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This paper presents an extended analytical approach to evaluating continuous,monotonic functions of independent fuzzy numbers.
The approach is based on a parametric𝛼-cut representation of fuzzy numbers and allows for the inclusion of parameter uncertainties
into mathematical models.

1. Introduction

There is an increasing effort in the scientific community to
provide suitable methods for the inclusion of uncertainties
into mathematical models. One way to do so is to introduce
parametric uncertainty by representing the uncertain model
parameters as fuzzy numbers [1] and evaluating the model
equations by means of Zadeh’s extension principle [2]. The
evaluation of this classical formulation of the extension
principle, however, turns out to be a highly complex task
[3]. Fortunately, Buckley and Qu [4] provide an alternative
formulation that operates on 𝛼-cuts and is applicable to con-
tinuous functions of independent fuzzy numbers. Powerful
numerical techniques have been developed to implement this
alternative formulation [5]. These techniques are particularly
suitable for very complex simulation models [6]. In engi-
neering design [7], however, the mathematical equations are
usually less complex, and hence analytical methods might
be more suitable for the inclusion of parameter uncertainties
into the computations. For this purpose, a practical analytical
approach to evaluating continuous, monotonic functions of
independent fuzzy numbers was introduced by the authors
[8], which is based on the alternative formulation of the
extension principle. In this paper, we extend this approach
in terms of computational efficiency depending on certain
monotonicity conditions.

An outline of this paper is as follows. In Section 2, we
give a definition of fuzzy numbers and present two important

types. In Section 3, we introduce the notion of a linguistic
variable. In Section 4, we briefly recall Zadeh’s extension
principle and introduce the alternative formulation based
on 𝛼-cuts. In Section 5, we describe our extended analytical
approach and give four illustrative examples. In Section 6,
a practical engineering application is presented. Finally, in
Section 7, some conclusions are drawn.

2. Fuzzy Numbers

Fuzzy numbers are a special class of fuzzy sets [9], which can
be defined as follows [1].

A normal, convex fuzzy set 𝑥 over the real lineR is called
fuzzy number if there is exactly one 𝑥 ∈ Rwith 𝜇

𝑥

(𝑥) = 1 and
the membership function is at least piecewise continuous.
The value 𝑥 is called themodal or peak value of 𝑥.

It is important to note that some authors consider normal,
convex fuzzy sets with a core interval also as fuzzy numbers
[10]. In [3, 6], these types of fuzzy numbers are denoted as
fuzzy intervals. Furthermore, some authors define a fuzzy
number having a compact support [11]. Although all concepts
presented in this paper can be extended to these definitions
of fuzzy numbers, we stick to the definition from [1].

Theoretically, an infinite number of possible types of
fuzzy numbers can be defined. However, only few of them
are important for engineering applications [6]. These typical
fuzzy numbers shall be described in the following.
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Figure 1: Triangular fuzzy number.

2.1. Triangular Fuzzy Numbers. Due to its very simple, linear
membership function, the triangular fuzzy number (TFN) is
the most frequently used fuzzy number in engineering. In
order to define a TFN with the membership function

𝜇
𝑥

(𝑥) =

{
{

{
{

{

1 +

𝑥 − 𝑥

𝜏
L , 𝑥 − 𝜏

L
≤ 𝑥 ≤ 𝑥,

1 −

𝑥 − 𝑥

𝜏
R , 𝑥 < 𝑥 ≤ 𝑥 + 𝜏

R
,

(1)

we use the parametric notation [6]

𝑥 = tfn (𝑥, 𝜏L, 𝜏R) , (2)

where 𝑥 denotes the modal value, 𝜏L denotes the left-hand,
and 𝜏

R denotes the right-hand spread of 𝑥 (cf. Figure 1). If
𝜏
L
= 𝜏

R, the TFN is called symmetric. Its 𝛼-cuts 𝑥(𝛼) =

[𝑥
L
(𝛼), 𝑥

R
(𝛼)] result from the inverse functions of (1) with

respect to 𝑥:

𝑥
L
(𝛼) = 𝑥 − 𝜏

L
(1 − 𝛼) , 0 < 𝛼 ≤ 1,

𝑥
R
(𝛼) = 𝑥 + 𝜏

R
(1 − 𝛼) , 0 < 𝛼 ≤ 1.

(3)

2.2. Gaussian Fuzzy Numbers. Another widely used fuzzy
number in engineering is the Gaussian fuzzy number (GFN),
which is based on the normal distribution from probability
theory. In order to define such a GFN with the membership
function

𝜇
𝑥

(𝑥) =

{
{
{
{

{
{
{
{

{

exp[−1
2

(

𝑥 − 𝑥

𝜎
L )

2

] , 𝑥 ≤ 𝑥,

exp[−1
2

(

𝑥 − 𝑥

𝜎
R )

2

] , 𝑥 > 𝑥,

(4)

we use the parametric notation [6]

𝑥 = gfn (𝑥, 𝜎L, 𝜎R) , (5)

where 𝑥 denotes the modal value, 𝜎L denotes the left-
hand, and 𝜎R denotes the right-hand standard deviation of 𝑥
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Figure 2: Gaussian fuzzy number.

