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Abstract. In this paper we consider a rational eigenvalue problem gov-
erning the vibrations of a tube bundle immersed in an inviscid compress-
ible fluid. Taking advantage of eigensolutions of appropriate sparse linear
eigenproblems the large nonlinear eigenvalue problem is projected to a
much smaller one which is solved by inverse iteration.

1 Introduction

Vibrations of a tube bundle immersed in an inviscid compressible fluid are gov-
erned under some simplifying assumptions by an elliptic eigenvalue problem with
non-local boundary conditions which can be transformed to a rational eigenvalue
problem. In [13] we proved that this problem has a countable set of eigenvalues
which can be characterized as minmax values of a Rayleigh functional.

To determine eigenvalues and eigenfunctions numerically this approach sug-
gests to apply the Rayleigh-Ritz method yielding a rational matrix eigenvalue
problem where the matrices typically are large and sparse. Since for nonlinear
eigenvalue problems the eigenvectors do not fulfill an orthogonality condition
Lanczos type methods do not apply but each eigenpair has to be determined
individually by an iterative process where each iteration step requires the solu-
tion of a linear system of large dimension. In this paper we propose a projection
method where the ansatz vectors are constructed from the solutions of suitable
linear eigenvalue problems. The resulting small dimensional nonlinear eigenprob-
lem then is solved by inverse iteration.

The paper is organized as follows: Section 2 describes the the model for
the fluid-structure interaction problem under consideration, and Section 3 sum-
marizes the minmax characterization for nonlinear eigenvalue problems and its
application to the fluid-structure interaction problem of section 2. In Section 4
we consider numerical methods for nonlinear eigenvalue problems, and Section
5 contains a numerical example.

2 A Spectral Problem in Fluid-Solid Structures

In this paper we consider a model which governs the free vibrations of a tube
bundle immersed in a compressible fluid under the following simplifying assump-
tions: The tubes are assumed to be rigid, assembled in parallel inside the fluid,



and elastically mounted in such a way that they can vibrate transversally, but
they can not move in the direction perpendicular to their sections. The fluid
is assumed to be contained in a cavity which is infinitely long, and each tube
is supported by an independent system of springs (which simulates the specific
elasticity of each tube). Due to these assumptions, three-dimensional effects are
neglected, and so the problem can be studied in any transversal section of the
cavity. Considering small vibrations of the fluid (and the tubes) around the state
of rest, it can also be assumed that the fluid is irrotational.

Mathematically this problem can be described in the following way (cf. [2]).
Let 2 C R? (the section of the cavity) be an open bounded set with locally
Lipschitz continuous boundary I". We assume that there exists a family 2; # 0,
j=1,...,k, (the sections of the tubes) of simply connected open sets such that
2; C 2 for every j, 2; N 2; = 0 for j # i, and each £2; has a locally Lipschitz
continuous boundary I';. With these notations we set

[0 ::Q\Uﬂj.

Then the boundary of {2y consists of k£ + 1 connected components which are I’
and I';, j=1,...,k.
We consider the rational eigenvalue problem

Find A\ € R and u € H'(£29) such that for every v € H ()

K
c2/Vu-VUda::/\/uvda:—kz:ﬁ/unds-/vnds. (1)
2 j=1 I; I;
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Here
HY(2) = {u € L*(2) : Vu € L*(£2)?}

denotes the standard Sobolev space equipped with the usual scalar product
(u,v) := /(u(a:)v(a:) + Vu(z) - Vou(z)) dz,
20

and n denotes the outward unit normal on the boundary of (2.
Obviously A = 0 is an eigenvalue of (1) with eigenfunction u = const. We
reduce the eigenproblem (1) to the space

H:={ue H" () : /u(:r)d:r:O}

29

and consider the scalar product

(u,v) := /Vu(a:) -Vo(z) dz.
20



on H which is known to define a norm on H which is equivalent to the norm
induced by (-, ).

