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1. Introduction

Nanoporous metals generally exhibit different and appealing
properties compared to their bulk counterparts. A key example is
nanoporous gold, which is obtained from a dealloying process, and
which comprises a material of up to 10'> metal nano-ligaments per
cubic centimetre connected within a continuous network (Fig. 1).

Newly developed composites of nanoporous gold and polymer
have raised large interest. The nanoporous gold has a bicontinuous
microstructure and is based on interconnected metallic ligaments
which behave as ultra high-strength nanowires [2] and constitute
the main load carrying phase. Moreover, nanoporous gold pos-
sesses an unconventionally high strength-to-porosity ratio [3] due
to a high surface-to-volume ratio and shows a direct relationship
between the volume fraction and the yield strength [4], while an
inverse relationship exists between the ligament diameter size and
macroscopic mechanical properties [5,3]. Such distinctive prop-
erties render it a promising candidate for use in areas such as
catalysis [6,7], sensing [8] and actuation [9].
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An uncommon feature of nanoporous gold compared to other
nanoporous metals is its very high ductility in compression with
strains of up to 200% without macroscopic fracture being re-
ported [10,5]. However, it exhibits extreme brittleness in ten-
sion [11,10,12,13]. This is a limiting factor in its use in structural
applications. To improve the mechanical properties, the creation
of a superior nanocomposite through the addition of a polymer
into the voids of nanoporous gold has been suggested by Wang
and Weismiiller [4]. This composite exhibits favourably unique
features. Most importantly, the nanocomposite shows high ten-
sile ductility with no apparent fracture under bending tests. The
compressive ductility is also retained. Furthermore, the hardness
value and yield strength of the composite are greater than either
constituent. A direct relationship between ligament size and yield
strength is also observed.

The mechanism causing the improved ductility of the nanocom-
posite is still unknown, though the ductility of the ligaments is
suggested as a major factor [5,12]. Examining the ligaments within
pure nanoporous gold under compression, Huber et al. [14] ob-
served bending to be the main loading case for the ligaments
while tension/compression effects were less evident. A change in
the loading case of the ligaments may create the distinct features
of greater strength and hardness values and the tensile ductility
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Fig. 1. Scanning electron micrograph of nanoporous gold showing the intercon-
nected network resulting in a high surface area-to-volume ratio. Ligament diameter
of ca. 30 nm. Reprinted from Wilmers et al. 2017 [1].

Source: Image courtesy of Nadiia Mameka at Helmholtz-Zentrum Geesthacht.

(© 2016, with permission from Elsevier.

of the composite. Greater axial elongation and shortening of the
gold ligaments in the composite were noted under experimental
observation by Wang and Weismidiller [4] suggesting deformation
is dominated by tension/compression. The tension/compression
dominated behaviour was suggested as a factor to account for the
increased strength in the composite as this requires larger local
stresses to occur in the ligaments for the onset of deformation com-
pared to bending dominated behaviour [4]. Numerical compres-
sion tests on a simplified two-dimensional periodic honeycomb
model of the composite showed that ligaments experience a com-
pressive stress response if they are aligned along the compression
axis [15]. Ligaments not along this axis show both a compressive
and bending response. The simplicity of the model, however, has
limited the extent to which conclusions about the response could
be drawn. A more realistic, and therefore complex, model is needed
to explore computationally the details of the behaviour of the
gold-polymer nanocomposite. In tensile tests of pure nanoporous
gold the ligaments showed necking suggesting significant ten-
sion/compression loading modes present [10,12]. The exploration
of the ligament deformation mode of the composite under tension
has not been extensively investigated.

This work reports on the homogenization of a gold-polymer
nanocomposite RVE using the finite element method. The calcu-
lated elasticity tensor reveals an almost isotropic material. The
effective shear modulus, bulk modulus, Young’s modulus and
Poisson’s ratio are determined under kinematic uniform, static
uniform and periodic boundary conditions. The elastic response
and loading case of the different constituents in the material are
investigated by studying the principal stresses and strains along
the centroid as well as the mechanical stress response of individual
ligaments within the composite under compression testing. Al-
though pure nanoporous gold shows a tension-compression asym-
metry [16,17], the composite RVE showed a symmetric tension-
compression elastic response and thus only compression loading
will be investigated here. The normal and shear stress distribution
of the cross section of several ligaments enables us to observe the
dominant loading case of the gold ligaments which may include
bending, pure compression or tension, torsion, or shear stress.

