the following statements are equivalent. 

 (i) The composition operator C
�
∶ B�(�) → B�(�) , C

�
(f )∶=f◦� , is bounded 

below (i.e. has closed range).
 (ii) There is 𝜀 > 0 such that {0} ∪ ({1} × �(Ω�

�
)) fixes the topology in B�(�).

 (iii) There are 𝜀 > 0 and 0 < r < 1 such that �(Ω�

�
) is a pseudo r-net.

This theorem has some predecessors. The implications (i) ⇒ (iii) and 
(iii), r < 1∕4 ⇒ (i) for � = 1 are due to Ghatage, Yan and Zheng by [20, Proposition 
1, p. 2040] and [20, Theorem 2, p.2043]. This was improved by Chen to (i) ⇔ (iii) 
for � = 1 by removing the restriction r < 1∕4 in [11, Theorem 1, p. 840]. The proof 
of the equivalence (i) ⇔ (ii) given in [21, Theorem 1, p. 1372] for � = 1 is due to 
Ghatage, Zheng and Zorboska. A non-trivial example of a sampling set for � = 1 can 
be found in [21, Example 2, p. 1376] (cf. [12, p. 203]).

Giménez, Malavé and Ramos-Fernández extend Theorem  4.7 by [22, Theo-
rem  3, p.112] and [22, Corollary 1, p. 113] to more general weights of the 
form �(z) = �(1 − |z|2) with some continuous function � ∶ (0, 1] → (0,∞) 
such that �(r) → 0 , r → 0+ , which can be extended to a holomorphic func-
tion �0 on 𝔻(1, 1)∶={z ∈ ℂ | |z − 1| < 1} without zeros in �(1, 1) and fulfilling 

𝜏
𝜈

𝜙
(z)∶=

𝜈(z)|𝜙�(z)|
𝜈(𝜙(z))

, z ∈ �, and Ω𝜈

𝜀
∶={z ∈ � | 𝜏𝜈

𝜙
(z) ≥ 𝜀}, 𝜀 > 0,

�(z,w)∶=
|||
z − w

1 − zw

|||, z,w ∈ �,
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�(1 − |1 − z|) ≤ C|�0(z)| for all z ∈ �(1, 1) and some C > 0 (see [22, p. 109]). Exam-
ples of such functions � are �1(r)∶=r

� , 𝛼 > 0 , �2∶=r ln(2∕r) and �3(r)∶=r
� ln(1 − r) , 

𝛽 > 1 , for r ∈ (0, 1] (see [22, p. 110]) and with �(z) = �1(1 − |z|2) = (1 − |z|2)� , 
z ∈ � , one gets Theorem 4.7 back for � ≥ 1 . For 0 < 𝛼 < 1 and �(z) = �1(1 − |z|2) , 
z ∈ � , the equivalence (i) ⇔ (ii) is given in [47, Proposition 4.4, p. 14] of Yoneda 
as well and a sufficient condition implying (ii) in [47, Corollary 4.5, p.15]. Ramos-
Fernández generalises the results given in [22] to bounded essential weights � on � 
by [41, Theorem 4.3, p. 85] and [41, Remark 4.2, p. 84].

5  Weak‑strong principles for differentiable functions of finite order

This section is dedicated to Ck-weak-strong principles for differentiable functions. 
So the question is:

Question 5.1 Let E be an lcHs, G ⊂ E′ a separating subspace, Ω ⊂ ℝ
d open 

and k ∈ ℕ0 ∪ {∞} . If f ∶ Ω → E is such that e�◦f ∈ C
k(Ω) for each e� ∈ G , does 

f ∈ C
k(Ω,E) hold?

An affirmative answer to the preceding question is called a Ck-weak-strong prin-
ciple. It is a result of Bierstedt [6, 2.10 Lemma, p. 140] that for k = 0 the C0-weak-
strong principle holds if Ω ⊂ ℝ

d is open (or more general a k
ℝ
-space), G = E� and 

E is such that every bounded set is already precompact in E. For instance, the last 
condition is fulfilled if E is a semi-Montel or Schwartz space. The C0-weak-strong 
principle does not hold for general E by [33, Beispiel, p. 232].

Grothendieck sketches in a footnote [27, p. 39] (cf. [29, Chap. 3, Sect. 8, Cor-
ollary 1, p. 134]) the proof that for k < ∞ a weakly-Ck+1 function f ∶ Ω → E on 
an open set Ω ⊂ ℝ

d with values in a quasi-complete lcHs E is already Ck , i.e. that 
from e�◦f ∈ C

k+1(Ω) for all e� ∈ E� it follows f ∈ C
k(Ω,E) . A detailed proof of this 

statement is given by Schwartz in [44], simultaneously weakening the condition 
from quasi-completeness of E to sequential completeness and from weakly-Ck+1 to 
weakly-Ck,1

loc
.

