
Chapter 4
Ordinary Differential Equations

In this chapter, we discuss a first application of the time derivative operator
constructed in the previous chapter. More precisely, we analyse well-posedness of
ordinary differential equations and will at the same time provide a Hilbert space
proof of the classical Picard–Lindelöf theorem.1 We shall furthermore see that the
abstract theory developed here also allows for more general differential equations
to be considered. In particular, we will have a look at so-called delay differential
equations with finite or infinite delay; neutral differential equations are considered
in the exercises section.

We start with some information on the time derivative and its domain.

4.1 The Domain of ∂t,ν and the Sobolev Embedding Theorem

Let H be a Hilbert space. Readers familiar with the notion of Sobolev spaces
might have already realised that the domain of ∂t,ν can be described as L2,ν(R; H)-
functions with distributional derivative lying in L2,ν(R; H). We shall also use

H 1
ν (R; H) := dom(∂t,ν) ⊆ L2,ν(R; H),

if we want to emphasise the target Hilbert space of the dom(∂t,ν)-functions. In order
to stress the distributional character of the derivative introduced, we include the
following result. Later on, we have the opportunity to have a more detailed look at
Sobolev spaces in more general contexts.

1 There are different notions for this theorem. It is also called existence and uniqueness theorem
for initial value problems for ordinary differential equations as well as Cauchy–Lipschitz theorem.
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52 4 Ordinary Differential Equations

Proposition 4.1.1 Let ν ∈ R and f, g ∈ L2,ν(R; H). Then the following conditions
are equivalent:

(i) f ∈ dom(∂t,ν) and ∂t,νf = g.
(ii) For all φ ∈ C∞

c (R) we have

−
∫
R

φ′f =
∫
R

φg,

where these integrals are Bochner integrals of the H -valued functions t �→
φ′(t)f (t) and t �→ φ(t)g(t), respectively.

Proof Assume that f ∈ dom(∂t,ν). By Proposition 3.2.4 and Corollary 3.2.6, we
have that DH = lin

{
ϕ · x ; ϕ ∈ C∞

c (R), x ∈ H
} ⊆ dom(∂∗

t,ν) (which also holds
for ν = 0) and

〈
∂t,νf, ψ · x

〉
L2,ν

= 〈
f,

(−ψ ′ + 2νψ
) · x

〉
L2,ν

for all x ∈ H and ψ ∈ C∞
c (R). Hence, we obtain for all ψ ∈ C∞

c (R)

∫
R

(−ψ ′ + 2νψ
)
f e−2ν· =

∫
R

ψ∂t,νf e−2ν·;

putting φ := e−2ν·ψ and using that multiplication by e−2ν· is a bijection on C∞
c (R),

we deduce the claimed formula with g = ∂t,νf .
On the other hand, the equation involving g applied to φ = e−2ν·ψ for ψ ∈

C∞
c (R) implies that

∫
R

(−ψ ′ + 2νψ
)
f e−2ν· =

∫
R

ψge−2ν·.

Testing this equation with x ∈ H yields

〈g,ψ · x〉L2,ν
= 〈

f,
(−ψ ′ + 2νψ

) · x
〉
L2,ν

= 〈
f,

(−∂t,νψ · x + 2νψ · x
)〉

L2,ν
.

Since DH is dense in dom(∂t,ν) by Proposition 3.2.4, we infer that

〈g, h〉L2,ν
= 〈

f,
(−∂t,νh + 2νh

)〉
L2,ν

for all h ∈ dom(∂t,ν). Now, Corollary 3.2.6, yields

〈g, h〉L2,ν
= 〈

f, ∂∗
t,νh

〉
L2,ν

(h ∈ dom(∂∗
t,ν)).

Thus, f ∈ dom(∂∗∗
t,ν) = dom(∂t,ν) and ∂t,νf = g. ��
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The next result is a version of the Sobolev embedding theorem. It particularly
confirms that functions in the domain of ∂t,ν are continuous. This result was
announced in Exercise 3.7. Here, we make use of the explicit form of the domain of
∂t,ν as being the range space of the integral operator Iν . We define

Cν(R; H) :=
{
f : R → H ; f continuous, ‖f ‖ν,∞ := sup

t∈R

∥∥e−νtf (t)
∥∥

H
< ∞

}

and regard it as being endowed with the obvious norm.

Theorem 4.1.2 (Sobolev Embedding Theorem) Let ν ∈ R. Then every f ∈
dom(∂t,ν) has a continuous representative, and the mapping

dom(∂t,ν) � f �→ f ∈ Cν(R; H)

is continuous.