By the Lax—Milgram lemma the variational eigenvalue problem (1) is equiv-
alent to the nonlinear eigenvalue problem

Determine X and u € H such that

K
o PN By =
T\ = ( I+)\A+;kj_>\ij])u—0 (2)

where the linear symmetric operators A and B; are defined by

(Au,v) := /uv dz  for every u,v € H and

29

(Bju,v) := /unds-/vnds for every u,v € H.
T T

A is completely continuous by Rellich’s embedding theorem and w := Bju,
j=1,...,K,is the weak solution in H of the elliptic problem

0 0
Aw=0in 2y, —w=00nd\I;, —w=n- [ undson I}.
“ on o\ on / I
I;
By the continuity of the trace operator B; is continuous, and since the range of
Bj is twodimensional spanned by the solutions w; € H of

Aw; = 01in 2, %w:Oonaﬂo\Fj, %w:ni onlj, i=1,2,
it is even completely continuous.

In Conca et al. [2] it is shown that the eigenvalues are the characteristic values
of a linear compact operator acting on a Hilbert space. The operator associated
with this eigenvalue problem is not selfadjoint, but it can be symmetrized in the
sense that one can prove the existence of a selfadjoint operator which has the
same spectrum as the original operator. The following section describes a frame-
work to prove the existence of countably many eigenvalues taking advantage of
a minmax characterization for nonlinear eigenvalue problems.

3 Characterization of eigenvalues
We consider the nonlinear eigenvalue problem

TNz =0 (3)

where T'()\) is a selfadjoint and bounded operator on a real Hilbert space H
for every A in an open real interval J. As in the linear case A € J is called an
eigenvalue of problem (3) if equation (3) has a nontrivial solution x # 0.



We assume that
Iy {J xH =R

AN z) = (T(\)z,x)

is continuously differentiable, and that for every fixed x € H®, H® := H \ {0},
the real equation
fz) =0 (4)
has at most one solution in J. Then equation (4) implicitly defines a functional
p on some subset D of H? which we call the Rayleigh functional.
We assume that

0
af(/\,x)h:p(x) >0 foreveryz e D.

Then it follows from the implicit function theorem that D is an open set and
that p is continuously differentiable on D.

For the linear eigenvalue value problem T'(A) := AT — A where A : H — H is
selfadjoint and continuous the assumptions above are fulfilled, p is the Rayleigh
quotient and D = H°. If A additionally is completely continuous then A has a
countable set of eigenvalues which can be characterized as minmax and maxmin
values of the Rayleigh quotient.

For nonlinear eigenvalue problems variational properties using the Rayleigh
functional were proved by Duffin [3] and Rogers [9] for the finite dimensional case
and by Hadeler [4], [5], Rogers [10], and Werner [15] for the infinite dimensional
case if the problem is overdamped, i.e. if the Rayleigh functional p is defined in
the whole space H°. Nonoverdamped problems were studied by Werner and the
author [14]. In this case the natural numbering for which the smallest eigenvalue
is the first one, the second smallest is the second one, etc. is not appropriate,
but the number of an eigenvalue X of the nonlinear problem (3) is obtained from
the location of the eigenvalue 0 in the spectrum of the linear operator T'(\).

We assume that for every fixed A € J there exists v(\) > 0 such that the
linear operator T'(A) + v(A)I is completely continuous. If A € J is an eigenvalue
of T'(-) then p = 0 is an eigenvalue of the linear problem T'(A)y = uy, and
therefore there exists n € N such that

0= max min (T(A\)v,v)
VeH, veVq
where H,, denotes the set of all n—dimensional subspaces of H and V! := {v €
V @ ||v|| = 1} is the unit ball in V. In this case we call A an n-th eigenvalue of

With this numbering the following minmax characterization of the eigenval-

ues of the nonlinear eigenproblem (3) was proved in [14]:

Theorem 1. Under the conditions given above the following assertions hold:

(i) For every n € N there is at most one n-th eigenvalue of problem (3) which
can be characterized by

Ap = min sup p(v). (5)

VV;;I;@ vevND



The set of eigenvalues of (3) in J is at most countable.
(ii) If
A= inf sup p(v)€J

VabZy vEVND

for some n € N then A\, is the n-th eigenvalue of (3) and (5) holds.
(i5i) If there exists the m~th and the n-th eigenvalue Ny, and Ay, in J and m <n
then J contains a k-th eigenvalue A\, for m < k <n and

infJ <Ay <Apg1 <...< A, <supl.