2. Theory
2.1. Homogenization problem

Consider a linear elastic body which occupies a domain V. The
body is assumed to undergo small deformations with the infinites-

imal strain being given in terms of the displacement by

e(u) = % [Vu -+ [Vul'], (1)

where u is the displacement field.
The constitutive relation for the material is given by

og=C:e, (2)

where ¢ and ¢ are respectively the Cauchy stress and infinitesimal
strain tensors and C is the elasticity tensor. Most generally, C has
21independent components, but for the special case of an isotropic
material this reduces to two independent constants, for example,
the bulk modulus « and shear modulus w. In this case Eq. (2) takes
the form

o =« [tre]I + 2ue’. (3)

. def .
Here tre denotes the trace of the strain and & = & — "{I is the

strain deviator.

For the purpose of carrying out a homogenization analysis, the
domain under consideration is a representative sample of the bulk
domain, and referred to as an RVE with volume V. The RVE com-
prises two linear elastic materials, labelled 1 and 2, with material
1 having volume fraction ¢. The domains V; and V, comprising the
two materials are individually homogeneous and non-penetrating,
so that V; NV, = @. The boundary of the RVE is denoted
by 9V and comprises two non-overlapping parts dV,, on which
displacements are given by u = u, and 9V;, on which the tractions
are givenby t =t.

With a body force f, the weak form of the equilibrium problem
for the heterogeneous elastic body is as follows: Find u € Vv such
that u =u on 0V, and

/VW:C:e(u)dV:/f~de+/ t -wdA
\% \' Ve

where V is the test space of functions which together with their
first derivatives are square-integrable, and which satisfy w =
0 on 0V,

The objective is to obtain an effective elasticity tensor C* for the
RVE that relates the volume-averaged stress (o)y to the volume-
averaged strain (e)y given by

Yw e v, (4)

(o)y =C": (e)y, (5)
that relates the volume-averaged stress (o), to the volume-
averaged strain (&), where (-)y &ef \\17| fv -dV. This relation must
be valid for bodies in equilibrium, which furthermore must satisfy

the Hill-Mandel criterion [ 18], in terms of which the product of the
average stress and strain is equal to the actual internal work

(0)1(€)=|\17|/Va:edv.

There are three types of boundary conditions for which the Hill-
Mandel condition [18] is valid: kinematic uniform (KU), static
uniform (SU) and periodic (P). These are defined by

kinematic uniform: Ulyy =£€-Xx
where (&)y = £ and aV = 9V, (6a)
static uniform: tljy=L-n
where (0)y = £ and 9V = aV,, (6b)
periodic:  ulyy =& -x+v,
where v is a fluctuation. (6¢)

Here, £ and £ are spatially constant, symmetric second-order strain
and stress tensors. Six linear independent loading conditions com-
prising three plain strain loadings in tension or compression and
three shear loadings must be applied to provide volume averaged
stress and strain relations which are used to solve for the 21
constitutive constants within the effective elasticity tensor.
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2.1.1. Effective elastic response

From the elastic relation (3), by taking averages we arrive at
the effective material properties of the composite in terms of the
effective bulk modulus «* and effective shear modulus p*:

o def 1 (Fh
- tr

3{%N

where o/ & o — UT” is the stress deviator [19]. The effective

Young’s modulus E* and elastic Poisson’s ratio v* follow from the
theory of linear elasticity and are given by

and

& def 3™ —2u*

pr e W def Sk~ <p
6K* 4+ 2u* "

= — and
3/{* +M*
2.1.2. Theoretical bounds
Historically, homogenization was proposed as a purely analyti-
cal process with the simplified models of Voigt [20] and Reuss [21]
that gave bounds on the effective moduli. For these models the
heterogeneous material was subject to uniform strain or stress.
Since neither of these represents the realistic stress/strain states
within a complex material, the bounds are not strict except in
the very simplest situations [ 19]. Another important bound is that
proposed by Hashin and Shtrikman [22].