Proof We restrict ourselves to the case when ν > 0; the remaining cases can be
proved by invoking Corollary 3.2.5. Let f ∈ dom(∂t,ν). By definition, we find
g ∈ L2,ν(R; H) such that f = ∂−1

t,ν g = Iνg. Then for all t ∈ R we compute

∫ t

−∞
‖g(τ )‖ dτ =

∫ t

−∞
‖g(τ )‖ e−ντ eντ dτ �

√∫ t

−∞
‖g(τ )‖2 e−2ντ dτ

√∫ t

−∞
e2ντ dτ

�
∥∥∂t,νf

∥∥
L2,ν

√
1

2ν
eνt .

Thus, g is integrable on (−∞, t] for all t ∈ R and dominated convergence implies
that

f =
(
t �→

∫ t

−∞
g(s) ds

)

is continuous. Moreover, for t ∈ R we obtain

‖f (t)‖ �
∫ t

−∞
‖g(τ)‖ dτ �

∥∥∂t,νf
∥∥

L2,ν

√
1

2ν
eνt

which yields the claimed continuity. ��
Corollary 4.1.3 For all f ∈ dom(∂t,ν), we have that

∥∥e−νtf (t)
∥∥

H
→ 0 as t →

±∞.

The proof is left as Exercise 4.2.
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4.2 The Picard–Lindelöf Theorem

The prototype of the Picard–Lindelöf theorem will be formulated for so-called
uniformly Lipschitz continuous functions. We first need a preparation.

Definition Let X be a Banach space. Then we define

Sc(R; X) := {f : R → X ; f simple, spt f compact}

to be the set of simple functions from R to X with compact support.

Lemma 4.2.1 Let X be a Banach space and ν, η ∈ R. Then Sc(R; X) is dense
in L2,ν(R; X) ∩ L2,η(R; X); that is, for all f ∈ L2,ν(R; X) ∩ L2,η(R; X) there
exists (fn)n in Sc(R; X) such that fn → f in both L2,ν(R; X) and L2,η(R; X). In
particular, Sc(R; X) is dense in L2,ν(R; X).

Proof Let f ∈ L2,ν(R; X) ∩ L2,η(R; X). Then for all n ∈ N we have that
1[−n,n]f ∈ L2,ν(R; X) ∩ L2,η(R; X) and 1[−n,n]f → f in L2,ν(R; X) and
in L2,η(R; X) as n → ∞. For n ∈ N let (f̃n,k)k be in S(μ2,ν; X) such that
f̃n,k → 1[−n,n]f in L2,ν(R; X) as k → ∞. We put fn,k := 1[−n,n]f̃n,k ∈ Sc(R; X).
Then fn,k → 1[−n,n]f in L2,ν(R; X) and in L2,η(R; X) as k → ∞. ��
In order to define the notion of uniformly Lipschitz continuous functions, we first
need the Lipschitz semi-norm.

Definition Let X0,X1 be normed spaces, and F : X0 → X1 Lipschitz continuous.
Then

‖F‖Lip := sup
x,y∈X0

x �=y

‖F(x) − F(y)‖
‖x − y‖

is the Lipschitz semi-norm of F .

Definition Let H0,H1 be Hilbert spaces, μ ∈ R. Then a function F : Sc(R; H0) →⋂
ν�μ L2,ν(R; H1) is called uniformly Lipschitz continuous if for all ν � μwe have

that F considered in L2,ν(R; H0)×L2,ν(R; H1) is Lipschitz continuous, and for the
unique Lipschitz continuous extensions Fν , ν � μ, we have that

sup
ν�μ

∥∥Fν
∥∥
Lip < ∞.

Remark 4.2.2 Another way to introduce uniformly Lipschitz continuous mappings
is the following. Let H0,H1 be Hilbert spaces, μ ∈ R. Let (F ν)ν�μ be a family of
Lipschitz continuous mappings Fν : L2,ν(R; H0) → L2,ν(R; H1) such that

sup
ν�μ

∥∥Fν
∥∥
Lip < ∞
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and the mappings are consistent in the sense that for all ν, η � μ and f ∈
L2,ν(R; H0) ∩ L2,η(R; H0) we have

Fν(f ) = Fη(f ).

Then, for ν � μ and f ∈ Sc(R; H0) we have Fν(f ) ∈ ⋂
η�μ L2,η(R; H1) and

Fν |Sc(R;H0) is uniformly Lipschitz continuous.