Theorem 5.2 ( [44, Appendice, Lemme II, Remarques 1 0 ), p. 146-147]) Let E be a 
sequentially complete lcHs, Ω ⊂ ℝ

d open and k ∈ ℕ0 . 

(a) If f ∶ Ω → E is such that e�◦f ∈ C
k,1

loc
(Ω) for all e� ∈ E� , then f ∈ C

k(Ω,E).
(b) If f ∶ Ω → E is such that e�◦f ∈ C

k+1(Ω) for all e� ∈ E� , then f ∈ C
k(Ω,E).

Here Ck,1
loc
(Ω) denotes the space of functions in Ck(Ω) whose partial derivatives 

of order k are locally Lipschitz continuous. Part (b) clearly implies a C∞-weak-
strong principle for open Ω ⊂ ℝ

d , G = E� and sequentially complete E. This can be 
generalised to locally complete E. Waelbroeck has shown in [46, Proposition 2, p. 
411] and [45, Definition 1, p. 393] that the C∞-weak-strong principle holds if Ω is a 
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manifold, G = E� and E is locally complete. It is a result of Bonet, Frerick and Jordá 
that the C∞-weak-strong principle still holds by [7, Theorem 9, p. 232] if Ω ⊂ ℝ

d is 
open, G ⊂ E′ determines boundedness and E is locally complete. Due to [34, 2.14 
Theorem, p. 20] of Kriegl and Michor an lcHs E is locally complete if and only if 
the C∞-weak-strong principle holds for Ω = ℝ and G = E�.

One of the goals of this section is to improve Theorem 5.2. We start with the fol-
lowing definition. For k ∈ ℕ0 we define the space of k-times continuously partially 
differentiable E-valued functions on an open set Ω ⊂ ℝ

d whose partial derivatives 
up to order k are continuously extendable to the boundary of Ω by

which we equip with the system of seminorms given by

The space of functions in Ck(Ω,E) such that all its k-th partial derivatives are �
-Hölder continuous with 0 < 𝛾 ≤ 1 is given by

where

with

We set

as well as �∶=�1 ∪ �2 . We define the operator TE ∶ C
k(Ω,E) → E� by

and the weight � ∶ � → (0,∞) by

C
k(Ω,E)∶={f ∈ C

k(Ω,E) | (��)Ef cont. extendable on Ω

for all � ∈ ℕ
d
0
, |�| ≤ k}

|f |
C
k(Ω),�

∶= sup

x ∈ Ω

� ∈ ℕ
d
0
, |�| ≤ k

p
�
((��)Ef (x)), f ∈ C

k(Ω,E), � ∈ �.

C
k,𝛾 (Ω,E)∶=

{
f ∈ C

k(Ω,E) | ∀ 𝛼 ∈ � ∶ |f |
C
k,𝛾 (Ω),𝛼

< ∞
}

|f |
C
k,� (Ω),�

∶=max
(
|f |

C
k(Ω),�

, sup
�∈ℕd

0
,|�|=k

|(��)Ef |
C
0,� (Ω),�

)

|f |
C
0,� (Ω),�∶= sup

x, y ∈ Ω

x ≠ y

p
�
(f (x) − f (y))

|x − y|�
.

�1∶={� ∈ ℕ
d
0
| |�| ≤ k} × Ω,

�2∶={� ∈ ℕ
d
0
| |�| = k} × (Ω2 ⧵ {(x, x) | x ∈ Ω})

TE(f )(�, x)∶=(��)E(f )(x) , (�, x) ∈ �1,

TE(f )(�, (x, y))∶=(��)E(f )(x) − (��)E(f )(y) , (�, (x, y)) ∈ �2.
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By setting F(Ω,E)∶=Ck(Ω,E) and observing that

we have F�(Ω,E) = C
k,� (Ω,E) with generator (TE, T�).

Corollary 5.3 Let E be a locally complete lcHs, G ⊂ E′ determine boundedness, 
Ω ⊂ ℝ

d open and bounded, k ∈ ℕ0 and 0 < 𝛾 ≤ 1 . If f ∶ Ω → E is such that 
e�◦f ∈ C

k,� (Ω) for all e� ∈ G , then f ∈ C
k,� (Ω,E).

