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Abstract

In an ordered algebraic extension field
¢of the rationals algorithms for sign deter-—
minations are studied. Twc new algorithms
are analyzed in detail and shown to be
asymptotically and in practice faster than
previous algorithms.

1. Introduction

Let Z denote the ring of integers and
Q the field of rationals, In a pure alge-
braic sense an algebrailc number a over {
may be represented by..its minimal monic
polynomial ¢ € Q[x], ¢(e¢) = O, It is pos-
sible [1,2] to perform constructively the
- four rational operations in {Q(a) using only
Vv to characterize a and the same holds for
operations composed of the four rational
operations like greatest common divisor
calculation and factorization., There are,
however, circumstances where one has to
digtinguish between an algebraic number
a and its conjugates belonging to the same
. Very important is the case that the
field is ordered like @ and the order re-
lation has to be extended to Q{a). Obvicus-
ly, ¥ 1s not sufficient to characterize «
anymore. Zassenhaus proposed and realized
in his real root calculus [3] an indexing
from left to right of the real algebraic
numbers of a minimal ¢y and denotes the
roots by af{y,1), aly,2),...,0(g,r) if v
has r distinct real rcots. The sign deter-
mination of an element B € Q{a) as the
base for the order relation depends in
general on all real roots of o, vlg) = B
and ¢, We call such an algorithm based on
all real roots of ¢ & global algorithm
for sign determinaticn.

In section 2 we state the problem more
formally and discuss global algorithms.
Using another indexing method which was
introduced by Heindel [4] based on isola-
ting intervals we describe and analyze in
section 3 and 4 two new algorithms which
are not global in the stated sense. In
section 5 we give empirical compariscns
and discuss finally applications of the
given algorithms for real root isolation
of real algebraic polynomizls.
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2, Global Algorithms

Some of the restrictions we use in the
formal statement of the problem will be
lifted later for reasons of computational
convenience, If ¢ is the minimal polyno-
mial over Qix] such that ¢ (a) = O then
every element B € Q{a) can be represented
by a polynomial B € Q[x] of degree npin,-i.
Let us denote by @ an interval with ratio-
nal endpoints r and s such that « € @ but
no other real root of y is contained in Q.
$ is called an isolating interval for =
with respect to ¢, Since ¢ is minimal,
gcd(¢y,B) = 1 if B # O, Therefore B =0 is
represented by B = 0O, the null pclynomial,
and the problem ©f sign determination is
reduced to the non-zero sign of B, hence
to sign (B(a))> O {Figure 1},
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Figure 1 sign B = sign (B(a})

For the indexing method of Zassenhaus
a scolution using Sturm sequences was given
by Kempfert [11]}, and for Collins' method
of isolating intervals by Rubald [2]. Ru-
bald's algorithm counts the number of real
roots of B in @ and bisects Q@ with respect
to o until @ does not contain a rcot of B
anymore, Then sign (g} = sign (B{r)) =
sign (B(s)). The Sturm seguence is genera-
ted once and evaluated repeatedly for each
new &, We call this algorithm the S-algo-
rithm (for Sturm sequence) which is avail-
able in the SAC-1 system [2] for computer
algebra,.

Recently two algorithms were discovered
which can be used as alternatives to Sturm's
method, The first one [5] isolates the real
roeots of a polynomial using the sequence
cf derivatives, the second one {6] is based
on an idea of Uspensky and uses poclynomial
transformations and Descarte's sign rule.
Both algorithms can be easily adapted for
an arbitrary interval like Q. Both algo-
rithms are in general superiocr to Sturm's
algorithm and it can be expected that sign
algorithms baséd on them are also superior
to the S-algorithm,



The global algorithms can be described
as follows

s + ASIGNG(a,B}

[algebraic sign, global algorithm. a={Q,0),
B=B(a), s=sign(p}]
1) {8=07?] if B=0 then set s=0 and stop.

{
(2} [Isclating intervals] Let 11'_._,IrB be

the isolating intervals of B, using

cne of the three mentioned algorithms.
(3) [Bisect] while there are intervals

Iys--..Lm such that I;ine#@, nsizm, do

{bisect @ with respect to ¢ and Ip,....
Iy with respect to B}.

(4) [8ign] Set s=sign(B(r}), where 4=(1,r)
and stop.