Theorem 4.2.3 (Picard–Lindelöf—Hilbert Space Version) Let H be a Hilbert
space, μ ∈ R and F : Sc(R; H) → ⋂

ν�μ L2,ν(R; H) uniformly Lipschitz
continuous with L := supν�μ ‖Fν‖Lip. Then for all ν > max{L,μ} the equation

∂t,νuν = Fν(uν)

admits a unique solution uν ∈ dom(∂t,ν). Furthermore, for all ν > max{L,μ} the
following properties hold:

(a) If Fν(uν) is continuous in a neighbourhood of a ∈ R, then uν is continuously
differentiable in a neighbourhood of a.

(b) For all a ∈ R, 1(−∞,a]uν is the unique fixed point v ∈ L2,ν(R; H) of
1(−∞,a]∂

−1
t,ν F ν , that is, v uniquely solves

v = 1(−∞,a]∂
−1
t,ν F ν(v).

(c) For all η � ν we have that uν = uη.
(d) For all f ∈ L2,ν(R; H) the equation

∂t,νv = Fν(v) + f

admits a unique solution vν,f ∈ dom(∂t,ν), and if f, g ∈ L2,ν(R; H) satisfy
f = g on (−∞, a] for some a ∈ R, then vν,f = vν,g on (−∞, a].

Proof of Theorem 4.2.3—First Part Define 	 : L2,ν(R; H) → L2,ν(R; H) by

	(u) = ∂−1
t,ν F ν(u).

Since
∥∥∥∂−1

t,ν

∥∥∥ � 1
ν
and ν > L it follows that 	 is a contraction and thus admits a

unique fixed point, which by definition solves the equation in question. Moreover,
we have that uν = 	(uν) = ∂−1

t,ν F ν(uν) ∈ dom(∂t,ν).
Differentiability of uν as in (a) follows from Exercise 4.1 and the continuity of

Fν(uν).
For the unique existence asserted in (d), note that the unique existence of vν,f

follows from the above considerations after realising that 
(v) := ∂−1
t,ν F ν(v) +

∂−1
t,ν f defines a contraction in L2,ν(R; H). For the remaining statements in (d) and
the statements in (b) and (c), we need some prerequisites. ��
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Definition Let H0,H1 be Hilbert spaces, ν ∈ R and F : L2,ν(R; H0) →
L2,ν(R; H1). Then, F is called causal if for all a ∈ R and all f, g ∈ L2,ν(R; H0)

with f = g on (−∞, a], we have that F(f ) = F(g) on (−∞, a].

Remark 4.2.4 Let ν ∈ R, a ∈ R. If f ∈ L(L2,ν(R; H))with sptf ⊆ (−∞, a] then
f ∈ ⋂

η�ν L2,η(R; H) and

‖f ‖L2,η(R;H) � e(ν−η)a ‖f ‖L2,ν (R;H) (η � ν).

Likewise, if spt f ⊆ [a,∞), we get f ∈ ⋂
ρ�ν L2,ρ(R; H) with

‖f ‖L2,ρ (R;H) � e(ν−ρ)a ‖f ‖L2,ν (R;H) (ρ � ν).

Lemma 4.2.5 Let H0,H1 be Hilbert spaces, μ ∈ R, F : Sc(R; H0) →⋂
ν�μ L2,ν(R; H1) uniformly Lipschitz continuous. Then the following statements

hold:

(a) Fν is causal for all ν � μ.
(b) The mapping ∂−1

t,ν F ν is causal if ν � max{μ, 0} and ν �= 0.
(c) For all ν � η � μ, we have that Fν = Fη on L2,ν(R; H0) ∩ L2,η(R; H0).

Proof (a) We divide the proof into three steps.

(i) Let ν � μ. In order to show causality of Fν , we first note that it suffices to have
Fν(f ) = Fν(g) on (−∞, a] for all f, g ∈ Sc(R; H0) with f = g on (−∞, a].
Indeed, let f, g ∈ L2,ν(R; H) with f = g on (−∞, a] for some a ∈ R.
By Lemma 4.2.1 we find (fn)n and (g̃n)n in Sc(R; H0) such that fn → f

and g̃n → g in L2,ν(R; H0). Next, 1(−∞,a]fn → 1(−∞,a]f = 1(−∞,a]g as
n → ∞ in L2,ν(R; H0). Thus, putting gn := 1(−∞,a]fn + 1(a,∞)g̃n for all
n ∈ N we obtain that gn → g in L2,ν(R; H0). Since Fν(fn) = Fν(gn) on
(−∞, a] for all n ∈ N and Fν : L2,ν(R; H0) → L2,ν(R; H1) is continuous,
taking the limit n → ∞ yields Fν(f ) = Fν(g) on (−∞, a].