Proof We take F(Ω)∶=Ck(Ω) and F(Ω,E)∶=Ck(Ω,E) and have F�(Ω) = C
k,� (Ω) and 

F�(Ω,E) = C
k,� (Ω,E) with the weight � and generator (TE, T�) for (F�,E) described 

above. Due to the proof of [35, Example 20, p. 1529] and the first part of the proof 
of [35, Theorem 14, p. 1524] the spaces F(Ω) and F(Ω,E) are �-into-compatible for 
any lcHs E (the condition that E has metric ccp in [35, Example 20, p.1529] is only 
needed for �-compatibility). Another consequence of [35, Example 20, p. 1529] is 
that

holds for all u ∈ F(Ω)�E , implying

Thus (TE, T�) is a consistent family for (F,E) and its strength is easily seen. In addi-
tion, F�(Ω) = C

k,� (Ω) is a Banach space by [15, Theorem 9.8, p. 110] (cf. [1, 1.7 
Hölderstetige Funktionen, p. 46]) whose closed unit ball is compact in F(Ω) = C

k(Ω) 
by [15, Theorem 14.32, p. 232] (cf. [1, 8.6 Einbettungssatz in Hölder-Räumen, p. 
338]). Moreover, the �-into-compatibility of F(Ω) and F(Ω,E) in combination with 
the consistency of (TE, T�) for (F,E) implies F

𝜀
𝜈(Ω,E) ⊂ F𝜈(Ω,E) as linear spaces 

by Proposition 2.4 (c). Hence our statement follows from Theorem 3.7 with the set 
of uniqueness U∶={0} × Ω for (T�,F�) .   ◻

Next, we use the preceding corollary to generalise the Theorem  5.2 of Groth-
endieck and Schwartz on weakly Ck+1-functions. For k ∈ ℕ0 and 0 < 𝛾 ≤ 1 we define 
the space of k-times continuously partially differentiable E-valued functions with 
locally �-Hölder continuous partial derivatives of k-th order on an open set Ω ⊂ ℝ

d 
by

where

�(�, x)∶=1, (�, x) ∈ �1, and �(�, (x, y))∶=
1

|x − y|�
, (�, (x, y)) ∈ �2.

|f |
C
k,� (Ω),�

= sup
x∈�

p
�
(TE(f )(x))�(x), f ∈ C

k,� (Ω,E), � ∈ �,

TE(S(u))(�, x) = (��)E(S(u))(x) = u(�x◦(�
�)�) = u(T�

�,x
), (�, x) ∈ �1,

TE(S(u))(�, (x, y)) = TE(S(u))(�, x) − TE(S(u))(�, y) = u(T�

�,x
) − u(T�

�,y
)

= u(T�

�,(x,y)
), (�, (x, y)) ∈ �2.

C
k,𝛾

loc
(Ω,E)∶={f ∈ C

k(Ω,E) | ∀ K ⊂ Ω compact, 𝛼 ∈ � ∶ |f |K,𝛼 < ∞}
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with

and

Using Corollary 5.3, we are able to improve Theorem 5.2 to the following form.

Corollary 5.4 Let E be a locally complete lcHs, G ⊂ E′ determine boundedness, 
Ω ⊂ ℝ

d open, k ∈ ℕ0 and 0 < 𝛾 ≤ 1 . 

(a) If f ∶ Ω → E is such that e�◦f ∈ C
k,�

loc
(Ω) for all e� ∈ G , then f ∈ C

k,�

loc
(Ω,E).

(b) If f ∶ Ω → E is such that e�◦f ∈ C
k+1(Ω) for all e� ∈ G , then f ∈ C

k,1

loc
(Ω,E).

Proof Let us start with (a). Let f ∶ Ω → E be such that e�◦f ∈ C
k,�

loc
(Ω) for all e� ∈ G . 

Let (Ωn)n∈ℕ be an exhaustion of Ω with open, relatively compact sets Ωn ⊂ Ω . 
Then the restriction of e′◦f  to Ωn is an element of Ck,� (Ωn) for every e� ∈ G and 
n ∈ ℕ . Due to Corollary 5.3 we obtain that f ∈ C

k,� (Ωn,E) for every n ∈ ℕ . Thus 
f ∈ C

k,�

loc
(Ω,E) since differentiability is a local property and for each compact K ⊂ Ω 

there is n ∈ ℕ such that K ⊂ Ωn.
Let us turn to (b), i.e. let f ∶ Ω → E be such that e�◦f ∈ C

k+1(Ω) for all e� ∈ G . 
Since Ω ⊂ ℝ

d is open, for every x ∈ Ω there is 𝜀x > 0 such that �(x, 𝜀x) ⊂ Ω where 
�(x, �x) is the closure of 𝔹(x, 𝜀x)∶={y ∈ ℝ

d | |y − x| < 𝜀x} . For all e� ∈ G , � ∈ ℕ
d
0
 

with |�| = k and w, y ∈ �(x, �x) , w ≠ y , it holds that

by the mean value theorem applied to the real and imaginary part where C∶=
√
d if 

𝕂 = ℝ and C∶=2
√
d if 𝕂 = ℂ . Thus e�◦f ∈ C

k,1

loc
(Ω) for all e� ∈ G since for each com-

pact set K ⊂ Ω there are m ∈ ℕ and xi ∈ Ω , 1 ≤ i ≤ m , such that K ⊂

⋃m

i=1
�(xi, 𝜀xi) . 