(cf. Figure 2). If 𝜎L = 𝜎
R, the GFN is called symmetric. Its

𝛼-cuts 𝑥(𝛼) = [𝑥L(𝛼), 𝑥R(𝛼)] result in

𝑥
L
(𝛼) = 𝑥 − 𝜎

L
√−2 ln (𝛼), 0 < 𝛼 ≤ 1,

𝑥
R
(𝛼) = 𝑥 + 𝜎

R
√−2 ln (𝛼), 0 < 𝛼 ≤ 1.

(6)

3. Linguistic Variables

In decision analysis, linguistic variables are of particular
importance [12].

A linguistic variable 𝑉L is a collection of subsets contain-
ing the following elements:

(i) 𝐺 : set of syntactic rules (e.g., in terms of a grammar)
for the linguistic quantification of 𝑉L;

(ii) 𝑇: set of terms 𝑡
𝑖

, 𝑖 ∈ N, resulting from 𝐺;
(iii) 𝑆: set of semantic rules that assign every term 𝑡

𝑖

to its
(physical) meaning in terms of a fuzzy number 𝑡̃

𝑖

;
(iv) 𝑋: (physically relevant) universal set with the (crisp)

elements 𝑥.

Figure 3 illustrates a possible description of the linguistic
variable color. It is based on the continuous spectrum of the
wave length 𝜆 of visible light: 𝑋 = {𝜆 ∈ R | 380 ≤

𝜆 ≤ 780} nm. By subjective color perception, the colors 𝑡
𝑖

are
chosen from the set𝑇 = {violet, blue, cyan, green, yellow, red}
of possible colors. Each term 𝑡

𝑖

∈ 𝑇 is represented as a fuzzy
number 𝑡̃

𝑖

over the universal set𝑋.
For an easier handling with linguistic variables, they can

be transformed into the unit interval [0, 1]. These types of
linguistic variables are referred to as normalized linguistic
variables [12].

4. Extension Principle

Zadeh’s extension principle [2] allows for extending any
real-valued function to a function of fuzzy numbers. More
specifically, let 𝑥

1

, . . . , 𝑥
𝑛

be 𝑛 independent or noninteractive
fuzzy numbers, and let 𝑓 : R𝑛 → R be a function with
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Figure 3: Possible description of the linguistic variable color accord-
ing to [6].

𝑦 = 𝑓(𝑥
1

, . . . , 𝑥
𝑛

). The fuzzy extension 𝑦 = 𝑓(𝑥
1

, . . . , 𝑥
𝑛

) is
then defined by

𝜇
𝑦

(𝑦) = sup
𝑦=𝑓(𝑥1 ,...,𝑥𝑛)

min {𝜇
𝑥

1

(𝑥
1

) , . . . , 𝜇
𝑥

𝑛

(𝑥
𝑛

)} . (7)

In case of interdependency between 𝑥
1

, . . . , 𝑥
𝑛

, the min-
imum operator should be replaced by a suitable triangular
norm [13]. In this paper, however, we restrict ourselves to
independent fuzzy numbers.

The evaluation of this classical formulation of the exten-
sion principle turns out to be a highly complex task [3].
Fortunately, Buckley and Qu [4] provide an alternative
formulation that operates on 𝛼-cuts.

Let 𝑥
1

(𝛼), . . . , 𝑥
𝑛

(𝛼) denote the 𝛼-cuts of the 𝑛 indepen-
dent fuzzy numbers𝑥

1

, . . . , 𝑥
𝑛

, and let𝑓 be continuous.Then,
the 𝛼-cuts 𝑦(𝛼) = [𝑦L(𝛼), 𝑦R(𝛼)] of 𝑦 can be computed from

𝑦
L
(𝛼) = min {𝑓 (𝑥

1

, . . . , 𝑥
𝑛

) | (𝑥
1

, . . . , 𝑥
𝑛

) ∈ Ω (𝛼)} ,

𝑦
R
(𝛼) = max {𝑓 (𝑥

1

, . . . , 𝑥
𝑛

) | (𝑥
1

, . . . , 𝑥
𝑛

) ∈ Ω (𝛼)} ,

(8)

whereΩ(𝛼) = 𝑥
1

(𝛼)×⋅ ⋅ ⋅×𝑥
𝑛

(𝛼) represent the 𝑛-dimensional
interval boxes that are spannedby the𝛼-cuts𝑥

1

(𝛼), . . . , 𝑥
𝑛

(𝛼).
The extended analytical approach, which is presented in

the next section, is based on this alternative formulation of
the extension principle.

5. Extended Analytical Approach

Basically, our extended analytical approach can be classified
into three parts depending on the monotonicity of 𝑓: a
reduced [8], a general [8], and an extended part.