(ii) Let a ∈ R, c � 0 and f ∈ Sc(R; H0) such that f = 0 on (−∞, a], g ∈⋂
ν�μ L2,ν(R; H1) such that ‖g‖L2,ν(R;H1)

� c ‖f ‖L2,ν(R;H0)
for all ν � μ.

Then

∫ a

−∞ ‖g(t)‖2H1
e2ν(a−t ) dt �

∫
R

‖g(t)‖2H1
e2ν(a−t ) dt

� c2
∫ ∞
a

‖f (t)‖2H0
e2ν(a−t ) dt → 0

as ν → ∞. Since e2ν(a−t ) → ∞ as ν → ∞ for all t < a, the monotone
convergence theorem implies g = 0 on (−∞, a].

(iii) Let f, g ∈ Sc(R; H0) such that f = g on (−∞, a] for some a ∈ R.
Then f − g = 0 on (−∞, a]. Since F is uniformly Lipschitz continu-
ous, with L := supν�μ ‖Fν‖Lip we obtain ‖Fν(f ) − Fν(g)‖L2,ν(R;H1)

�
L ‖f − g‖L2,ν(R;H0)

for all ν � μ. By (ii) we conclude Fν(f ) = Fν(g) on
(−∞, a] for all ν � μ, which by (i) yields the assertion.
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The statement in (b) directly follows from (a). Note that ∂−1
t,ν F ν is uniformly

Lipschitz continuous only for ν > 0.
Let us prove (c). Since Fν(f ) = F(f ) = Fη(f ) for f ∈ Sc(R; H0), the set
Sc(R; H0) is dense in L2,ν(R; H0) ∩ L2,μ(R; H0) by Lemma 4.2.1, and Fν

and Fη are Lipschitz-continuous, we obtain the assertion. ��
Proof of Theorem 4.2.3—Second Part The remaining part in (d): Let f, g ∈
L2,ν(R; H) with f = g on (−∞, a]. Since ν > L � 0, we compute using
Lemma 4.2.5(b) and causality of ∂−1

t,ν that

1(−∞,a]vν,f = 1(−∞,a]∂
−1
t,ν F ν

(
vν,f

) + 1(−∞,a]∂
−1
t,ν f

= 1(−∞,a]∂
−1
t,ν F ν

(
1(−∞,a]vν,f

) + 1(−∞,a]∂
−1
t,ν 1(−∞,a]f

= 1(−∞,a]∂
−1
t,ν F ν

(
1(−∞,a]vν,f

) + 1(−∞,a]∂
−1
t,ν 1(−∞,a]g.

The same computation also yields that

1(−∞,a]vν,g = 1(−∞,a]∂
−1
t,ν F ν

(
1(−∞,a]vν,g

) + 1(−∞,a]∂
−1
t,ν 1(−∞,a]g.

It is easy to see that u �→ 1(−∞,a]∂
−1
t,ν F ν (u) + 1(−∞,a]∂

−1
t,ν 1(−∞,a]g defines a

contraction in L2,ν(R; H). Hence, the contraction mapping principle implies that
1(−∞,a]vν,f = 1(−∞,a]vν,g .

The statement in (b) follows from the fact that u �→ 1(−∞,a]∂
−1
t,ν F ν(u) defines a

contraction and Lemma 4.2.5(b).
For the proof of (c), we observe that for all n ∈ N, we have 1(−∞,n]uη ∈

L2,ν(R; H) ∩ L2,η(R; H). Hence, by (b) and Lemma 4.2.5(c), it follows that

1(−∞,n]uη = 1(−∞,n]∂
−1
t,η F η

(
1(−∞,n]uη

) = 1(−∞,n]∂
−1
t,ν F ν

(
1(−∞,n]uη

)
.

As 1(−∞,n]uν satisfies the same fixed point equation, we deduce 1(−∞,n]uη =
1(−∞,n]uν for all n ∈ N, which yields the assertion. ��

As a first application of Theorem 4.2.3 we state and prove the classical version
of the Theorem of Picard–Lindelöf.

Theorem 4.2.6 (Picard–Lindelöf—Classical Version) Let H be a Hilbert space,
� ⊆ R × H be open, f : � → H continuous, (t0, x0) ∈ �. Assume there exists
L � 0 such that for all (t, x), (t, y) ∈ � we have

‖f (t, x) − f (t, y)‖ � L ‖x − y‖ .
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Then, there exists δ > 0 such that the initial value problem

{
u′(t) = f (t, u(t)) (t ∈ (t0, t0 + δ)),

u(t0) = x0,
(4.1)

admits a unique continuously differentiable solution, u : [t0, t0 + δ] → H , which
satisfies (t, u(t)) ∈ � for all t ∈ [t0, t0 + δ].