It follows from part (a) that f ∈ C
k,1

loc
(Ω,E) .   ◻

If Ω = ℝ , � = 1 and G = E� , then part (a) of Corollary 5.4 is already known 
by [34, 2.3 Corollary, p. 15]. A ’full‘ Ck-weak-strong principle for k < ∞ , i.e. the 

|f |K,�∶=max
(
|f |

C
k(K),� , sup

�∈ℕd
0
,|�|=k

|(��)Ef |
C
0,� (K),�

)

|f |
C
k(K),�∶= sup

x ∈ K

� ∈ ℕ
d
0
, |�| ≤ k

p
�
((��)Ef (x))

|f |
C
0,� (K),�∶= sup

x, y ∈ K

x ≠ y

p
�
(f (x) − f (y))

|x − y|�
.

|(��)�(e�◦f )(w) − (��)�(e�◦f )(y)|
|w − y|

≤ C max
1≤n≤d max

z∈�(x,�x)

|(��+en )�(e�◦f )(z)|
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conditions of part (b) imply f ∈ C
k+1(Ω,E) , does not hold in general (see [34, p. 

11-12]) but it holds if we restrict the class of admissible lcHs E.

Theorem  5.5 Let E be a semi-Montel space, G ⊂ E′ determine boundedness, 
Ω ⊂ ℝ

d open and k ∈ ℕ . If f ∶ Ω → E is such that e�◦f ∈ C
k(Ω) for all e� ∈ G , then 

f ∈ C
k(Ω,E).

Proof Let f ∶ Ω → E be such that e�◦f ∈ C
k(Ω) for all e� ∈ G . Due to Corollary 

5.4 (b) we already know that f ∈ C
k−1,1

loc
(Ω,E) since semi-Montel spaces are quasi-

complete and thus locally complete. Now, let x ∈ Ω , 𝜀x > 0 such that �(x, 𝜀x) ⊂ Ω , 
� ∈ ℕ

d
0
 with |�| = k − 1 and n ∈ ℕ with 1 ≤ n ≤ d . The set

is bounded in E because f ∈ C
k−1,1

loc
(Ω,E) . As E is semi-Montel, the closure B is 

compact in E. Let (hm)m∈ℕ be a sequence in ℝ such that 0 < hm ≤ 𝜀x for all m ∈ ℕ . 
From the compactness of B we deduce that there is a subnet (hm

�

)
�∈I , where I is a 

directed set, of (hm)m∈ℕ and yx ∈ B with

Further, we note that the limit

exists for all e� ∈ G and that (e�(y
�
))
�∈I is a subnet of the net of difference quotients 

on the right-hand side of (5.1) as ��(e�◦f ) = e�◦(��)Ef  . Therefore

for all e� ∈ G . By [38, 4.10 Proposition (i), p.21] the topology �(E,G) and the initial 
topology of E coincide on B . Combining this fact with (5.2), we deduce that

B∶=
{ (𝜕𝛽 f )E(x + hen) − (𝜕𝛽 f )Ef (x)

h
| h ∈ ℝ, 0 < h ≤ 𝜀x

}

yx = lim
�∈I

(�� f )E(x + hm
�

en) − (�� f )Ef (x)

hm
�

=∶ lim
�∈I

y
�
.

(5.1)
�
�+en (e�◦f )(x) = lim

h → 0

h ∈ ℝ, h ≠ 0

�
�(e�◦f )(x + hen) − �

�(e�◦f )(x)

h

(5.2)

𝜕
𝛽+en(e�◦f )(x) = lim

h → 0

h ∈ ℝ, h ≠ 0

e�
( (𝜕𝛽)Ef (x + hen) − (𝜕𝛽)Ef (x)

h

)

= lim
h → 0

h ∈ ℝ, 0 < h ≤ 𝜀x

e�
( (𝜕𝛽)Ef (x + hen) − (𝜕𝛽)Ef (x)

h

)

= lim
𝜄∈I

e�(y
𝜄
) = e�(yx)
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Further, e�◦(��+en )Ef = �
�+en (e�◦f ) is continuous on �(x, �x) for all e� ∈ G , mean-

ing that the restriction of (��+en )Ef  on �(x, �x) to (E, �(E,G)) is continuous, and the 
range (��+en )Ef (�(x, �x)) is bounded in E. As before we use that �(E,G) and the ini-
tial topology of E coincide on (��+en )Ef (�(x, �x)) , which implies that the restriction 
of (��+en )Ef  on �(x, �x) is continuous w.r.t. the initial topology of E. Since continuity 
is a local property and x ∈ Ω is arbitrary, we conclude that (��+en )Ef  is continuous 
on Ω .   ◻

In the special case that Ω = ℝ , G = E� and E is a Montel space, i.e. a barrelled 
semi-Montel space, a different proof of the preceding weak-strong principle can be 
found in the proof of [10, Lemma 4, p. 15]. This proof uses the Banach–Steinhaus 
theorem and needs the barrelledness of the Montel space E′

b
 . Our weak-strong prin-

ciple Theorem  5.5 does not need the barrelledness of E, hence can be applied to 
non-barrelled semi-Montel spaces like E = (C∞

�,b
(�), �) where � is the strict topology 

(see the definition above Corollary 6.7, [38, 3.14 Proposition, p. 12] and [38, 3.15 
Remark, p. 13]).