3. The Interval Algorithm and the Deriva-
tive Algorithm

If B#0 then there exists a lower bound
b on {(B(a}) which we will give in the next
section. Also let us define the interval
Y=B (%) by evaluating the pe¢lynomial B using
interval addition, subtraction and multi-
plication, A seguence of intervals Q=Q1,Qz,
w-v:9_ bisected with respect to y such
that o € Q4, results by Y;=B(2i} in a se-
quence of intervals Y1,...,Ym, with B{a)
£ Yi and Qi+1c9i’ Yi+1c Yi for i=1,...,m-1.
Since the width of the intervals in both
sequences decreases monotonically m can be
checosen such that the width of ¥, is less
then the bound b. Hence O & Y =(1,r) and
sign (B{a))=sign{r). This leads to the fcl-
lowing algorithm [7]

S <« ASIGNI(«,.,B)

[Algebraic sign using interval arithmetic.
a=(p,¢}, p=Bla). s=sign(8)] ,

{1)[s=0?] if B=0 then set s=0 and stop.
(2)[Bisect] Y«B(2}; while O € ¥ do {bisect
2 with rospect to ¢ and set Y+B({Q)

using interval arithmetic}.
(3)[Sign} Let ¥Y={1,r); Set 3=sign(l) and
stop

Although ASIGNI turns out to be asympto-
tically and in practice faster than the 5-
algorithm there is still another method em-
piricaliy more attractive.

The algorithm is based on the following
observation. If the derivative B'(x)=dB/dx
has no real root in & , then B has by
Rolle's Theorem at most one real root in

& , which is of multiplicity 1 if it exists.
Then the sign of B is different on the
endpoints of Q. (The case that o is of
width © means that o € Q0 ans may be tri-
vially excluded). Bigecting 0 with res-
pect to ¢ until the signs c¢f B at the
endpecints agree results in an interval @
on which B is of the same sign. It re-
mains to enforce the hypothesig. This

can easily be accomplished inductively
because the np-th derivative of B is a
non=zZero constant,
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s « ASIGND{a.B}

[Algebraic sign using derivatives.a=(¢,) .,

g=B{a). s=sign(g)]

(1) [p=07]if B=0 then set s=0 and stop.

(2) [Derivative sequence] Let B{0)
B(l)’.‘.,B(ng)
sequence of B.

{3) [Induction] for k=nB,n -1,..., 0 do
with ¢=(1,r) {while sIgn

(8 (1)) # sign 8% (r))
bisect @ with respect to §}.
(4) fsign] Set s = sign{B(r}) and stop.

be the derivative

The algorithm as stated is only correct
for minimal ¢. This restriction can easily
be lifted.

4. Theoretical Analysis

The assumptions made in the actual im-
plementation are the following. § is not
assumed to be irreducible since there ex-
ists no complete factorization algorithm
With a polyncmial bound on the computing
time. Instead 3 is assumed to be sguare-
free, and primitive since ¢ € Z[x]. B is
assufied to be relatively prime to ¢, other-
wise B=0. B is split into a rational num-

ber EB and a primitive polynomial B e Z[xl].
Since ry > O only B is of interest in the
algorithm.

We denote by L(a) the length of the in-
teger a, by L(r)=max{L{a),L(b}} the length
of the rational r=a/b reduced to lowest
terms and by L(I)=max{L{1),L{r)} the length
of the interwval g=(1,r) with rational end-
points 1 and r. The width W(g)=|r-1] is
distinguished from L(Q). Finally, the in-
tegral polynomial A is characterized by
its degree n, and its sum norm

d,=:t |a; | where the a, are the coef-

<i < n
= = A

ficients of A.

Let the interval (~-a,a] contain all real
roots of B € Z[{x]. If a is an integer all
intervals occuring in the algorithms gen-
erated by bisection of such an initial in-
terval have binary rational endpoints,i.e.
the denominator is a power of 2. Binary
rational arithmetic is much cheaper than
rational arithmetic. For the bisection of
the intervals Collins” [5] method of mini-
mizing the length of the numerators and
denominators is employed.

The analysis of algorithm ASIGNG gives
for step 2
t, < n'% 4 0’ nqay?
B B

for Sturm and derivate sequence [4,5]



and t; £ ¢ by the argument in [5] for al-

2
gorithm R if L(d)=max{L(dB),L(d$)}. Hence,
for n¢ =n > 'ng,
) 10 7 3
tASIGNG <n + n'L(d)".

In practice, one does not have tc gen-
erate all isolating intervals in step 2 in
the S-algorithm, if one bisects § until it
contains only the nearest root ¢f B fo ao.
Then only one applies step 3. With this
improvement Rubald” s S—-algorithm has the
time

ts'ﬁ n? + nlLiay .
The use cof the stronger result of Mignotte
[12}, [13] does not affect this time.