(iv) If \y € J and A\, € J for somen € N then for every j € {1,...,n} the space
Ve Hj withVND # 0 and \j = sup,cynp p(w) is contained in D, and the
characterization (5) can be replaced by

A; = min ,max p(v 1 =1,...,n.
j = min,max plv) j=1,...,
vich

For the nonlinear eigenproblem (2) the general conditions obviously are
satisfied for every open interval J C R} which does not contain k;/m; for
j =1,...,K. Namely, T(}\) is selfadjoint and bounded on H and T'(\) + I is
completely continuous for every A € J. Moreover for fixed u € H°

K

Apo 2

_ 2 2 2

f(\u)=—c /|Vu| d:v—l—)\/u dm—l-zk‘_/\m“/unds‘ (6)
20 20 j=1" ! I';

is monotonely increasing with respect to A. Hence, every open interval J such
that kj/m; ¢ J for j = 1,..., K contains at most countably many eigenvalues
which can be characterized as minmax value of the Rayleigh functional p defined
by f(A,u) =0 where f is defined in (6).

Comparing p with the Rayleigh quotient of the linear eigenvalue problem

Determine X € R and u € H® such that for every v € H
K
c2/Vu-Vvda: = A(/uvdm—l— Z L/unds : /vnds). (7)
— k?j — Km;
20 20 J=1 Fj Fj
we obtained the following inclusion result for the eigenvaluesin J; := (0, min; 7’;—2)

Theorem 2. Let k € Jy. If the linear eigenvalue problem (7) has m eigenvalues
0<p <ps<... < in Jy then the nonlinear eigenvalue problem (1) has m
eigenvalues \y < Ao < ... < A\, in Ji, and the following inclusion holds

min(p;, k) < Aj < max(pj, k), j=1,...,m.

Aj is a j-th eigenvalue of (1).



Similarly, for eigenvalues greater than max; TIZ—’ we obtained the inclusion
7
in Theorem 3. Here we compared the Rayleigh functional of (1) in the interval
(max; :1—’, o0) with the Rayleigh quotient of the linear eigenproblem:
2

Find X € R and u € H® such that for everyv € H

K
CZ/VU'VUdI’-FZ%/UHdS-/UndS:/\/’U/Ud:L’. (8)
2 j=1" I;

20

Theorem 3. Let k£ > max; 7’;—1 If the m-smallest eigenvalue p,, of the linear
7
eigenvalue problem (8) satisfies py, > max; i then the monlinear eigenvalue

m;
problem (1) has an m-th eigenvalue A, and

min (i, £) < A < max(pm, K).

Theorems 2 and 3 are proved in [13]. Inclusions of eigenvalues A of problem

- .k k; . L
(1) which lie between min; -~ and max; -~ are under investigation.
J J

4 Algorithms for nonlinear eigenvalue problems

In this section we consider the finite dimensional nonlinear eigenvalue problem
T(\)z =0 (9)

(for instance a finite element approximation of problem (1)) where T'(\) is a
family of real symmetric n x n-matrices satisfying the conditions of the last
section, and we assume that the dimension n of problem (9) is large.

For sparse linear eigenvalue problems the most efficient methods are itera-
tive projection methods, where approximations of the wanted eigenvalues and
corresponding eigenvectors are obtained from projections of the eigenproblem to
subspaces which are expanded in the course of the algorithm. Methods of this
type for symmetric problems are the Lanczos method, rational Krylov subspace
methods and the Jacobi-Davidson method, e.g. (cf. [1]).