Besides the ’full‘ Ck-weak-strong principle for k < ∞ and semi-Montel E, part (b) 
of Corollary 5.4 also suggests an ’almost‘ Ck-weak-strong principle in terms of [16, 
3.1.6 Rademacher’s theorem, p. 216], which we prepare next.

Definition 5.6 (generalised Gelfand space) We say that an lcHs E is a generalised 
Gelfand space if every Lipschitz continuous map f ∶ [0, 1] → E is differentiable 
almost everywhere w.r.t to the one-dimensional Lebesgue measure.

If E is a real Fréchet space ( 𝕂 = ℝ ), then this definition coincides with the defi-
nition of a Fréchet–Gelfand space given in [39, Definition 2.2, p. 17]. In particu-
lar, every real nuclear Fréchet lattice (see [24, Theorem 6, Corollary, p.375, 378]) 
and more general every real Fréchet–Montel space is a generalised Gelfand space 
by [39, Theorem 2.9, p. 18]. If E is a Banach space, then this definition coincides 
with the definition of a Gelfand space given in [14, Definition 4.3.1, p.106-107] by 
[5, Proposition 1.2.4, p.18]. A Banach space is a Gelfand space if and only if it has 
the Radon-Nikodým property by [14, Theorem 4.3.2, p. 107]. Thus separable duals 
of Banach spaces, reflexive Banach spaces and �1(Γ) for any set Γ are generalised 
Gelfand spaces by [14, Theorem 3.3.1 (Dunford-Pettis), p. 79], [14, Corollary 3.3.4 
(Phillips), p. 82] and [14, Corollary 3.3.8, p.83]. The Banach spaces c0 , �∞ , C([0, 1]) , 
L1([0, 1]) and L∞([0, 1]) do not have the Radon–Nikodým property and hence are 
not generalised Gelfand spaces by [5, Proposition 1.2.9, p. 20], [5, Example 1.2.8, p. 
20] and [5, Proposition 1.2.10, p. 21].

Corollary 5.7 Let E be a locally complete generalised Gelfand space, G ⊂ E′ deter-
mine boundedness, Ω ⊂ ℝ open and k ∈ ℕ . If f ∶ Ω → E is such that e�◦f ∈ C

k(Ω) 

(��+en )Ef (x) = lim
h → 0

h ∈ ℝ, h ≠ 0

(��)Ef (x + hen) − (��)Ef (x)

h
= yx.



 K. Kruse   10  Page 20 of 26

for all e� ∈ G , then f ∈ C
k−1,1

loc
(Ω,E) and the derivative (�k)Ef (x) exists for Lebesgue 

almost all x ∈ Ω.

Proof The first part follows from Corollary 5.4 (b). Now, let [a, b] ⊂ Ω be a bounded 
interval. We set F ∶ [0, 1] → E , F(x)∶=(�k−1)Ef (a + x(b − a)) . Then F is Lipschitz 
continuous as f ∈ C

k−1,1

loc
(Ω,E) . This yields that F is differentiable on [0, 1] almost 

everywhere because E is a generalised Gelfand space, implying that (�k−1)Ef  is dif-
ferentiable on [a, b] almost everywhere. Since the open set Ω ⊂ ℝ can be written 
as a countable union of disjoint open intervals In , n ∈ ℕ , and each In is a countable 
union of closed bounded intervals [am, bm] , m ∈ ℕ , our statement follows from the 
fact that the countable union of null sets is a null set.   ◻

To the best of our knowledge there are still some open problems for continuously 
partially differentiable functions of finite order.

Question 5.8 

 (i) Are there other spaces than semi-Montel spaces E for which the ’full‘ Ck-weak-
strong principle Theorem 5.5 with k < ∞ is true? For instance, if k = 0 , then 
it is still true if E is an lcHs such that every bounded set is already precompact 
in E by [6, 2.10 Lemma, p. 140]. Does this hold for 0 < k < ∞ as well?

 (ii) Does the ’almost‘ Ck-weak-strong principle Corollary 5.7 also hold for d > 1?
 (iii) For every 𝜀 > 0 does there exist a function g ∈ C

k(ℝ,E) such that 
𝜆({x ∈ Ω | f (x) ≠ g(x)}) < 𝜀 in Corollary 5.7 where � is the one-dimensional 
Lebesgue measure. In the case that E = ℝ

n this is true by [16, Theorem 3.1.15, 
p. 227].