5.1. Reduced Part. Let the continuous function 𝑓 be (strictly)
monotonic increasing in 𝑥

𝑖

, 𝑖 = 1, . . . , 𝑘, and (strictly) mono-
tonic decreasing in 𝑥

𝑗

, 𝑗 = 1, . . . , ℓ, in the domain of interest,
and let 𝑘 + ℓ = 𝑛. Then, the minimum values of 𝑓
inside of every subdomain Ω(𝛼) are always found at the left

boundaries of 𝑥
𝑖

(𝛼) and the right boundaries of 𝑥
𝑗

(𝛼) and
its maximum values at the right boundaries of 𝑥

𝑖

(𝛼) and the
left boundaries of 𝑥

𝑗

(𝛼), respectively. In such case, the 𝛼-cuts
𝑦(𝛼) = [𝑦

L
(𝛼), 𝑦

R
(𝛼)] of 𝑦 become

𝑦
L
(𝛼) = 𝑓 (𝑥

L
𝑖

(𝛼) , 𝑥
R
𝑗

(𝛼)) , 0 < 𝛼 ≤ 1,

𝑦
R
(𝛼) = 𝑓 (𝑥

R
𝑖

(𝛼) , 𝑥
L
𝑗

(𝛼)) , 0 < 𝛼 ≤ 1,

(9)

with 𝑥
𝑚

(𝛼) = [𝑥
L
𝑚

(𝛼), 𝑥
R
𝑚

(𝛼)],𝑚 = 1, . . . , 𝑛. If (9) is invertible
with respect to 𝛼, then the membership function of 𝑦 yields

𝜇
𝑦

(𝑦) = {

𝑦
L
(𝛼)
−1

, 𝑦
L
(0) < 𝑦 ≤ 𝑦

L
(1) ,

𝑦
R
(𝛼)
−1

, 𝑦
R
(1) < 𝑦 < 𝑦

R
(0) .

(10)

This reduced part of our approach can be viewed as an
analytical version of the short transformation method [14].
Basically, it is equivalent to Lemma 3 from [15] or Corollary
2 from [16].

Example 1. The function 𝑓
1

: R2
+

→ R
+

with

𝑦
1

= 𝑓
1

(𝑥
1

, 𝑥
2

) =

𝑥
1

𝑥
1

+ 𝑥
2

(11)

shall be evaluated for the two fuzzy numbers 𝑥
1

= tfn(2, 2, 3)
and 𝑥

2

= tfn(2, 2, 2). Since

𝜕𝑓
1

𝜕𝑥
1

=

𝑥
2

(𝑥
1

+ 𝑥
2

)
2

> 0,

𝜕𝑓
1

𝜕𝑥
2

=

−𝑥
1

(𝑥
1

+ 𝑥
2

)
2

< 0,

(12)

the function 𝑓
1

is (strictly) monotonic increasing in 𝑥
1

and (strictly) monotonic decreasing in 𝑥
2

in the domain
supp(𝑥

1

) × supp(𝑥
2

) = (0, 5) × (0, 4). Hence, the 𝛼-cuts
𝑦
1

(𝛼) = [𝑦
L
1

(𝛼), 𝑦
R
1

(𝛼)] of 𝑦
1

are

𝑦
L
1

(𝛼) = 𝑓
1

(𝑥
L
1

(𝛼) , 𝑥
R
2

(𝛼)) =

1

2

𝛼,

𝑦
R
1

(𝛼) = 𝑓
1

(𝑥
R
1

(𝛼) , 𝑥
L
2

(𝛼)) =

3𝛼 − 5

𝛼 − 5

.

(13)

With 𝑦L
1

(0) = 0, 𝑦L
1

(1) = 0.5 = 𝑦
R
1

(1), and 𝑦R
1

(0) = 1, the
membership function of 𝑦

1

yields

𝜇
𝑦

1

(𝑦) =

{
{
{

{
{
{

{

2𝑦, 0 < 𝑦 ≤ 0.5,

5 (𝑦 − 1)

𝑦 − 3

, 0.5 < 𝑦 < 1.

(14)

5.2. General Part. Unfortunately, the reduced part of our
approach is only valid if the function 𝑓 does not change its
monotonicity within the domain of interest. However, we
know from [17, 18] that the global extrema of any monotonic
function 𝑓 are always found at the corner points of Ω(𝛼).
Hence, in order to obtain the analytical solution, we can
always proceed as follows.
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(1) Evaluate the function 𝑓 for all the 2𝑛 permutations of
the interval boundaries of 𝑥

𝑚

(𝛼) = [𝑥
L
𝑚

(𝛼), 𝑥
R
𝑚

(𝛼)],
𝑚 = 1, . . . , 𝑛. For example, if 𝑛 = 2, then compute

𝑦
LL
(𝛼) = 𝑓 (𝑥

L
1

(𝛼) , 𝑥
L
2

(𝛼)) ,

𝑦
LR
(𝛼) = 𝑓 (𝑥

L
1

(𝛼) , 𝑥
R
2

(𝛼)) ,

𝑦
RL
(𝛼) = 𝑓 (𝑥

R
1

(𝛼) , 𝑥
L
2

(𝛼)) ,

𝑦
RR
(𝛼) = 𝑓 (𝑥

R
1

(𝛼) , 𝑥
R
2

(𝛼)) .

(15)

(2) Plot these solution candidates in the same diagram.
(3) The analytical solution then corresponds to the max-

imum envelope formed by the possible solution can-
didates.

This general part of our approach can be viewed as an
analytical version of the reduced transformation method [19].
Basically, it is equivalent to Lemma 2 from [15] or Corollary 1
from [16].