Generalizations of these methods to nonlinear eigenvalue problems do not
exist. The numerical methods for nonlinear problems studied in [6], [7], [8], [11],
[12] are all variants of inverse iteration

P =, T(O\) 1T (W) 2® (10)

where ay is a suitable normalization factor and Ay is updated in some way.
Similarly as in the linear case inverse iteration is quadratically convergent for
simple eigenvalues, and the convergence is even cubic if A\, = p(z) where p
denotes the Rayleigh functional of problem (9).

An essential disadvantage of inverse iteration is the fact that each eigenvalue
has to be determined individually by an iterative process, and that each step of



this iteration requires the solution of a linear system. Moreover, the coefficient
matrix T'(A) of system (10) changes in each step, and in contrast to the linear
case replacing (10) by

e = o, T(0) 71T (\g) 2

with a fixed shift o results in convergence to an eigenpair of the linear system
T(o)x =~T"(\)z (v # 0 depending on the normalization condition) from which
we can not recover an eigenpair of the nonlinear problem (9).

A remedy against this wrong convergence was proposed by Neumaier [8] who
introduced the so called residual inverse iteration which converges linearly with
a fixed shift, and quadratically or cubically if the coefficient matrix changes in
every iteration step according to reasonable updates of Ag.

For large and sparse nonlinear eigenvalue problems inverse iteration is much
too expensive. For the rational eigenvalue problem (1) the proof of the Inclu-
sion Theorems 2 and 3 demonstrates that eigenvectors of the linear systems (7)
and (8), respectively, are good approximations to eigenvectors of the nonlinear
problem, at least if the shift x is close to the corresponding eigenvalue. This
suggests the following projection method if we are interested in eigenvalues of
the nonlinear problem (1) in an interval J C (0, min; :TJJ) or J C (max; TIZ—"J_, 00).
Projection method

1. Choose a small number of shifts k1,...,k, € J.

2. For j =1,...,r determine the eigenvectors u;z, k = 1,...,s;, of the linear
problem (7) with shift k; corresponding to eigenvalues in J.

3. Let U be the matrix with columns u;;, j =1,...,r, k =1,...,s;. Determine

the QR factorization with column pivoting which produces the QR factor-
ization of UE where E denotes a permutation matrix such that the absolute
values of the diagonal elements of R are monotonely decreasing.

4. For every j with |rj;| < 7-|r11| drop the j-th column of ) where 7 € [0,1) is a
given tolerance, and denote by V' the space that is spanned by the remaining
columns of Q.

5. Project the nonlinear eigenvalue problem (1) to V' and solve the projected
problem by inverse iteration with variable shifts.

5 A numerical example

Consider the rational eigenvalue problem (1) where (2 is the L-shaped region
2:=(-8,8) x (-8,8)\ ([0,8) x (—8,0]), £2;, j = 1,2,3 are circles with radius 1
and centers (—4, —4), (—4,4) and (4,4), and k; =m; =1, j =1,2,3.

We discretized this eigenvalue problem with linear elements obtaining a
matrix eigenvalue problem of dimension n = 10820 which has 25 eigenvalues
A1 < ... < \g5 in the interval J; = (0,1) and 16 eigenvalues Agg < ... < g5 in
J2 = (1, 2)

With 2 shift parameters k1 := 0 and k2 = 0.999 and the drop tolerances 7 =
le—1, le—2, le — 3 we obtained eigenvalue approximations the relative errors



of which are displayed in Figure 1. The dimensions of the projected eigenvalue
problems were 25, 32 and 37 respectively.

With Gaussian knots x; = (1 — %) and Ky = 3(1+ \/ig) we obtained
smaller relative errors, however in this case the projected problem found only 24
approximate eigenvalues missing A5 = 0.9945.

Figure 2 shows the relative errors which were obtained with shift parameters
k1 = 1.001 and k9 = 2 in problem (8) and dimensions 16, 24 and 29, respectively,
of the nonlinear projected problem.
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Fig. 1: relative errors; eigenvalue in (0,1)
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