 (iv) Is there a ’Radon–Nikodým type‘ characterisation of generalised Gelfand 
spaces like in the Banach case?

6  Vector‑valued Blaschke theorems

In this section we prove several convergence theorems for Banach-valued functions 
in the spirit of Blaschke’s convergence theorem [9, Theorem  7.4, p. 219] as it is 
done in [3, Theorem  2.4, p. 786] and [3, Corollary 2.5, p. 786-787] for bounded 
holomorphic functions and more general in [19, Corollary 4.2, p. 695] for bounded 
functions in the kernel of a hypoelliptic linear partial differential operator. Blasch-
ke’s convergence theorem says that if (zn)n∈ℕ ⊂ 𝔻 is a sequence of distinct elements 
with 

∑
n∈ℕ(1 − �zn�) = ∞ and if (fk)k∈ℕ is a bounded sequence in H∞(�) such that 

(fk(zn))k converges in ℂ for each n ∈ ℕ , then there is f ∈ H∞(�) such that (fk)k con-
verges uniformly to f on the compact subsets of � , i.e. w.r.t. to �co.

Proposition 6.1 ( [19, Proposition 4.1, p. 695]) Let (E, ‖ ⋅ ‖) be a Banach space, Z 
a Banach space whose closed unit ball BZ is a compact subset of an lcHs Y and let 
(�

�
)
�∈I be a net in Y�E such that
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Assume further that there exists a �(Y �, Z)-dense subspace X ⊂ Y ′ such that 
lim

�
�
�
(x) exists for each x ∈ X . Then there is � ∈ Y�E with �(B◦Y �

Z
) bounded and 

lim
�
�
�
= � uniformly on the equicontinuous subsets of Y ′ , i.e. for all equicontinuous 

B ⊂ Y ′ and 𝜀 > 0 there exists � ∈ I such that

for each � ≥ �.

Next, we generalise [19, Corollary 4.2, p. 695].

Corollary 6.2 Let (E, ‖ ⋅ ‖) be a Banach space and F(Ω) and F(Ω,E) be �-into-com-
patible. Let (TE, T�) be a generator for (F�,E) and a strong, consistent family for 
(F,E) , F�(Ω) a Banach space whose closed unit ball BF�(Ω) is a compact subset of 
F(Ω) and U a set of uniqueness for (T�,F�).

If (f
𝜄
)
𝜄∈I ⊂ F

𝜀
𝜈(Ω,E) is a bounded net in the space F�(Ω,E) such that 

lim
�
TE(f

�
)(x) exists for all x ∈ U , then there is f ∈ F

�
�(Ω,E) such that (f

�
)
�∈I con-

verges to f in F(Ω,E).

Proof We set X∶=span{T�

x
| x ∈ U} , Y∶=F(Ω) and Z∶=F�(Ω) . As in the proof 

of Theorem 3.7 we observe that X is �(Y �, Z)-dense in Y ′ . From (f
𝜄
)
𝜄∈I ⊂ F

𝜀
𝜈(Ω,E) 

follows that there are �
�
∈ F(Ω)�E with S(�

�
) = f

�
 for all � ∈ I . Since (f

�
)
�∈I is a 

bounded net in F�(Ω,E) , we note that

by consistency. Further, lim
�
S(�

�
)(T�

x
) = lim

�
TE(f

�
)(x) exists for each x ∈ U , imply-

ing the existence of lim
�
S(�

�
)(x) for each x ∈ X by linearity. We apply Proposition 

6.1 and obtain f∶=S(�) ∈ F
�
�(Ω,E) such that (�

�
)
�∈I converges to � in F(Ω)�E . 

From F(Ω) and F(Ω,E) being �-into-compatible it follows that (f
�
)
�∈I converges to f 

in F(Ω,E) .   ◻

First, we apply the preceding corollary to k-times continuously partially differ-
entiable E-valued functions with locally �-Hölder continuous partial derivatives 
of order k.

Corollary 6.3 Let E be a Banach space, Ω ⊂ ℝ
d open and bounded, k ∈ ℕ0 and 

0 < 𝛾 ≤ 1 . If (f
�
)
�∈I is a bounded net in Ck,� (Ω,E) such that 

sup
𝜄∈I

{‖�
𝜄
(y)‖ � y ∈ B◦Y �

Z
} < ∞.

sup
y∈B

‖�
𝜄
(y) − �(y)‖ < 𝜀

sup
𝜄∈I

sup
x∈𝜔

‖�
𝜄
(T�

x
(⋅)𝜈(x))‖ = sup

𝜄∈I

sup
x∈𝜔

‖TES(�
𝜄
)(x)‖𝜈(x)

= sup
𝜄∈I

sup
x∈𝜔

‖TEf
𝜄
(x)‖𝜈(x) = sup

𝜄∈I

�f
𝜄
�F𝜈(Ω,E) < ∞
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 (i) lim
�
f
�
(x) exists for all x in a dense subset U ⊂ Ω , or if

 (ii) lim
�
(�en )Ef

�
(x) exists for all 1 ≤ n ≤ d and x in a dense subset U ⊂ Ω , Ω is con-

nected and there is x0 ∈ Ω such that lim
�
f
�
(x0) exists and k ≥ 1,

then there is f ∈ C
k,� (Ω,E) such that (f

�
)
�∈I converges to f in Ck(Ω,E).