Example 2. Next, the function 𝑓
2

: R2
+

→ R with

𝑦
2

= 𝑓
2

(𝑥
1

, 𝑥
2

) =

(𝑥
1

− 0.2) (𝑥
2

− 1)

𝑥
1

+ 𝑥
2

(16)

shall be evaluated for the two fuzzy numbers from Example 1.
Since

𝜕𝑓
2

𝜕𝑥
1

=

(𝑥
2

− 1) (𝑥
2

+ 0.2)

(𝑥
1

+ 𝑥
2

)
2

{

≤ 0, 0 < 𝑥
2

≤ 1,

> 0, 1 < 𝑥
2

< 4,

𝜕𝑓
2

𝜕𝑥
2

=

(𝑥
1

− 0.2) (𝑥
1

+ 1)

(𝑥
1

+ 𝑥
2

)
2

{

≤ 0, 0 < 𝑥
1

≤ 0.2,

> 0, 0.2 < 𝑥
1

< 5,

(17)

the function 𝑓
2

changes its monotonicity within the domain
supp(𝑥

1

) × supp(𝑥
2

) = (0, 5) × (0, 4). Hence, the general part
of our approach should be applied. The solution candidates
for 𝑦
2

(𝛼) are

𝑦
LL
2

(𝛼) = 𝑓
2

(𝑥
L
1

(𝛼) , 𝑥
L
2

(𝛼)) =

(10𝛼 − 1) (2𝛼 − 1)

20𝛼

,

𝑦
LR
2

(𝛼) = 𝑓
2

(𝑥
L
1

(𝛼) , 𝑥
R
2

(𝛼)) =

(10𝛼 − 1) (3 − 2𝛼)

20

,

𝑦
RL
2

(𝛼) = 𝑓
2

(𝑥
R
1

(𝛼) , 𝑥
L
2

(𝛼)) =

3

5

(5𝛼 − 8) (2𝛼 − 1)

𝛼 − 5

,

𝑦
RR
2

(𝛼) = 𝑓
2

(𝑥
R
1

(𝛼) , 𝑥
R
2

(𝛼)) =

3

5

(5𝛼 − 8) (3 − 2𝛼)

5𝛼 − 9

.

(18)

We can see from their plots in Figure 4 that the left branch
of the maximum envelope, illustrated by the gray area, is
formed by 𝑦RL

2

for 0 < 𝛼 ≤ 0.5 and by 𝑦LL
2

for 0.5 < 𝛼 ≤ 1,
where the value 0.5 corresponds to the intersection point
between 𝑦RL

2

and 𝑦LL
2

. Its right branch, on the other hand, is
formed by 𝑦LL

2

for 0 < 𝛼 ≤ 0.02 and by 𝑦RR
2

for 0.02 <

𝛼 ≤ 1, where the value 0.02 corresponds to the intersection

0 0.2 0.4 0.6 0.8 1
−1

−0.4

0.2

0.8

1.4

2

y

𝛼

yLL2

yLR2

yRL2

yRR2

Figure 4: Solution candidates from Example 2.

point between 𝑦LL
2

and 𝑦RR
2

. Note that the value 0.02 is only
approximate. Hence, the 𝛼-cuts 𝑦

2

(𝛼) = [𝑦
L
2

(𝛼), 𝑦
R
2

(𝛼)] of 𝑦
2

are

𝑦
L
2

(𝛼) =

{
{
{

{
{
{

{

3

5

(5𝛼 − 8) (2𝛼 − 1)

𝛼 − 5

, 0 < 𝛼 ≤ 0.5,

(10𝛼 − 1) (2𝛼 − 1)

20𝛼

, 0.5 < 𝛼 ≤ 1,

𝑦
R
2

(𝛼) =

{
{
{

{
{
{

{

(10𝛼 − 1) (2𝛼 − 1)

20𝛼

, 0 < 𝛼 ≤ 0.02,

3

5

(5𝛼 − 8) (3 − 2𝛼)

5𝛼 − 9

, 0.02 < 𝛼 ≤ 1.

(19)

With 𝑦L
2

(0) = −0.96, 𝑦L
2

(0.5) = 0, 𝑦L
2

(1) = 0.45 = 𝑦
R
2

(1),
𝑦
R
2

(0.02) ≈ 1.57, and lim
𝛼→0

𝑦
R
2

(𝛼) = ∞, the membership
function of 𝑦

2

yields

𝜇
𝑦

2

(𝑦) =

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{

{

21

20

+

1

12

𝑦 −

1

60

√𝐴, −0.96 < 𝑦 ≤ 0,

3

10

+

1

2

𝑦 +

1

10

√𝐵, 0 < 𝑦 ≤ 0.45,

31

20

−

5

12

𝑦 −

1

60

√𝐶, 0.45 < 𝑦 ≤ 1.57,

3

10

+

1

2

𝑦 −

1

10

√𝐷, 1.57 < 𝑦 < ∞,

(20)
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where

𝐴 = 25𝑦
2

− 2370𝑦 + 1089,

𝐵 = 25𝑦
2

+ 30𝑦 + 4,

𝐶 = 625𝑦
2

+ 750𝑦 + 9,

𝐷 = 25𝑦
2

+ 30𝑦 + 4.

(21)

5.3. Extended Part. A drawback of the general part of our
approach is the fact that a total of 2𝑛 function evaluations
have to be carried out to compute the possible solution
candidates. However, if some of the variables do not change
their monotonicity within the domain of interest, that is, if
𝑘 + ℓ = 𝑞 < 𝑛, we can adapt our approach as follows.