Proof First of all we observe that we may assume, without loss of generality, that
x0 = 0. Indeed, to solve the initial value problem

{
v′(t) = f (t, v(t) + x0) (t ∈ (t0, t0 + δ)),

v(t0) = 0,

for a continuously differentiable v : [t0, t0 + δ] → H is equivalent to solving the
problem in Theorem 4.2.6 for u by setting u = v + 1[t0,t0+δ]x0. Appropriately
shifting the time coordinate, we may also assume that t0 = 0.

Thus, let (0, 0) ∈ �. Then [0, δ′] × B [0, ε] ⊆ � for some δ′, ε > 0. Denote by
P : H → H the projection onto B [0, ε]; that is, for x ∈ H , Px ∈ B [0, ε] is the
unique element satisfying

‖x − Px‖H = inf
y∈B[0,ε]

‖x − y‖H .

By Exercise 4.4, P is Lipschitz continuous with Lipschitz semi-norm bounded by
1. We then define

F : Sc(R; H) →
⋂
ν�0

L2,ν(R; H)

g �→ (
t �→ 1[0,δ′)(t)f (t, P (g(t)))

)

and will prove that F is well-defined and uniformly Lipschitz continuous. Since the
mapping t �→ 1[0,δ′)(t)f (t, 0) is supported on

[
0, δ′], we obtain for ν � 0 that

F(0) ∈ L2,ν(R; H). Moreover, for ν � 0 and g, h ∈ Sc(R; H) we estimate

‖F(g) − F(h)‖2L2,ν (R;H)

=
∫
R

‖F(g)(t) − F(h)(t)‖2 e−2νt dt =
∫ δ′

0
‖f (t, P (g(t))) − f (t, P (h(t)))‖2 e−2νt dt

� L2
∫ δ′

0
‖P (g(t)) − P (h(t))‖2 e−2νt dt � L2

∫ δ′

0
‖g(t) − h(t)‖2 e−2νt dt

� L2 ‖g − h‖2L2,ν (R;H) ,

which shows that F is well-defined and uniformly Lipschitz continuous.
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By Theorem 4.2.3, there exists v ∈ dom(∂t,ν) with ν > L such that

∂t,νv = Fν(v).

We read off from v = ∂−1
t,ν F ν(v) that v = 0 on (−∞, 0], and that v is continuous

by Theorem 4.1.2. Moreover, we obtain that

v(t) =
∫ t

−∞
1[0,δ′)(τ )f (τ, P (v(τ ))) dτ =

∫ min{t,δ′}

0
f (τ, P (v(τ ))) dτ,

from which we read off that v is continuously differentiable on
(
0, δ′) since f and

P are also continuous. The same equality implies for 0 < t � δ := min{ ε
M

, δ′},
where M := sup(t,x)∈[0,δ′]×B[0,ε] ‖f (t, x)‖, that

‖v(t)‖ �
∫ t

0
‖f (τ, P (v(τ )))‖ dτ � Mδ � ε.

Thus, (t, v(t)) ∈ [
0, δ′] × B [0, ε] ⊆ � for all 0 � t � δ and so Pv(t) = v(t) for

0 � t � δ. Thus, u := v|[0,δ] satisfies (4.1).
Finally, concerning uniqueness, let ũ : [0, δ] → H be a continuously differen-

tiable solution of (4.1). Let ṽ be the extension of ũ by 0 to the whole of R. Then we
get that

1(−∞,δ]ṽ = 1(−∞,δ]

∫ ·

0
1[0,δ′)(τ )f (τ, ṽ(τ )) dτ

= 1(−∞,δ]

∫ ·

−∞
1[0,δ′)(τ )f (τ, P (̃v(τ ))) dτ

= 1(−∞,δ]∂
−1
t,ν F ν(1(−∞,δ]ṽ).