Proof Like in Corollary 5.3 we choose F(Ω)∶=Ck(Ω) and F(Ω,E)∶=Ck(Ω,E) as 
well as F�(Ω)∶=Ck,� (Ω) and F�(Ω,E)∶=Ck,� (Ω,E) with the weight � and generator 
(TE, T�) for (F�,E) described above of Corollary 5.3. By the proof of Corollary 5.3 
all conditions of Corollary 6.2 are satisfied, which implies our statement.   ◻

Corollary 6.4 Let E be a Banach space, Ω ⊂ ℝ
d open, k ∈ ℕ0 and 0 < 𝛾 ≤ 1 . If (f

�
)
�∈I 

is a bounded net in Ck,�
loc
(Ω,E) such that 

 (i) lim
�
f
�
(x) exists for all x in a dense subset U ⊂ Ω , or if

 (ii) lim
�
(�en )Ef

�
(x) exists for all 1 ≤ n ≤ d and x in a dense subset U ⊂ Ω , Ω is con-

nected and there is x0 ∈ Ω such that lim
�
f
�
(x0) exists and k ≥ 1,

then there is f ∈ C
k,�

loc
(Ω,E) such that (f

�
)
�∈I converges to f in Ck(Ω,E).

Proof Let (Ωn)n∈ℕ be an exhaustion of Ω with open, relatively compact sets Ωn ⊂ Ω 
such that Ωn ⊂ Ωn+1 for all n ∈ ℕ and, in addition, x0 ∈ Ω1 and Ωn is connected for 
each n ∈ ℕ in case (ii). The restriction of (f

�
)
�∈I to Ωn is a bounded net in Ck,� (Ωn,E) 

for each n ∈ ℕ . By Corollary 6.3 there is Fn ∈ C
k,� (Ωn,E) for each n ∈ ℕ such that 

the restriction of (f
�
)
�∈I to Ωn converges to Fn in Ck(Ωn,E) since U ∩ Ωn is dense in 

Ωn due to Ωn being open and x0 being an element of the connected set Ωn in case (ii). 
The limits Fn+1 and Fn coincide on Ωn for each n ∈ ℕ . Thus the definition f∶=Fn on 
Ωn for each n ∈ ℕ gives a well-defined function f ∈ C

k,�

loc
(Ω,E) , which is a limit of 

(f
�
)
�∈I in Ck(Ω,E) .   ◻

Corollary 6.5 Let E be a Banach space, Ω ⊂ ℝ
d open and k ∈ ℕ0 . If (f

�
)
�∈I is a 

bounded net in Ck+1(Ω,E) such that 

 (i) lim
�
f
�
(x) exists for all x in a dense subset U ⊂ Ω , or if

 (ii) lim
�
(�en )Ef

�
(x) exists for all 1 ≤ n ≤ d and x in a dense subset U ⊂ Ω , Ω is con-

nected and there is x0 ∈ Ω such that lim
�
f
�
(x0) exists,

then there is f ∈ C
k,1

loc
(Ω,E) such that (f

�
)
�∈I converges to f in Ck(Ω,E).

Proof By Corollary 5.4 (b) (f
�
)
�∈I is a bounded net in Ck,1

loc
(Ω,E) . Hence our statement 

is a consequence of Corollary 6.4.   ◻

The preceding result directly implies a C∞-smooth version.

Corollary 6.6 Let E be a Banach space and Ω ⊂ ℝ
d open. If (f

�
)
�∈I is a bounded net 

in C∞(Ω,E) such that 
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 (i) lim
�
f
�
(x) exists for all x in a dense subset U ⊂ Ω , or if

 (ii) lim
�
(�en )Ef

�
(x) exists for all 1 ≤ n ≤ d and x in a dense subset U ⊂ Ω , Ω is con-

nected and there is x0 ∈ Ω such that lim
�
f
�
(x0) exists,

then there is f ∈ C
∞(Ω,E) such that (f

�
)
�∈I converges to f in C∞(Ω,E).