(1) Evaluate the function 𝑓 for 𝑥L
𝑖

(𝛼), 𝑖 = 1, . . . , 𝑘, and
𝑥
R
𝑗

(𝛼), 𝑗 = 1, . . . , ℓ, including all the 2𝑛−𝑞 permuta-
tions of the interval boundaries of 𝑥

𝑝

(𝛼) = [𝑥
L
𝑝

(𝛼),

𝑥
R
𝑝

(𝛼)], 𝑝 = 1, . . . , 𝑛 − 𝑞, to compute the solution can-
didates for 𝑦L(𝛼).

(2) Evaluate the function 𝑓 for 𝑥R
𝑖

(𝛼), 𝑖 = 1, . . . , 𝑘, and
𝑥
L
𝑗

(𝛼), 𝑗 = 1, . . . , ℓ, including all the 2𝑛−𝑞 permuta-
tions of the interval boundaries of 𝑥

𝑝

(𝛼) = [𝑥
L
𝑝

(𝛼),

𝑥
R
𝑝

(𝛼)], 𝑝 = 1, . . . , 𝑛 − 𝑞, to compute the solution can-
didates for 𝑦R(𝛼).

(3) Plot these solution candidates in the same diagram.

(4) The analytical solution then corresponds to the max-
imum envelope formed by the possible solution can-
didates.

This extended part of our approach requires a total of
2
𝑛−𝑞+1 function evaluations. Note that, for 𝑞 = 1, the general
and the extended part both lead to 2𝑛 function evaluations.

Example 3. Now, the function 𝑓
3

: R2
+

→ R with

𝑦
3

= 𝑓
3

(𝑥
1

, 𝑥
2

) =

𝑥
1

− 0.2

𝑥
1

+ 𝑥
2

(22)

shall be evaluated for the two fuzzy numbers from Example 1.
Since

𝜕𝑓
3

𝜕𝑥
1

=

𝑥
2

+ 0.2

(𝑥
1

+ 𝑥
2

)
2

> 0,

𝜕𝑓
3

𝜕𝑥
2

=

0.2 − 𝑥
1

(𝑥
1

+ 𝑥
2

)
2

{

≥ 0, 0 < 𝑥
1

≤ 0.2,

< 0, 0.2 < 𝑥
1

< 5,

(23)

the function 𝑓
3

is (strictly) monotonic increasing in 𝑥
1

but
changes its monotonicity in 𝑥

2

within the domain supp(𝑥
1

) ×

supp(𝑥
2

) = (0, 5) × (0, 4). Hence, the extended part of our

0 0.2 0.4 0.6 0.8 1

−0.2

−0.5

0.1

0.4

0.7

1

y

𝛼

yLL3

yLR3

yRL3

yRR3

Figure 5: Solution candidates from Example 3.

approach should be applied. Note that here, 𝑞 = 1. The
solution candidates for 𝑦L

3

(𝛼) are

𝑦
LL
3

(𝛼) = 𝑓
3

(𝑥
L
1

(𝛼) , 𝑥
L
2

(𝛼)) =

10𝛼 − 1

20𝛼

,

𝑦
LR
3

(𝛼) = 𝑓
3

(𝑥
L
1

(𝛼) , 𝑥
R
2

(𝛼)) =

1

2

𝛼 −

1

20

,

(24)

and for 𝑦R
3

(𝛼),

𝑦
RL
3

(𝛼) = 𝑓
3

(𝑥
R
1

(𝛼) , 𝑥
L
2

(𝛼)) =

3

5

5𝛼 − 8

𝛼 − 5

,

𝑦
RR
3

(𝛼) = 𝑓
3

(𝑥
R
1

(𝛼) , 𝑥
R
2

(𝛼)) =

3

5

5𝛼 − 8

5𝛼 − 9

.

(25)

We can see from their plots in Figure 5 that the left branch
of the maximum envelope is formed by 𝑦LL

3

for 0 < 𝛼 ≤ 0.1

and by 𝑦LR
3

for 0.1 < 𝛼 ≤ 1, where the value 0.1 corresponds
to their intersection point. Its right branch, on the other
hand, is entirely formed by 𝑦RL

3

. Hence, the 𝛼-cuts 𝑦
3

(𝛼) =

[𝑦
L
3

(𝛼), 𝑦
R
3

(𝛼)] of 𝑦
3

are

𝑦
L
3

(𝛼) =

{
{
{

{
{
{

{

10𝛼 − 1

20𝛼

, 0 < 𝛼 ≤ 0.1,

1

2

𝛼 −

1

20

, 0.1 < 𝛼 ≤ 1,

𝑦
R
3

(𝛼) =

3

5

5𝛼 − 8

𝛼 − 5

, 0 < 𝛼 ≤ 1.

(26)
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With lim
𝛼→0

𝑦
L
3

(𝛼) = −∞, 𝑦L
3

(0.1) = 0, 𝑦L
3

(1) = 0.45 =

𝑦
R
3

(1), and 𝑦
R
3

(0) = 0.96, the membership function of 𝑦
3

yields

𝜇
𝑦

3

(𝑦) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

1

10

1

1 − 2𝑦

, −∞ < 𝑦 ≤ 0,

2𝑦 +

1

10

, 0 < 𝑦 ≤ 0.45,

1

5

25𝑦 − 24

𝑦 − 3

, 0.45 < 𝑦 < 0.96.