Since 1(−∞,δ]v is the unique solution of the equation w = 1(−∞,δ]∂
−1
t,ν F ν(w), we

obtain that 1(−∞,δ]ṽ = 1(−∞,δ]v, which yields u = ũ. ��
Remark 4.2.7 The reason for the proof of the classical Picard–Lindelöf theorem
being seemingly complicated is two-fold. First of all, the Hilbert space solution
theory is for L2-functions rather than continuous (or continuously differentiable)
functions. The second, maybe more important point is that the Hilbert space
Picard–Lindelöf asserts a solution theory, which provides global existence in
the time variable. The main body of the proof of the classical Picard–Lindelöf
theorem presented here is therefore devoted to ‘localisation’ of the abstract theorem.
Furthermore, note that the method of proof for obtaining uniqueness and the
admittance of the initial value rests on causality. This effect will resurface when
we discuss partial differential equations.
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4.3 Delay Differential Equations

In this section, our study will not be as in depth as done for the local Picard–Lindelöf
theorem. Of course, the solution theory would not be a very good one if it was only
applicable to, arguably, the easiest case of ordinary differential equations. We shall
see next that the developed theory applies to more elaborate examples.

In what follows, let H be a Hilbert space over K. We start out with a delay
differential equation with so-called ‘discrete delay’. For this, we introduce, for h ∈
R, the time-shift operator

τh : Sc(R; H) →
⋂
ν∈R

L2,ν(R; H),

f �→ f (· + h).

Lemma 4.3.1 Let μ ∈ R. The mapping τh : Sc(R; H) → ⋂
ν�μ L2,ν(R; H) is

uniformly Lipschitz continuous if and only if h � 0. More precisely, for ν ∈ R we
have

‖τh‖L(L2,ν(R;H)) = ehν.

Proof Let f ∈ Sc(R; H). Then for ν ∈ R we compute

‖τhf ‖2L2,ν (R;H) =
∫
R

‖f (t + h)‖2 e−2νt dt =
∫
R

‖f (t)‖2 e−2ν(t−h) dt

= ‖f ‖2L2,ν(R;H) e
2νh.

Since supν�μ e2νh < ∞ if and only if h � 0 we obtain the equivalence. Moreover,
the above equality also yields the norm of τh on L2,ν(R; H). ��
We will reuse τh for the Lipschitz continuous extensions to L2,ν(R; H). The well-
posedness theorem for delay equations with discrete delay is contained in the next
theorem. We note here that we only formulate the respective result for right-hand
sides that are globally Lipschitz continuous. With a localisation technique, as has
already been carried out for the classical Picard–Lindelöf theorem, it is also possible
to obtain local results.

Theorem 4.3.2 Let H be a Hilbert space, μ ∈ R, N ∈ N, h1, . . . , hN ∈ (−∞, 0],
and

G : Sc(R; HN) →
⋂
ν�μ

L2,ν(R; H)
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uniformly Lipschitz. Then there exists an η ∈ R such that for all ν � η the equation

∂t,νu = Gν
(
τh1u, . . . , τhN u

)

admits a solution u ∈ dom(∂t,ν) which is unique in
⋃

ν�η L2,ν(R; H). Moreover,
for all a ∈ R the function ua := 1(−∞,a]u satisfies

ua = 1(−∞,a]∂
−1
t,ν Gν

(
τh1ua, . . . , τhN ua

)
.

Proof The assertion follows from Theorem 4.2.3 applied to F := G◦(
τh1 , . . . , τhN

)
in conjunction with Lemma 4.3.1. ��
Next, we formulate an initial value problem for a subclass of the latter type of
equations.

Theorem 4.3.3 Let h > 0, f : R≥0 × H × H → H continuous, and f (·, 0, 0) ∈
L2,μ(R; H) for some μ > 0. Assume that there exists L � 0 with

‖f (t, x, y) − f (t, u, v)‖ � L ‖(x, y) − (u, v)‖ (
(t, x, y), (t, u, v) ∈ R≥0 × H × H

)
.

Let u0 ∈ C ([−h, 0]; H). Then the initial value problem

{
u′(t) = f (t, u(t), u(t − h)) (t > 0),

u(τ ) = u0(τ ) (τ ∈ [−h, 0])
(4.2)

admits a unique continuous solution u : [−h,∞) → H , continuously differentiable
on (0,∞).

Proof For t < 0 let f (t, ·, ·) := 0. We define F : Sc(R; H) → ⋂
ν�μ L2,ν(R; H)

by

F(φ)(t)

:= f
(
t, φ(t) + 1[0,∞)(t)u0(0), φ(t − h) + 1[0,∞)(t − h)u0(0) + 1[0,h)(t)u0(t − h)

)

for all t ∈ R. It is easy to see that F is uniformly Lipschitz continuous. Thus, by
Theorem 4.2.3, we find η � μ such that for all ν � η the equation