The Voigt and Reuss bounds:. Voigt [20] and Reuss [21] bounds
exist as upper and lower bounds, respectively. In terms of Young’s
modulus E, the bounds for a composite of material 1 and material
2 are given by

1
Evoigt = = |:/ E1dV+/ Ede] (7)
V Ly, Vy

and

! =]|:f ldV—i—/ 1dV], (8)
EReuss \Y Vi E; \/) E;
where E; and E, are Young’s moduli of material 1 and material
2 respectively. The actual effective modulus lies between these

bounds [19], that is,

*
EReuss =< E =< EVoigt-

The Hashin-Shtrikman bound:. Hashin and Shtrikman [22] devel-
oped tighter bounds which are based on variational principles.
The effective shear and bulk moduli in this model are bounded
according to

1-—
K1-|-$7§K*§K2+7qJ 9)
1 + 3[1—¢] 14 3¢
Ky —K1 3K1+411 K1—k) 3Kk +4u
and
%
N ST e
H2—H1 5p13k1+4u1]
1-9¢
%
SRSt 6plxy+2415] (10)
H1—12 53k +4u2]

where k1, ;1 and k2, w; are the shear and bulk modulus for mate-
rial 1 and material 2, respectively.

2.2. Testing methodology

The homogenization process of the composite is conducted us-
ing commercial analysis software, ABAQUS/STANDARD. The material
volume element (VE) (Fig. 2) was created by the cutting and
merging methods within ABAQUSs between a homogeneous block
and the pure nanoporous gold structure developed by B.-N. Ngo

A
)
N

S S
NSE
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Fig. 2. (a) Volume element of gold-polymer nanocomposite (grey = polymer, yellow
= gold) with cut out showing interconnected ligament network. (b) 2D slice of
nanoporous gold from VE. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 1

Bulk material properties.
Polymer [25] Symbol Value
Bulk modulus K 1.13 GPa
Shear modulus % 0.75 GPa
Poisson’s ratio v 0.228
Gold [12]
Bulk modulus K 198.6 GPa
Shear modulus nw 27.08 GPa
Poisson’s ratio v 0.435

(Helmholtz-Zentrum Geesthacht, Germany) [23,24] (the latter was
created by imitating spinodal decomposition of a binary mixture
using the Metropolis Monte Carlo algorithm). The VE has a gold
volume fraction of 29.7% and a relative ligament size of 31.5 nm. No
statistical tests were performed to confirm whether this volume
element was sufficiently large to correctly represent the infinite
material. MESHLAB was used for the mesh creation 0f 437 913 linear
tetrahedral elements. The properties of the constituents are given
in Table 1.

2.2.1. Boundary conditions

Although the solution converges to the true solution for any
boundary condition as the VE size increases, and becomes a rep-
resentative volume element (RVE), at small VE sizes the effective
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property is bounded as follows [26]:
Egy < Ep < Egy,

with Eg;, Ej and Eg; representing the effective Young's modulus
calculated under static uniform, periodic and kinematic uniform
boundary conditions respectively.

These bounds are obtained from the principles of minimum po-
tential energy and maximum complementary energy, from which
it is shown that kinematic uniform boundary conditions provide
a generally stiffer response, while static uniform boundary condi-
tions produce a less stiff response, and the response under peri-
odic boundary conditions generally lies in-between the static and
kinematic uniform boundary conditions [27,28].

Periodic boundary conditions are complex to implement, but
for a given VE size they provide the best estimate of material
properties for both periodic and random VEs [29-31]. Periodic
boundary conditions are generally applied by specifying a displace-
ment for the difference between a pair of nodes whose locations
correspond to each other but lie on opposite parallel faces of the
VE. Thus, Eq. (6¢) becomes

et —uk =g X - xR, (11)

where k+ and k— represent the kth pair of opposite parallel faces.
This can easily be applied via constraint equations between corre-
sponding nodes within the context of the finite element method.
Matching nodes thus need to be defined on both faces, and, hence, a
periodic mesh is generally required. With complex geometries this
is often not possible. Alternative approaches to applying periodic
boundary conditions on non-periodic meshes have been developed
by various researchers [32,30,33-35].

This work uses the method known as the master/slave ap-
proach, proposed by Yuan and Fish [34] and implemented by
Schneider et al. [36,37]. It is implemented within ABAQUS with the
use of the TIE keyword. This keyword involves a slave and master
surface where a node on the slave surface is constrained to the
movement of the closest node/s on the master surface.

Owing to a limitation in ABAQUS however, a boundary condition
and a TIE cannot simultaneously be described on one surface.
Thus, the master/slave periodic boundary conditions are applied
as follows (Fig. 3):

e create a replica of the master surface at a small distance
away from the slave surface (blue, yellow and green in Fig.
3),

e place aTIE constraint between the replicated surface and the
slave surface,

e apply constraint equations among reference nodes (these
are created as external nodes of the VE), replicated master
surfaces and the original master surfaces for all degrees of
freedom and each associated node (an example for one pair
of node sets is shown by the dashed line in Fig. 3),

e apply prescribed displacement to reference point.