(27)

Example 4. Finally, the function 𝑓
4

: R3
+

→ R with

𝑦
4

= 𝑓
4

(𝑥
1

, 𝑥
2

, 𝑥
3

) =

𝑥
1

𝑥
2

− 1

𝑥
1

+ 𝑥
2

+ 𝑥
3

(28)

shall be evaluated for the two fuzzy numbers from Example 1
and 𝑥

3

= tfn(3, 3, 2). Since

𝜕𝑓
4

𝜕𝑥
1

=

𝑥
2

2

+ 𝑥
2

𝑥
3

+ 1

(𝑥
1

+ 𝑥
2

+ 𝑥
3

)
2

> 0,

𝜕𝑓
4

𝜕𝑥
2

=

𝑥
2

1

+ 𝑥
1

𝑥
3

+ 1

(𝑥
1

+ 𝑥
2

+ 𝑥
3

)
2

> 0,

𝜕𝑓
4

𝜕𝑥
3

=

1 − 𝑥
1

𝑥
2

(𝑥
1

+ 𝑥
2

+ 𝑥
3

)
2

{

≤ 0, 𝑥
1

𝑥
2

≥ 1,

> 0, 𝑥
1

𝑥
2

< 1,

(29)

the function 𝑓
4

is (strictly) monotonic increasing in both 𝑥
1

and 𝑥
2

but changes its monotonicity in 𝑥
3

within the domain
supp(𝑥

1

) × supp(𝑥
2

) × supp(𝑥
3

) = (0, 5) × (0, 4) × (0, 5).
Hence, the extended part of our approach should be applied.
The solution candidates for 𝑦L

4

(𝛼) are

𝑦
LLL
4

(𝛼) = 𝑓
4

(𝑥
L
1

(𝛼) , 𝑥
L
2

(𝛼) , 𝑥
L
3

(𝛼)) =

4𝛼
2

− 1

7𝛼

,

𝑦
LLR
4

(𝛼) = 𝑓
4

(𝑥
L
1

(𝛼) , 𝑥
L
2

(𝛼) , 𝑥
R
3

(𝛼)) =

4𝛼
2

− 1

5 + 2𝛼

,

(30)

and for 𝑦R
4

(𝛼),

𝑦
RRL
4

(𝛼) = 𝑓
4

(𝑥
R
1

(𝛼) , 𝑥
R
2

(𝛼) , 𝑥
L
3

(𝛼)) =

6𝛼
2

− 22𝛼 + 19

9 − 2𝛼

,

𝑦
RRR
4

(𝛼) = 𝑓
4

(𝑥
R
1

(𝛼) , 𝑥
R
2

(𝛼) , 𝑥
R
3

(𝛼)) =

6𝛼
2

− 22𝛼 + 19

14 − 7𝛼

.

(31)

We can see from their plots in Figure 6 that the left branch
of the maximum envelope is formed by 𝑦LLL

4

for 0 < 𝛼 ≤ 0.5

and by 𝑦LLR
4

for 0.5 < 𝛼 ≤ 1, where the value 0.5 corresponds
to their intersection point. Its right branch, on the other

0 0.2 0.4 0.6 0.8 1
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−1.8

−0.2
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1.4
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y

𝛼
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yRRR4

Figure 6: Solution candidates from Example 4.

hand, is entirely formed by 𝑦RRL
4

. Hence, the 𝛼-cuts 𝑦
4

(𝛼) =

[𝑦
L
4

(𝛼), 𝑦
R
4

(𝛼)] of 𝑦
4

are

𝑦
L
4

(𝛼) =

{
{
{
{

{
{
{
{

{

4𝛼
2

− 1

7𝛼

, 0 < 𝛼 ≤ 0.5,

4𝛼
2

− 1

5 + 2𝛼

, 0.5 < 𝛼 ≤ 1,

𝑦
R
4

(𝛼) =

6𝛼
2

− 22𝛼 + 19

9 − 2𝛼

, 0 < 𝛼 ≤ 1.

(32)

With lim
𝛼→0

𝑦
L
4

(𝛼) = −∞, 𝑦L
4

(0.5) = 0, 𝑦L
4

(1) ≈ 0.43 ≈

𝑦
R
4

(4), and 𝑦
R
4

(0) ≈ 2.11, the membership function of 𝑦
4

yields

𝜇
𝑦

4

(𝑦) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

7

8

𝑦 +

1

8

√𝐸, −∞ < 𝑦 ≤ 0,

1

4

𝑦 +

1

4

√𝐹, 0 < 𝑦 ≤ 0.43,

11

6

−

1

6

𝑦 −

1

6

√𝐺, 0.43 < 𝑦 < 2.11,

(33)

where

𝐸 = 49𝑦
2

+ 16,

𝐹 = 𝑦
2

+ 20𝑦 + 4,

𝐺 = 𝑦
2

+ 32𝑦 + 7.

(34)

6. Engineering Application

In order to illustrate the extended analytical approach in a
more practical context, we consider a simplified version of
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Table 1: Linguistic weights of the criteria and ratings of the
alternative materials.

Criterion 𝑗 1 2
Low weight Low cost

Weight 𝑤
𝑗

H MH

Alternative 𝑖 1 Polymer composite H L
2 Aluminum alloy MH L

the case study from [20], where the material for an automo-
tive bumper beam has to be selected. Here, two alternative
materials (polymer composite and aluminum alloy) have to be
evaluated against the criteria lowweight and low cost using the
normalized linguistic variable value scale from Figure 7. The
corresponding linguistic weights and ratings are summarized
in Table 1.