∂t,νv = Fν(v)

admits a solution v ∈ ⋂
ν�η dom(∂t,ν) which is unique in

⋃
ν�η L2,ν(R; H). Note

that sptFν(v) ⊆ [0,∞). Hence, v = 0 on (−∞, 0] . By Theorem 4.1.2, we obtain
that v(0) = 0. We claim that u := v + 1[0,∞)(·)u0(0) + 1[−h,0)u0 is a solution
of (4.2). First of all note that u is continuous on [−h,∞). Next, for 0 < t < h we
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have that t − h < 0 and thus v(t − h) = 0 and so we see that

Fν(v)(t)

= f (t, v(t) + 1[0,∞)(t)u0(0), v(t − h) + 1[0,∞)(t − h)u0(0) + 1[0,h)(t)u0(t − h))

= f (t, u(t), u0(t − h)).

Similarly, for t � h we obtain

Fν(v)(t) = f (t, u(t), u(t − h))

and thus, by continuity of f , u0 and u, it follows that v is continuously differentiable
on (0,∞) and

u′(t) = v′(t) = ∂t,νv(t) = f (t, u(t), u(t − h)).

It remains to show uniqueness. For this, letw : [−h,∞) → H be a solution of (4.2).
Then

w(t) = u0(0) +
∫ t

0
f (s,w(s),w(s − h)) ds (t � 0)

and w(t) = u0(t) if t ∈ [−h, 0]. Extend w by 0 on (−∞,−h) and set ṽ :=
w − 1[0,∞)(·)u0(0) − 1[−h,0)u0. We infer

ṽ(t) =
∫ t

0
f (s,w(s),w(s − h)) ds

=
∫ t

−∞
f

(
s, ṽ(s) + 1[0,∞)(s)u0(0),

ṽ(s − h) + 1[0,∞)(s − h)u0(0) + 1[0,h)(s)u0(s − h)
)
ds

for all t ∈ R. For a ∈ R we set ṽa := 1(−∞,a]ṽ ∈ ⋂
ν∈R L2,ν(R; H) and obtain,

using the above formula for ṽ,

ṽa = 1(−∞,a]∂
−1
t,ν F ν (̃va).

By uniqueness of the solution of

1(−∞,a]v = 1(−∞,a]∂
−1
t,ν F ν

(
1(−∞,a]v

)

it follows that ṽa = 1(−∞,a]v for all a ∈ R and, thus, u = w. ��
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The equation to come involves the whole history of the unknown; that is, the
unknown evaluated at (−∞, 0]. For a mapping u : R → H and t ∈ R we define the
‘history’ of u up to time t as ut : R≤0 → H , ut (θ) := u(t + θ) for all θ ∈ R≤0.
Moreover, we define the mapping

u(·) : R � t �→ ut ,

which maps each t ∈ R to the history of u up to time t .

Lemma 4.3.4 Let μ > 0. Then

� : Sc(R; H) →
⋂
ν�μ

L2,ν
(
R; L2(R≤0; H)

)

u �→ u(·)

is uniformly Lipschitz continuous. More precisely, for all ν > 0 we have

∥∥�ν
∥∥ = 1√

2ν
.

Proof Let u ∈ Sc(R; H). Then �u(t) = ut ∈ L2(R≤0; H) for all t ∈ R and we
compute

‖�u‖2
L2,ν

(
R;L2(R≤0;H)

) =
∫
R

∫
R≤0

‖u(t + θ)‖2 dθ e−2νt dt

=
∫
R

∫
R≤0

‖u(t)‖2 e−2ν(t−θ) dθ dt

= 1

2ν

∫
R

‖u(t)‖2 e−2νt dt . ��

Theorem 4.3.5 LetH be a Hilbert space,μ ∈ R and let	 : Sc
(
R; L2(R≤0; H)

) →⋂
ν�μ L2,ν(R; H) be uniformly Lipschitz. Then, there exists η > 0 such that for all

ν � η the equation

∂t,νu = 	ν(u(·))

admits a solution u ∈ ⋂
ν�η dom(∂t,ν) unique in

⋃
ν�η L2,ν(R; H).

Proof This is another application of Theorem 4.2.3. ��
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4.4 Comments

In a way, the proof of Theorem 4.2.6 is standard PDE-theory in a nutshell; a solution
theory for Lp-spaces is used to deduce existence and uniqueness of solutions and
a posteriori regularity theory provides more information on the properties of the
solution.

Note that—of course—other proofs are available for the Picard–Lindelöf theo-
rem. We chose, however, to present this proof here in order to provide a perspective
on classical results. Furthermore, we mention that in order to obtain unique
existence for the solution, it suffices to assume that f satisfies a uniform Lipschitz
condition with respect to the second variable and that f is measurable. Continuity
of f is needed in order to obtain C1-solutions.