3. Results and discussion
3.1. Numerical homogenization

Numerical homogenization has been carried out on the VE for
static uniform, kinematic and periodic boundary conditions, the
full elasticity tensor being calculated in each case for six indepen-
dent loading cases. To quantify the degree of anisotropy in each
elasticity tensor anisotropic factors were calculated as follows [38]:

Cyy + €55 + Cge Cl +C + €5

Yaa = 3 , Yii= 3 ;
c* (0 (034 2Y.
Yy = 12 TG+ 31’ and a= 44 ;
3 Yii+ Y2

= ~
2 *. reference
, node

replicated
master

surface
blue slave

surface

green original
master surface

yellow
slave surface

Fig. 3. Master/slave set-up for periodic boundary conditions on VE with a non
periodic mesh, see also [36,37]. The replicated master surfaces are given by the
dark blue, green and yellow surfaces. Tie constraints are created between each repli-
cated surface and corresponding slave surface parallel to it. Additionally constraint
equations (dashed line) are developed between corresponding reference nodes,
replicated master surfaces the original master surfaces. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Table 2

Effective elastic properties calculated from numerical homogenization under three
different boundary conditions.

Effective property Boundary condition

Static Periodic Kinematic
Bulk modulus «* 3.717 4.417 4.381GPa
Shear modulus p* 2.153 2.551 2.558 GPa
Poisson’s ratio v* 0.257 0.258 0.255
Young’s modulus E* 5.413 6.417 6.423 GPa

where a is equal to one in a purely isotropic case. This resulted
in anisotropic factors in the range of 0.975 to 0.987 indicating a
low degree of anisotropy. Thus, the VE is treated as an isotropic
material. This allows for only one loading condition to be applied
to define the material fully and obtain two effective material pa-
rameters.

Uniaxial compression is applied in each of the three major axes
separately, with an average effective property then calculated. The
results for the effective elastic properties for kinematic uniform,
static uniform and periodic boundary conditions are listed in Table
2. Agreement with the ordering of the effective Young’s modulus
based on the boundary conditions is substantiated by these results,
though the kinematic boundary condition gives a result that is
only slightly stiffer than the periodic condition. The numerically
homogenized results are relatively close to each other, suggesting
a good representativeness of the VE to the material at an infinite
scale.

The effective Young's modulus is in agreement with that of
Wang [39], who experimentally obtained a Young’s modulus of
4.01 GPa for a gold-polymer nanocomposite of similar parameter
description (volume fraction = 27%, ligament size = 35 nm +10
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Fig. 4. Maximum compressive and tensile stresses and strains along the centroid of the RVE: comparison of bulk gold, bulk polymer, polymer phase in the nanocomposite
and gold phase in the nanocomposite. Significantly large tensile stresses and strains are generated in the composite despite simulation of a pure compression test. The gold
within the composite shows considerable tensile and compressive stresses of equal magnitude.

nm). Compared to pure nanoporous gold, the composite is slightly
stiffer: for example, Balk et al. [12] have given a Young’s modulus
of 2.7 GPa for a pure sample of nanoporous gold at 30% volume
fraction with ligament sizes between 20-30 nm. The Reuss and
Voigt bounds for the Young’s modulus are calculated as 2.539 and
22.935 GPa, respectively. There is a large range determined by
these bounds due to the relatively stiff gold and the conversely
highly compliant polymer. The alternate theoretical bounds given
by Hashin-Shtrikman are slightly tighter, viz. 3.170 GPa and 14.538
GPa. For all three boundary conditions, the results lie within both
the Reuss-Voigt and the Hashin-Shtrikman bounds.

The three numerical results for the effective Young’s modulus
lie much closer to the lower Reuss average and are close to the
middle of the Hashin-Shtrikman bound. The Reuss-Voigt bounds
are based on a unidirectional fibre reinforced composite, for which
the Reuss average simulates an iso-stress situation of loading nor-
mal to the fibre direction. It assumes a matrix (or more compliant
material) to carry most of the load, with nominal strengthening be-
ing provided by a reinforcement material (or stiffer material). The
numerical results are only approximately 15%-20% greater than
the Reuss average, thus suggesting that, within the nanocomposite,
a large proportion of the strength is provided by the polymer
relative to the gold.