For computing the fuzzy overall rating 𝑟
𝑖

of each alterna-
tive 𝑖, we use the fuzzy weighted average

𝑟
𝑖

=

∑
𝑛

𝑗=1

𝑤
𝑗

𝑟
𝑖𝑗

∑
𝑛

𝑗=1

𝑤
𝑗

, (35)

where 𝑟
𝑖𝑗

denotes the fuzzy rating of the alternative 𝑖 accord-
ing the criterion 𝑗 and 𝑤

𝑗

denotes the fuzzy weight of the
criterion 𝑗 (see Table 1). Since

𝜕𝑟
𝑖

𝜕𝑟
𝑖𝑘

=

𝑤
𝑘

∑
𝑛

𝑗=1

𝑤
𝑗

> 0,

𝜕𝑟
𝑖

𝜕𝑤
𝑘

=

𝑟
𝑖𝑘

∑
𝑛

𝑗=1

𝑤
𝑗

−

∑
𝑛

𝑗=1

𝑤
𝑗

𝑟
𝑖𝑗

(∑
𝑛

𝑗=1

𝑤
𝑗

)

2

=

∑
𝑘−1

𝑗=1

𝑤
𝑗

(𝑟
𝑖𝑘

− 𝑟
𝑖𝑗

) + ∑
𝑛

𝑗=𝑘+1

𝑤
𝑗

(𝑟
𝑖𝑘

− 𝑟
𝑖𝑗

)

(∑
𝑛

𝑗=1

𝑤
𝑗

)

2

,

(36)

𝑟
𝑖

is (strictly) monotonic increasing in 𝑟
𝑖𝑗

but may change
its monotonicity in 𝑤

𝑗

within the domain (0, 1)
2𝑛. Hence,

the extended part of our approach should be applied. The
solution candidates for 𝑟L

1

(𝛼) are

𝑟
LLLL
1

(𝛼) = 𝑟
1

(𝑤
L
1

(𝛼) , 𝑤
L
2

(𝛼) , 𝑟
L
11

(𝛼) , 𝑟
L
12

(𝛼))

=

1

6

2𝛼
2

+ 11𝛼 + 16

2𝛼 + 7

,

𝑟
LRLL
1

(𝛼) = 𝑟
1

(𝑤
L
1

(𝛼) , 𝑤
R
2

(𝛼) , 𝑟
L
11

(𝛼) , 𝑟
L
12

(𝛼))

=

13

54

𝛼 +

8

27

,

𝑟
RLLL
1

(𝛼) = 𝑟
1

(𝑤
R
1

(𝛼) , 𝑤
L
2

(𝛼) , 𝑟
L
11

(𝛼) , 𝑟
L
12

(𝛼))

=

5

54

𝛼 +

4

9

,

𝑟
RRLL
1

(𝛼) = 𝑟
1

(𝑤
R
1

(𝛼) , 𝑤
R
2

(𝛼) , 𝑟
L
11

(𝛼) , 𝑟
L
12

(𝛼))

=

1

6

2𝛼
2

− 7𝛼 − 24

2𝛼 − 11

,

(37)

VL L ML M MH H VH

0 1/6 1/3 1/2 2/3 5/6 1
0

0.25

0.5

0.75

1

𝜇
(x
)

x

Figure 7: Normalized linguistic variable value scale. VL: very low,
L: low, ML: medium low, M: medium, MH: medium high, H: high,
and VH: very high.

and for 𝑟R
1

(𝛼),

𝑟
LLRR
1

(𝛼) = 𝑟
1

(𝑤
L
1

(𝛼) , 𝑤
L
2

(𝛼) , 𝑟
R
11

(𝛼) , 𝑟
R
12

(𝛼))

= −

1

6

2𝛼
2

− 𝛼 − 30

2𝛼 + 7

,

𝑟
LRRR
1

(𝛼) = 𝑟
1

(𝑤
L
1

(𝛼) , 𝑤
R
2

(𝛼) , 𝑟
R
11

(𝛼) , 𝑟
R
12

(𝛼))

= −

5

54

𝛼 +

17

27

,

𝑟
RLRR
1

(𝛼) = 𝑟
1

(𝑤
R
1

(𝛼) , 𝑤
L
2

(𝛼) , 𝑟
R
11

(𝛼) , 𝑟
R
12

(𝛼))

= −

13

54

𝛼 +

7

9

,

𝑟
RRRR
1

(𝛼) = 𝑟
1

(𝑤
R
1

(𝛼) , 𝑤
R
2

(𝛼) , 𝑟
R
11

(𝛼) , 𝑟
R
12

(𝛼))

= −

1

6

2𝛼
2

− 19𝛼 + 46

2𝛼 − 11

.

(38)

We can see from their plots in Figure 8 that the left branch
of the maximum envelope is formed by 𝑟LRLL

1

and the right
branch by 𝑟RLRR

1

. Hence, the 𝛼-cuts 𝑟
1

(𝛼) = [𝑟
L
1

(𝛼), 𝑟
R
1

(𝛼)] of
𝑟
1

are

𝑟
L
1

(𝛼) = +

13

54

𝛼 +

8

27

,

𝑟
R
1

(𝛼) = −

13

54

𝛼 +

7

9

.