A more detailed exposition and more examples of the theory applied to delay
differential equations can be found in [52] and—in a Banach space setting—[85].

There is also a way of dealing with delay differential equations by expanding the
state space the problem is formulated in. In this case, it is possible to make use of
the rich theory of C0-semigroups. We refer to [10] for this.

Causality is one of the main concepts for evolutionary equations. We have
provided this notion for mappings defined on L2,ν-type spaces only. The situation
becomes different if one considers merely densely defined mappings. Then it is a
priori unclear, whether for a Lipschitz continuousmapping the continuous extension
is also causal. For this we refer to Exercise 4.7 below and to [51, 131], and [138,
Chapter 2] as well as to references mentioned there.

Exercises

Exercise 4.1

(a) LetX be a Banach space, u : [a, b] → X continuous. Show that v : (a, b) → X

given by

v(t) =
∫ t

a

u(τ ) dτ

is continuously differentiable with v′(t) = u(t) for all t ∈ (a, b).
(b) Let H be a Hilbert space, and ν ∈ R. Let u ∈ dom(∂t,ν) with ∂t,νu continuous.

Show that u is continuously differentiable and u′ = ∂t,νu.

Exercise 4.2 Prove Corollary 4.1.3.

Exercise 4.3 Let H be a Hilbert space. Show that

dom(∂t,ν) ↪→ C1/2
ν (R; H) :=

{
f ∈ Cν(R; H) ; e−ν·f is 1

2 -Hölder continuous
}

,
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where a function g : R → H is said to be 1
2 -Hölder continuous if

sup
s,t∈R
t �=s

‖g(t) − g(s)‖
|t − s|1/2 < ∞.

Exercise 4.4 Let H be a Hilbert space, C ⊆ H non-empty, closed and convex.
Show that the projection, P , of H onto C defines a Lipschitz continuous mapping
with Lipschitz semi-norm bounded by 1, where for x ∈ H , Px ∈ C is the unique
element satisfying

‖x − Px‖H = inf
y∈C

‖x − y‖H .

Exercise 4.5 Let h : R × R≤0 × R
n → R

n be continuous satisfying

‖h(t, s, x) − h(t, s, y)‖ � L ‖x − y‖

with h(·, ·, 0) = 0. Let R > 0 and u0 ∈ C(R≤0;Rn) have compact support. Show
that the initial value problem

{
u′(t) = ∫ 0

−R
h(t, s, u(t)(s)) ds (t > 0),

u(t) = u0(t) (t � 0)

admits a unique continuous solution u : R → R
n, which is continuously differen-

tiable on R>0.
Hint:Modify � from Lemma 4.3.4.

Exercise 4.6 Let H be a Hilbert space. Show that for a uniformly Lipschitz
continuous 	 : Sc

(
R; L2(R≤0; H)2

) → ⋂
ν�μ L2,ν(R; H) the equation

∂t,νu = 	ν
(
u(·),

(
∂t,νu

)
(·)

)

admits a unique solution u ∈ dom(∂t,ν) for ν large enough.

Exercise 4.7 Let D ⊆ L2(R) be dense and suppose that F : D ⊆ L2(R) → L2(R)

admits a Lipschitz continuous extension F 0.

(a) Show that F 0 is causal if and only if for all φ ∈ Sc(R;R) and all a ∈ R there
exists L � 0 such that

∣∣∣〈1(−∞,a] · (F (f ) − F(g)), φ
〉
L2(R)

∣∣∣ � L
∥∥1(−∞,a] · (f − g)

∥∥
L2(R)
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for all f, g ∈ D; that is, the mapping

(
D,

∥∥1(−∞,a] · (· − ·)∥∥
L2(R)

)
� f �→ F(f ) ∈

(
L2(R),

∣∣∣〈1(−∞,a] · (· − ·), φ
〉
L2(R)

∣∣∣
)

is Lipschitz continuous.
(b) For a ∈ R let dom(F ) ∩ dom(F1(−∞,a]) be dense in L2(R) and if f, g ∈ D =

dom(F ) and f = g on (−∞, a] then also F(f ) = F(g) on (−∞, a]. Show
that F 0 is causal.

(c) Assume for all f, g ∈ D and a ∈ R that f = g on (−∞, a] implies that
F(f ) = F(g) on (−∞, a]. Show that this is not sufficient for F 0 to be causal.
Hint: Find a dense subspace D = dom(F ) so that the first condition in (b) is
not satisfied.
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