3.2. Elastic response along centroidal axis

The maximum and minimum compressive and tensile stresses
and strains are calculated for a selection of elements located along
the RVE’s centroidal axis under compression loading specified by
a displacement at the boundaries. These stresses and strains are
compared to those corresponding to homogeneous blocks of each
constituent material undergoing the same loading (Fig. 4). As ex-
pected, in the composite the polymer has far higher strains in both

compression and tension compared to the gold while the oppo-
site is seen with regard to the stress values. The differing tensile
strains between the homogeneous polymer and gold blocks are
due to the lateral Poisson’s expansion and the differing Poisson’s
ratios between the two materials. For the homogeneous blocks,
the stresses and strains are homogeneous, with only compressive
stresses being present.

The polymer in the composite has much larger tensile and
compressive strains (0.036 and —0.088) compared to those in the
homogeneous polymer block (0.016 and —0.054). The gold shows
the opposite trend with lower strains (0.007 and —0.009) com-
pared to gold homogeneous block (0.024 and —0.054 respectively).
Despite the loading being compressive, significantly large tensile
strains are generated in the composite, due to complex micro-
structural interactions. However, as expected, the absolute com-
pressive strains are still greater than the tensile ones. To be precise,
the maximum compressive strain is slightly more than double the
magnitude of the maximum tensile strain. The maximum tensile
and compressive stress values along the centroid are however very
similar in magnitude (3.46 GPa and —3.83 GPa respectively). A
complex interaction between the polymer and gold constituents
clearly exists, causing a heterogeneous response with high tensile
stresses during compressive loading.

The gold within the composite exhibits significantly lower val-
ues of compressive stresses than those corresponding to the homo-
geneous block. The polymer shows marginally higher stress values
within the composite compared to the pure polymer block. This
suggests a load transfer between the gold and polymer material to
allow for lower stress values.

3.3. Loading case of the ligaments
The resultant stress distributions on the cross sections of 10

different ligaments within the composite are analysed under com-
pression loading along the x-axis, with a view to determining the
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cross section of a cross section of a cross section of a
x-orientated ligament y-orientated ligament z-orientated ligament
: T

normal force: -3.14 uN normal force: 0.527 uN normal force: 1.00 uN

bending moment: 17.54 uN.nm bending moment: 2.04 xN.nm bending moment: 0.854 uN.nm

shear force: 0.116 uN shear force: 0.391 uN shear force: 0.378 uN

torque: 1.39 uN.nm torque: 5.014 puN.nm torque: 2.02 pN.nm
Fig. 5. Normal and shear stress distribution on the cross section of three ligaments with in the RVE. — — = approximate bending neutral axis of y and z-orientated ligaments.

& = inward pointing normal force, e = outward pointing normal force calculated at each elemental centroid. Where the diameter of the circle or length of line represents
the relative magnitude of the normal or shear force respectively. e = centroid of ligament cross section.

Table 3

Average loading mode magnitudes for 10 ligaments.
Loading mode Value
Bending moment 4.255 pN-nm
Torque 2.279 uN-nm
Normal force 1.233 uN
Shear force 0.229 uN

dominant modes of stress at the selected locations. Six of the
ligaments lie along the major axes of the RVE and four ligaments
lie at random orientations. The traction vector, bending moment
and torque are calculated on each cross-section, which constitutes
a plane normal to the centroidal axis of the ligament. The values
were calculated at the centroid of every element lying on this
plane.

The average values of the 10 ligaments for each loading mode
(Table 3) indicate that bending is the dominant loading case. Nev-
ertheless, the magnitudes of the torque and normal forces are still
significant. Shear stress is more prevalent than expected as it is
only one order of magnitude less than the normal force. Ligaments
lying at random orientations show no clear trend in dominant
loading cases and are, therefore, not discussed further.

The normal and shear stress distribution of three sample liga-
ments lying along each axis are shown in Fig. 5. Very little differ-
ence is seen in the normal and shear stress distributions between
ligaments along the same axis.

The stress distribution of the ligament along the axis of com-
pression shows a combination of both compression and bending. A
far greater normal force and bending moment are also experienced
by the ligament aligned with the compression axis, compared to
those having different orientations. The presence of significant
normal forces through all ligaments with a shift in the bending
neutral axis is evident in two ligaments and is in accord with
the experimental observation of Wang and Weissmiiller [4]. Thus
showing agreement that there is a different loading case in the

composite ligaments compared to the pure nanoporous gold lig-
aments. It is also in some agreement with the finding of Bargmann
et al. [15] who found high compression/tension stresses for liga-
ments along the compressive axis.