(39)

With 𝑟L
1

(0) ≈ 0.30, 𝑟L
1

(1) ≈ 0.54 ≈ 𝑟
R
1

(1), and 𝑟R
1

(0) ≈

0.78, the membership function of 𝑟
1

yields

𝜇
𝑟

1

(𝑟
1

) =

{
{
{

{
{
{

{

+

54

13

𝑟
1

−

16

13

, 0.30 < 𝑟
1

≤ 0.54,

−

54

13

𝑟
1

+

42

13

, 0.54 < 𝑟
1

< 0.78.

(40)
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Figure 8: Solution candidates for 𝑟
1

(𝛼).

Furthermore, the solution candidates for 𝑟L
2

(𝛼) are

𝑟
LLLL
2

(𝛼) = 𝑟
2

(𝑤
L
1

(𝛼) , 𝑤
L
2

(𝛼) , 𝑟
L
21

(𝛼) , 𝑟
L
22

(𝛼))

=

1

3

(𝛼 + 3) (𝛼 + 2)

2𝛼 + 7

,

𝑟
LRLL
2

(𝛼) = 𝑟
2

(𝑤
L
1

(𝛼) , 𝑤
R
2

(𝛼) , 𝑟
L
21

(𝛼) , 𝑟
L
22

(𝛼))

=

2

9

𝛼 +

2

9

,

𝑟
RLLL
2

(𝛼) = 𝑟
2

(𝑤
R
1

(𝛼) , 𝑤
L
2

(𝛼) , 𝑟
L
21

(𝛼) , 𝑟
L
22

(𝛼))

=

1

9

𝛼 +

1

3

,

𝑟
RRLL
2

(𝛼) = 𝑟
2

(𝑤
R
1

(𝛼) , 𝑤
R
2

(𝛼) , 𝑟
L
21

(𝛼) , 𝑟
L
22

(𝛼))

=

1

3

𝛼
2

− 4𝛼 − 9

2𝛼 − 11

,

(41)

and for 𝑟R
2

(𝛼),

𝑟
LLRR
2

(𝛼) = 𝑟
2

(𝑤
L
1

(𝛼) , 𝑤
L
2

(𝛼) , 𝑟
R
21

(𝛼) , 𝑟
R
22

(𝛼))

= −

1

3

𝛼
2

− 13

2𝛼 + 7

,

𝑟
LRRR
2

(𝛼) = 𝑟
2

(𝑤
L
1

(𝛼) , 𝑤
R
2

(𝛼) , 𝑟
R
21

(𝛼) , 𝑟
R
22

(𝛼))

= −

1

9

𝛼 +

5

9

,
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Figure 9: Solution candidates for 𝑟
2

(𝛼).

𝑟
RLRR
2

(𝛼) = 𝑟
2

(𝑤
R
1

(𝛼) , 𝑤
L
2

(𝛼) , 𝑟
R
21

(𝛼) , 𝑟
R
22

(𝛼))

= −

2

9

𝛼 +

2

3

,

𝑟
RRRR
2

(𝛼) = 𝑟
2

(𝑤
R
1

(𝛼) , 𝑤
R
2

(𝛼) , 𝑟
R
21

(𝛼) , 𝑟
R
22

(𝛼))

= −

1

3

(𝛼 − 5) (𝛼 − 4)

2𝛼 − 11

.

(42)

We can see from their plots in Figure 9 that the left branch
of the maximum envelope is formed by 𝑟LRLL

2

and the right
branch by 𝑟RLRR

2

. Hence, the 𝛼-cuts 𝑟
2

(𝛼) = [𝑟
L
2

(𝛼), 𝑟
R
2

(𝛼)] of
𝑟
2

are

𝑟
L
2

(𝛼) = +

2

9

𝛼 +

2

9

,

𝑟
R
2

(𝛼) = −

2

9

𝛼 +

2

3

.

(43)

With 𝑟L
2

(0) ≈ 0.22, 𝑟L
2

(1) ≈ 0.44 ≈ 𝑟
R
2

(1), and 𝑟R
2

(0) ≈

0.67, the membership function of 𝑟
2

yields

𝜇
𝑟

2

(𝑟
2

) =

{
{
{

{
{
{

{

+

9

2

𝑟
2

− 1, 0.22 < 𝑟
2

≤ 0.44,

−

9

2

𝑟
2

+ 3, 0.44 < 𝑟
2

< 0.67.

(44)

The membership functions of 𝑟
1

and 𝑟
2

are illustrated
in Figure 10. There, we can see that polymer composite
seems to be more appropriate as bumper beam material than
aluminum alloy.
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Figure 10: Membership functions of 𝑟
1

and 𝑟
2

.

7. Conclusions

The proposed extended analytical approach is a very prac-
tical tool for the inclusion of parameter uncertainties into
mathematical models. It is valid for continuous, monotonic
functions of independent fuzzy numbers but can also be
applied to fuzzy intervals as defined in [3, 6].

An analytical solution has the advantage that the degrees
of membership of the fuzzy output can be computed for
any value within the support, whereas a numerical solution
only provides a finite number of values. Furthermore, our
approach also allows a symbolic processing of uncertainties.

In further research activities, this approach shall be gen-
eralized to nonmonotonic functions of independent fuzzy
numbers, where the influence of interdependency shall be
investigated as well.
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