For an open set Ω ⊂ ℝ
d , an lcHs E and a linear partial differential operator 

P(�)E ∶ C
∞(Ω,E) → C

∞(Ω,E) which is hypoelliptic if E = � we define the space 
of bounded zero solutions

where

Apart from the topology given by (‖ ⋅ ‖∞,�)�∈� there is another weighted locally 
convex topology on C∞

P(�),b
(Ω,E) which is of interest, namely, the one induced by the 

seminorms

for � ∈ C0(Ω) and � ∈ � . We write (C∞
P(�),b

(Ω,E), �) for C∞
P(�),b

(Ω,E) equipped with 
the strict topology � which is induced by the seminorms (| ⋅ |

�,�)�∈C0(Ω),�∈� . Now, we 
phrase an improved version of [19, Corollary 4.2, p. 695] .

Corollary 6.7 Let E be a Banach space, Ω ⊂ ℝ
d open, P(�)� a hypoelliptic linear 

partial differential operator and U ⊂ Ω a set of uniqueness for (id
�Ω , C

∞

P(�),b
) . If (f

�
)
�∈I 

is a bounded net in (C∞
P(�),b

(Ω,E), ‖ ⋅ ‖∞) such that lim
�
f
�
(x) exists for all x ∈ U , then 

there is f ∈ C
∞

P(�),b
(Ω,E) such that (f

�
)
�∈I converges to f in (C∞

P(�),b
(Ω,E), �).

Proof We take F(Ω)∶=(C∞
P(�),b

(Ω), �) and F(Ω,E)∶=(C∞
P(�),b

(Ω,E), �) as well as 
F�(Ω)∶=(C∞

P(�),b
(Ω), ‖ ⋅ ‖∞) and F�(Ω,E)∶=(C∞

P(�),b
(Ω,E), ‖ ⋅ ‖∞) with the weight 

�(x)∶=1 , x ∈ Ω , and generator (idEΩ , idΩ�) for (F�,E) . The generator is strong and 
consistent for (F,E) and F(Ω) and F(Ω,E) are �-compatible by [38, 3.14 Proposi-
tion, p. 12]. The space F�(Ω) is a Banach space as a closed subspace of the Banach 
space (Cb(Ω), ‖ ⋅ ‖∞) . Its closed unit ball BF�(Ω) is �co-compact because (C∞

P(�)
(Ω), �co) 

is a Fréchet–Schwartz space, in particular, a Montel space. Thus BF�(Ω) is ‖ ⋅ ‖∞
-bounded and �co-compact, which implies that it is also �-compact by [13, Proposi-
tion 1 (viii), p. 586] and [13, Proposition 3, p.590]. In addition, the �-compatibility 
of F(Ω) and F(Ω,E) in combination with the consistency of (idEΩ , id�Ω) for (F,E) 
gives F

�
�(Ω,E) = F�(Ω,E) as linear spaces by Proposition 2.4 (c), verifying our 

statement by Corollary 6.2.   ◻

A direct consequence of Corollary 6.7 is the following remark.

C
∞

P(𝜕),b
(Ω,E) ∶= {f ∈ C

∞

P(𝜕)
(Ω,E) � ∀ 𝛼 ∈ � ∶ ‖f‖∞,𝛼∶= sup

x∈Ω

p
𝛼
(f (x)) < ∞}

C
∞

P(�)
(Ω,E)∶={f ∈ C

∞(Ω,E) | f ∈ kerP(�)E}.

|f |
�,�∶= sup

x∈Ω

p
�
(f (x))|�(x)|, f ∈ C

∞

P(�),b
(Ω,E),
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Remark 6.8 Let E be a Banach space, Ω ⊂ ℝ
d open, P(�)� a hypoelliptic linear par-

tial differential operator and (f
�
)
�∈I a bounded net in (C∞

P(�),b
(Ω,E), ‖ ⋅ ‖∞) . Then the 

following statements are equivalent: 

 (i) (f
�
) converges pointwise.

 (ii) (f
�
) converges uniformly on compact subsets of Ω.

 (iii) (f
�
) is �-convergent.

In the case of complex-valued bounded holomorphic functions of one variable, 
i.e. E = ℂ , Ω ⊂ ℂ is open and P(�) = � is the Cauchy–Riemann operator, conver-
gence w.r.t. � is known as bounded convergence (see [42, p. 13-14, 16]) and the 
preceding remark is included in [43, 3.7 Theorem, p. 246] for connected sets Ω . Let 
us return to Bloch type spaces.

Corollary 6.9 Let E be a Banach space, � ∶ � → (0,∞) continuous and U∗ ⊂ � have 
an accumulation point in � . If (f

�
)
�∈I is a bounded net in B�(�,E) such that lim

�
f
�
(0) 

and lim
�
(�1

ℂ
)Ef

�
(z) exist for all z ∈ U∗ , then there is f ∈ B�(�,E) such that (f

�
)
�∈I 

converges to f in (O(�,E), �co).

Proof Due to the proof of Corollary 3.8 all conditions needed to apply Corollary 6.2 
are fulfilled, which proves our statement.   ◻
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