Bending is clearly seen on all three normal stress distributions
in Fig. 5, as seen by the magnitude of the normal stress decreasing
along the cross-section of the ligament. The ligament in the direc-
tion of compression has normal forces acting into the cross-section
only, giving a high resultant normal force, whereas normal stress
distributions of ligaments not along this axis have a dense region
of forces acting out of the cross-section which decrease and change
into forces acting into the cross-section along the ligament cross-
section. Deshpande et al. [40] state that a tension/compression-
dominant foam is expected to be much stiffer and stronger than
one in which bending dominates. Although the Gibson-Ashby [41]
foam scaling equations are known to be inappropriate for pre-
diction of the strength and stiffness of nanoporous gold [16,14],
the underlying principles still apply. That is, the strength and
stiffness of a foam scales with the relative density much faster for
foams with tension/compression dominated deformation. Thus,
at the same relative density, a tension/compression deformation
dominated material will be much stronger than one in which
bending dominates. The increased stiffness shown in Section 3.1
compared to that for the pure nanoporous gold sample may thus
arise not only as a result of the addition of the polymer, but
also due to the shift in loading case. The tension-compression
symmetry shown in this model suggests that the nanocomposite
shows the same loading modes in tension as in compression. The
significant presence of bending and not only normal forces in
the ligaments may thus account for the enhanced ductility. The
presence of tension/compression loading modes allows for en-
hancement of strength without high stiffness due to the presence
of the bending loading mode. Additionally, it suggests that by
increasing the amount of tension/compression through fine-tuning
the microstructure, materials with design specific properties could
be created.
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In contrast to the normal stress, the shear stress distribution
shows almost no clear trend in any of the ligaments monitored.
However, a small region of higher shear forces is seen on one edge
in each ligament in Fig. 5. There are also greater shear forces on
the outer edges of the ligament surface: these are suggestive of
torsional stresses. The high torque experienced by the ligament
orientated normal to the direction of compression is clearly seen
in the circular trend of shear forces on the ligament face in Fig.
5. The presence of significant shear forces and torque suggests a
complex interaction at the interface between the gold and poly-
mer. Behaviour at these interfaces play a significant role in the de-
termining unique characteristics of the material (see also Wilmers
etal.[1] and Elsner et al. [2]), while the possibility of delamination
as a main deformation mechanism can also not be ruled out due to
the high surface-to-volume ratio of nanoporous gold.

4. Conclusion

Nanoporous metals have gain in popularity as the basic in-
gredient for high-performance composites [42-44]. Tailor made
materials with custom designed mechanical properties, including
overcoming of what seemed to hold true for all materials, i.e., in-
creasing strength accompanied by reduced damage tolerance and
greater brittleness, are the goal. Gold serves as a model material
in the ongoing analyses of the properties of nanoporous metals
(and their composite counterparts) because it is insensitive to
most impurities. Research on how to substitute gold with less
exclusive metals is continuously growing. To date, even the most
basic property, i.e., the elastic behaviour of such nanocomposites,
is not fully understood at the nanoscale.

This study was concerned with an analysis via numerical ho-
mogenization of an RVE of a linear elastic gold-polymer nanocom-
posite comprising ligaments of 31.5 nm in diameter and with a
~30% gold volume fraction. The resulting effective Young’s mod-
ulus varies between 5.4 and 6.4 GPa, values that lie well within
both the Reuss-Voigt and Hashin-Shtrikman bounds. The elastic
response along the centroid of the RVE showed significant com-
pressive and tensile behaviour existing within the composite even
if only under compressive loading. The gold within the composite
showed considerable tensile and compressive stresses of equal
magnitude. All ligaments showed clear trends of combined bend-
ing, torsion, and normal forces. The dominant loading case was
bending with torsion, normal force and shear force present in
descending order of magnitude. The ligaments aligned along the
compression axis showed much higher normal forces and bending
moments compared to those aligned along the other two axes. Ran-
domly oriented ligaments showed no clear trend in their dominant
loading case. The shear stress showed little to no clear trend in
distribution, though it did contribute to the high shear forces and
torques experienced by the ligaments. The increased stiffness of
a gold-polymer nanocomposite is achieved by filling the pores of
nanoporous gold with polymer. Hereby, with respect to stiffness,
the contribution of the additional material is reduced by a shift in
loading case from compression/tension to bending with torsion.

By fine-tuning the microstructure by reducing the amount of
bending in the ligaments (and increasing the amount of ten-
sion/compression), even better mechanical properties should be
achieved.
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