If in step 2 the modified Uspensky algo—
rithm is used we have

8 6. 2 5 3
tASING-—(n + n L(d)° + n"L(d)".

where the second term is due to step 3.

The analysis of the interval algorithm
ASIGNI is based on Theorem 5 of [5] which
gives the lower bound
-n -n

1 B
{B(a)| > 5 (dg*1) wdw
and on the relation between the width of
Y = B() and of @

n
WlY) < nyu B 1dB-W(n)

where « = max{|xr|,|1|} + W(a)} + 1,0={1,r].

Theorem Let o = (y,0)},8 = B(a) # O,

n = nl‘p > nBr

Then t (ASIGNI,,B) $n°L{d)> and

d = max{dw,dB}

£ (ASIGND,a,B){n° + n°L{d)>.

For algorithm ASIGND it is not cbvious
that no root of the derivatives coincides
with a. This cannot happen if g is minimal
otherwise by calculating the gcd(y,B(K})y
can always be made relatively prime to
B(k}, 0 < k < Ng. Zven without assuming

a minimal y we get the stated result for
ASIGND. Collins and Horowitz [14] have
shown, that a square free peolynomial with
degree n and sumnorm d,have a minimum root
separation A with L(x ") ¢ n«L(d). One

can show, that this result still holds for
the distinct roots of a polynomial with
possibly multiple roots. It is conjectured,
that the minimum real roct separation of a
polynomial as given by the formula is alsc
a minimum real root separation for all the
derivatives. This has noct yet been proved
and in the derivation of the comguting
time of ASIGND a i, with L{A™Lgni+nL(d),
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is used as a minimum root separaticen for
all derivatives contributing to the term
n8 in the result. Detailed proofs will be
contained in [81.

5. Empirical Analysis

For Rubald’s S-algorithm, ASIGNI and
ASIGND we give in the following tables in
columns S, I and D times in seconds of a
TR 440 computer using SAC-1 [9]. For each
algorithm we give also under B the number
of bisections. Since we toock the average
of three randomly generated polynomials for
each entry B is a fraction. With the ex-
ception that @ is initially sufficient small
that no bisections are needed at all, algo-
rithm ASIGND is clearly superior to ASIGNI
and both are faster than the Sturm seguence
algorithm. The efficient modification of
Uspensky” s algorithm became only known
while this note was written. Therefiore, no
tests could be included. b denotes the
length of the coefficients in bits, n the
degree of the polynomials, ¢ has always 44
bit (1 word on TR 440) coefficients and
degree n + 1.

Tablé 1 - Random Polynomials, b = 44

n s B I B D B
5 { 2.8 10.3) 2.6 10.6}1.0 13.6
10 J21.2 12.3 | 6.1 12.0] 1.5 12
1wl e.7 o 0.6 o |1.09 2
15 l46.0 3 7.5 11.7] 3.3 1s5.3
o | - - l13.4 15.3| 4.4  15.3
poMiao 1.3 | 4.63 3.1 4.60 3.3

*} 9 three orders of magnitude smaller

Table 2 - Random Polynomials, n = 10

b 5 B I B D B
441 12.8 10.3 {4.8 11 1.4 12.3
88| 38 12 5.7 12.3|1.7 13.3
132 €6 8.3 }6.0 11 1.4 11
176 97 7.7]6.6 12.7|1.9 13




Table 3 - Random Resultants

0.86 11

18 179 10 2.6 10 4.1 18

]
n S B I B D B
5 4,7 13 3.3 16 0.75 13
10 26 12 6.3 15 1.48 13
15 85 13 20.1 31 3.1 18
Table 5 -~ Chebyshev Polynomials
n s B I B D B
5 2.9 12 2.2 14 0.68 14
10 110.9 11 3.6 11 0.83 11
15 25 10 7.1 14 1.73 13

6. Conclusicn

We have shown that two new algorithms
are theoretically and practically faster
than previous known algorithms, based on
Sturm sequences. We expect this also be-
ing true ccmpared tc Zassenhaus® method
of ipdexing because Kempfert's algorithm
relies also on Sturm sequences. The main
attraction to study the sign determina-
tion for real algebraic numbers is its
application for real root isolation of
real algebraic polyncmials [8]. In par-—
ticular the real root isolation algo-
rithms based on derivative seguences or
Descarte’s sign rule make havily use of
sign calculations and can easily be ex-—
tended from Z[x] to Q(a)[x]. In contrast,
the calculation of Sturm sequences over
QO(a) is even worse than over Z.
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